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1 Definitions and basic characteristics

1.1 Definition of a stochastic process

Definition 1. Let ({2, A,P) be a probability space, (S,€) a measurable space, and
T C R. A family of random variables {X;, t € T'} defined on ({2, A, P) with values in S
is called a stochastic (random) process.

If S=R, {X;, t €T} is called the real-valued stochastic process.
UT=7Z={0,£1,£2,...} or T C Z, {X;, t € T} is called the discrete time stochastic
process, time series.

If T =a,b], —oo <a<b< oo, {Xy, t €T} is the continuous time stochastic process.
For any w € (2 fixed, X;(w) is a function on 7" with values in S which is called a trajectory
of the process.

Definition 2. The pair (5, &), where S is the set of values of random variables X; and
€ is the o—algebra of subsets of S, is called the state space of the process {X;, t € T'}.

Definition 3. A real-valued stochastic process {X;, t € T'} is said to be measurable, if
the mapping (w,t) = X¢(w) is A® Br—measurable, where By is the o —algebra of Borel
subsets of T" and A ® By is the product o—algebra.

Finite-dimensional distributions of a stochastic process:

Let {X, t € T} be a stochastic process. Then, Vn € N and any finite subset
{t1,...,t,} C T there is a system of random variables X;,, ..., X, with the joint distri-
bution function

P [th S Tiy... ,th S fEn] = Fthm’tn(xl, e ,ﬂfn)

for all real valued x4, ..., x,.

A system of distribution functions is said to be consistent, if

LBy, @iy ooy m,) = Fy g, (71,00, 2,) for any permutation (iy, ..., 4,) of in-
dices 1,...,n (symmetry)

2. limy, oo iyt (21, oy 20) = Fyy oty (21, ..., 2—1) (consistency)

The characteristic function of a random vector X = (X7,...,X,,) is

ex(u) == @(ug, ... u,) = Ee"' X = EeZi=1 %Yy = (ug, ..., up) € R,.



A system of characteristic functions is said to be consistent if

Loop(iyy .. u,) = @(ug, ..., uy,) for any permutation (iq,...,7,) of (1,...,n), (sym-
metry)
2. limy, 50 ¢x,,....X,, (Ugy ... uy) = OXpy X, (u1,...,u,_1) (consistency)

1.2 Daniell-Kolmogorov theorem

For any stochastic process there exists a consistent system of distribution functions. On
the other hand, the following theorem holds.

Theorem 1. Let {F}, ., (%1,...,2,)} be a consistent system of distribution functions.
Then there exists a stochastic process {X;, t € T} such that for any n € N, any
ty,...,tp, €T and any real xy, ..., T,

P[th le,...,thSI‘n]:Ftl ..... tn<I17"'7xn)-

Proof. Stépéan (1987), Theorem 1.10.3. O

1.3 Autocovariance and autocorrelation function

Definition 4. A complex-valued random variable X is defined by X =Y +iZ, where Y
and Z are real random variables, i = v/—1.

The mean value of a complex-valued random variable X =Y +iZ is defined by EX =
EY +iEZ provided the mean values EY and EZ exist.

The variance of a complex-valued random variable X =Y +iZ is defined by var X :=
E[(X —EX)(X —EX)] = E|X — EX|*> > 0 provided the second moments of random
variables Y and Z exist.

Definition 5. A complez-valued stochastic process is a family of complex-valued random
variables on ({2, A, P).

Definition 6. Let {X;, t € T'} be a stochastic process such that EX; := pu, exists for all
t € T. Then the function {yuy,t € T} defined on T is called the mean value of the process
{X}, t € T}. We say that the process is centered if its mean value is zero, i.e., p; = 0 for
allt e T.



Definition 7. Let {X;, t € T} be a process with finite second order moments, i.e.,
E|X;|* < oo, Vt € T. Then a (complex-valued) function defined on T' x T' by

R(s,t) = E [(X, — ps) (X — )]

is called the autocovariance function of the process { Xy, t € T'}. The value R(t,t) is the
variance of the process at time t.

Definition 8. The autocorrelation function of the process {X;, t € T} with positive
variances is defined by

R(s,t)
V/R(s,5)\/R(t,t)

r(s,t) = s, teT.

Definition 9. A stochastic process {X;, t € T'} is called Gaussian, if for any n € N
and t,...,t, € T, the vector (X;,,...,X;, )" is normally distributed N, (mg, V), where
my — (Eth, ceey Eth)T and

varXy, cov(Xy, Xiy) ... cov(Xy, Xy,)
cov( Xy, Xy,) var Xy, cooocov( Xy, Xy,)
Vt = .
cov(Xy,, Xy,) cov(Xy,, Xy,) ... varX;,

1.4 Strict and weak stationarity

Definition 10. A stochastic process {X;, t € T} is said to be strictly stationary, if for
any n € N, for any x1,...,2z, € R and for any ¢,...,t, and h such that t, € T, t, +h €
T,1<k<n,

Foo (@, xn) = Fogon tpen(T1, .0 ).

Definition 11. A stochastic process {X;, t € T'} with finite second order moments is
said to be weakly stationary or second order stationary, if its mean value is constant,
wy = w, ¥t € T, and its autocovariance function R(s,t) is a function of s — ¢, only. If
only the latter condition is satisfied, the process is called covariance stationary.

The autocovariance function of a weakly stationary process is a function of one variable:

R(t) == R(t,0), t € T.

The autocorrelation function in such case is



Theorem 2. Any strictly stationary stochastic process {X;, t € T} with finite second
order moments is also weakly stationary.

Proof. 1f {X;,t € T} is strictly stationary with finite second order moments, X, are
equally distributed for all t € T" with the mean value

EXt:EXt_H” VtET,Vh t+h€T

Especially, for h = —t, EX; = EX = const.
Similarly, (X;, X;) are equally distributed and

E[X, X,] = E [Xosn Xoin] Vst €T, Vh: s+heT, t+heT.
Especially, for h = —t, E[X;X| = E[X,X,_4] is a function of s — . O

Example 1. Let {X;,t € Z} be a sequence of i.i.d. random variables with a distribution
function F. Since for all n € N and all ¢4,...,¢,,h € Z,

Ft1 ..... tn(xlw"axn) = P[thfflfl,---,Xt <$n]:
n
= [[PIXx, <ai) = HFIL’Z
=1
Ft1+h ..... tn+h($1,---;$n) = P[Xt1+h§$1,--->th+h§$n]:

{Xi,t € Z} is strictly stationary.

Example 2. Let {X;, t € Z} be a sequence defined by X; = (—1)*X, where X is a
random variable such that

X - —i with probability %,
3 with probability 1.
Then { X}, t € Z} is weakly stationary, since
EXt = 0,
var X, = o= El
t — - 16’
R(s,t) = o*(=1)*" =o?(—1)*"",

but it is not strictly stationary (variables X and —X are not equally distributed).
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Theorem 3. Any weakly stationary Gaussian process {X;, t € T} is also strictly sta-
tionary.

Proof. Weak stationarity of the process {X;,t € T} implies EX; = p, cov (X, X;) =
R(t — s) = cov (Xyyn, Xsin), t,s € T, thus, for all n € N and all t1,...,t,,h € Z,

E(thv s Jth) = E(Xt1+h7 s 7th+h) = (:LL7 s Jlu> =M,

var (X, ..., Xy,) = var (Xyany oo, Xppan) = 2

where
R(0) R(ta —t1) ... R(t,—1t1)
R(ty —ty) R(0) oo R(t, —t9)
= | o |
R(0)

Since the joint distribution of a normal vector is uniquely defined by the vector of mean
values and the variance matrix, (Xy,,...,X:,) ~ N(p, 2), and (Xg4ny .-, Xoytn) ~
N (e, X) from which the strict stationarity of {X;, t € T'} follows. O

1.5 Properties of autocovariance function

Theorem 4. Let {X;, t € T} be a process with finite second moments. Then its autoco-
variance function satisfies

R(t,t) >0,
|R(s,t)| < \/R(s,s)\/R(t,1).

Proof. The first assertion follows from the definition of the variance. The second one
follows from the Schwarz inequality, since

|R(s,t)| = [E(X, — EX,)(X; — EX)| < (E|X, — EX,])2 (E|X, — EX,*)2
= /R(s,s)\/R(t,1).

]

Thus, for the autocovariance function of a weakly stationary process we have R(0) > 0
and |R(t)| < R(0).



Definition 12. Let f be a complex-valued function defined on T'x T, T C R. We

say that f is positive semidefinite, if Vn € N, any complex numbers cy, ..., ¢, and any
tiy.. tn €T,
n n
Z Z cicef(tj,tk) = 0.
j=1 k=1

We say that a complex-valued function g on T is positive semidefinite, if Vn € N,

any complex numbers ci,...,c, and any ti,...,t, € T, such that t; —t, € T,
D emrglty — i) > 0,
j=1 k=1

Definition 13. We say that a complex-valued function f on 7' x T' is Hermitian, if
f(s,t) = f(t,s) Vs,t € T. A complex-valued function g on 7T is called Hermitian, if

g(—t) =g(t) VteT.

Theorem 5. Any positive semidefinite function is also Hermitian.

Proof. Use the definition of positive semidefiniteness and for n = 1 choose ¢; = 1; for
n =2 choose ¢; =1l,co =1and ¢; = 1,¢5 = i(=+—1).
O

Remark 1. A positive semidefinite real-valued function f on 7' x T is symmetric, i.e.,
f(s,t) = f(t,s) for all s,t € T. A positive semidefinite real-valued function g on 7' is
symmetric, i.e, g(t) = g(—t) for all t € T.

Theorem 6. Let {X;, t € T} be a process with finite second order moments. Then its
autocovariance function is positive semidefinite on T x T.

Proof. W.1.0.g., suppose that the process is centered. Then for any n € N, complex
constants ¢y, ...,c, and ty,...,t, € T

> X, =E [Z X, aXy, ]
j=1 k=1

j=1

= Z Z Cjc_kE(thX_tk> = Z Z CJQR@JH tk)'

j=1 k=1 j=1 k=1

0<E




Theorem 7. To any positive semidefinite function R on T x T there exists a stochas-
tic process {X;, t € T} with finite second order moments such that its autocovariance
function is R.

Proof. The proof will be given for real-valued function R, only. For the proof with
complex-valued R see, e.g., Loeve (1955), Chap. X, Par. 34.

Since R is positive semidefinite, for any n € N and any real ¢4, ...,t, € T, the matrix
R(t1,t1) R(ti,ta) ... R(ti,t,)
V, R(ta,t1) R(ta,ta) ... R(ta,tn)
. =
R(tn,t1) R(tn,t2) ... R(tn,t,)

is positive semidefinite. The function
1 T n
p(u) = exp —5u Viup, uelR

is the characteristic function of the normal distribution AN, (0, Vy). In this way, Vn € N
and any real t1,...,t, € T we get the consistent system of characteristic functions. The
corresponding system of the distribution functions is also consistent. Thus according to
the Daniell-Kolmogorov theorem (Theorem 1), there exists a Gaussian stochastic process
covariances of which are the values of the function R(s,t); hence, R is the autocovariance

function of this process.
O

Example 3. Decide whether the function cost, t € T = (—o0, 00) is an autocovariance
function of a stochastic process.

Solution: It suffices to show that cost is the positive semidefinite function. Consider
neN, c,...,c, €Caty,...,t, € R. Then we have

n n n n
Z Z cjCp cos(t; — ty) = Z Z c;Cr(cost; costy + sint; sinty)

j=1 k=1 j=1 k=1
= E cjcost;| + E cpsintg| > 0.
j=1 k=1

The function cost is positive semidefinite, and according to Theorem 6 there exists
a (Gaussian) stochastic process {X;, t € T}, the autocovariance function of which is
R(s,t) = cos(s — t).

Theorem 8. The sum of two positive semidefinite functions is a positive semidefinite
function.
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Proof. Tt follows from the definition of the positive semidefinite function. If f and g¢
are positive semidefinite and h = f + ¢, then for any n € N, complex cy,..., ¢, and
tiyoo oty €T

Z Z cjceh(ty, ) = Z Z cicelf(t;,tk) + g(t;, tw)]

j=1 k=1 J=1 k=1
= Z Z CjEkf(tj, tk) + Z Z CjEkg(tja tk) > 0.
j=1 k=1 J=1 k=1

]

Corollary 1. Sum of two autocovariance functions is the autocovariance function of a
stochastic process with finite second moments.

Proof. 1t follows from Theorems 6-8. O

2 Some important classes of stochastic processes

2.1 Markov processes

Definition 14. We say that {X;, t € T'} is aMarkov process with the state space (S, ),
if for any to,t1,...,t,, 0 <tog <ty <--- <tp,,

P(th S $|th_1, Ce 7Xt0) = P(th S x|th_1) a. S. (1)
for all x € R.

Relation (1) is called the Markovian property. Simple cases are discrete state Markov
processes, i.e., discrete and continuous time Markov chains.

Example 4. Consider a Markov chain {X;, ¢ > 0} with the state space S = {0, 1}, the
initial distribution P(Xy = 0) =1, P(X, = 1) = 0 and the intensity matrix

Q:(_ﬁa _O‘B), a>0, >0.

Treat the stationarity of this process.

We know that all the finite dimensional distributions of a continuous time Markov
chain are determined by the initial distribution p(0) = {p;(0), 7 € S}* and the transition
probability matrix P(t) = {p;;(t), ¢,7 € S}. In our case, P(t) = exp(Qt), where

1 B —+ Oéef(OH’/B)t o — Oéei(a+’3)t
a—+ ﬁ 6 _ Bef(aJr/D’)t a4+ Bef(ow#ﬁ)t

P(t) =

11



(see, e.g., Praskova and Lachout, 2012, pp. 93-95) and due to the initial distribution,
the absolute distribution is

p(t)" = p(0)"P(t) = (1,0)"P(t) = (poo(t), por (t))" .
Then we have

1

EX; =P(X;=1) =poi(t) = ot

(o — ae=(e+9t)
which depends on ¢, thus, the process is neither strictly nor weakly stationary.

On the other hand, if the initial distribution is the stationary distribution of the
Markov chain, i.e., such probability distribution that satisfies w7 = wTP(t), then
{X;, t > 0} is the strictly stationary process (Praskova and Lachout, 2012, Theorem
3.12).

In our case, the solution of w7 = 7w P(t) gives

!
TN —= ———. 71 =
T a4 T a+p
and from here we get the constant mean EX; = QLM and the autocovariance function
Ris 1) = —20 _e—(atals—t]

(a+5)?

2.2 Independent increment processes

Definition 15. A process {X;, t € T}, where T is an interval, has independent incre-
ments, if for any t1,ts,...,t, € T such that t; < t5 < --- < t,, the random variables
X, — X4y, ..., Xy, — Xy, , are independent.

If for any s,t € T, s < t, the distribution of the increments X; — X depends only on
t — s, we say that {X;, t € T'} has stationary increments.

Example 5. Poisson process with intensity A is a continuous time Markov chain { X}, ¢ >
0} such that Xy =0 a.s. and for ¢ > 0, X; has the Poisson distribution with parameter
At. Increments X; — X, s < t have the Poisson distribution with the parameter \(t — s).
The Poisson process is neither strictly nor weakly stationary.

Example 6. Wiener process (Brownian motion process) is a Gaussian stochastic process
{W,;,t > 0} with the properties

1. Wp =0 a.s. and {W;,t > 0} has continuous trajectories

2. For any 0 < &) <ty < -+ < tp, Wy Wy, = Wy Wy, = Wiy, ... Wy, — Wy, | are
independent random variables (independent increments).

12



3. For any 0 <t < s, the increments W, — W, have normal distribution with zero
mean and the variance o?(s — t), where o2 is a positive constant. Especially, for
any t > 0, EW, = 0 and var W, = ot.

The Wiener process is Markov but it is neither strictly nor weakly stationary.

2.3 DMartingales

Definition 16. Let {2, A, P} be a probability space, T C R,T # (). Let for any ¢t €
T, F, C Abe ao— algebra (c—field). A system of o-fields {F;,t € T'} such that F, C F;
for any s,t € T',s < t is called a filtration.

Definition 17. Let {X;, t € T} be a stochastic process defined on {Q, A, P}, and let
{Fi,t € T} be a filtration. We say that {Xy, t € T} is adapted to {F;,t € T} if for any
t €T, X; is F; measurable.

Definition 18. Let {X;, t € T'} be adapted to {F;,t € T'} and E|X;| < oo for allt € T
Then {X;, t € T} is said to be a martingale if EX;|Fs = X, a.s. for any s < t,s,t,€ T.

3 Hilbert space

3.1 Inner product space

Definition 19. A complex vector space H is said to be an inner product space, if for
any x,y € H there exists a number (x,y) € C, called the inner product of elements z,y
such that

L (z,y) = (y,2).

2. Vae C,Va,y € H : {ax,y) = a(zx,y).

3. Vo,y,2€e H (x +y,2) = (x,2) + (y, 2).

4. Vx € His (z,z) > 0; (z,2) =0 < x =0 (0 is zero element in H).

The number
|zl :== /(z,z), VzeH

is called the norm of an element x.
Theorem 9. For the norm ||x| := +/(z,x) the following properties hold:
1. ||z]| >0Vz € H and ||z|| =0 & x=0.

2. VaeC, V€ H: |azx| = |af - ||z].

13



8. Vr,y e H: |lo+yll < =] + [yl
4. Vo,y € H: [(y)] < ] - lyll = Az 2/ (y, )
(the Cauchy-Schwarz inequality).

Proof. 1t can be found in any textbook on Functional Analysis, see, e.g., Rudin (2003),
Chap. 4. O]

3.2 Convergence in norm

Definition 20. We say that a sequence {z,, n € N} of elements of an inner product
space H converges in norm to and element x € H, if ||z, — z|| — 0 as n — oc.

Theorem 10. (The inner product continuity)
Let {x,, n € N} and {y,, n € N} be sequences of elements of H. Let x,y € H and
Ty —> T, Yo — Y in norm as n — oo. Then

[|n]| = ]|
(T, yn) = (2,9).
Proof. From the triangle inequality we get
|| < [lz =yl + [lyl|
Iyl < lly — [ + |||
el =yl | <l =yl
From here we get the first assertion since
| Naall = [zl < [lzn = 2ll.
The second assertion is obtained by using the Cauchy-Schwarz inequality:
[(Zns yn) — (2, 9)| = (20 — 2+ 2,90 —y + 1) — (2,9)]
<z — 2 yn =y + K2,y —9) 1+
+ [{zn — 2,9)]
< lwn = 2|l - Ny = yll + 2] - [y — yll+
+ lzn — 2| - [lyll-
O

Definition 21. A sequence {z,, n € N} of elements of H is said to be a Cauchy se-
quence, if ||z, — z,,|| = 0 as n,m — oo.

Definition 22. An inner product space H is defined to be a Hilbert space, if it is
complete, i.e., if any Cauchy sequence of elements of H converges in norm to some
element of H.

14



4 Space L1(Q2, A, P)

4.1 Construction

Let £ be the set of all random variables with finite second order moments defined on a
probability space (£2,.4, P). We can easily verify that £ is the vector space:

1.VX,)YeLl, X+Y €L since

EIX + Y <2(E[X]*+E]Y]?) < oo
2. VX € L and Va € C, aX € L, since
ElaX|* = |a|* - E|X|* < oo.

3. The null element of £ is the random variable identically equal to zero.

On space £ we define classes of equivalent random variables that satisfy
X~Y<—=P[X=Y]=1
and on the set of classes of equivalent random variables from £ define the relation
(X,Y)=E[XY], VXeX,YevY,
where X , Y denote classes of equivalence.

The space of classes of equivalence on £ with the above relation (.,.) is denoted
Ly(€2, A, P). The relation (X, Y") satisfies the properties of the inner product on Ly(12, A, P):
For every XY, Z € Ly(Q,A,P) and every a € C it holds

1. (aX,Y) =E[aXY] = aE [XY] = a(X,Y).

2. (X+Y,Z)=E[(X+Y)Z]| =E[XZ|+E[YZ] = (X, Z) + (Y, Z).
3. (X,X)=E[XX] =EX]*>0.

4. (X, X)=E|X]?=0< X ~0.

15



4.2 Mean square convergence

We have defined Ly(€2, .4, P) to be the space of classes of equivalence on £ with the inner

product
(X,Y)=E [X?} ,

the norm is therefore defined by

1| = VEXP

and the convergence in Ly(€2, A, P) is the convergence in this norm.

Definition 23. We say that a sequence of random variables X,, such that |[EX,|* < oo
converges in the mean square (or in the squared mean) to a random variable X, if it
converges to X in Ly(Q,A,P), i.e.,

|1 X, — X|]* =E|X, — X|* = 0 asn — oc.
Notation: X = Li.m. X,, (limit in the (squared) mean,).

Theorem 11. The space Ly(Q2, A, P) is complete.

Proof. See, e.g., Brockwell and Davis (1991), Par. 2.10, or Rudin (2003), Theorem
3.11. O

The space Ly(f, A, P) is the Hilbert space.

Convention: A stochastic process {X;, t € T} such that E|X;|? < oo will be called a
second order process.

4.3 Hilbert space generated by a stochastic process

Definition 24. Let {X, t € T'} be a stochastic process with finite second moments on
an (92, A, P). The set M{X;, t € T'} of all finite linear combinations of random variables
from {X;, t € T} is a linear span of the process {X;, t € T}, i.e.,

M{X, teT} = {ch){tk, neN, ¢,...,c, €C, tl,...,tneT}.

k=1

Equivalence classes in M{X;,t € T} and the inner product (X,Y) are defined as
above.

16



Definition 25. A closure M{X;, t € T} of the linear span M{X;, t € T'} consists of all
the elements of M{X;, t € T'} and the mean square limits of all convergent sequences
of elements of M{X;, t € T}.

Then M{X;, t € T} is a closed subspace of the complete space Ly(€2, A, P) and thus
a complete inner product space. It is called the Hilbert space generated by a stochastic
process {X;, t € T}, notation H{X,, t € T}.

Definition 26. Let {X! t € T},es, T C R, S C R, be a collection of stochastic pro-
cesses in Ly(€, A, P) (shortly: second order processes). We say that processes { X!, t €
T}hes converge in mean square to a second order process {X;, t € T} as h — hy, if

VteT: Xthﬁ X, in mean square, i.e., E|X!" — X,|? — 0.
—hg —ho

Briefly, we write

{X}' t € T}hes ﬁ{Xt, t € T} in mean square.
—ho

Theorem 12. Centered second order processes { X', t € T'}nes converge in mean square
to a centered second order process { Xy, t € T} as h — hg if and only if

E [XZ‘X_[L'] S b(t) as hy B = ho,
where b(.) is a finite function on T.

When processes {X[', t € T}nes converge to a process {Xy, t € T} in mean square
as h — hg, the autocovariance functions of the processes { X', t € T}nes converge to the
autocovariance function of { Xy, t € T} as h — hy.

Proof. 1. Let {X[!', t € T}yes — {X}, t € T} in mean square. Then Vt, ' € T
1—h(

X" — X, in mean square
h—hg

thfl — Xy In mean square.
h' = hg
From the continuity of the inner product we get, as h, A" — hyg,
E| XX | — E[XX0].
Thus for t =t a h,h’ — hg we have

E [X[LX_{“] S E[ XX, ] = E|X,? = b(t) < oo,

17



since { X, t € T'} is a second order process. For h = h/, we get

E [X[LX_[}] —E[XXy] astt el

where E [X[LX_H = Ry(t,t') is the autocovariance function of the process { X[, t € T}
and E [ X, Xy | = R(t,t) is the autocovariance function of the process {X;, t € T'}.

2. Let {X]', t € T}yes be centered second order processes for which

E[XZ‘X_[L'] — b(t) <ooas h,h — hgaVteT.

Then
| XP— X2 =0, ash,h — hg, Yt €T
since Vt € T’
X = X2 = B [(xp - X1 (XF - XF)]
—E[XIXT| —E[XI'XT] - B[ XIXT] +
+E [Xf’x_ﬂ —5 b(t) — b(t) — b(t) + b(t) = 0
as h,h' — hg.

We have proved that processes {X!, t € T},es satisfy the Cauchy property for any
t € T. Due to the completeness of Ly(2, A, P), Vi € T,3X; € Ly(Q2, A, P) such that
X — X, in mean square as h — hg, thus E|X;|? < oo Vt € T. Therefore there exists a
limit process {X;, t € T} € Ly(Q2, A, P). We prove that {X;, t € T} is centered:

EX, =EX, - EX]'+EX]'=E[X, — X]].

EX;| = |E[X, — X!]| < VE|X, — XP|* =0

as h — hy, Vt € T. O

Then

5 Continuous time processes in Ly(Q), A, P)

5.1 Mean square continuity

Definition 27. Let {X;, t € T'} be a second order process, T' C R an open interval. We
say that the process { Xy, t € T'} is mean square continuous (or La-continuous) at point
toe T, if

EIX; — X;,|? =0 ast—t.

18



We say that the process {X;, t € T'} is mean square continuous, if it is continuous at
each point of T

Remark 2. A second order process that is mean square continuous is also stochastically
continuous (continuous in probability), since

P|:|Xt_Xt0|>€ §5_2'E|Xt—Xt0|2.

Theorem 13. Let {X;, t € T} be a centered second order process, T'C R be an interval.
Then {X;, t € T} is mean square continuous if and only if its autocovariance function
R(s,t) is continuous at points [s,t], such that s =t.

Proof. 1. Let {X;, t € T} be a centered mean square continuous process. We prove that
its autocovariance function is continuous at every point of 7" x T. Since EX; = 0, we
have Vsg,tg € T a s — sg, t — tg

|R(s,t) — R(so,to)] = |[E [ XsX:] — E[ X5 X4 ]|
= ’<XS7X1?> - <X807Xt0>| - 07

which follows from the continuity of the inner product, since X; — X;, as t — ¢y and
Xy — X;, as s — s, due to the continuity of the process.

2. Let R(s,t) be continuous at points [s, t] such that s = t. Then Vtq € T

E|X, — X, |?

E[(X) — Xu)(Xy = X4,)] =
E[X.X:] — E[X,X,,] — E[X,, X] + E[X;, Xy, ]
R(t,t) — R(t, to) — R(to, t) + Rlto, to).

The limit on the right hand side is zero as t — ¢, thus the limit on the left hand side is
Z€rTo. 0

Theorem 14. Let {X;, t € T'} be a second order process with a mean value {yuz, t € T'}
and an autocovariance function R(s,t) defined on T x T. Then {X, t € T} is mean
square continuous if {u, t € T} is continuous on T and R(s,t) is continuous at points
[s,t], such that s =t.

Proof.

E|X: _Xto|2 =E|X} — pe + 1 _Xt0|2 =
=E UXt — e — (Xiog — pheg) + i — Mtom

19



Put V; := X; — puy, ¥t € T. Then {Y;,t € T} is centered process with the same
autocovariance function R(s,t) and

E|Xt_Xt0|2: E‘Y;f_Y;fo +Nt_ﬂt0|2 <

< 2E|Y;f _Y;50|2+2|:ut_:ut0|2
O

Theorem 15. Let {X;, t € T} be a centered weakly stationary process with an autoco-
variance function R(t). Then {X:, t € T} is mean square continuous if and only if R(t)
s continuous at zero.

Proof. Due to the weak stationarity, R(s,t) = R(s —t). Then the assertion follows from
the previous theorem. O

Example 7. A centered weakly stationary process with the autocovariance function
R(t) = cos(t), t € R, is mean square continuous.

Example 8. Let {X;,t € T}, T = R, be a process of uncorrelated random variables
with EX; = 0, t € R and the same variance 0 < 02 < oo. The autocovariance function
is R(s,t) = 0%0,_¢ where

1 ifx=0,
5(@:{ 0 ifx#0.

The process is weakly stationary, but not mean square continuous (the autocovariance
function is not continuous at zero).

Example 9. Wiener process {W;, t > 0} is a Gaussian process with independent and
stationary increments, EW; = 0, R(s,t) = EW,W, = ¢? - min{s,t}. The process is not
weakly neither strictly stationary (though Gaussian).

The process je centered, R(s,t) is continuous (thus at [s,¢] with s = ¢). The process is

mean square continuous.

Example 10. Poisson process {X;, ¢ > 0} with intensity A > 0 is a process with
stationary and independent increments, X; ~ Po()). Since EX; = p; = A, ¢ > 0 and
cov(Xs, Xy) = A - min{s, t}, the process is not weakly stationary.

Since p; is continuous, R(s,t) is continuous, the process is mean square continuous.
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5.2 Mean square derivative of the process

Definition 28. Let {X;, t € T'} be a second order process, T C R an open interval. We
say that the process is mean square differentiable (Lo-differentiable) at point ty € T if
there exists the mean square limit

L i . Seth ~ Ao

. = X!
hs0 h to

This limit is called the mean square derivative (Lo-derivative) of the process at t.

We say that the process { Xy, t € T'} is mean square differentiable, if it is mean square
differentiable at every point t € T'.

Theorem 16. A centered second order process { Xy, t € T'} is mean square differentiable
if and only if there exists a finite generalized second-order partial derivative of its auto-
covariance function R(s,t) at points [s,t], where s =t, i.e., if at these points there exists
finite limat

o1 / /
h,lflL’IEOW [R(s+ h,t+h') — R(s,t+h') — R(s + h,t) + R(s,1)].

Proof. According to Theorem 12, the necessary and sufficient condition for the mean

square convergence of (X, — X;)/h is the existence of the finite limit

) Xin —Xo Xegw — Xo|
lim E . —
h,h'—0 h h

: 1 / /
h}ﬁﬂoW[R(Hh’t“Lh) — R(t,t +1h") — R(t+ h,t) + R(t,1)].

]

Remark 3. A sufficient condition the generalized second-order partial derivative of
R(s,t) to exist is the following one: Let [s,t] be an interior point in 7" x T'. If there exist

0?R(s,t) O?R(s,t)
gsar M 50,

and they are continuous, then there exists the generalized second-order partial derivative

of R(s,t) and is equal to 62815(5;) (Andel, 1976, p. 20).

Theorem 17. A second order process {X;, t € T} with the mean value {p, t € T} is
mean square differentiable, if {u,, t € T} is differentiable and the generalized second-
order partial derivative of the autocovariance function exists and is finite at points [s,t],
such that s =t.
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Proof. A sufficient condition for the mean square limit of % to exists is the Cauchy

condition )

Xeen = X Xogw = X —0 ash—0, K —=0

E
h n

Vvt € T. It holds since

Xewn = Xe  Xeww — Xo|? Yo =Y, Yaw —Yi|?
E - < 2E -
h W h X
2
Bt+h — Bt Hern — M
2 —
* ‘ h s

where Y; = X; — p;. According to Theorem 16, the process {Y;, t € T} is mean square
differentiable, and the first term on the right hand side of the previous inequality con-
verges to zero as h — 0,k — 0. The second term converges to zero, since function
{1, t € T} is differentiable. O

Example 11. A centered weakly stationary process with the autocovariance function
R(s,t) = cos(s —t), s, t € R, is mean square differentiable, since
0? —t 0? —t
cos(s — t) and cos(s — t)
0sot Jtos

exist and they are continuous.

Example 12. Poisson process { Xy, t > 0} has the mean value p; = At, which is continu-
ous and differentiable for all ¢ > 0 and the autocovariance function R(s,t) = Amin(s, ).
The generalized second- order partial derivative of R(s,t) however is not finite: for s =¢
we have

1
lim — [s+h — min(s + h,s) —min(s,s + h) + s] = +oo,
h—0, h?

1
lim — [s+h —min(s + h, s) — min(s,s + h) + s] = +oo.
h—0_ h?

Poisson process is not mean square differentiable.

5.3 Riemann integral

Definition 29. Let T = [a,b] be a closed interval, —co < a < b < +00. Let D,, =
{tnostni,- - ton}, where a = t,0 < t,1 < ...... < tpn =b, Vn € N be a partition of
the interval [a,b]. Denote the norm of the partition D,, to be

An = mnax (tn’i+1 — tn,l)
0<i<n—1
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and define partial sums I,, of a centered second order process {X;,t € [a,b|} by

—

In = th,i (tn,i—H — th) , n € N.

%

I
o

If the sequence {I,,, n € N} has the mean square limit / for any partition of the interval
[a,b] such that A,, — 0 as n — oo, we call it Riemann integral of the process {X;, t €

la,b]} and write
b

If the process {X;, t € T} has mean value {yu, t € T'}, we define the Riemann integral
of the process { Xy, t € [a,b]} to be

b b b
/ Xtdt:/ (Xt — pe) dt+/ puedt,

if the centered process {X; — i} is Riemann integrable and f; pedt exists and is finite.

Theorem 18. Let {X;, t € [a,b]} be a centered second order process with the autocovari-
ance function R(s,t). Then the Riemann integral f; X, dt exists, if the Riemann integral
fab fj R(s,t)dsdt exists and is finite.

Proof. Let Dy, = {Sm0,---sSmm}> Dn = {tno,.-.,tnn} be partitions of interval [a, D],
the norms A,,, A, of which converge to zero as m,n — oco. Put

m—1

L= ) (Smje1 = Smy) Ko
Jj=0
n—1

[n = (tn,k+1 - tn,k) th,k'
k=0

Similarly as in the proof of Theorem 12 we can see that fab X,dt exist if there exist the
finite limit

m—1 n—1
E [[mE] = lim E{ [Z XSm,j (Sm,j—i—l — Sm,j)] . [Z th,k (tn,k+1 — tn,k)] }

j=0 k=0
m—1n—1
= lim Z Z R(Sm,ja tn,k)(sm,j+1 - Sm,j)(tn,kJrl - tn,k)
=0 k=0

asm, n — oo, A, A, — 0, which follows from the existence of ff fab R(s,t)dsdt. [
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Example 13. The Riemann integral f; X,dt of a centered continuous time process with
the autocovariance function R(s,t) = cos(s — t) exists, since R(s,t) is continuous on

la,b] x [a,b].
Example 14. Let {X;, t € R} be a centered second order process. We define

9] b
/ Xtdt::I.i.m./ Xdt as a— —o0, b— 00,

if the limit and the Riemann integral on the right hand side exist.

Example 15. Poisson process {X;, t > 0} is Riemann integrable on any finite interval
la,b] C [0, 00), since its autocovariance function is continuous on [a, b] X [a, b].

6 Spectral decomposition of autocovariance function

6.1 Auxiliary assertions

Lemma 1. a) Let u, v be finite measures on the o-field of Borel subsets of the interval

[—7, m]. If for every t € Z,
/ e du(\) = / e du(N),

then p(B) = v(B) for every Borel B C (—m,7) and u({—7n} U{r}) =v({—7}U{r}).
b) Let u, v be finite measures on (R, B). If for every t € R

/ emdu()\):/ e du(N),

then p(B) = v(B) for all B C B.
Proof. See Andél (1976), II1.1, Theorems 5 and 6. O

Lemma 2 (Helly theorem). Let {F},, n € N} be a sequence on non-decreasing uniformly
bounded functions. Then there exists a subsequence {F,, }, that, as k — oo, ny — oo,
converges weakly to a non-decreasing right-continuous function F, i.e., on the continuity
set of F.

Proof. Rao (1978), Theorem 2c.4, 1. O

Lemma 3 (Helly-Bray). Let {F,, n € N} be a sequence of non-decreasing uniformly
bounded functions that, as n — oo, converges weakly to a non-decreasing bounded right-
continuous function F, and lim F,,(—o0) = F(—o0),lim F,(+00) = F(400). Let f be a
continuous bounded function. Then

/_Z f(z)dF,(x) — /_Z f(z)dF(z) as n — oc.
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Proof. Rao (1978), Theorem 2c.4, II. O

Remark 4. The integral at the Helly-Bray theorem is the Riemann- Stieltjes integral
of a function f with respect to a function F. If [a,b] is a bounded interval and F is
right-continuous, we will understand that

b
/ Fir) = [ f@ar)

6.2 Spectral decomposition of autocovariance function

Theorem 19. A complez-valued function R(t), t € Z, is the autocovariance function of
a stationary random sequence if and only if for any t € Z,

R(t) = / e dEF(N) (2)
where F' is a right-continuous non-decreasing bounded function on [—n, 7], F(—m) = 0.

The function F' is determined by formula (2) uniquely.

Proof. 1. Suppose that (2) holds for any complex-valued function R on Z. Then R is
positive semidefinite since for any n € N, any constants ¢1,...,¢, € Cand all ty,...,t, €
Y/

i iCjEkR(tj - tk) = Z ZC]Ck/ Z(t'_tk )\dF )\)

j=1 k=1 j=1 k=1
= / [ZchEke” —iA L dF(N)
=7 =1 k=1
s n 2
_ / S gt dR() > 0,
.

because F' is non-decreasing in [—7, 7]. It means that R is the autocovariance function
of a stationary random sequence.

2. Let R be the autocovariance function of a stationary random sequence; then it
must be positive semidefinite, i.e.,

n

Zch@R(tj—tk) >0forallneN,c,...,c, € Cand ty,...,t, € Z.

j=1 k=1

Put t; = j, ¢; = e for a A\ € [—m, 7]. Then for every n € N, \ € [—, 7],

27rn Z Z k)/\R k) > 0.

7=1 k=1
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From here we get

n—1
1 —iKA
=5 e " R(k)(n — |x])
r=—n++1
For any n € N let us define function
0, r < —m,
Fuz)=< [T @.(N)d\,  z€|-mn],
F,(m), x> .

Obviously, F,,(—m) = 0 and F),(x) is non-decreasing on [—m, 7|. Compute F,():

Fo(r) = / " o (VA

—T

_ [ [ 3 e‘mAR(/ﬂ;)(n—|/ﬁ|)] i\

2mn J_,

r=—n—+1
1 n—1 T
=5 Z R(k)(n — |/<|)/ e " d\ = R(0),
k=—n-+1 -

since the last integral is 2md (k).

The sequence {F,, n € N} is a sequence of non-decreasing functions, 0 < F,(z) <
R(0) < oo for all z € R and all n € N. According to the Helly theorem there exists
a subsequence {F,, } C {F,}, F,, — F weakly as k — oo,n; — oo, where F' is a
non-decreasing bounded right-continuous function and F(x) = 0, * < —m, F(x) =
R(0), = > .

From the Helly - Bray theorem for f(z) = ¢*, where t € Z,

/ e dE,, (\) — [ e™dF(\) ask — 0o, ng — oo.

—Tr —T
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On the other hand,

/eitAank,()\):/ ey, (A\)dA

x np—1
B /_ . " [27rlnk R_Zn:k“e_MR(H)(nk - \/f\)] dX
1 ni_:l R( T =
= S 2% K)(ng — |K|) /We dA,
thus,
/: R () = { (?(t) <1 : %> | |i3|ls§v:}]:ere
We get

k—oo [ k—o0 Nk

™ t
lim [ e™dF, (\) = lim R(t) (1 — u)

= R(t) = / ’ e F(N).

—T

To prove the uniqueness, suppose that R(t) = ffﬂ e dG(N), where G is a right-
continuous non-decreasing bounded function on [, 7] and G(—m) = 0.

Then - -
/ eit’\dup — / eit)\ d,uGa

where pp a ug are finite measures on Borel subsets of the interval [—m, 7] induced
by functions F a G, respectively. The rest of the proof follows from Lemma 1 since

pr(B) = pg(B) for any B C (=, m) and pp({—m} U{r}) = pe({=7} U {m}). O

Formula (2) is called the spectral decomposition (representation) of an autocovari-
ance function of a stationary random sequence. The function F is called the spectral
distribution function of a stationary random sequence.

If there exists a function f(\) > 0 for A € [—m, 7| such that F'(\) = f_)‘ﬂ f(z)dz (F is
absolutely continuous), then f is called the spectral density. Obviously f = F'.

In case that the spectral density exists, the spectral decomposition of the autocovari-
ance function is of the form

R(t) = / ' A F(N)dN, teZ. (3)

—T
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Theorem 20. A complez-valued function R(t), t € R, is the autocovariance function of
a centered stationary mean square continuous process if and only if

R(t) = /_ TR, teR, (4)

[e.9]

where F' 1s a non-decreasing right-continuous function such that

lim F(z) =0, lim F(z) = R(0) < .
T—00

T—r—00
Function F s determined uniquely.

Proof. 1. Let R be a complex-valued function on R that satisfies (4), where F' is a
non-decreasing right-continuous function, F'(—oo) = 0, F(4+o00) = R(0) < co. Then R
is positive semidefinite, moreover, it is continuous. According to Theorem 7, there exists
a stationary centered process with the autocovariance function R. Since R is continuous
(hence, continuous at zero), this process is mean square continuous which follows from
Theorem 15.

2. Suppose that R is the autocovariance function of a centered stationary mean
square continuous process. Then, it is positive semidefinite and continuous at zero. For
the proof that R satisfies (4), see, e.g., Andél (1976), IV.1, Theorem 2. O]

Function F' from Theorem 20 is called the spectral distribution function of a station-
ary mean square continuous stochastic process. If the spectral distribution function in
(4) is absolutely continuous, its derivative f is again called the spectral density and (4)
can be written in the form

R(t) = / h A F(N)dN, teR. (5)

Remark 5. Two different stochastic processes may have the same spectral distribution
functions and thus the same autocovariance functions.

6.3 Existence and computation of spectral density

Theorem 21. Let K be a complex-valued function of an integer-valued argument t € 7Z,
let >0 |K(t)] < oo. Then

K(t) = /j N F(N)dN, teZ,

where

1 o0
= 2— Z e K (t), e |[-m, 7.
77

—0o0
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Proof. Let K be such that Y2 |K(f)] < co and f(A) = 5= >0 e " K(t). Since
the series > 72 e " K(t) converges absolutely and uniformly for A € [—7, 7], we can
interchange the integration and the summation and for any ¢t € Z we get

/ e F(A)dA = / e lzi D> MK (k)| dA
—T -7 ™ _
1< " i(t—k)A
= K(k) [ ™A
ﬂ-szoo -
1 o0
o 2 (k)2mo(t — k) = K(t)

]

Theorem 22. Let {X;,t € Z} be a stationary sequence such that its autocovariance
function R is absolutely summable, i.e. Y ;> _ |R(t)| < co. Then the spectral density of
the sequence { Xy, t € Z} exists and for every A € [—m, 7]

F) =5 3 PR, (6

=—00

Proof. Since Y ";° _|R(t)| < oo it follows from the previous theorem that

R(t) = /7r (NN, teZ,

—Tr

where
o0

Z e R(t), M€ [-m, 7.

t=—00

1
21

f)

To prove that f is the spectral density, due to the uniqueness of the spectral decompo-
sition (3), it suffices to prove that f(A) > 0 for every A € [—m, 7.
We know from the proof of Theorem 19 that for every A € [—m, 7],

n—1
- —in —|k|) > 0.
o) = g X RN = ) 20

We will show that f(\) = lim, o ©n(N).
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We have, as n — oo,

1 —i
[f) = en(N] < |5 > e R(k)

|k[>n
1 n—1
—iKA
o Z T
r=—n+1
1 1 -
< — k)| 4+ —
<o S IRMI 5 S IRG)lIsl — 0
Ik >n p=—nt1

where we have used the assumption on the absolute summability of the autocovariance
function and the Kronecker lemma.! O

Formula (6) is called the inverse formula for computing the spectral density of a
stationary random sequence.

Theorem 23. Let {X;, t € R} be a centered weakly stationary mean square process. Let
its autocovariance function R satisfies condition ffooo |R(t)|dt < oo. Then the spectral
density of the process exists and it holds

f(N) 1/006—1“3@)6&, A € (—o0,00). (7)

:g .

The proof is quite analogous to the computation of a probability density function by
using the inverse Fourier transformation of the characteristic function (see, e. g. Stépan,
1987, 1V.5.3.)

Example 16. (White noise) Let {X;, t € Z} be a sequence of uncorrelated random
variables with zero mean and a finite positive variance o2. The autocovariance function
is cov(Xy, X;) = 020(s —t) = R(s — t), the sequence is weakly stationary, and since
Sore o |R(t)] = 0 < oo the spectral density exists and according to inverse formula (6)

I & 1 o’
A)=— "M R(k)=—R(0)=—, A€ [-m, ]
P =g 30 R = 3RO = 5 Ae ]

The spectral distribution function of the white noise sequence is
F()\) == O, A S -,
o2
= %(A—FW), A€ [—m, 7,
= o2, A>T,

Notation: WN(0,0?) (white noise)

S hap <oo= 130 kap — 0asn— oo
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Example 17. Consider a stationary sequence with the autocovariance function R(t) =
a’l t €7, |a] < 1. Since

io: |R(t)| = i la|h =1 +2§: lal* < oo,
t=1

t=—00 t=—00

the spectral density exists and according to inverse formula (6)

_ —ikX_|K|
FO) = o k:ZOOe a
1 < ik kA = —ikX\ . —k
= % Z e a’ —+ % Z e a
k= =—00
=5 Z (ae ’\) + o Z (aez)‘)
k=0 k=1
1ot 1 ae™
S 2rl—ae~ 271 — ae
1 1—a? 1 1 —a?

T 2r|[l—ae P2 271—2acosA+a?

Example 18. A centered weakly stationary process with the autocovariance function
R(t) = ce™®" t € R, ¢ > 0, > 0 is mean square continuous. It holds

/ R(t)|dt = / ce=oMdt < oo,

thus, the spectral density exists and by formula (7)

fN) / e A R(t)dt = e~ el gt

"o ) o )

S (cos Xt — i sin At)e~ It
2 J_o
c [~ ca 1
=— e “dt = —
T /0 cos(At)e T a4 N\

for every A € R.

Example 19. Consider a centered mean square process with the spectral distribution
function

F(\) = 0, A< —1,
1

= - -1<A<«1

27 —_ Y

= 1, 2> 1.
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Figure 3: Trajectories of a process with the autocovariance function R(t) = a!*l, up: a = 0,8, down
a=-0,8

Spectral distribution function is not absolutely continuous; the spectral density of the
process does not exist. According to (4) the autocovariance function is

R(t) = / eAF(N) = §€_Zt + 56” =cost, teR.

o0

The process has a discrete spectrum with non-zero values at frequencies Ay = —1, Ay = 1.

Example 20. The process { Xy, t € R} of uncorrelated random variables with zero mean
and a finite positive variance does not satisfy decomposition (4), since it is not mean
square continuous.

7 Spectral representation of stochastic processes

7.1 Orthogonal increment processes

Definition 30. Let {X;, t € T'}, T  an interval, be a (generally complex-valued) second
order process on (2,4, P). We say that {X;, ¢t € T'} is orthogonal increment process, if
for any t1,...,t4 € T such that (tq,ts] N (t3,t4] = 0,

E(Xy, — X3,) (X, — Xy,) = 0.
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Figure 4: Autocovariance function R(t) = a!l (left) and the spectral density (right),
a=20,8
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Figure 5: Autocovariance function R(t) = al!l (left) and the spectral density (right),
a=-—0,8

Figure 6: Autocovariance function R(t) = ce™ ¢ € R (left) and the spectral density
(right), c=1,a =1
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We also say that the increments of the process are orthogonal random variables.

In what follows we will consider only centered right-mean square continuous processes
i.e., such that E|X; — X |> — 0 as t — ty+ for any ¢y € T.

Theorem 24. Let {Z), A € [a,b]} be a centered orthogonal increment right-mean square
continuous process, a,b] a bounded interval. Then there exists a unique non-decreasing
right-continuous function F such that

F()) =0, A<a,
- FO), A> o, )
F()\g)—F(Al) :E’Z/\Q—Z)\l|2, CLS)\l <)\2 Sb

Proof. Define function

F(\) =E|Z)y — Z,* A€ ]a,b]
=0, A<a,
=F(b), A>b.

We will show that this function is non-decreasing, right-continuous and satisfies the
condition of the theorem. Obviously, it suffices to consider A € [a, b], only.
Let a < A\; < Ay < b. Then

F(\y) =E|Zy, — Z,)> =E|Zy, — Z», + Z», — Za|?
=E|Zy, — Z),* + E|Z)\, — Z|?
+E(Zy, — Z0)(Zx, — Za) + E(Zy, — Z)(Zx, — Zy)
=E|Zy, — Z5,* + F(\)

since the increments Z,, — Z), a Z), — Z, are orthogonal. From here we have
F(X) — F(\) = E|Zy, — Zy,)? > 0,

which means that F' is non-decreasing and also right-continuous, due to the right-
continuity of the process {Z,, A € [a, b]}. Condition (8) is satisfied.

Now, let G' be a non-decreasing right-continuous function that satisfies conditions of
the theorem. Then G(a) = 0 = F(a) and for A\ € (a,b] it holds G(A\) = G(\) — G(a) =
E|Z\ — Z,)* = F(\) — F(a) = F()\), which proves the uniqueness of function F. O

The function F' is bounded, non-decreasing, right-continuous, and we call it distribu-
tion function associated with the orthogonal increment process.
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Example 21. Wiener process na [0, 7] is a centered mean square continuous Gaussian
process with independent and stationary increments, therefore with orthogonal incre-
ments, such that Wy = 0, W, — W; ~ N(0,0%s — t|), 0 < s,t,< T. The associate
distribution function on [0, 77 is
F(\) =0, A <0,
=E[W\—Wo|*=0%\, 0< AT,
=d’T, A>T.

Example 22. Let W, be a transformation of the Wiener process on the interval [—m, 7]
given by Wy = Wiy j2m, A € [, 7).

The process {Wy, A € [r, 7]} is Gaussian process with orthogonal increments and
the associated distribution function

FO) = 0, A< -7,
= —(\+m), A€ [—m, 7],

= 02, A>T

7.2 Integral with respect to an orthogonal increment process

Let {Z), A € [a,b]} be a centered right-mean square continuous process with orthogonal
increments on (€2, .4, P), [a,b] a bounded interval, let F' be the associated distribution
function of this process. Let ur be a measure induced by F.

Consider a space of complex-valued functions Ly([a, b, B, ur) := Lo(F), i,e. space of
measurable functions f on [a, b] such that

b b
[ 1 OPde() = [ 1) PaFQ) < o0,
Recall the basic properties of this space.
Properties of Ly(F) :

e The inner product on the space of functions Lo(F') (more exactly, on equivalence
classes of Lo(F) with respect to measure pup) ? is defined by

(f.g) = / FNVIOVAF(N),  f.g € L(F):

2f ~ gif f = g pr—almost everywhere
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1

e Norm in Ly(F) is given by || f|| = [f |f(N)[PdF(N)

e Convergence in Ly(F') means that
fo— fin Lo(F)asn — oo, if || f, — fll =0, i.e,
/Ifn NEAF() =0, - oo

e Space Ly(F) is complete (Rudin, 2003, Theorem 3.11).

Definition of the integral
. Let f € Lo(F) be a simple function, ie., . fora =X <Ay <--- <A, =0

N = o s, (A
k=1

(9)

where Ja(y) =1 for y € A and J4(y) = 0 otherwise is the indicator function of a set A,

1, ..., C, are complex-valued constants, ¢ # cpi1,1 < k < n — 1. We define

n

FNAZ(A) = ch(ZAk — D)
(a,b] P
which is a random variable from the space Ls(€2, A, P).
Convention: Instead of [, . f(A\)dZ(\) we will write fab fNdZ(N).
Notation: [ f(\)dZ()) == I(f).

Properties of the integral for simple functions:

(10)

Theorem 25. Let {Zy, A € [a,b]} be a centered mean square right-continuous process
with orthogonal increments and the associated distribution function F, let f, g be simple

functions in Lo(F), «, B complex-valued constants. Then
1. E [P F(NdZ(\) = 0.
2. JJlaf(N) + BgNAZ(N) = o [ FNAZ(N) + B [, 9(NdZ ().

5. E [ FNAZN) [7 9(NdZ(N) = [ FNgOVAF ().
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Proof. 1. Let f(A) =371 ckJin 1, a)(A). Then

n

E/b f()‘>dZ()‘> =E [i Ck(Z)\k - Z)\k71) - chE(ZAk - Z)\k71) = 07
a k=1

k=1
since {Zy, A € [a,b]} is centered.
2. W.lLo.g, let
FO) =" ewdon o al dehk 1wl (
k=1
Then

n

[ ag )+ 592 ) = Y (e + 52y, 2, )

a k=1

= CVZ Ck(Z)\k - Z)\k71) + Bzdk(z)\k - ZAlcfl)
k=1 k=1

—a / FONAZON) + B / g(N)dZ(A

FO) = ardin, xl dehk 1 (A

3. Let

Then
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II. Let f € Lo(F) be a measurable function. The set of simple functions is dense in
Ly(F) and its closure is Lo(F') (Rudin, 2003, Theorem 3.13), it means that there exists
a sequence of simple functions f,, € Lo(F') such that f, — fin Ly(F) as n — oc.

Integral I(f,,) is defined for simple functions and I(f,) € L2(2, A, P). The sequence
{I(f.)} is a Cauchy sequence in Ls(£2,.A, P) because

E|I(fm) - I(fn)|2 = E(I(fm) - ](fn))(l(fm) - I(fn))
b

b
ZE/(MQ%JMMMHM/LMM%JMMMHM

:/UMM—&WKMW—hQWﬂM

b
= [ 1) = LOVPAF) — 0
as m,n — oo, since f, — f in Lo(F).

Since {I(f,)} is the Cauchy sequence in Ly(€2, A, P), it has a mean square limit

1) =1 i m. I(f,) = / FONAZON), (11)

n—o0

which is called to be integral of the function f with respect to the process with orthogonal
increments, or stochastic integral.

Notice that I(f) does not depend on the choice of the sequence {f,}. Let f € Lo(F)
and f,, a g, be simple, f,, — f and g, — f v Ly(F'). Then I(f,), I(g,) have mean square
limits I, J, respectively.

Define sequence {h,} = {fi, 1, f2,92,...} which is simple and h, — f in Ly(F).
Then I(h,) — K in mean square. Since selected subsequences {I(f,)} a {I(g,)} have
mean square limits, [ = J = K.

Theorem 26. Let {Z\, A € [a,b]} be a centered right-mean square continuous process
with orthogonal increments and the associated distribution function F. Then integral
(11) has the following properties.

1. Let f € Ly(F). Then EI(f) =E [’ f(\)dZ()) = 0.
2. Let f,g € Lo(F), o, B € C be constants. Then I(af + Bg) = aI(f) + 5I1(g).
3. Let f,g € Lo(F). Then

b
HUWBz/fWRWHM (12)
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4. Let {fn, n € N} and f be functions in Lo(F), respectively. Then as n — oo

fo— fin Ly(F) <= I(fn) — I(f) in La(2, A, P). (13)

Proof. 1. Let f € Ly(F) and let {f,,, n € N} be a sequence of simple functions in Lo (F')
such that f, — fin Lo(F). Then I(f) = Lim. I(f,). Since EI(f,) = 0, then also
EZ(f) = 0 (from the properties of the mean square convergence)

2. Let f,g € Ly(F) and let {f,, n € N}, respectively {gn, n € N} be sequences of
simple functions in Ly(F) such that f,, — f and g, — g in Lo(F) respectively; thus,
I(f,) — I(f) and I(g,) — I(g) in L2(Q2, A, P) (in mean square).

The sequence of simple functions h,, = a.f,, + Sg, converges to h = af + g in Lo(F),
since

/ afulA) + B90(3) — (af ) + Ba(N)PAF ()
<2lof? [ 11,00~ SOORAF(Y)
#2038 [ l0a) — 9P F) 0

We have:

o h, =af, + g, simple

I(hn) = I(afu + Bgn) = o (fn) + BI(gn)

hy, — h in Ly(F) = I(h,) — I(h) in mean square
h=af + g

I(hy) = ol (f) + BI(g) in mean square, since

Elal(fa) + B1(gn) — (aI(f) + BI(g))[*
= Ela(I(fa) = I1(f)) + B(I(gn) — I(9))]*
< 2[aE|I(fa) — I(N)* +2|8I°E|1(ga) — I(g)]* —> 0

= I(h) = I(af + Bg) = od(f) + BI(g).

3. Let f,g € Lo(F), {fn, n € N} and {g,, n € N} be sequences of simple functions,
fon— fand g, — gin Lo(F). Thus, I(f,) — I(f) and I(g,) — I(g) in mean square.
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From the continuity of the inner product in Ls(£2, A, P) we have

EL(fu)I(gn) = (1(fa), 1(9n)) — (L(f), 1(g)) = EI(f)I(9).

From the continuity of the inner product in Lo(F) we have

b
EI(f,)T(gn) = / Fa NI OVAE Q) = (o gn) — (F. )

/f_A>

4. Letf,, f € La(F'). According to 2 and 3,

from here (12) follows.

El1(f,) — I() = ElI(f, / (0 — FOVPAF(N),

from which (13) follows. O

Remark 6. let {Z,, A € R} be a centered right-mean square continuous process with
orthogonal increments. Function F' defined by

F(Xo) — F(\) =E|Z\, — Z),]?, —00 <A <Ay <00

is non-decreasing, right-continuous and unique (up to an additive constant). If F' is
bounded it induces a finite measure pp, and for f such that

| 1rORdue) = [ ) PaEQ) < o

/_OO fN)dZ(A) :=1.i.m. /bf()\)dZ(A) as a — —00, b — o0.

7.3 Spectral decomposition of a stochastic process
Theorem 27. Let X,;, t € Z, be random variables such that
X, = / edZ(N),

where {Z, X € [—m, 7|} is a centered right-mean square continuous process with orthog-
onal increments on [—m, 7| and associated distribution function F. Then {X, t € Z} is
a centered weakly stationary sequence with the spectral distribution function F.
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Proof. The associated distribution function F' of the process {Zy, A € [—m, 7]} is bounded,
non-decreasing and right-continuous, F'(\) = 0 for A < —7, FI(A\) = F(7) < oo for A > .
For t € 7Z define function e; to be

ee(\) =™ —r <A< 7.

Then
/ e(WPAF(N) = / € PAF(A) = F(x) — F(—1) < oo,

it means that e; € Ly(F) and X, = [7_€"*dZ()) is well defined random variable.
According to Theorem 26 we have

1. EX, =E[" ¢™dZ(\)=0forany t € Z

2.
L 2 T B —
E|Xt\2:E' / e™dzZ(\)| =E / e"™dZ(\) / et dZ ()
:/ |em\2dF(A):/ dF()) < oo,
3.

T

cov(Xegn, X;) = E / e A aZ(N) / e dZ(N)

—T

/ e dF(N\) := R(h).

From here we can conclude that
o cov(Xyyn, Xy) = R(h) = [T e dF(\) depends on h only
e sequence { Xy, t € Z} is centered and weakly stationary

e function F' has the same properties as the spectral distribution function (see spec-
tral decomposition of the autocovariance function, Theorem 19)

e from the uniqueness of the spectral decomposition (2) it follows that F' is the
spectral distribution function of the sequence { X, t € Z}.

]
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Example 23. Let W,\ be a transformation of the Wiener process to the interval [—, 7]
given by Wy = Wi jx)/2x, A € [=m, ]. Then random variables

s

X, = / AW (N), t€Z
-

are centered, uncorrelated with the same variance o?; the sequence {X;,t € Z} is the

Gaussian white noise, see also Examples 16 and 22.

Example 24. Consider a sequence of functions { fix, t € Z} on [—m, 7] defined by
k

Fi ) =D ™ di, V),
j=1
where —m = \g < A\ < -+ < A\, = 7mand k € Nis given. Let {Z\, A € [—m, 7]} be
a centered right-mean square continuous process with orthogonal increments on [—m, 7|
with the associated distribution function F'. We can see that f;;. are simple functions in
Ly(F'), thus we can compute

T k
Xy = / faNAZ() = 32y, — 2y, ) = S e,
-7 j=1 j=1
Here Ej =7 P VA N J = 1,...,k, are uncorrelated random variables with zero mean
and the variance E|Z;]> = E|Z);, — Zy,_,|* = F()\;) — F()\;_1) := 0;. Then we have
k
Eth = 0, EX(t-i-h),kX_tk = Z eihAjO'? = Rk(h)
j=1

We see that { X, t € Z} is stationary and its autocovariance function has the spectral
decomposition

Ri(h) = / e dFxr(N)
where Fxy, is the spectral distribution function of { Xy, t € Z}; it has jumps at points A,
such that Fyi(\;) — Fxg(Aj—1) = o3. On the other hand, 67 = F();) — F(\;_1). Since
F(—m) = Fxi(—m) =0, F equals to Fyy, at least at points \;, 7 =0,1,... k.

Theorem 28. Let {X;,t € Z} be a centered weakly stationary sequence with spec-
tral distribution function F'. Then there exists a centered orthogonal increment process
{Zx, N € [-m, 7|} such that

Xt:/ eNZ(N), teZ (14)

and
EIZ(\) — Z(—7T)|2 =F(\), —-nm<A<m.



Proof. Brockwell and Davis (1991), Theorem 4.8.2 or Préskova (2016), Theorem 4.4. [
Relation (14) is called the spectral decomposition of a stationary random sequence.

Remark 7. Theorem 28 says that any random variable of a centered stationary ran-
dom sequence can be approximated (in the mean square limit) by a sum Y €Y} of
uncorrelated random variables Y, the variance of which is an increment of the spectral
distribution function at points (frequencies) A\;_; and A;.

Theorem 29. Let {X;, t € R} be a centered weakly stationary mean square continuous
process. Then there exists an orthogonal increment process {Zx, A € R} such that

X, = / e dZ(N), t € R, (15)

—00

and the associated distribution function of the process {Zx, A € R} is the spectral distri-
bution function of the process {X;, t € R}.

Proof. Priestley (1981), Chap. 4.11 O

Relation (15) is said to be spectral decomposition of a stationary mean square con-
tinuous process.

Theorem 30. Let {X;, t € Z} be a centered stationary sequence with a spectral distri-
bution function F. Let H{X,, t € Z} be the Hilbert space generated by {X;, t € Z}. Then
U e H{X;, t € Z} if and only if

U= / " oAz, (16)

—Tr

where ¢ € Ly(F) and {Zx, A\ € [—m, 7|} is the orthogonal increment process as given in
the spectral decomposition of the sequence { Xy, t € Z}.

Proof. 1. Let U € H{X;, t € Z}. Then either U € M{X;, t € Z} (linear span), or
U=1lim U, U, e M{X;, t €Z}.

a) Let U € M{X,, t € Z}; then U = Zévzlchtj, for ¢1,...,cy € Cand tq,...,ty € Z.
From the spectral decomposition (14)

N N -
U=> X, =) ¢ { / e“ﬂdZ(A)}
j=1 j=1 -
N

™
— 2 : PRI
—/ c;je’
—T

j=1

a2y = [ o0vaz()

—T
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where p(\) = Zjvzl c;e'i*. Obviously, ¢ is a finite linear combination of functions from

L2(F)7 thus Y < LQ(F)
b) Let U =1l.im. 00 Uy, U, € M{Xy, t € Z}. According to a)

U, = / D on(NAZ0N), o € L(F).

—Tr

Here, {U,} is the Cauchy sequence in H{X, t € Z} (it is convergent there) thus, {p,}
is the Cauchy sequence in Lo(F'), since

2

™
—T

ENU,, — U = \ [ enazon - [ eaazon

- / " 1om(N) = eu (W PAF(N).

™

: ‘ [ w3 = eahliz)

Hence, there exists ¢ € Ly(F') such that ¢, — ¢ v Ly(F). By (13)

U, = / "o (NAZ() — / T oONAZON v La(Q, A, P),

thus U = [7_@(X\)dZ(N).

2. Let U be a random variable that satisfies (16). Since ¢ € Lo(F'), there exists a
sequence of trigonometric polynomials ¢,(A) = > Clgn)ei,\t;”’

©n — ¢ Vv La(F). According to (13)

on [—m, 7| such that

/ TNz =L im. [ en(A)dZ(),

n—oo
—T -

hence

n

_ [ . i () ire"
U —/ SO()\)dZ()\)_LnL—m{?' [Z e €N

o 7 Lk=—n

s | [
= l.nl.ﬁgl. kZ . [/

—Tr

dZ(\)

et dZ()\)]

—1 (n)
= 1.n1._>or£1. k_z L Xt](:) € H{X;, t € Z}.
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8 Linear models of time series

8.1 White noise

Recall that the white noise sequence WN(0, 0?) is defined as a sequence {Y;, t € Z} of
uncorrelated random variables with mean zero and variance 0 < ¢? < oo, the autoco-
variance function

Ry(t) =0%0(t), teZ
and the spectral density

Moreover,
Y, = / e dZy (N),
—m
where Zy = {Z\,\ € [—m, 7|} is a process with orthogonal increments and associated

distribution function )
o
T or

that is same as the spectral distribution function Fy () of {Y;, t € Z}.

F(\) A+m), A€ [—m, 7]

8.2 Moving average sequences
Definition 31. A random sequence { X, t € Z} defined by
Xy =bYs + 0V +--+b0Y ., teEL, (17)

where {Y;, t € Z} is a white noise WN(0, 02) and by, by, . . ., b, are real- or complex-valued
constants, by # 0, b, # 0, is called to be a moving average sequence of order n.

Notation: MA(n)
Remark 8. In special case, b; = % 1=0,...,n.

The basic properties of MA(n) :
1. EX; =0forall t € Z.
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2. The autocovariance function (computation in time domain): For ¢ > 0,

cwugmxn—a&gz—E<§}ﬂ;H§:mmk>

=0 k=0
=3 bbE(YeyeYer)
=0 k=0
=0? ) > bbbt —j+ k)
=0 k=0
n—t
=0® ) bikbe, 0<t<n
k=0
=0, t>n.

For ¢ < 0 we proceed analogously. Since cov(X.s, Xs) depends on t, only, we can
conclude that the sequence is weakly stationary.

3. Spectral decomposition. By using the spectral decomposition of the white noise
we obtain

Xi= Yoty =300 | [z
=0 =0 Lo

= / [ijei(t_j))‘ dZy ()
P

= / et [ije—m dZy (\)
- =

= /W e g(N)dZy (N,

—T

where g(A) = Y7 bje™* € Ly(F). From the properties of the stochastic integral we
again get EX; = 0, and for the autocovariance function (in spectral domain) we have

™ ™

EX,. X, =E / NG (N)dZy () / eisrg(\)dZy (\)

_ / ei(s+t))\g()\)efis/\g()\)dFY()\)
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that is again a function of ¢ which confirms the weak stationarity. Due to the unique-
ness of the spectral decomposition of the autocovariance function (Theorem 19) we can
0.2

conclude that function |g(\)|*% is the spectral density of the sequence {X;, ¢t € Z}.

Y

We have just proved the following theorem.

Theorem 31. The moving average sequence {X;,t € Z} of order n defined by (17) is
centered and weakly stationary, with the autocovariance function

n—t
Rx(t) =0 biyibr, 0<t<n, (18)
k=0
= Rx(-t), —n <t <0,
=0, [t| > n.

The spectral density fx of sequence (17) exists and is given by

n
E bke—ikA
k=0

2

Fx(\) = ;’—W . oNE -7 (19)

Remark 9. For real-valued constants by, ..., b, the autocovariance function of the se-
quence MA(n) takes form

n—t|
Rx(t) = O’2 Z bkbk+|t|7 |t| S n, (20)
k=0
=0, t] > n.

8.3 Linear process

Theorem 32. Let {Y;, t € Z} be a white noise WN(0, %) and {c;, j € No} be a sequence
of complex-valued constants.

1. If Z;io lc;|* < oo, the series Z;C:’o c;Y,_; converges in mean square for every
t € Z, i.e., for every t € Z there exists a random variable X; such that

n
Xt =11 m. E CjY;_j.
n—00
J=0

2. 1If Z;io |c;| < oo, the series Z;io c;Y,_; converges for every t € Z absolutely with
probability one.
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Figure 7: Autocorrelation function (left) and spectral density (right) of the MA(2) se-
quence X; =Y; + Y, 1 —2Y; 5. Y; : Gaussian white noise ~ N(0,1)

Proof. 1. We will show that {37 _,¢;Y;—;,n € N} is the Cauchy sequence in Ly(€2, A, P)
for every t € Z.

W.1 o.g., assume that m < n. Since Y}, are uncorrelated with a constant variance o>
we easily get

E E CjY;tfj - E Y| =E E ijz-ffj
=0 k=0 Jj=m+1
n n
_ 2 2 _ 2 2
= Y IGPEYi P =0 ) fgl? =0

as m,n — oo which means that there exists a mean square limit of the sequence
{>°7—0¢;Yi—;}, that we denote by 7% ¢;Y; ;.
2. Since E|Y;_;| < (E|Yt_j|2)% = V0?2 < 00, we can see that

oo o o
> EleYil =Y lelElYi | <o) el < oo,
=0 =0 =0

and thus 3 7 |¢;Y; ;| converges almost surely (Rudin, 2003, Theorem 1.38). O

Theorem 33. Let {X;, t € Z} be a weakly stationary centered random sequence with an
autocovariance function R, let {cj, j € No} be a sequence of complez-valued constants
such that 3 77 |ej| < oo. Then for any t € Z the series ) 77 ¢;X;—; converges in mean
square and also absolutely with probability one.
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Proof. 1. For m < n we have

> X

j=m+1

2 N 2
E <E ( > \Cj\|th|>

j=m+1

= Z Z |cj | cx |E[ X—j || Xkl

Jj=m~+1 k=m+1

The weak stationarity and the Schwarz inequality imply
E[ X | Xl < (EIXe*)2 (EIXoif*)2 = R(0),

thus,

n 2

Z Cth,j

j=m+1

: s3<o><i m) 0

j=m+1

as m,n — oo. We have proved the mean square convergence.
2. From the weak stationarity we also get

D Elei Xl =Y lelEIXe ] < VR(0)Y ] lej| < oo,
=0 =0 i=0
from which the rest of the proof follows. O]

Definition 32. Let {Y}, t € Z} be a white noise WN(0, 0?) and {c¢;, j € Ny} a sequence
of constants such that » 72 [c;| < co. A random sequence {X;, t € Z} defined by

Xi=Y &Yy, tel (21)
=0

is called causal linear process.

Remark 10. The causality means that the random variable X; depends on Y,,s <t
(contemporary and past variables, only). Sometimes we also use notation MA (c0).

Remark 11. A weaker condition Y~7[¢;|* < oo implies the mean square convergence
in the series defined by (21), only.

Theorem 34. The causal linear process {X;, t € Z} defined by (21), where {Y;, t €
Z} is WN(0,0?) and 3 22 |ej| < oo, is a centered weakly stationary sequence with the
autocovariance function

Rx(t) =0 _ cpith, t>0, (22)
k=0
= Rx(—1), t<o.
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The spectral density fx of sequence (21) exists and takes values

00 2

2 e

k=

A€ [—m, 7). (23)

o?
2m

Proof. Notice that
o {X".t € Z} where X" := > o ¢iYej is MA(n) for a fix n.

* > 2olel <oo= xm

— X, in mean square as n — oo for every t € Z.

° {Xt("),t € Z} is centered, weakly stationary, with the autocovariance function
(18). It means that {X;, t € Z} is centered, since it is the mean square limit of
the centered sequence.

e According to Theorem 12, the autocovariance function of {Xt(n), t € 7} converges
to the autocovariance function of { Xy, t € Z}.

We have proved (22) and the stationarity of sequence (21). Further, notice that the

(n)

sequence {X,", t € Z} has the spectral decomposition

X — / g NdZr (N, gaN) = 3 e € Lo(Fy).
. =
If we denote g(\) = 72 c;e” 9%, we have

0o 2

/7r Ign(A)—g(A)FdFy(A):/W Z cje | dFy(\)
/ (Z |c]|) NdA = o (Z |C]|)

Thus, g, — g in Ly(Fy). According to Theorem 26,

Xt(”): / e g, (N)dZy (\) — / e g(N)dZy (M)

-7

in mean square as n — oo and simultaneously, Xt(") — X; in mean square, which means
that

X, = /W e g(N)dZy (N).

—T
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Further, the computation

m ™

EX, . X,=E / e CHDAg(N)dZy (V) / e g(\)dZy (\)

—r -7

™ ™ 2
= [ elgPar ) = [ @lgpg-dx

—T - ™

results in the spectral decomposition of the autocovariance function of the sequence (21).
Function %] g(N\)]? is the spectral density of the process (21).

O
Example 25. Let us consider a causal linear process such that
X=Y oV, t€Z o=, o<1
j=0
and Y; ~ WN(0, 02
The process is centered, weakly stationary, with the autocovariance function
s ¥
Rx(t) = t>0
X( ) o 1— 9027 = Y,
= Rx(—t), t<0.
The spectral density is
2 | 2 2 1
o . o
A)=— lemA = —————— —— Xée[-m 7.
fX( ) o7 ]Zogoe 27T|1—Q0€_Z>"2 [ Q W}
Further, we can write
X, =Y @Y =Yi+> Vi =Yi+e> ¢V
j=0 j=1 j=1
=Y+t Z ) TR
k=0
= pXi 1+ Y (24)

The sequence {X;, t € Z} defined by (24) is called autoregressive sequence of order one,
AR(1).
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8.4 Autoregressive sequences

Definition 33. A random sequence {X;, t € Z} is called to be an autoregressive sequence
of order n, notation AR(n), if it satisfies equation

Xi=p1Xemr+ -+ onXen + Yy, tEZ, (25)
where 1, ..., @, are real-valued constants, ¢, # 0 and {Y}, t € Z} is a white noise.

Equivalently, X; can be defined by

Xe+aXpa+ -+ a, Xy, = Z a; Xi—j =Yy, (26)

=0
where q¢ = 1.

We want to express the AR(n) sequence as a causal linear process. First, we define
a backward-shift operator by

BX, = X,_,, B°X, = X,, B*X, = B¥"Y(BX,) = X, _, k€ Z.

Using this operator, relation (26) can be shortly written in the form a(B)X; = Y; where
a(B) is a polynomial operator, formally identical with the algebraic polynomial a(z) =
14 a1z + -+ ayz". Similarly, let {c;, k € Z} be a sequence of constants such that

Y re o lck] < co. The series
o)=Y ot

k=—o00

is absolutely convergent at least inside the unite circle and defines the operator

¢(B) = i e B". (27)

k=—o00
This operator has usual properties of algebraic power series.

Theorem 35. Let {X;, t € Z} be the autoregressive sequence of order n defined by (26).
If all the roots of the polynomial a(z) =1+ a1z + - -+ a,2" lie outside the unit circle
in C then {X,, t € Z} is a causal linear process, i.e.,

X => Y, tel,
§=0
where c; are defined by
c(z)ziozc-zj:L 2| <1
i a(z)’
7=0



The autocovariance function of this sequence is given by (22) and the spectral density
18
o? 1
2 |3 g aje” AP

fx(A) = A€ [—m, @], (28)

where ag = 1.

Proof. Consider the AR(n) sequence,
Xt + alXt_l + -+ ClnXt_n = CL(B)Xt = Y;g

If all the roots z;,7 = 1,...,n, of the polynomial a(z) =1+ a1z +- -+ a,2" are outside
the unit circle, then a(z) # 0 for |z| < 1. Since |z;| > minj<i<p, 2] > 14+ > 1 for a
>0, a(z) #0 for |z] <146, and ¢(z) = ﬁ is holomorphic in the region |z| < 14§
and has a representation

= ¢l [z <146 (29)
j=0

The series in (29) is absolutely convergent in any closed circle with the radius r < 1+ 9
which means that 3 7% [¢;| < oo and ¢(2)a(z) = 1, |z| < 1. Thus,

¢(B)a(B)X; = X; = c¢(B)Y; = i c;Yi ;.

J=0

We have proved that the sequence {X;, t € Z} is the causal linear process, that satisfies
Theorem 34. It is centered and weakly stationary, with the autocovariance function (22)
and spectral density

_ ;7_ Z —ikA . - ‘c(e‘i’\)f
k=0
o? 1 o? 1

T orla(e P T 2n | aye PP
[l

If all the roots of a(z) are simple, we can obtain coefficients ¢; in the representation
(29) by using decomposition into partial fractions:
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where A;,..., A, are constants that can be determined. For |z| <1 and |z;| > 1,

%

oo n oo
_ k A k
= z i CrLZ",
k=0 =1 ~J k=0
n

Cp = E Aj

k= E+1°
— 2
Jj=1

J

Since for all i = 1,...,n we have |z;| > 1+ > 1, it holds

1 n
|ex| < 1oy Z |45
j=1

from which we conclude that > ;7 |cx| < oo.
If the roots of the polynomial a(z) are multiple, we proceed analogously.

Coefficients ¢; can be also obtained by solving the system of equations

Co = 1,
c1+ ajcg = O,

co + aycy + azcy = 0,

cpt+arcp_1+--+ancpy =0, p=nn+1,...,

that we get if we compare coefficients with the same powers of z at both sides of the
relation a(z)c(z) = 1. The system of equations

cp+aicp_1+ -+ ancy_p =0
for p > n can be solved as a system of homogeneous difference equations of order n with
constant coefficients, and initial conditions cg, ¢y ..., ¢p_1.
Yule-Walker equations

The autocovariance function of a stationary and real-valued autoregression sequence
can be alternatively computed by using so-called Yule-Walker equations. Let us consider
a sequence {X;, t € Z},

Xie+aXp1+ - F+a, Xy =Y, (30)
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that satisfies conditions of Theorem 35, with real-valued coefficients ag, ..., a, and with
{Y};, t € Z} being the real white noise WN(0, 02). Since the sequence {X;, t € Z} is a
real-valued causal linear process and Y; are uncorrelated, it can be easily proved that

EX.Y, = (X, V) =0 for s < t.
Multiplying (30) by Y; and taking the expectation we get
EX:Y; + aiEXi 1Y + -+ - 4+ a,EX, Y, = EY?,

thus,
EX,Y, = o2

Multiplying (30) by X; x for k& > 0 and taking the expectation we get a system of

equations
EXiXi p + aBEXy 1 Xy g+ + a,BEX Xy = BV X g,

or, if we put Rx(t) = R(t),

R(0) + a1 R(1) + - - - + a,R(n) = o7, k=0, (31)
R(k)+aiR(k—1)+---+a,R(n—k) =0, k>1. (32)

Equations (31) and (32) are called Yule- Walker equations.

Solution: Dividing (32) for & > 1 by R(0) we get equations for the autocorrelation
function r(t) = R(t)/R(0).

e First solve the system for k=1,...,n—1:
r(1) +ay +aor(l)+agr(2) +---+a,r(n—1) = 0,
r(2) +air(l)+ax+asr(l) +---4+a,r(n—2) = 0,
r(n—1)+ar(n—2)+---+a,r(l) = 0.
e Values 7(1),...,7(n — 1) together with r(0) = 1 serve as initial conditions to solve

the system of difference equations
r(k)+ar(k—1)4+---+a,r(n—k)=0, k>n,
with the characteristic polynomial

N a N an A a, = L.
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In this way we get the solution r(t) for ¢ > 0. For a real-valued sequence, r(t) = r(—t).
If we insert R(k) = r(k)R(0) into (31) we get the equation for R(0) :

R(O)[1 + ar(1) + - + a,r(n)] = o2,

thus

0,2

R(0) = 1+ arr(1) + -+ anr(n)

(33)

Remark 12. If z;,7 = 1,... n, are the roots of the polynomial a(z) = 1+a;z +- - -+a,2",
then \; = zi’l,z' =1,...,n, are the roots of the polynomial L(z) = 2" +a12" '+ - +a,.
The AR(n) sequence is a causal linear process, if all the roots of the polynomial L(z)
are inside the unit circle.

Example 26. Consider the AR(1) sequence
Xi+aX,_1 = Y;, Y, ~ WN(O,O’Q), |CL| < 1.

Polynomial a(z) = 1 4 az has the root —2 that is outside the unit circle; it means that
{X;, t € Z} is a weakly stationary causal linear process. The Yule - Walker equations
for the autocovariance function Rx(t) = R(t) are now

R(0)+aR(1) = o2
R(k)+aR(k—1) = 0, k >1,

A general solution to the difference equation for the autocorrelation function is r(k) =
c(—a)*, the initial condition is 7(0) = 1 = ¢. Value R(0) can be determined from formula
(33):

o? o?

- 1+ar(l) T 1-a?

R(0)

Example 27. Consider the AR(2) sequence

3 1
X, — ZXt_1 + gxt_g =Y, Y, ~ WN(0,0?).

The polynomial a(z) = 1 — 3z + £2% has roots z; = 2, 2, =4, {X,,t € Z} is the causal

linear process that is weakly stationary. The Yule-Walker equations are

R(0) ~ JR(1) + SR(2) = o*

1
R(k) — ZR(I@— 1) + SR(k—2) =0, >
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The equations for the autocorrelation function are of the form

(1) =24 21y =0,

4 8
3 1
r(k) — Zr(k - 1)+ gr(k —-2)=0, k> 2. (34)
Solving the first equation we get (1) = 2. For k > 2 we solve the second order difference
equation with initial conditions r(0) = 1,r(1) = 2.
— %)\ + % = 0 has two different real-valued roots

Characteristic equation L()\) = A2
A1 =1, = 1. A general solution of the difference equation (34) is

1\" 1\"
7’(]{7) = Cl)\’f + CQ)\g = C1 (5) + ¢ (Z) .

Constants ¢y, co satisfy
Ccl1+ Ccy = 7"(0),

A1 + Aace = (1),

so that ¢, = g,cg = —%, and
5 /1\" 2 /1\"
=—(=) —=|~= =0,1,...
r(k) =r(-k), k=-1,-2,...

The value of R(0) can be obtained from (33).

8.5 ARMA sequences

Definition 34. A random sequence {X, t € Z} satisfies an ARMA(m,n) model if
teZ, (35)

XetarXe 1+ +amXem =Y+ 010+ + 0,Y5 0y,
where a;,7 = 1,...,m, b;,i = 1,...,n, are real constants, a,, # 0,b, # 0 and the se-

quence {Y;, t € Z} is a white noise.

Equivalently we can write
X = ()Dlthl +ooee QOthfm +Y; + 91}/1-571 + - F enY;ffn

The model called ARMA (m,n) is a mixed model of autoregressive and moving average

sequences.
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Consider polynomials a(z) =14+ a1z + -+ -+ apz™ and b(z) =1+ bz + -+ + b, 2"
Then we can write ARMA (m,n) model in the form
a(B)X, = b(B)Y, (36)

Theorem 36. Let {X;,t € Z} be the random ARMA (m,n) sequence given by (36).
Suppose that the polynomials a(z) and b(z) have no common roots and all the roots of
the polynomial a(z) = 1+ a1z + -+ + a,,2™ are outside the unit circle. Then X is of
the form

X, = ZC]'Y;_j, teZ,
5=0
where coefficients c; satisfy

c(z) = chzj = bz) |z| < 1.

The spectral density of the sequence { Xy, t € Z} is

o? | 2jobie”

T2 | S, are A2

fx(N) A€ [—m, 7, (37)

where ag = 1,by = 1.

Proof. We proceed analogously as in the Proof of Theorem 35. Since all the roots of the
polynomial a(z) are lying outside the unit circle, for |z| < 1 it holds

SR
a(z)

h(z) = Zhjzj, where Z |h;| < oo.
§=0 J=0
Thus, h(z)a(z) = 1 for |z|] < 1 and if we apply the operator h(B) to both sides of
equations (36), we have
h(B)a(B)X; = X, = h(B)b(B)Y; = c¢(B)Yy,
where ¢(z) = b(2)/a(2) and 377 |e;] < o0.

The sequence { X;, t € Z} is the causal linear process with the autocovariance function
(22) and the spectral density

oo
—ij\ o
cje = —
’ 2T
Jj=0

o? | 2jobie”

T 2m [, are 2

2 9 . 2

2
fxA) = o
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Remark 13. If the polynomials a(z) a b(z) have common roots the polynomial ¢(z) =
b(z)/a(z) defines an ARMA(p, q), process with p < m,q < n.

Example 28. Consider the ARMA(1, 1) model
Xi+aXi 1 =Y, +bY;, teZ,
where Y is a white noise WN(0,0?), a,b # 0,a # b, |a] < 1.
We have a(z) =1+ az, b(z) =1+ bz, the roots z, = —%, 2p = —%, respectively, are

different and |z,| > 1. All the assumptions of the previous theorem are satisfied.
For |z] <1,

and if we compare the coefficients with the same powers of z we obtain
=1 ¢;=(-a)"(b—a), j =1

The autocovariance function of the sequence {X;, t € Z} is

[e.9]

Rx (k) := R(k) = o* chcj+|k|, k €Z.

J=0

Computation of R(0) :

R(0) =

1+i aJl 2]

_ 2(1s b—a)®\  ,1—2ab+0°
-7 1-az2) 7 1-a2

<
Il
o

Q,
= 'M8
= Qllw

For k > 1,

00
CoCr. + E CiCjtk
j=1

- o [(—a)’“(b—a>+< W) (b—a)* Y (- a>2j]

R(k) = o? chcj+k = o?
=0

- o {(-@kl(b —a) + ( ll) — ZQ T

= o*(=a)*(b—a) = (—a)" ' R(1

1 —a?
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The spectral density is

o [14+be? 0% 1+2bcosA+b?

N = 2 ke b9 ’
Ix) 2n |1 4+ae ™2 271 14 2acos\+ a?

A€ [—m, 7.

We can also use an analogy of the Yule-Walker equations. Multiplying (35) by
Xi_k, k > 0 and taking the expectation we get

EXiXo i+ Y aEX X = BV X, + > bEYi ;X
j=1 j=1

From Theorem 36 and properties of the white noise,

O-ZCk‘—j7 k Z j?

EX, .Y, , =
ek {0, k<

and the previous equation for £ > 0 can be written in the form

-

R(k)+ Y a;R(k—j)=0o" Z bici_r, k <mn, (38)
j=k

1

J

-

R(k)+» a;Rk—37)=0 k >n. (39)

1

J

For k > max(m,n+1), (39) is solved as a difference equation with initial conditions that
can be obtained from the system of equations for k& < max(m,n + 1).

Example 29. Consider again the ARMA(1,1) model
Xt + ClXt_l = Y; + bY;_l, t e Z,

where a # b # 0, |a| < 1, Y; ~ WN(0, 02).
Equations (38) a (39) are of the form

R(0)+aR(1) = o®+b(b—a)o?
R(1)+aR(0) = o°b,
R(k)+aR(k—-1) = 0, k>2.

The difference equation R(k) + aR(k — 1) = 0 with an initial condition for R(1) has the
solution R(k) = (—a)*1R(1), k> 1.
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The values of R(1) a R(0) will be computed from the first and the second equations:

RO) = = [o?(— 2ab 4+ )]
R1) = — [*(b— a)(1 - ab)]

1 —a?

which is the same result as before.

Definition 35. Let {X;, t € Z} be the stationary ARMA(m,n) sequence defined by
(36),
a(B)X, = W(B)Y,, teL,

where {Y;, t € Z} is a white noise WN(0, 0?). The sequence {X;, t € Z} is said to be
invertible, if there exists a sequence of constants {d;, j € No} such that Y7 |d;| < oo
and

i=> diX,;, tel (40)
§=0

Let us study conditions under which an ARMA sequence is invertible.

Theorem 37. Let {X;, t € Z} be the stationary ARMA (m,n) random sequence defined
by (36). Let the polynomials a(z) and b(z) have no common roots and the polynomial
b(z) =14+ bz + -+ b,2" has all the roots outside the unit circle. Then {X,, t € Z}
15 1nvertible and

Y=Y d;X,;, teL
j=0

where coefficients d; are defined by

d(z) = Zdjzj _ 4

J=0

—~

2)
(2)°

|z] < 1.

[~

Proof. The theorem can be proved analogously as Theorem 36 by inverting the polyno-
mial b(z). The correctness of all operations is guaranteed by Theorem 33 since we assume
that {X;, t € Z} is stationary. O

Remark 14. Let us notice that the equation d(2)b(z) = a(z) with polynomials a(z) =
l+aiz +-4apz™, b(z) =1+bz +---+0b,2", respectively, implies dy = 1. Relation
(40) can be written as

X+ diX =Y, tel (41)

j=1

The invertible ARMA(m,n) sequence can be thus expressed as an AR(co) sequence.
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8.6 Linear filters

Definition 36. Let {Y;, t € Z} be a centered weakly stationary sequence. Let {cy, k €
Z} be a sequence of (complex-valued) numbers such that 3772 |c;| < co.

We say that a random sequence {X;, t € Z} is obtained by filtration of a sequence
{Yi, teZ}, it

Xi= Y ¢V, tel (42)
j=—o00
The sequence {¢;, j € Z} is called time-invariant linear filter. Provided that ¢; = 0 for
all j < 0, we say that the filter {c;, j € Z} is causal

Theorem 38. Let {Y;, t € Z} be a centered weakly stationary sequence with an auto-
covariance function Ry and spectral density fy and let {cg, k € Z} be a linear filtr such
that Y. |cx| < co. Then { Xy, t € Z}, where Xy = > 77 ¢ Yiy, is a centered weakly
stationary sequence with the autocovariance function

Rx(t)= > > cGRy(t—j+k), tel

j=—00 k=—o00

and the spectral density

fx) = TN, A€ -], (43)
where

V(N = Z cpe” kA

k=—o00

for X\ € [m, x| is called the transfer function of the filter.

Proof. Let Xt(") = > . cYi_g; obviously, for each t € Z, Xt(") — X, in mean square
as n — oo.

For any ¢ € Z,Y; has the spectral decomposition V; = [7_¢e"*dZy()), where Zy is
a process with orthogonal increments and the associated distribution function Fy (\).
Thus

n

XM= oY= a / RN AZy ()
k=—n k=—n -

™

:/ ew‘ Z Cke_ik/\dZy()\) :/ Giw\hn()»dZy()\),

k=—n i
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where h,(\) = " cre”*A. For the same reasons as in the proof of Theorem 34, h,,
converges to a function W in the space Lo(Fy), where W(A\) = 77 cre™™*, and by
Theorem 26,

n—oo

X;=1im X™= / e (N)dZy (N)
for any t € Z.
Since {Xt(n),t € Z} is centered, {X;,t € Z} is also centered, and according to
Theorem 12 the autocovariance functions {Xt(n), t € Z} converge to the autocovariance
function of {X;, t € Z}, and so

EX, X, = nlglgo EXY X7 = T}g{}o Z Z i ehE(Yayt—Ys 1)
j=—mnk=—n

— Z Z cjcrRy (t — j + k) :== Rx(1).

j=—00 k=—o00

Since EX,,; X, = Rx(t) is a function of one variable, only, {X,, t € Z} is weakly
stationary.
It also holds

Ry(t) = / " N (A)dZy (A) / " (A dZy ()

- / "B PAFy (M) = / "B fy ()N

and from the spectral decomposition of the autocovariance function (Theorem 19) it
follows that the function

W) fr(A) = fx(N)
is the spectral density of the sequence {X;, t € Z}. O

Example 30. Let {Y;, t € Z} be a white noise WN(0, 0?) sequence, {cx, k € Z} be
a sequence of constants such that Y ;- |cx| < oo. Then the linear process defined
by formula X; = Zzozfoo crY;_r is obtained by a linear filtration of the white noise.
Similarly, a causal linear process is obtained by a filtration of the white noise by using a
causal linear filter with ¢, =0, k < 0.

Example 31. Let {X;, t € Z} be a random sequence defined by X; = pX; ;1 +Y;, where
Y; are elements of a white noise sequence and |p| > 1.
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Then {X, t € Z} is not a causal linear process, but we can write

Xy =— Z e Oy
k=1

In this case, we have the linear filter, such that

0, k>0
Cr =
"T =), k<o

9 Selected limit theorems

9.1 Laws of large numbers

Definition 37. We say that a stationary sequence {X;, t € Z} with mean value pu is
mean square ergodic or it satisfies the law of large numbers in Lo(S2, A, P), if, as n — oo,

1 n
— E X — 44 in mean square. (44)
n

t=1

If {X;, t € Z} is a sequence that is mean square ergodic then
1 n
- Z Xt i> M,
n
t=1
i.e., {X;, t € Z} satisfies the weak law of large numbers for stationary sequences.
Theorem 39. A stationary random sequence { X, t € Z} with mean value p and auto-

covariance function R is mean square ergodic if and only if

1 n
— 5 R(t) — 0 as n — 0. (45)
n

t=1

Proof. W.1.0.g. put 1 = 0 (otherwise we consider X, =X, — ). Consider the spectral
decomposition

X, = / e dZ(N),
where {Z), A\ € [—m, 7]} is the orthogonal increment process with the associated distri-
bution function F, which is same as the spectral distribution function of {Xj, t € Z}.
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Then

where

and define the random variable
Zo = / h(A)AZ(N).

Obviously, h,(A) — h(A) for any A € [—m, 7). Moreover, h, — h in Lo(F), since
|7, (A) — R(X)]? < 4 and by the Lebesgue theorem, as n — oo,

/ " () = ROV AF(N) — 0.

Hence, as n — oo

in mean square.
Now, it suffices to show that

171
Zp=0 a.s. < — R(t) — 0 — 00. 46
0 a.s nz (t) as n — 0o (46)

t=1

From Theorem 26 we have EZy = 0; thus Z, = 0 a.s. if and only if E|Z,|> = 0.
Further from Theorem 26,

- /ﬂ RO 2AF(A).

—Tr

E|Z[2 = E’/_: h(N)dZ ()
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From the spectral decomposition of the autocovariance function and the Lebesgue
theorem

T n

—ZR Z[[r ’“dF(A)] —/ (%Zei”>dF(>\)

- t=1

_ /_ NAF(Y) — / /_ :|h(>\)|2dF()\) (47)

The rest of the proof follows from (46) and(47). O

Example 32. Let us consider the AR(1) process
Xi =X 1+ Y, Vi~ WN(0,0%), [p] < 1.

We know that the autocovariance function of { X, t € Z} is

Obviously,

—0

1 < 21 1 0% o(1—¢"
_ZRX(t): g t_ = o 290( 90)
n 1— pen = nl—e* 1—9¢p

as n — 0o, from which we conclude that {X}, ¢t € Z} is mean square ergodic.

Example 33. Let {X;, t € Z} be a stationary mean square ergodic sequence with
expected value p and autocovariance function Ry. Define a random sequence {Z;, t € Z}

by
Zt:Xt+Y, tEZ,

where EY = 0, varY = 0% € (0,0), and EX;Y =0Vt € Z.
Then EZ; = EX; + EY = pu for all t € Z and

E(Zowr — 1)(Z — ) = Rx(s) + 0% == Ry(s),

from which we get that {Z;, t € Z} is weakly stationary. However, it is not mean square
ergodic, since, as n — 00,

%Zn:Rz< ZRX —f-O‘ —>O' > 0.
t=1
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Theorem 40. Let {X;, t € Z} be a real-valued stationary sequence with mean value p
and autocovariance function R, such that Y .~ _ |R(t)| < co. Then, as n — oo

— 1
X, =— ZXt — 1L in mean square, (48)
n
t=1
nvar X, — Z R(k). (49)
k=—0oc0

Proof. 1. > 72 |R(k)| < o0 = R(k) — 0 as k — oo, thus =>°" | R(k) — 0 as
n — oo and assertion (48) follows from Theorem 39.

2. We have
var X,, = var (% Z Xk>
= 3 [Z var X, + Z ZCOV ]

1<]7ék<n

_ % nR(0) +2 Z(n ~ )RG)]

- %[R(O) + 2%(1 - %)R(j)}

Thus,
n—1
- . 2 s
nvarX, = Y R(J)—EZJR(J)
j=—n+1 j=1

Assertion (49) now follows from the assumptions of the theorem and from the Kronecker
lemma. O

Remark 15. From Theorem 40 we also get

lim nvar X, Z R(k) =2nf(0)

n—00
k=—o00

where f is the spectral density of the sequence { Xy, t € Z}.
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Definition 38. A stationary mean square continuous process {X;, ¢ € R} with mean
value p is mean square ergodic if, as T — oo,

1 T
- / Xidt — p in mean square.
T Jo

Remark 16. The existence of the integral fOT X,dt is guarranted by Theorem 18 since the
autocovariance function of the stationary mean square continuous process is continuous
and the expected value p is constant.

Theorem 41. A stationary, mean square continuous process { Xy, t € R} is mean square
ergodic if and only if its autocovariance function satisfies condition

1 T
—/ R(t)dt -0 as T — 0.
0

-
Proof. Rozanov (1963), Chap. 1, §6. ]

Theorem 42. Let {X;,t € R} be a real-valued stationary, mean square continuous
process, with mean value pu and autocovariance function R, such that [°°_|R(t)|dt < oo.
Then, as T — o0

X, = / Xydt — 1 in mean square, (51)

Tvar X, —>/ (52)

Proof. Bosq and Nguyen (1996), Theorems 9.11 and 15.1. O

Example 34. Let {X;,t € R} be a stationary centered stochastic process with the
autocovariance function

Rt)=ce M teR, a>0, ¢>0.

The process is mean square continuous. Moreover,

1 T T 1 _ aT
—/ R(t)dt = 5/ T N
T 0 T 0 T (6%

as T — 00, the process {X;,t € R} is mean square ergodic and 7 var X, — %‘3
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9.2 Central limit theorems

Some preliminary asymptotic results

Theorem 43. (Cramér-Slutsky Theorem) Let {X,,, n € N}, {Y,,, n € N} be sequences of
random variables and X be a random variable such that, as n — oo, X, — X, Y, — 0.
Then X, + Y, — X asn — oo.

Proof. Brockwell and Davis (1991), Proposition 6.3.3. O

Theorem 44. Let {{,, n € N}, {Sk,, n € N, k € N}, {¢, k € N} and ¢ be random
variables such that

1. Spn — U, n— 00, forallk=1,2,...,
2. Y — b, k — oo,
3. 1limg_yo0 limy, o0 P(|€ — Sin| > €) = 0 for all e > 0.

Then
En —> 1 as n — oo.

Proof. Brockwell and Davis (1991), Proposition 6.3.9. O

Theorem 45. (Lévy-Lindeberg CLT) Let {Y;,t € Z} be a sequence of independent iden-
tically distributed random variables with mean p and finite positive variance o?. Let
Y, =130, Y;. Then, asn — oo

Y, —u

vn 25 N(0,1). (53)

Proof. Brockwell and Davis (1991), Theorem 6.4.1. O

Theorem 46. (Cramér-Wold Theorem) Let X, Xy, X, ..., be k-dimensional random
vectors. Then
X,—X asn— oo

if and only if for every c € Ry
X, =X pron — .

Proof. Brockwell and Davis (1991), Proposition 6.3.1. O
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Central limit theorems for stationary sequences

Theorem 47. Let {X;, t € Z} be a random sequence defined by

Xy =p+ Y by,

J=0

where 1 € R, {Y;, t € Z} is a strict white noise, i.e., a sequence of independent iden-
tically distributed (i. 1. d.) random variables with zero mean and finite positive variance
0% Let by = 1 and by, ..., by, be real-valued constants such that Z;ﬁ:o b; # 0. Then, as
n — 0o,

1 < b )
t=1
2
where A? = o (2?:0 bj> .
Proof. We can write
= zn:(Xt — ) = = z": (i ijt—j>
g v t=1 " j=0

n n

_ 1 b ey
_\/ﬁ;}i—i—\/ﬁ;}/}l—i- +\/ﬁ;th

1 © I~
= =3 = (Y- )+
RSNV

+%(§;Yt+ > v Y )

k=—m+1 Jj=n—m+1
= 1 < 1
= ()= v+ =4

§=0 e t=1 Vi

where .
G- () - S (3 )
s=1 j=s s=0 j=s+1

is a finite linear combination of 2m i.i.d. random variables Yy, Y 4,...,Y .11 and
Y., Yo 1,..., Y i1 with zero mean and variance o2,

According to Theorem 45, \/iﬁ S Y 25 N(0,02) as n — oo. From here

(i bj> \/Lﬁ z": Y; =+ N(0, A?), where A? = 2 (i bj>2. (55)
=0 t=1 =0
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Now, using Theorem 43 it suffices to proof that \/Lﬁfn —50 as n — oco. But it holds,

since as n — 00
1 1 1 o2 - const
>e| < —=E —53 == 0.
€2 n €2 n

1
P (|-~
(177
Theorem 48. Let {X;, t € Z} be a random sequence such that

Xe=p+ ijyt—j,

Jj=0

where u € R, {Y;, t € Z} is a sequence of i.1i. d. random variables with zero mean and
finite positive variance 0. Let bj, j € No, be real-valued constants such that 372 [bs] <
00, > Zgbj #0 and by = 1. Then, as n — oo,

T2 D= 1) N (0.4),

where A? = ¢ <Z°° bl>2.

j=0Yj

Proof. Choose k € N. Then

k 00
Xy —p= Z bjY,_j + Z bjYi—j =: Upp + Vi,
=0

j=k+1

thus

1 — 1 & 1 &
— (Xy —p) = — Uit + — Vit
If we denote

1 n

1 — 1 &
n— — = X — ) Sn:_ U7 Dn:_ V’
3 \/EZ(t 1) k \/ﬁ; kt k \/ﬁ; kt

=1

~+

we have
gn - Skn + Dlm

From Theorem 47 we have, as n — oo and every k € N

Sk — Uy, (56)
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where 1, ~ N(0,A%), A? = 02(2520 b;)?. Further, from the assumptions of the theorem
it follows that
k 2 00 2
= o? (Z bj) — o2 (Z bj> = A2,
=0 =0

Y — N(0, A%). (57)
According to the Chebyshev inequality

as k — oo, and thus
1
P(|£n - Sk:n| > 6) - P(|Dk;n| > 6) S —2VElIDkn
€

From the assumption > 7 [b;j| < oo and Theorem 34 it follows that for any k € N,
{Vit, t € Z} is the centered stationary sequence with the autocovariance function Ry (t) =
0% 3 ki1 Dibjtyy- Using formula (50) we can write

n

P(|&, — Skn| > €) < évar(% Zth)

t=1
n—1 n—1
! by _ 1
=5 > RO(-) <5 X IRG)
j=—n+1 j=—n+1
n—1
= 5RO + 23 1R ()]
j=1
2 00 n—1 e
2
=5 > bj+22‘ > bybm}
j=k+1 j=1 v=k+1
0_2 e S n— 00
<G g2 Y b
j=k+1 j=1 v=k+1
0_2 e ) ) [ee] 00 0_2 00 9
<G b2 X Y bl = S (X i)
j=k+1 v=k+1 j=1 j=k+1

so that

lim lim P(|&, — Sin| > €) < hm — ( Z |b; |> (58)

k—o00 n—00
j=k+1

for any € > 0.
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Combining this result with (56) and (57) we can see that the assumptions of Theorem
44 are met and thus, as n — oo,

& = % ;(Xt — 1) = N(0,A?).

Example 35. Let us consider a sequence {X;, t € Z}, defined by
Xe=p+2Zy, Zi=aZi1+Ys,

where € R, |a] < 1 and {Y;, t € Z} is a strict white noise with finite variance o2 > 0.

The assumption |a| < 1 implies that >°7 ||/ < oo, thus
Xi=p+) dY,; tel
=0

Since > 7 a’ # 0, it holds, as n — oo

1 D 2 2_ 2
%;(Xt—u)HN(O,A), A =0 A ar

2

For large n, X, ~ N (,u, ”—) :

n(l—a)?

Definition 39. We say that a strictly stationary sequence {X;, t € Z} is m-dependent,
where m € Ny is a given number, if for every ¢t € Z, the sets of random variables
(.o, Xo1, X3) and (Xeymi1, Xevma2, - - - ) are independent.

Remark 17. A sequence of i.i.d. random variables is m—dependent with m = 0.

Example 36. An MA(m) sequence generated from a strict white noise is the sequence
of m-dependent random variables.

Example 37. Let {Y;, t € Z} be a strict white noise. Define {X;, t € Z} by
X =YYoim, t €72,
for some m € N. Then
o EX; = E(Y}Yiim) =0,
o EX. X, = E(YY1nYsYeim) =0 prot #s.
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In this case, X; are mutually uncorrelated but not independent. They are m—dependent.

Theorem 49. Let {X;,t € Z} be a real-valued strictly stationary centered m-dependent
random sequence with finite second-order moments and autocovariance function R, such
that

A2, = > R(k)#0.
k=—m
Then, as n — oo,
nvarX, — A2, (59)
1 b
— Y X, 5 N(0,A2). (60)
Vi

Proof. 1. Since the sequence {X;, t € Z} is strictly stationary with finite second-order
moments, it is weakly stationary. From m-dependence it follows that R(k) = 0 for
|k| > m. According to Theorem 40 we have

lim nvarX, = Z R(k) = Z R(k) = A2,

n—o0
k=—00 k=—m

2. Let k> 2m and n =k - r, where k € N,r € N. Then

(X1,...,Xn) = (U1, V1,Us, Vo, ..., U, V),

Uj = (X(j—l)k—i-la---ankfm)a j=1...r
‘/}:(Xjk—m+1a"'7Xjk)7 jzl,...,T.
Ui, ..., U, are mutually independent (it follows from m-dependence and the assumption
k > 2m) and identically distributed (from strict stationarity). Similarly, Vi,...,V, are
i.i.d. Thus,
IETIEES 9P
t=1 j=1 j=1
S;, j=1,...,r,are i.i.d. (S; is the sum of elements of the vector U;,)
T;, j=1,...,r, are i.i.d. (the sum of elements of the vectors V;).

For k£ > 2m we have ES; =0, ET} = 0 and

m

var Sy = var (X1 + -+ Xp_m) = Y (k—m— [v))R(v) = A

mk*

v=—m
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Similarly, utilizing the strict stationarity we have

var T} = var (kaerl + - —|—Xk) = var (Xl 4+ - —|—Xm)

m—1

= 3 (- WR@) =&,

v=—m++1

Now, we can write

1 n
— Y Xy =& = S + Dy,
VS

where
n/k

1 1 1 «
Sin=—=> Si=——F) S,
’ ﬁ;] ﬂﬁ;J

1 I
D= by m= Ly
Form the Lévy-Lindeberg theorem, as r — oo,
I b
— ) S N(0,AL).
VI

For a fixed k and » — oo also n — oo, so that

D
Skn —>,¢}ka

where 1), has the normal distribution N (O, A,’?’“) .As k — oo,

j=—m
djk i>N<Oa A?n)
From the Chebyshev inequality,

1 1 .
P(‘fn - Skn’ > 5) = P(’Dkn’ > €> < 6_2 : ﬁvar (ZT])

j=1
1 1 1 o
= 6_2 . EvarTl = %5m
Thus, o
lim lim P(|&, — Skn| >€) =0

k—o00 n—00

and the proof follows from (64), (65), (66) and Theorem 44.
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Example 38. Consider the sequence {X;, t € Z}
Xt = ,l,b—f-}/; + alift—l + GQY;—% le Za

where Y; are i.i.d., EY, = 0,varY; = o2 > 0.
The sequence {X;, t € Z} is strictly stationary and m-dependent, m = 2. The
autocovariance function of { Xy, t € Z} takes values

R(0) = 0*(1 + af + a3),

R(l) =0 (CLl + CL1(L2> R(—l),
R(2) = 0%ay = R(—2),
R(k)=0, |k|>2.

Therefore

= fj R(k) = R(0) + 2R(1) + 2R(2) = 0(1 + a1 + ay)*.

k=—m
From the previous theorem, \/Lﬁ S (X — ) = N(0,A2), provided A2, # 0.

Example 39. Let {Y}, t € Z} be a sequence of i.i. d. random variables, EY; = 0, var Y; =
02, EY{ < co. Prove that for every k > 0 as n — oo it holds

\/_Z 2) 25 N(0,72),

\fZYtYM—”V(OU)

n—k

\/_Zytmk—u\/(o o),
— ) X, = NL(0,0),

where 72 = var Y32, X; = (YiYi41, ..., Y;Yiix) and I is the identity matrix of order .

Solution.

1. Y? are i.i.d., EY;? = 0%, varY;? = 72. The Central limit theorem (Theorem 45)
implies that

\/_Z 2) 25 N(0,7%).
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2. Denote X; := VY, for k > 0. The sequence {X;, t € Z} is strictly stationary,
EX; =0, EX? = 0%, X; are mutually uncorrelated but k-dependent. By Theorem 49,

1 « b
— ) X, N0, A7),
Vi

where A? = Z;?:_k Rx(j) = o*.
3. We can write
1 n—=k 1 n 1 n
— Y YWiau=—)> VY- — YiYiik.

From step 2, as n — oo,

1 < b .
—= 2 Yi¥e = N(0,0%).
\/ﬁ t=1

Form the Chebyshev inequality, as n — oo,

t=n—k+1
1 = 2 1 , 1kot
<o E( X X) =g, X EXI=gT o0
t=n—k-+1 t=n—k+1

since k is fixed.

4. Define Z;, .= ¢'X;,t € Z,c € R;,. Then

e Random vectors X, have zero mean and the variance matrix ¢*I and are mutually
uncorrelated.

e Random variables Z; are centered, with the variance o*c'Ic, uncorrelated and k-
dependent

o {7, t € Z} is strictly stationary.

By Theorem 49,
1
Vn
where A? = Z;?:fk Rz(j) = o*c/Ic. From here the final result follows when we apply
Theorem 46 and properties of normal distribution.

S22 A0, A2)
t=1
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10 Prediction in time domain

10.1 Projection in Hilbert space

Definition 40. Let H be a Hilbert space with the inner product (-, -) and the norm ||.||.
We say that two elements z,y € H are orthogonal (perpendicular) if {(x,y) = 0. We write
rLy.

Let M C H be a subset of H. We say that an element x € H is orthogonal to M, if it
is orthogonal to every element of M, i.e., (z,y) = 0 for every y € M. We write z L M.
The set M+ = {y € H :y L M} is called to be the orthogonal complement of the set M.

Theorem 50. Let H be a Hilbert space, M C H any subset. Then M= is a closed
subspace of H.

Proof. The null element 0 € M+, since (0, x) = 0 for every x € M.

The linearity of the inner product implies that any linear combination of two elements
of M+ is an element of M*.

Continuity of the inner product implies that any limit of a sequence of elements of M+
is an element of M*. O

Theorem 51. (Projection Theorem) Let M be a closed subspace of a Hilbert space H.
Then for every element x € H there exists a unique decomposition x =T + (x — ), such
that T € M and x — T € M*. Further

[l = ]| = min |z —y]| (67)

and
|| = [|Z]|* + ||z — 2| (68)

Proof. Rudin (2003), Theorem 4.11, or Brockwell and Davis (1992), Theorem 2.3.1. [J

The element Z € M with property (67) is called to be the orthogonal projection
of x onto the subspace M. The mapping Py : H — M such that Pyx € M and
(I — Py)xr € M* where [ is the identity mapping, is called the projection mapping.
Obviously, for any z € H

Theorem 52. Let H be a Hilbert space, Py the projection mapping of H onto a closed
subspace M. It holds:

1. For every x,y € H and any o, f € C, Py(ax + Py) = aPyx + BPyy.
2. If x € M, then Pyx = x.
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3. If x € M*, then Pyx = 0.

4. If My, My are closed subspaces of H such that My C M,, then Py, x = Py, (Pa,x)
for every x € H.

5. If x,,x are elements of H such that ||z, — x|| — 0 as n — oo, then ||Pyx, —

Proof.
1. By using (69) we get

az + By = a(Pyz + (v — Pyz)) + B(Puy + (y — Puy))
= aPyx + fPyy + a(x — Pyz) + By — Puy).

Obviously,

aPyx + BPyy € M, a(x — Pyz) + B(y — Pay) € M+

since M and M+ are linear subspaces, and thus, aPyz + B8Pyy = Py(az + By).
2. The uniqueness of decomposition (69) implies assertion 2.
3. The uniqueness of decomposition (69) implies assertion 3.

4. Since © = Pz + (# — Papx), Papx € My, x — Pypyx € My-, we have Py z =
PMl(PMQLL') + PMl(ZE — PM2I‘> ThUS,

Pur, (Py,w) € My, and M- C M = Py, (z — Py,x) = 0.

5. From the linearity of the projection mapping and equation (68)

|| Paren — Pul|* = [|Pu(zy — 2)|1* < [ln — 2.
m
10.2 Prediction based on finite history
Let us consider the following problem: We have random variables X7, ..., X,, with zero
mean and finite second order moments. Utilizing observations Xi,...,X,, we want to
forecast X, n, where h > 0. We would like to approximate X, ., by a measurable

function g(Xi,...,X,) (prediction) of observations Xj,..., X, that minimizes

E|Xnin—9g (X1, X))

80



It is well known that the best approximation is given by the conditional mean value
g(Xl, ce ,Xn> = E(Xn+h|X1, PN 7Xn)

Indeed, if (for the simplicity, we consider only real-valued random variables) we denote
(X1,...,X,) =X, we can write

E (Xoin — 9(Xa))"

= E (Xnn — E(XsXn) + E(XiX0) — 9(X,))?

= E (Xosn — E(XnsnlX0))” + E(E(Xn1|X0) — 9(X0))”
+ 2B [(Xnpn — B(Xnpn[ X)) (B(Xn1n]X0) — 9(X0))]

where the last summand is

E[(Xnn — E(Xnin|Xn)) (E(Xnin|Xn) — 9(X5))]
= E[E (Xntn — E(Xnsn]X0)) (B(XninlXn) — 9(X0)) [Xa)
= E[(E(Xn40[X5) = E(Xn4n|X0)) (E(Xn40]X5) = 9(Xn))] = 0.

Thus,

E(Xn-i-h - Q(Xn))2
=E(Xp4n — E<Xn+h|Xn))2 + E(E(Xp4nX0) — g(Xn>>2
Z E (Xn+h - E(Xn+h|Xn))2

with equality for g(X,,) = E(X, 1| X0).

In the next, we will confine ourselves to linear functions of Xy,...,X,,. Then the
problem to find the best linear approximation of X,,,, can be solved by using the pro-
jection method in a Hilbert space. The best linear prediction of X1, from Xi,..., X,
will be denoted by X, 4(n).

Direct method

Let H := H{X1,...,X,,..., X,1n} be the Hilbert space generated by centered ran-
dom variables Xy, ..., X, and H} := H{X3,..., X, } be the Hilbert subspace gener-
ated by random variables X,..., X,,.

The best linear prediction of X, is the random variable

n

Xoin(n) =Y ¢ X; € HY, (70)

=1

such that R R
E| Xpqn — Xn+h(n)|2 = || Xpgn — Xn+h(n)||2
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takes minimum with respect to all linear combinations of Xy,..., X,,.

It means that R

Xoin(n) = Ppp(Xnin) € HY,
Xn+h — Xn+h(n) 1 H{L (71)

and the element )?Mh(n) is determined uniquely due to the projection theorem.

Since the space H7 is a linear span generated by X1, ..., X,,, condition (71) is satisfied
if and only if R

Xn+h - Xn+h(n) J_ X]? j — 1, o o ,n,

i.e., if and only if

A~ _—

E(Xn+h - XTH_h(n))XJ = 07 J = 17 e, n.

Constants ¢y, ..., ¢, can be therefore obtained from the equations
E(Xon— > aXy)X;=0,j=1,...n (72)
k=1

For Xi,... X, ., supposed to be elements of a real-valued centered stationary sequence
with the autocovariance function R, system (72) is of the form

> aR(k—j)=Rn+h—-j), j=1...n, (73)
k=1
aR0)+cR(1)+---+c,Rn—1) = Rn+h-—1),
aR(1) 4+ cR0)+ -+ c,Rn—2) = R(n+h-—2),
aR(n—1)+cR(n—2)+ -+, R(0) : R(h).

Equivalently, system (73) can be written in the form

Iye, = Ynh

where ¢, := (c1,...,¢)s Ypp = (R(n+h—1),...,R(h)) and

RO) R R(n—1)
R(1)  R(0) R(n—2)

Fn :: . : b
Rin—1) R(n—2) R(0)
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Provided that T';;! exists we get ¢, = I'17,,, thus
)?n+h(n) = Z ¢ Xj = ¢, X =70 X (74)
j=1

It is obvious that I',, = var (Xy,...,X,) = var X,, = E(X,,X)).
The prediction error is
5}% 1= E|Xon — Xn+h(n)|2 = || Xntn — Xn+h(”)|’2-
By (68)
Xl = 1 Xnrn ()P + 1 Xt = Xon(n)],
so that R
8 = [ Xnrnll? = [ Xnsn(m)|*. (75)

For a real-valued centered stationary sequence such that T',, is regular,

O = IXnrall® = 1 Xnra(m)* = ElXnsnl* = E[Xpsn(n)
= R(0) — E(c,X,)* = R(0) — ¢,E (X, X],)c,
= R(0) — c,I'ne, = R(0) — 7:th;1FnF;1'7nh
= R(0) = ¥, L Yo (76)
Theorem 53. Let {X;, t € Z} be a real-valued centered stationary sequence with auto-

covariance function R, such that R(0) > 0 and R(k) — 0 as k — oco. Then the matrix
I, =var(Xy,..., X,) is reqular for every n € N.

Proof. We will prove the theorem by contradiction: suppose that I',, is singular for an
n € N; then there is a nonzero vector ¢ = (¢q, ..., ¢,) such that ¢'T';,c = 0 and for X,, =
(X1,..., X)), ¢X,, =0 a.s. holds true, since Ec'X,, = 0 and var (¢'X,,) = ¢'T',,c = 0.

Thus there exists a positive integer 1 < r < n such that I, is regular and T',;; is
singular, and constants aq,...,a, such that

r
Xr—i-l: E CLij.
J=1

By stationarity of { Xy, t € Z},
VaI‘(Xl, Ce 7Xr) = ... = V&I‘(Xh, R ,XthT,l) = Pr-

From here, for any h > 1,

T

Xypn = E a; Xjyn—1.

j=1

83



For every n > r + 1 there exist constants agn), e ,a&") such that X,, = Z;Zl ag-n)Xj =
a™'X,., where a® = (a§">, . ,aﬁ"))’ and X, = (Xy,...,X.,),

var X,, = a™ var X, a™ = a™W'T,a™ = R(0) > 0.

The matrix I, is positive definite, therefore there exists a decomposition I', = PAP’,
where A is a diagonal matrix with the eigenvalues of the matrix I', on the diagonal and
PP’ = I is the identity matrix. Since I, is positive definite, all its eigenvalues are
positive; w.1l. 0. g. assume that 0 < A; < --- < \,. Then

r

2
R(0) = a™'PAP'a™ > X\;a"'PP'a" = )\ Z(a(n)> :

J
j=1

from which for every j = 1,...,r it follows that (agn)f < R(0)/A1, hence, |a§-n)| <C
independently of n, where C' is a positive constant.
We also have

T s

0< R(0) = E(X,)" = E(X, D al"x;) = > al"EX, X,

j:l j:l
T

= > R - ) < > || [R(n - j)

j=1 j=1
T
<CY |R(n—j)l-
j=1
The last expression converges to zero as n — oo due to the assumption R(n) — 0 as

n — oo, but this contradicts to the assumption R(0) > 0. Thus, we conclude that the
matrix T';, is regular for every n € N. ]

Recursive methods

Let us introduce the following notation.
e Denote by HY = H{X,..., X} the Hilbert space generated by X1,..., X}.
e Put )?1 := 0 and denote by )A(Hl, k > 1, the one-step prediction of Xy, i.e.,
)A(k+1 = )A(k+1(k‘) = PH{“ (Xkt1)-
Then R R
H =H{Xy,....X,,} =H{X: — Xq,..., X,, — X,.,}.
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Lemma 4. X; — )/(\'1, e, X — )?n are orthogonal random variables.
Proof. Let i < j. Then X; € H' C H/ ' and X; € H™' c HI™', s0 X; — X; € HI .
Further, X; = PH{;l(Xj), therefore X; — X; L HJ™', and also

X, - X LX; - X

O

The one-step best linear prediction of X, computed from Xj,..., X} thus can be
written in the form

k
Kot = 3 005 (Xenry = Ky

Jj=1

The error of the one-step prediction of Xj,; is

vp = E|Xpnr — Xt 2 = [[ X — Xewa|s k>0

Theorem 54 (Innovation algorithm). Let {X;, t € Z} be a real-valued centered random
sequence with autocovariance function R(i,7), such that matriz (R(z’,j))zjz1 is reqular

for every n. Then the best linear prediction of X, .1 computed from Xq,..., X, is
)?1 - 0,
)/(\vn—‘rl - Zen] <Xn+1—j - jEvTL—I—l—j) ’ n > 17 (77)
j=1

where fork=0,...,n—1,

Vg = R(]_, ].), (78)
1 k—1
Gnm_k = ’U_k (R(n + 1, k + 1) - ZO gk,k—jen,n—jvj)a (79)
]:
n—1
ve = R(n+1ln+1)—=» 62, . (80)
j=0

Proof. Define X, = 0, then

vo = E|1 X1 — X1)? = E| X, = R(1,1).

85



Since )?nﬂ = Pyr Xy 41, it must be of the form as given in (77). When multiply both
sides of (77) by X1 — X1 for k < n and take the mean value we get

~

EX,1(Xpp1 — Xipa)
= Zn: 0iE (Xns1-j = Xut1j) (X — Xiia)
j=1
= OpntE(Xi1 — Xis1)? = Opnip.
Since )?nﬂ € H" and X, 41 — )?nﬂ 1 HY we have
E(Xpi1 — Xpi1)(Xps1 — Xpp1) =0, k <n,

EXn+1 (Xk+1 - )?k-‘rl) = E)A(n-s-l (Xk+1 - )?k:-i-l) = en,n—kvk- (81)

From here we get

1 ~
Qn,n—k - U_kEXn-l—l (Xk—l-l - Xk+1)

1 .
= U—(R(n +1,k+1) = EX,p1 Xps).
k

Further, applying formula (77) to XHI and replacing k by k£ — j in formula (81) we get

k
EXo1 Xhet = EXor 3 0 (Xioa oy — Kiay)
j=1

k
= ZekjEXn—l—l (Xk—i-l—j - Xk+1—j>

=1
k
= > OiOnn by Uiy
=1

Combining these results altogether we get

k
1
en,nfk = 'U_k(R(n + 17 k + 1) - ; ekjen,n—(k—j)kaj)

k—1
_ %(R(n +LE+1) = O ibes-sty).
v=0
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Computation of v, is as follows.

Up =

E| X1 — X = E[ X — E[ Xy |2

2

-~

= R(Tl + 1,n + 1) — E‘Z an (Xn-‘,-l—j - Xn+1—j)
j=1

= Rin+1n+1) = 02 EXnmi—j — Xns1-))?
j=1

= Rn+1,n+1)— ZQZjvn,j
=1

n—1
= Rn+1,n+1)— Z 0 V-
v=0

Computational scheme of the innovation algorithm:

)?1 Vo

011 )?2 U/}

Op 0Oy X Uﬁ
O3 O3 031 X4 wv3

Example 40. We have observations X1, ..
generated by
Xe =Y +bY;q, Y, ~ WN(0,0%), t € Z

We will find )A(nﬂ by using the innovation algorithm. We get

)/51:0,

vy = R(0) = (1 + b%),
1 b

01 = —R(1) = ——

11 o () 1+b27

Xo =011 (X, — X)) = 01, X,
vy = R(0) — 63,00,

1
Oy = —R(2) =0
22 o () 3

1 R(1
091 = —(R(l) - 922911710) = ( )7
(o U1

)/53 = 921(X2 - )/52)7
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generally,

Gnk:O, k::2,...,n,
R(1)
Un—1 ’

Xn+1 - Hnl (Xn - Xn)v

v, = R(0) — 02,0, 1.
Example 41. Consider an MA(q) sequence. Then R(k) = 0 pro |k| > ¢. By using the
recursive computations we get

enl =

min(g,n)

n+1 Z en] ( n+l—j5 — )?nJrlfj) ) n Z 1.

The coefficients 0,,; can be determined again by using Theorem 54.

The h- step prediction, h > 1:

Now, we want to use the innovation algorithm to make prediction from Xi,..., X,
for b > 1 steps ahead, i.e., to determine X, ,(n). Obviously, X, n(n) = Pgr(Xpin),

where H' = H(X; — X1,...,X,, — X,,). Since H ¢ H*' € --- ¢ H!'*'! it follows
from the properties of the projection mapping and (77), that

)A(nJrh(n) = Ppn (Xn+h) = Pyrp (PH{LM—l (Xn+h)> = Pyrp ()?mh)
n+h—1 R
= PH;( Z Onth—1,j (Xn+h—j - Xn+h—j)>
j=1

n—+h—1
= Y O Py (Xaens = Zuinsy)

n+h—1

= Z 9n+h—1,j (Xn+h—j - )?n—i-h—j) ’ (82)
j=h

since Xp1p—j — )A(Mh,j 1L X7 pro j < h.

The h-step prediction error is

0 = E[Xun = Xon(n)]” = E|[Xuis]” = E[Xpin(n)]’

n+h—1 R 9
= R(n+hn+h)— E’ Z Onsrn—1 <Xn+h—j - Xn+h—j>
j=h
n+h—1
= R(n+hn+h)— Z 0n+h 1,jVn+h—j—1
j=h
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Example 42. Le us again consider the MA(1) model from Example 40. We have shown

that the one-step prediction is

~ -~

XnJrl = PH{L (XnJrl) = enl(Xn - Xn)

For h > 1 we have

A~ ~

Xoin(n) = Pap(Xnin) = Prap(Xnin)
= PH{‘ <9n+h71,1(Xn+h71 - XnJrhfl)) = 07

~

since (Xpip—1 — Xpsn-1) L HY pro h > 1.

Innovation algorithm for an ARMA process

Consider a causal ARMA(p, q) process
Xt = QplXt—l +- ‘;OpXt—p + Y;f + 91}/;—1 + -+ eqY;—qy
Y; ~ WN(0,0%). We want to find X1 = Pyp(Xni1)-

e First, let us consider the following transformation:

%Xta t:1,2,
Wt:

% (Xi =1 X1 = 0pXip), t>m,

teZ,

7m7

(83)

where m = max(p, q). Put X, = O,Wl =0, /Wk = PH{CA(W,C). It is clear that

H' =H(X1— X1,..., Xn— Xo) = H(X1,..., X,)
= HWi, ... W) = HW, =W, ..., W, — W,).

e Application of the innovation algorithm to the sequence {17, ..

—

Wn+1 -

E}’»:l an(Wanj - Wn+17j), n>m

(for t > m, Wy ~ MA(q)).

L, Wi} gives

Z;;l i Whg1—j — Whg1—j), 1 <n<m,

(84)

e Application of the projection mapping onto Hi ' to both sides of (83) results in

—~

Wt:

é()?t —o1 X1 = Xyy), t>m.
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We can see that for ¢t > 1,

—

1 N — 1
Wy =W = ;(Xt_Xt)a Elm_Wt|2 = J_Ut—l = Wi—1-

2

Therefore it holds

~ Z?:l enj (XnJrlfj - XnJrlfj); n<<m
Xn—i—l = . (86)
o100 (Xng1oj — Xos1—j) + 220 9 Xnj1, n>m,

where coefficients 6,; a w, are computed by applying the innovation algorithm to the
sequence (83). For this we need to compute the values of the autocovariance function of
{Wi}.

We know that E X; = 0, thus EW, = 0. For the covariances Ry (s,t) = EW,W, we
get
(LRx(s—1t), 1<s,t<m,

sz [Rx(s —t) = >0 @iRx (s —t] — )],
Ry (s, t) = min(s,t) <m, m < max(s,t) <2m, (87)

1 q—|s—t
o2 Zj:g ‘9j9j+|s—t\, s,t>m, |s—t| <g,

L0, elsewhere

(we have put 6y = 1).

Innovation algorithm for an AR sequence

Let us consider a causal AR(p) process, i,e.,
Xt = SOIthl + -+ QDpXt,p + }/;f, te Z, Y;g ~ WN(O, 0'2)
e Transformation:

. {iXt, 1<t<p, (58)
- 88
(X=X = =9 Xiy) = JYh t >,

[

e Innovation algorithm applied to W7y, ..., W, :

Ty 22:1 an(Wn-i-l—j - Wn+1_j), n <p,
Wn+1 =
) n > p.

(Wya1 L HY for n > p.)
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Again, W, — /V[Z = %(Xt — )A(t) for ¢ > 1 and from here

~ Zn: en Xn 17'_)?71 1-3)» n <p,
{ j=1 J( 1=y + J) (90)

Xn+1 =
01 Xp + 02Xy 1+ -+ epXp_pr1, N 2Dp.
The autocovariance function needed for the calculation of the coefficients 0,,; is

%RX(S_t)v lgs,tgp,
t=s>p, (91)

RW(S ) t) = 17
0 elsewhere.

The one-step prediction error for n > p is

v 2 2 2
Up = E|Xn+1 - Xn+1| = EYn+1 =0 .

10.3 Prediction from infinite history

Let us suppose that we know the history X,,, X,,_1, ..., and we want to forecast X,, 11, X;,10,....

We will solve this problem again by using projection in Hilbert spaces.

Consider Hilbert spaces H = H{X;, t € Z} and H" = H{... X,—1, X, }. Then
the best linear prediction X, ,5(n) of X, from the infinite history X,, X,_1,... is
the projection of X, € H onto H" , i.e., Xnyn(n) = Pun_(X,ys). The one-step
prediction is again denoted by )?nﬂ(n) = )A(nﬂ.

Prediction in a causal AR(p) process

Counsider model
Xt - (;DlXt—l +---+ QOpXt—p + Y;fa te Z7 (92)

where {Y;, t € Z} is WN(0, 0?), and assume that all the roots of the polynomial A’ —
O APt — ... — p, are inside the unit circle. It means that {X;, t € Z} is a causal linear
process and Y; L X, for all ¢t > s.

The one-step prediction: To get )?nﬂ(n) from X,,, X,,_1, ..., notice that
L4 n+l — Qpan 4+ SOan—i-l—p + Yn+1

[ (,Dan + -+ (,Oan+1_p € Hﬁoo?
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o Vi1 L X, X, 1, =Y, L H" , (from the linearity and the continuity of the
inner product)

It means that

~

Xpi1 = Py _(Xny1) = 01 X+ + 0p X1

The prediction error is

E|Xpi1 — Xng1|?> = E[Yii]? = 02
The h-step prediction, A > 1:

Xnsn(n) = Pan_(Xyn) = Prn_ (PHfgoh—l(th))
= Pyn_(Xnin)
= Pyr_ (01Xnh-1+ - + ©pXngn—p)
= @1[Xntn-1] + ©2[Xnsn-2] + - + ©p[Xntnp);

where

Xotjs 7<0
[Xn—I—j] =35 .
Xn-‘rj(n)a J>0.

Example 43. Consider an AR(1) process generated by X; = pX;_1 + Y}, where |¢| < 1
and Y; ~ WN(0, 0?). If we know the whole history X,,, X,,_1,..., we have X, ;1 = pX,,.
For h > 1

)A(n+h(n) = o[ Xp4n-1] = SOJA(mhfl(n) = 9025(%1172(”) =
= " X,.
The prediction error is
El X — Xnial? = E[Xninl? = E|Xpin(n)?

= Rx(0) — E|¢"X,|" = Rx(0) (1 — ™)
91— 90%

1— 2
Prediction in a causal and invertible ARMA(p, q) process
Consider a causal and invertible process
Xi=p1 X+ o+ Xy + Y+ 01Y o+ +60,Yry, tELZ, (93)

where Y; ~ WN(0, 02).
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e Due to causality, for any ¢t € Z, X, = > 77 ¢;Y;—j, where 3 % |¢;| < oo; from here
it follows that Y; 1 X, for every s < t.

e Due to invertibility, for any ¢ € Z, Y; = 3772 d; X;j, where 3 7% |d;| < o0, or,

Xp==> diX, ;+Y, (94)

j=1

Since

00 N
—Zdet_j =1.im. N—o00 (_Zdet_j) S Ht__()é7
j=1

J=1

and Y; L H'! from decomposition (94) it follows that the best linear prediction of

—00)

Xn11 based on the whole history X,,, X,,_1,..., s
Xoi1 = — Z djXnt1-j- (95)
j=1

The prediction error is
E’Xn+1 — Xn+1|2 = E’Yn+1‘2 = 0'2.

From the uniqueness of the decomposition X, = )?nﬂ + Y,41 and from formula
(93) we can also see that

~

Xnri=01Xp+ -+ 0 X1 p Y+ +0,Y 01,

thus, if we use the relation Y; = X, — )?t, (noticing that )A(t = Pyi-1X;) we have

~

Xn+1 = SOan +oeee A+ (;Oan—&-l—p
+ 91 (Xn - Xn) +ooe 4+ eq (XnJrlfq - Xn+1fq>-
The h-step prediction for h > 1 is
Xuin(n) = Pn_(Xutn) = Pun_(Pynsns(Xogn)) = Pon_(Xin)
= Ppgn__ (901Xn+h71 + o+ o Xnyhp
+ 601 Yih1 4+ 0Ynin—g)

= [ Xnpho1] + -+ SOP[XnJrhfp]
+ 01 [Yn-i—h—l] + -+ 9q [Yn—l—h—q]v
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where

XTL K j S 07
[Xn—‘rj] = S +J .
Xn-i—j(n): J > 0

and

Xn ;T )/(\Vn K ) < 07
[Yn-i-]] _ {O +7 +7 ] >
, 7 >0.

If we use (95) we have

)?n-i-h( PH" ( Zd Xnth— ]) == Z[Xn—h—i—j}'

d=1

Alternatively, from the causality we get

o0

J=0

Then, from properties of the projection mapping,

PHEOO (Z Can+h7j> ZC]PH" Yoin- J)
§=0

and thus we can express the h— step prediction also as

n+h E C] n+h—j-

The prediction error can be then easily computed by

E‘Xn—i-h_ n+h —E’E C] n+h—j

= Z ‘C]|2

Example 44. Consider the MA(1) model
X, =Y, +0Y,_1,tcZ, Y,~WN(0,0%), |6 <I1.

In this case, {X;, ¢ € Z} is invertible, Y; = >37° (—0)? X;_;, and the best linear prediction
is

Xop1(n) = Kooy = =) (=0V X1 = 0V, = (X, — X,,).
j=1
The prediction error is E| X, 11 — )?n+1|2 =EY?, =0"
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For h > 1,
Xoin(n) = Pan__ (Poenr(Xngn)) = Pun_(Xnin)
= HPHfOO (Yn—i—h—l) = 07

since for h > 2, Y, 1,1 L H" . The h-step prediction error is

E|lXpin — Xnsn(n)]? = E[Xoinl? = Ry (0) = o2(1 + 62).

11 Prediction in the spectral domain

o Let {X;,t € Z} be a centered stationary sequence with a spectral distribution
function F' and spectral density f.

e We know the whole past of the sequence {X;, t € Z} up to time n — 1, and want
to forecast X, p,h = 0,1,..., ie, want to find X, yn(n —1) = Pyn1(X,q4), in
other words, we want to find X,n(n — 1) € H"Z' C H{X,, t € Z}, such that
Xnth — Xpgn(n—1) L Hﬁ;ol-

e Recall spectral decomposition: X, = [7_e"*dZ(X), where {Z), X € [-m, 7]} is an
orthogonal increment process with the associated distribution function F' (Theorem
28).

e Recall that all the elements of the Hilbert space H{X;, t € Z} are of the form

/ " o(NdZ(N),

-7

where ¢ € Ly(F) (Theorem 30).

Element X,,4,(n — 1) should be of the form

Kol —1) = / " em,(NdZ(N), (96)

—Tr

where ®,()\) € Ly(F). Condition X,,1p — Xpin(n — 1) L H*Z! will be met if
Xosn — Xppn(n —1) L X,y j=1,2,...
thus for j =1,2,...,
E(Xpin — Xpin(n — 1)) X, ; =0,
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or

E <Xn+h - )?n+h<n - 1)) anj =

— R(h+j)—E / D, (\)dZ(N) / il dZ ()

—T —T

=R(h+j)— / €MD, (N e DAGEF(N)

™

e PFDAGF (N / e, (N dF(N)

—T

.
/ MDA £ () / ’ Dy () f(A)dA
[

—T

e (e — @,(N)) fF(A)dA = 0. (97)

Denote _
Wy(A) = (" = @p(N)) fF(N).
Then (97) can be written as

/ EPML(N)dA =0, j=1,2,.... (98)

—T

It follows from condition (98) that the Fourier expansion of the function ¥, has only
terms with nonnegative powers of e,

Uy(A) =) o™ > || < o0
k=0 k=0

Provided that

[e.9] [e.9]

Oy (N) = Zake_ik)‘, Z lag| < oo,

k=1 k=1

which is a function convergent in Ly(F),
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- k=1
x N
o : inA —ik
= 1]\}._{?0 e [Z age }dZ()\)
- k=1
N T
= l]\}_glo Zak [/ el(”*k))‘dZ()\)}
k=1 -
N 0o
= 1N1-HT(I;IO apXn_r = Z ap Xn_k

Theorem 55. Let {X;, t € Z} be a real-valued centered stationary random sequence
with the autocovariance function R and the spectral density f(\) = f*(e?), where f* is
a rational function of a complex-valued variable.
Let @} be a function of a complez-valued variable z holomorphic for |z| > 1 and such
that @ (c0) = 0.
Let

Vh(2) = (2" = @;(2)) f(2), 2 €C,
be a function holomorphic for |z| < 1. Then the best linear prediction of X,in from
Xn1, X 9,... 18

™

Xpin(n—1) = / e, (N)dZ(N),

—T

where ®,(X) = @ (™) and {Z\, X € [—m, 7|} is the orthogonal increment process from
the spectral decomposition of {Xy, t € Z}. The prediction error is

5}% = E|Xn+h - )?nJrh(n - 1>|2
— R(0) - / BV SN (99)

= R(0) — / ’ e A, (N) F(N)dA. (100)

—Tr

Proof. Andeél (1976), Chap. X, Theorem 8. O

The function @, is called to be spectral characteristic of prediction of X, from
Xn—h Xn—27 te
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Example 45. Consider again the autoregressive sequence

Xt = 90th1 + Y;h |90’ < 17 ¥ # an;f ~ WN(Oan)'

We want to determine prediction )/(\'Mh(n — 1), h > 0 on the basis of X,,_1, X,,_o,...

the spectral domain.
The spectral density of the sequence {X;, t € Z} is

o? 1 o2 1
N = =7 . e
ey 21 |1 — pe= 2 27 (1 — e ) (1 — pe) / (e ) ’
where ) . )
* 2 o z
f(2)

Tam(l-pr )(I-p2)  2w(l-e2)(z - )

which is a rational function of the complex-valued variable z. The function

_0? z(2 = @5(2))
2m (1= p2)(z — @)’

Ui (2) = (2" = @4(2)) f(2) z€C,

n

should be holomorphic for |z| > 1. Since |p| < 1, it must be 2" — ®3(2) = 0 for z = ¢,

otherwise U} has a pole at z = ¢.

Thus,

;(p) = "

(101)

Put ®;(2) := 1, where v is a constant. Then ®; is holomorphic for |z| > 1 and

7 (00) = 0. The function ¥} is holomorphic for |z| < 1.
The value of constant 7 follows from (101): " = @} (p) = %, thus v = @1

Functions
Qph+1
* h+1_—1
@h(z):—z =" 27, 2z €C,
R (ph+1

Ur(2) z € C,

T (z— )1 - p2)

satisfy the conditions of Theorem 55. The spectral characteristic of prediction is ®p(\) =

o' le=™ and the best linear forecast is

_&Mm—n::/ﬁwwAmwu)
— / 6in/\90h+1€_i)\dZ()\)

_ / Gi(n_l)AdZ()\)gOh—H _ QOh_HXn—l
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which is the same result as obtained in the time domain.
For the prediction error, from (99) we get

~ 5 ~
5 = E‘Xt—&-h — Xyt — 1)| = | Xenll® = 1 Xpsn(t — )|

T 2
= R(0) — E[Xpyn(t — 1)|" = R(0) — E ’/ e @y, (N\)dZ (M)

—T

= R(0) — /7r D, (V)] F(\)dA =

—T

— R(0) — 2D / " FO)IA = R(0) (1 — 240

which is again in accordance with the result in the time domain.

12 Filtration of signal and noise

Let us consider a sequence {X;, t € Z}, said to be a signal, and a sequence {Y;, t € Z},
a noise. Further consider the sequence {V;, t € Z}, where

‘/;:Xt—i_}/;f? teZ7

i.e., {V;, t € Z}, is a mixture of the signal and the noise. Our aim is to extract the signal
from this mixture.

12.1 Filtration in finite stationary sequences

Let {X;, t € Z}, {Y;, t € Z}, be real-valued centered stationary sequences, mutually
uncorrelated, with autocovariance functions Ry, Ry, respectively. Let V; = X, 4+ Y; for
t € Z. Then {V;, t € Z} is also the real-valued centered and stationary sequence with the
autocovariance function Ry = Ry + Ry. Suppose Vi,...,V, to be known observations.

On_the basis of V4,...,V, we want to find the best linear approximation of Xy in the
form X, = Z?zl ¢;V;, with coefficients ¢y, ..., ¢, that minimize the mean square error
EIX, — X,|%.

Denote H' = H{Vi,...,V,,} C Ly(2, A, P). Then the best linear approximation X,
of X is the projection of X, € Ly(Q2, A, P) onto H}, i.e., X, € H} and X — X, L HY.
Since H} = H{V4,..., V,} = M{V4,..., V,,}, it suffices to find constants ¢y, ..., ¢, such

that .
X, =Y ¢V
j=1

and R
Xo— X, LV, t=1,....n,
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or

E(X,— X))V, =0, t=1,...,n. (102)

Since V; = X;+Y; for all t and X;, Y; are uncorrelated, we can see that EX,V, = EX,X; =
Rx (s —t), and equations (102) can be written in the form

n

Rx(s—t)=Y ¢Ry(j—1)=0,t=1,...,n. (103)

=1

The variable )?8 is the best linear filtration of the signal X, at time s from the mixture
Vi,..., V.
The filtration error is

5 = E‘Xs - XSP = HXS - X8”2 = HXSHZ - HX5H2

= RX(O) — E|Z Cj‘/j|2 = Rx(O) — ZZCjCkRv(j — k’)

=1 k=1

The system of equations (103) can be written in the obvious matrix form. For the
regularity of the matrix of elements Ry (j —t),j,t = 1,...,n, see Theorem 53.

12.2 Filtration in an infinite stationary sequence

Consider a signal {X;, t € Z}, a noise {Y;, t € Z} and the mixture {V;, t € Z}, where
Vi =X, +Y, for any t € Z. Our aim is to find the best linear filtration of X, from the
sequence of observations {V;, t € Z}.

Theorem 56. Let {X;, t € Z} and {Y;, t € Z} be centered stationary sequences, mutu-
ally uncorrelated, with spectral densities fx a fy, respectively, that are continuous and
IxN) + fy(A) >0 for all X € [—7,w]. Let {V,, t € Z} be a random sequence such that
Vi=X,+Y, forallt € Z. Then the best linear filtration of X from {V,, t € Z} is

%, = / N D(N)dZy (M),

—T

where Fe)
d(N\) =22 Ne[-m, 7, 104
=20 =X (10)
fv = fx + fv is the spectral density of {Vi, t € Z} and Zy = {Zx, X € [—m, 7|} is the
orthogonal increment process from the spectral decomposition of the sequence {V;, t € Z}.
The filtration error is

N O I
= | et A= | o
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Function ® is called spectral characteristic of filtration.

Remark 18. Notice that if ®(X) = 32 aze*, where S°2° __|a| < oo, then X, =
D e o0 @ Vs

Proof. The sequences {X;, t € Z} and {Y;, t € Z} are centered, stationary and mutually
uncorrelated with spectral densities. It follows that the sequence {V;, t € Z} is centered
and stationary with the autocovariance function Ry = Rx + Ry. Then the spectral
density of {V}, t € Z} exists and is equal to fy = fx + fv.

The best linear filtration of X from {V;, ¢t € Z} is the projection of X, onto the
Hilbert space H = H{V,, t € Z}, i.e., we are interested in X, = Py (Xs).

Let ® be the function defined in (104). First, we will show that

X, = / e D(N)dZy (N) € H.
According to Theorem 30 it suffices to show that ® € Ly(Fy ), where Fy is the spectral

distribution function of the sequence {V;, t € Z}. According to the assumption, fy a fy
are continuous functions and fi takes in [—m, 7| positive values, only. Thus,

/_w DN |2dFy (\) = /_W ;ﬁ&; Ffr(N)dx = /W IXVE o
and X, € H.

- fV(/\)
Further, )?S will be the projection of X onto H if (XS—)?S) 1L H, ie., if (XS—)?S) 1V
for all t € Z. For any t € Z we have

E (XS . )?) V, = EX.V,—EX.V,

= EX,(X;+Y,) —E < / e O(N)dZy () /

™ ™

—T —T

A Zy () >

- EX.X,— / PO\ e A, (M)

—T

= Rx(s—1t)— / ' ePETID(N) fir (N)dA

—Tr
s

= Rx(s—t)— / e £ (N)dA

—T

= Rx(s—t> —Rx(S—t) =0.

We have proved that )?3 is the best linear filtration.
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Let us determine the filtration error:

0 = |IX? = IXL)? = Rx(0) — E[X,?
_ / P\ — E‘/ % dZV(A)‘

_ / fxir- [ Ce[Far ()

_ /:fxu)dA—/i\"]’Zj—m?fv(A)dA

"IN s
o fx(A) + fY(A)OlA - /W D(A) fy (A)dA

]

Example 46. Let the signal {X;, t € Z} and the noise {Y;, t € Z} be mutually inde-
pendent sequences such that

Xe=Xe 1 +W,, tel,

where |p| < 1, # 0 and {W,, t € Z} is a white noise with zero mean and variance o3,
and {Y;, t € Z} is another white noise sequence with zero mean and variance o3.. We
observe V, = X, + Y, t € Z.
Obviously, {X:, t € Z} and {Y;, t € Z} are centered stationary sequences with the
spectral densities
o3 1 0%

fx(A) = o L= pe P2 ) =5 A€ [, 7]

that satisfy conditions of Theorem 56.

The sequence {V}, t € Z} has the spectral density fiy = fx + fy and it can be shown
that 2| g2
o° |1 —0e™
AN)=—""—""—"+—

frd) 27 |1 — pe~ir |2’
where 02 = %0}2/, 0 is the root of the equation 6% — cf + 1 = 0, the absolute value of
which is less than one and has the same sign as the coefficient ¢, and

_Uw+‘7y(1+§0)

A€ [—m, 7], (105)

poy
(See Préaskova, 2016, Problem 8.1 for some hlnts.) Then
fx(A) UW ke ,—ikA
B(\) = Sl S S ‘ ghei )
( ) fV(A) 0.2 |1 Pe z)\|2 Z
2 o
_ow 1 k| —ikA
o212 k:_ooe c
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for all A € [—m,7].
The best linear filtration of X, from {V,, t € Z} is

= 0‘24/ 1 > k|
o S0V, (106)

o2 1 — 62

k=—00

The filtration error is

52 =E|X, — X,|* = ' (N fy (\)dA

2 2w 2 2
_ Oy 0w 1 _ OyOiy 1
2w 02 J_. |1 — Qe o2 1-62

Remark 19. It follows from (105) that fy has the same form as the spectral density
of an ARMA(1, 1) sequence. The mixture of the AR(1) sequence {X;, t € Z} and the
white noise {V;, t € Z} has the same covariance structure as the stationary sequence
{Z;, t € Z} that is modeled to be

Zy— 9l =U — 00U, t € Z,

where ¢ # 0, |p] < 1, |#] < 1 and {U;, t € Z} is a white noise with the variance

0% = %0y.. Parameter 6 can be determined as given above.

Remark 20. Function ® is the transfer function of the linear filter {Zi;’ 1_192 ol ke 7).

13 Partial autocorrelation function

Definition 41. Let {X;, t € Z} be a real-valued centered stationary sequence. The
partial autocorrelation function of {X;, t € Z} is defined to be

corr(X1, Xp1) = \/‘%)(gf—i/’%, k=1,
a(k) = - -
CorT (Xl—Xl,XkJrl—XkJrl) , k> 1,

where X, is the linear projection of X onto Hilbert space HY = H{X,,...,X;} and
Xpy1 is the linear projection of X, onto HY.

From the properties of the projection mapping it follows that}? 1= Xo+- -+ 1 Xg
where constants ¢y, . . ., ¢ are determined by conditions E(X; —X3)X; =0, j =2,... k.
The same holds for Xj,1. We can see that «(k) represents the correlation coefficient of

103



residuals X; — X 1 and Xgyq — X k11 of the best linear approximation of the variables X,
and X, by random variables Xo, ..., X.

The stationarity of the sequence {X;,t € Z} implies that for h € N, corr(X; —
Xl,Xk+1 — Xk+1) = corr(X), — Xh,Xk+h — Xk+h) where Xh,Xk+h are linear projec-
tions of random variables X}, X, onto the Hilbert space H{Xp11,..., Xpir—1}. There-
fore, a(k) is also the correlation coefficient of X and X, after the linear dependence
Xnity ooy Xpak—1 was eliminated.

Example 47. Consider the causal AR(1) process
Xt = (10th1 + }/;fa

where |p| < 1 and Y; ~ WN(0, 02).
According to the definition, a(1) = corr(X;, Xs) = rx(1) = ¢. For k > 1,

E(X1 — X1)(Xes1 — Xio1)

alk) = .
VEGG = X2 E(Xpi1 — X )?

Due to the causality, )~(k+1 = PH§<X1€+1) = X and Xpiq — )~(k+1 = Y L HY
Further, it follows from causality that Yy L X, thus E(X; — )NQ)(XkH — )N(kH) =
E(X1 — X1)Yy41 = 0, from which we conclude that a(k) =0 for k£ > 1.

Remark 21. In the same manner, for a causal AR(p) sequence we could prove that the
partial autocorrelation a(k) = 0 for k£ > p.

Example 48. Consider the MA(1) process
Xi =Y, +0Y;,

where [b] < 1 and Y; ~ WN(0,0?). We know that in this case Rx(0) = (1 + b*)o?
Rx(1) = bo* = Rx(—1) and Rx (k) = 0 for |k| > 1.

We compute the partial autocorrelations. B B

First, a(1) = rx(1) = 1+b2 Further, a(2) = corr(X; — X1, X5 — X3). To determine
X1, notice that Xy = Py Xy = X and <X1 - 5(1> 1 X,. Thus E(X; — ¢X2)Xs = 0,

and ¢ = g;gég = 1+b2 We have X1 = X,

ie., )?1 = X3. We have

C((Q) = Corr (X1 — L)(2,)(3 — L)(2) .

il +b2 X5. Quite analogously we get )?3 = H%

1402 1+ 0?
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Obviously,

b b 2b
E(Xl 1+ b2X2> <X3 1+ bQXZ) = Rx(2) = Tt
o2b?
BT
similarly,
b 2 b? 2b
E(Xi ——=Xy) = S — =
( R ERE 2> Bx(0)+ (1 +b2)2RX(O) 14 b2

and combining these results we conclude that

62
) [ —
@)=y
Generally, it can be shown that
(=0)*(1 - %)
alk) == e o k2L

(1) +

TPy

Y R0

Definition 42 (An alternative definition of the partial correlation function). Let {X;, t €
Z} be a centered stationary sequence, let Py (Xk+1) be the best linear prediction of X4
on the basis of X1, ..., X;. If HF = H{X\,..., X}}, and Pyp(Xyi1) = o1 Xpo+- o X,
then the partial autocorrelation function at lag k is defined to be a(k) = ¢.

Theorem 57. Let {X;, t € Z} be a real-valued sequence with the autocovariance function
R, such that R(0) > 0,R(t) — 0, as t — oo. Then the both definitions of the partial

autocorrelation function are equivalent and it holds

a(l) = r(1),
1 r(1) r(k—2) r(1)
r(1) 1 r(k—3) r(2)
olk) = r(k — 11) r(k — 2) r(:l) r(k:)
r(1) r(k—1
r(1) 1 r(k—2

r(k — 1) r(k — 2)

where r is the autocorrelation function of the sequence { Xy, t € Z}.
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PTOOf. Denote Hk H{Xh . 7Xk}7 Hg; = H{X27 ce 7Xk}7 )?k+1 = PH{“(XIC+1)J )?1 =
P (X1), X1 = Pryp (Xjer1).

Since X1 = X, + (X, — X3), where X; € HE, X, — X, 1L H%, and Xy € H,
EXir (X1 — X;) =0. (108)
Consider

)?k+1 =1 Xk + -+ opXi.

Then R ~ ~
Xir1 = [01 X+ -+ o1 Xo + @uXa | + [0r(X1 — X1)],

and the random variables in the brackets are mutually orthogonal. Then [(pk(X 1— X 1)}

can be considered to be the projection of Xk+1 onto the Hilbert space H= H{X, —Xl} C
HE. Tt is also the projection of X}, onto the space H and

E(Xk_H — gOk(Xl - )’Zl)) (X1 - )’Zl) =0
= EXjp (Xl - )?1) - SOkE(X1 - )?1)2-
From here and from (108) we get

EXip (X0 = X1)  E(Xep — Xepn) (X1 = X))
O = =~ = =~ . (109)
E(X; — Xi) E(X: — X))

Since E(X; —)?1)2 = E(X)11 —)?Hl)Q, which holds from the fact that for a stationary
sequence, var (Xo, ..., Xi) = var (X, ..., X2), we get from (109) that

or = corr(X; — )/(\'1,Xk+1 — )?kﬂ) = a(k).

Now we will verify (107). We know that )?kﬂ =01 X+ o Xp 1+ + X, € HY,
Xir1 — Xkﬂ 1 H and therefore

E(Xpi1 — (01 Xp + -+ @ X1)) Xp1; =0, j=1,2,...,Fk,

which is a system of equations

R(1) = 1 R(0) =+ —ppR(k—1) = 0
R(2) —piR(1) — - —ppR(k—2) = 0
R(k) —o1R(k —1) — - — o R(0) = 0



Dividing each equation by R(0), we get the system of equations

o1+ @ar()+ -+ ppr(k—1) = r(1)
orr(1) + o2+ +@r(k—2) = r(2)

prr(k —=1) +@or(k =2) +--- +op = 7(k),

or, in the matrix form,

1 r(l) ... r(k—1) 1 r(1)
r(1) 1 oo r(k—2) V2 r(2)
r(k—1) r(k—2) ... 1 Ok r(k)
The ratio of determinants (107) gives the solution for ¢y. O

Example 49. Consider again the causal AR(1) process
Xt = ngt—l + }/;fa

where |p| < 1 and Y; ~ WN(0, 0?). Let us compute the partial autocorrelation function
according to formula (107). We get

¥ 2 ¥
") 1 (pk—3 302
kel k2 k
alk) = LA A k_fp k>1, (110)
1 0 ...
© 1 S0k—2
ka 1 (pka 1

We can see that the last column of the determinant in the numerator of (110) is
obtained by multiplication of the first column, thus, this determinant equals zero.

14 Estimators of the mean and the autocorrelation
function

14.1 Estimation of the mean

Let {X;, t € Z} be a stationary sequence with expected value EX; = p and autocovari-
ance function R(s,t) = R(s —t).
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Figure 8: Autocorrelation (left) and partial autocorrelation function (right) of the AR(1) sequence
X =-08X;1+Y;
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Figure 9: Autocorrelation function (left) and partial autocorrelation function (right) of the MA(1)
sequence X; =Y; +0,8Y;_1
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A common estimator of the mean value is the sample mean defined by
— ] —
Xo=-> X.
n
t=1

We know that X, is an unbiased estimator of the expected value, since EX,, = p. We
also know that if the sequence {X;, t € Z} is mean square ergodic, then X,, — x in mean
square and also in probability. It guarantees the (weak) consistency of the estimator.
Recall that a sufficient condition for mean square ergodicity is R(t) — 0 as t — oo
(compare Theorems 39 and 40).

The variance of the sample mean of a stationary sequence is

varyn_% nz_l R(k)( —%>

k=—n+1

and if > |R(k)] < oo, then nvarX, — Y. R(k) = 2rf(0) where f()\) is the
spectral density of the sequence {X;, t € Z}, see Theorem 40. We have also proved
some central limit theorems for selected strictly stationary sequences, saying that X,, has
asymptotically distribution NV (u, %2), where A? is an asymptotic variance (see Theorems
47, 48 and 49).

However, the sample mean X, is not the best linear estimator of the expected value
of a stationary sequence { Xy, t € Z}. Such estimator can be constructed as follows.

Consider a linear model

X,=pu+X,, t=1,...,n, (111)

where X}, t=1,...,n, is a centered stationary sequence with the autocovariance func-
tion R, such that R(0) > 0, R(t) — 0 as t — oo. Then from the theory of general linear
model (e.g., Andél, 2002, Theorem 9.2) it holds that the best linear unbiased estimator

of the parameter p is statistic

fin = (1,0,'1,) 7', 'X,, (112)
where
RO) R R(n—1)
X - R('l) R(:O) . R(n‘— 2) |
Rin—1) Rn—2) ... R

is a regular matrix according to Theorem 53, 1, = (1,...,1) and X,, = (X1,..., X,)".
The variance of this estimator is

var i, = (1,1,'1,) " (113)
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14.2 Estimators of the autocovariance and the autocorrelation
function
The best linear estimator (112) assumes knowledge of the autocovariance function R.

Similarly, knowledge of the autocovariance function is assumed in prediction problems.
For estimators we usually work with the sample autocovariance function

n—=k
(X — X0) (X — X0) k=0,1,...,n—1 (114)

t=1

R(k) =

SRS

and R(k) = R(—k) pro k < 0. Let us remark that the sample autocovatriance function
is not an unbiased estimator of the autocovariance function, i.e., ER(k) # R(k).
The matrix

R(0) R(1) ... R(n—1)
P R(1) R(0) R(n —2)
R(n—1) R(n—2) ... R(0)
will be regular, if E(O) > 0. For given X1, ..., X, function
~ Ly X, — X)) (X — X
R(k) — n Zt:l ( t Tl)( t+k n)> ‘k’ <n, (115)

can be wieved to be the autocovariance function of an MA(n — 1) sequence and thus,
the regularity of matrix I',, follows from Theorem 53.

If we dispose only n observations X, ..., X, we can estimate R(k), k =0,...,n—1.
From the practical point of view, it is recommended to choose n > 50 and k£ < 7.

Further, let us consider the autocorrelation function r(k) Rik)

We define the sample autocorrelation function to be - ror
Rk) S (X —Xa) (X — Xo)
RO) S (- X))

if R(0) =130, (X, — X,) >0,

Asymptotic behaviour of the sample autocorrelations is described in the following
theorem.

(k) =

Y

Theorem 58. Let {X;, t € Z} be a random sequence

Xp—p= )Y iy,

j=—o0
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where Y, t € Z, are z'ndependent wdentically distributed random variables with zero mean
and finite positive variance o*, and let E|[Yy|* < oo and 77 _ || < oo.

Let r(k), k € Z, be the autocorrelatzon function of the sequence { Xy, t € Z} and 7(k)
be the sample autocorrelation at lag k, based on Xy,...,X,.

Then for each h =1,2,..., as n — oo, the random vector \/ﬁ(?(h) — r(h)) converges
in distribution to a random vector with normal distribution N, (0, W), where

v(h) = (F(1),...,7(h)), r(h) = (r(1),...,7r(h)),

and W is an h x h matriz elements of which are

o0

wy =Y _[r(k+i) +r(k—i) = 2r@)r(k)] [r(k+j) +r(k — j) — 2r()r(k)]  (116)
k=1
ij=1,... h
Proof. Brockwell and Davis (1991), Theorem 7.2.1. O

Remark 22. Formula (116) is called the Bartlett formula. From the assertion of the
theorem we especially get for any ¢

V(@) — (i) = N(0,w;), n— oo,

i.e., for large n,

i) ~ N (r(i), “’—) .

n

Example 50. Consider the AR(1) sequence
Xi=pXe1 + Y4, t € Z,

where |p| < 1 and Y;,t € Z are i.i.d. with zero mean, finite non-zero variance o2 and
with finite moments E|Y;|*. Then r(k) = ©*l, thus r(1) = ¢ and according to Theorem
58,

Vi (F(1) — ¢)) = N(0,w11), n — oo,

where
wip =Y [r(k+ 1) +r(k—1) = 2r(r(k)]” =) _(pF" = ")
k=1 k=1
2Z¢2(k 1) _ 902'
k=1

If we denote 7(1) := @, we can write
V(@ —¢) = NO0,1-¢?), n— oo
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or
Jn——%_ 2, N(0,1), n— .
1 —¢?
From here it follows that $ — ¢ (see, e.g. Brockwell and Davis, 1991, Chap. 6) and
also R
V2P PN(0,1), n— .
7

The asymptotic 95% confidence interval for ¢ is
R 1—-32 1_ 02
(@—1,96\/ 2 5+ 1,964/ “0).
n n

Example 51. Let us suppose that the sequence {X;, t € Z} is a strict white noise.
Then 7(0) = 1 and r(t) = 0 for ¢ # 0. The elements of W are

oo

Wi = ZT(/{? —i) =1,
k=1

Wi :Zr(/{:—i)r(k—j) =0, i # j,

k=1

i.e., W = I is the identity matrix. It means that for large n, the vector r(h) =
(?(1), o ,?(h))/ has approximately normal distribution N (0, %I) For large n, there-
fore the random variables 7(1),...,7(h) are approximately independent and identically
distributed with zero mean and variance % In the plot of sample autocorrelations (k)

for k =1,..., approximately 95% of them should be in the interval (—1, 96%17 1, 96\/%7).

The sample partial autocorrelation function is defined to be a(k) = @, where Py
can be obtained e.g. from (107), where we insert the sample autocorrelation coefficients.
The determinant in the denominator of (107) will be non-zero if = 37" | (X, — X,)? > 0.

Example 52. In Figure 12 the plot of the Wolf index of the annual number of the
Sunspots (1700-1987)3 is displayed. In Figures 13 and 14 we can see the sample auto-
covariance function and the sample partial autocorrelation function, respectively. The
data was identified (after centering) with the autoregressive AR(9) process a(B)X; = Y;
where
a(z) =1 —1.182z + 0.42482* + 0.16192° — 0.16872"
+ 0.11562° — 0.026892° — 0.0057692"
+0.022512% — 0.20622”

Y; ~ WN(0, 0?%),0? = 219.58.

3Source: WDC-SILSO, Royal Observatory of Belgium, Brussels
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Figure 10: Trajectory of a strict white noise process
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Figure 11: Sample autocorrelation function of a strict white noise
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Figure 12: Number of Sunspots, the Wolf index
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Figure 13: Wolf index, estimated autocorrelation function
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Wolf numbers, sample PACF
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Figure 14: Wolf index, estimated partial autocorrelation function

15 Estimation of parameters in ARMA models

15.1 Estimation in AR sequences

Let us consider a real-valued stationary causal AR(p) sequence of known order p,

Xt = @1Xt_1 —|— ... + (prt—p + }/;j, t & Z, (117)
where {Y;, t € Z} denotes a white noise process WN(0, 0?), and ¢, ..., ¢,, 0% are un-
knowns parameters to be estimated on the basis of X;,..., X,,.

Moment methods

The method utilizes Yule - Walker equations for the autocovariance function Rx := R
of the sequence {X;, t € Z} in the form

R(0) = @R(1)+ -+ p,R(p) + 07, (118)
R(k) = @piR(k—1)+---+ p,R(k —p), k> 1. (119)

The system of equations for £ = 1,...,p can be written in the matrix form
Lo =1, (120)

where
Y1 R(0) ... R(p—-1) R(1)
p=1 |, I'= : - 5 , Y= 5
©p R(p—1) ... R(0) R(p)



If we replace the values of R(k) in I' and - by their sample counterparts

ko

R = 130 (X~ X,) (Xin ~ X,

t=1

we get the matrix T and the vector 5. If we plug these estimators into equation (120),
we obtain moment estimators of ¢, ..., ¢, by solving

9/5 = (@b s 7{5;0)/ = I‘_l:?v (121)

provided T exists. From subsection 14.2 we know that a sufficient condition for T' to
be regular is

~ ] — —

RO)==Y" (X, -X.) >0

n
t=1

The moment estimate of 02 is obtained from (118) as
7> = R(0) = $iR(1) — - — §,R(p) = R(0) — §'7. (122)
Remark 23. The moment estimators based on Yule-Walker equations are sometimes
called Yule - Walker estimators.

Example 53. Consider an AR(1) sequence in the form X; = ¢ X; | + Y}, t € Z, where
lo| < 1 and Y; is from WN(0, ¢%). Moment estimators of parameters ¢ and o2 are
RO e 5 73 5 "
p=—=—==7(1), o°=R(0)—pR(1)=R(0)(1—p°).
70) (1-¢)
Moment estimator of the parameter ¢ is in this case the same as the sample autocorre-
lation coefficient 7(1) (compare with Example 50.)

Asymptotic properties of the moment estimators are described in the following the-
orem.

Theorem 59. Let {X;,t € Z} be an AR(p) sequence generated by X; = o1 X4—1 + -+ +
©pXi—p + Y, fort € Z, where {Y;, t € Z} is a sequence of i. i. d. random variables with
zero mean and finite non-zero variance 0. Suppose that all the roots of the characteristic

polynomial \? — o \P~1 — - .. — o, are inside the unit circle and let @ = (pr, ..., ) and
a2 be the moment estimators of @ = (¢1,...,pp) and o, repectively, computed from
Xy, X,

Then

V(@ — @) == N, (0,6°T7"), n— oo,
where T is the matriz with elements I';; = R(i—j),1 <4, <p, R is the autocovariance
function of {X;, t € Z}.
Further, it holds
02 2502, n— oo
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Proof. Brockwell and Davis (1991), Theorem 8.1.1. O

Least squares method

Consider again sequence (117) and suppose X1, ..., X,, to be known. The least square
estimators of parameters ¢y, ..., ¢, are obtained by minimizing the sum of squares
min Z (Xe =1 Xyg — - = Sopthp)2 .
Pl Pp t=pt1

The problem leads to the solution of the system of equations

n

Z <Xt_g01Xt_1_"'_gprt—p)Xt—j:Oa jzlv"'7p7

t=p+1

i.e., to the system

01 Z X2+t Z XXy = Z X X1,
t=p+1 t=p+1 t=p+1

¥1 Z Xt—lXt—p +--+ Pp Z th—p = Z XtXt—p~
t=p+1 t=p+1 t=p+1

If we write (117) in commonly used form
X=X 1+ Y,
where X, 1 = (X;_1,...,X;—p)’, then the solution is of the form
n -1,
P =(G1,- -, Pp) = (Z Xt—1X2_1> > XX (123)
t=p+1 t=p+1

The least squares estimator of o2 is

n

(124)

It can be shown that estimators @ and o2 have the same asymptotic properties as
the moment estimators. In particular, as n — oo

V(@ — o) =N, (0,0°T")
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and
5502,
where I' is the same matrix as in Theorem 59 (Brockwell and Davis, 1991, Chap. 8).

Maximum likelihood estimators

The maximum likelihood method assumes that the distribution of random variables
from which we are intended to construct estimators of parameters under consideration
is known.

Consider first a sequence {X;, t € Z}, that satisfies model X; = ¢ X; 1 +Y;, where Y;
are i.1.d. random variables with distribution N'(0, 0?). We assume causality, i.e., || < 1.
Let us have observations X7, ..., X,. From the causality and independence assumption
it follows that random variables X; and (Ys,...,Y,) are jointly independent with the
density

P ) = Filan) ol ) = o) (2m0?) "V epl o S
t=2

From the causality it also follows that random variable X has the distribution N(0, 72),
where 7% = 12
density of X1,..., X, is

flry, ... x,) = (2#02)771/2 V1—? exp{ ! 1+Z — Ty 2)} (125)

20 2

The likelihood function L(yp,0?) is of the same form as (125). Maximum likelihood
estimates are then ¢, 5?2, that maximize L(p,0?) on a given parametric space.

These are the unconditional maximum likelihood estimators and even in this simple
model the task to maximize the likelihood function leads to a non-linear optimization
problem.

More simple solution is provided by using the conditional maximum likelihood method.

We can easily realize that the conditional density of X, ..., X, given fixed X; = x
in our AR(1) model is

n

_ 2y —(n—1)/2 1 2
flxo, ... xy|z1) = (27?0 ) exp{—T‘Q;(ast—gpxt_l) } (126)

The conditional maximum likelihood estimators are obtained by maximizing function
(126) with respect to ¢ and o?.

Similarly, if we consider a general causal AR (p) sequence (117), where Y; arei.i. d. with
distribution A(0, 6?), we can prove that the conditional density of (X, 1, ..., X,)" given
Xi=x1,...,X, =1y is
f(@piay .oy mplTe, .y xp) = (2%02)7(%1’)/2 exp {—L Z (xp — go’a:t_l)Q} ,
202

t=p+1
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where ;1 = (24-1,...,21—p), and @ = (p1,...,¢,)".

By maximization of this function with respect to ¢1, .. ., ¢,, 0% we get the conditional
maximum likelihood estimators. It can be easily shown that under normality, these
estimators are numerically equivalent to the least squares estimators.

15.2 Estimation of parameters in MA and ARMA models

In the previous paragraph we have seen that in AR models, moment estimators, as well
as the least squares estimators and the conditional maximum likelihood estimators are
computationally very simple since we are dealing with linear regression functions. In MA
and generally in ARMA models the problem is more complicated since the estimation
equations are generally non-linear. We will mention only a few basic methods.

Moment method in MA(q)
Consider the MA(q) sequence defined by

X, =Y, 4+6Y, 4+ +0Yr, teZ

where {Y;, t € Z} is WN(0,0?). Suppose that 6y, ...,60,,0° are unknown real-valued

parameters to be estimated from Xi,...,X,,.
Recall that the autocovariance function of the MA(q) sequence under consideration
1s
2571 M g0, k| <
Rx(k) — g Z]:O J .7+|k|’ ‘ | — Q7 (127)
0 elsewhere

(we put 6y = 1.)
Moment estimators of 01, . .., 6,, 0% can be obtained by solving the system of equations

(127) for k= 0,1,...,q, where we replace Rx (k) by the sample autocovariances R(k) =
%Z?:_f (Xt — Xn) (Xt+k — Xn) . We get the system of ¢ + 1 equations for 0y, ...,0,, o?

RO0) = o> (1+603+- +67), (128)
R(1) = 0®(0y 4010, + -+ 0,10,)

R(q) = o%,
This system however need not have the unique solution.

Example 54. Consider MA(1) model X; = Y;+6Y,_;, where Y; is WN(0, 02) and 6 # 0.
Obviously, Rx(0) = o*(1 + 6?) a Rx(1) = 020, thus

Rx(1) 0

"= R0 T it
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It can be shown that in this case, |r(1)| < 3 for all real values of 6. Consequently, solving
the last equation with respect to 6, we get either the twofold root 6 = 5 L

W or two
real-valued roots

1+ +/1—4r2(1)

2r(1)
The root with the positive sign is in absolute value larger than 1, while those with the
negative sign is in absolute value less than 1, which corresponds to the invertible process.

The moment estimators of # a ¢ now can be obtained from equations (128) that can
be rewritten into the form

012 =

R(0) = o*(1+6%),

N 0
"= e

For 6 we have two solutions

1+ /1—472(1)

0,4 = — ,
12 27(1)

that take real values if [F(1)] < 3.
Provided that the process is invertible and [7(1)| < 1, the moment estimators are

5 _ L=V

27 (1) ’

, _ R

1+ 62
If [7(1)| = 4, we take
7o L (1)

2r(1)  [P)I’
1~

o’ = ZR(0).

5 = R(0)

For [F(1)| > 3 the real-valued solution of (128) does not exist. In such a case we use
the same estimates as given for |7(1)| = 3.

Similarly we can proceed to obtain moment estimators in ARMA models.
For a causal and invertible ARMA (p, ¢) process

Xi=o1Xpa+ 4+ epXe p + Y+ 00V 0+ -+ 0,
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where Y, ~ WN(0,0?%), ¢1,...,¢p,01,...,04,0? are unknown parameters and X1, ..., X,
are given observations, we can proceed as follows:

First we use an analogy of the Yule-Walker equations for the autocovariances Rx (k),
k=q+1,...,q+ p. We get equations

Rx(k) = p1Rx(k—1)+ -+ w,Rx(k —p)

for unknown parameters ¢1,...,¢,. If we replace the theoretical values Ry by their

estimates fiX(kJ) = % ?:_lk (Xt — Yn) (Xt+k — Yn) , we obtain estimates of parameters

(,/51, Ce 7(,01).
Further, we put Z; = X; — 1 X4—1 — -+ — ¢, X, and want to estimate 6¢,,...6, and
o? in the MA(q) model
Zy =Y+ 91}/;571 + o+ equtfq-

Compute the autocovariance function of the sequence {Z;, t € Z}. Since
p
Zy = Z BiXi—j,
=0

where 3y = 1,8; = —p;,7 = 1,...,p, we have

Ry(k) =3 BiBiRx(k+j—1), ke

j=0 1=0

Estimates of 4, ...,6, a 0 are obtained from (128) replacing R(k) by estimates

Rz(k) =Y "BiBiRx(k+j—1).

=0 1=0

where BJ = —p; and ﬁx(k) are sample autocovariances computed from Xy, ..., X,,.

The moment estimators are under some assumptions consistent and asymptotically
normal, but they are not too stable and must be handled carefully. Nevertheless, they
can serve as preliminary estimates in more advanced estimation procedures.

Two-step least squares estimators in MA and ARMA models
Consider a causal and invertible ARMA(p, q) process

Xi=p1Xea+ o Xe p + Y +00Y 0+ +0,Y,,

where Y; ~ WN(0,0?%), ¢1,...,¢p,01,...,0,0° are unknown parameters and X1, ..., X,
are given observations.
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Under the invertibility assumptions, the process has an AR(co) representation
Vi=> diX, ;=X + > diX,
j=0 J=1

(see Theorem 37.) This can be used to obtain parameters o1, ..., ¢, 01,...,0,, 0% as
follows.

e Approximate X; by an autoregressive process of a sufficiently large order m, where
m > p, i.e., consider model

Xt:alXt_1+---+oszt_m+f/t, t=m+1,....n

and using X1, ..., X, estimate o, ..., a,, by the least squares method. Obtained
estimates are aq, ..., Q.
e Estimate residuals Y, t = m + 1,...,n and use them as known regressors in the

regression model

Xt - SolXt—l—’—' : '+SOpXt—p+01{/t—l+' : '_’_eq?t—q—}_ytv = ma’X(p)Q7m)+]—7 s, n

and estimate ¢1,...,¢p,01,...,0,,0° from this regression model with regressors

Xt—la s aXt—p7 Yt—1> Yt—q-

For other estimating methods see, e. g., Praskova, 2016.

16 Periodogram

Definition 43. Let Xi,..., X,, be observations of a random sequence {X;,t € Z}. The
periodogram of Xy, ..., X, is defined by

2, A € [—m, 7). (129)

- 2mn

1 |« .
I,(\) ‘ " Xpe it
t=1

To compute the values of the periodogram, it is more convenient to consider it in the

form
1

:47T

2 2
AN = \/;Z)Q cost, B(\) = \/;ZXt sin t\. (131)
t=1 t=1

I,(\) [A*(\) + B*(\)] (130)

where
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For a real-valued sequence, the periodogram can be also expressed by

i(t—s)\ _ —ik)\
27m Z Z X, X,e™ - 2— XSXMe
t=1 s=1 =—n+1 s=max(1,1—k)
Z e FACY, (132)
T
k=—n+1
where
1 —
Cp=— ;tht+k, k>0 (133)
=C_y, k < 0.

Distribution of values of the periodogram

Theorem 60. Let {X;,t € Z} be a centered weakly stationary real-valued sequence with
the autocovariance function R, such that Y - |R(k)| < co. Then

EITL(A) - f<)\)7 A€ [_ﬂ-?ﬂ-]a (134)
where f denotes the spectral density of the sequence { Xy, t € Z}.

Proof. From formula (132), using the stationarity and the centrality we get

n—1
1 .
El,(\) = — Rk (n — |k]).
N =5 § (k)(n — |K]

Under the assumptions of the theorem and according to Theorem 22, the spectral density
of the sequence {X;,t € Z} exists and is given by

Thus, using the same arguments as in Theorem 22, we have, as n — oo,

n—1
1 1
) - BLO < - S IRM 45— S [RGB -0, (135)
|k|>n k=—n+1
]
Usually, the periodogram is computed at points \; = %, A; € [—m,n| (Fourier

frequencies).
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Theorem 61. Let {X;,t € Z} be a Gaussian random sequence of i.i. d. random vari-
ables with zero mean and variance 0?, 0 < 0? < oo. Put n = 2m + 1 and consider

the periodogram I, computed from Xi,..., X, at frequencies \; = %,j =1,....,m.
Then random variables I,,( A1), ..., I,(Ay) are independent and identically distributed as

§X2(2), where x*(2) denotes the x* distribution with two degrees of freedom.

Proof. Consider random vector J = (A(\1),..., A(A\n), B(A1),...,B(A\y))’, where the
variables A()\;), B()\;) are defined in (131). This vector has jointly normal distribution
since it is a linear transformation of the random vector (Xi,...,X,)". Further we prove
that all the components of the vector J are mutually uncorrelated (and thus, indepen-
dent), and identically distributed with zero mean and variance 2. For this we use the
following identities for trigonometric functions

Zcosz(t)\r) = g, r=1,...,m,
t=1

ZsinQ(t/\r) = g, r=1,...,m,
=1

Z sin(tA,) cos(tAs) =0, r,s=1,...,m,

t=1

Zsin(tkr) sin(tAs) =0, r,s=1,...,m,r#s,

t=1

Zcos(t)\,,) cos(ths) =0, r,s=1,....mr#s

t=1
from that the result follows using simple computations. Particularly, we get for any
r=1,...,m that A(\,) ~ N(0,0?), B(\,) ~N(0,0?), thus

A2(\) + B2(\) A ) ~ 2(2).

g

]

Remark 24. From the assumption that {X;,¢ € Z} is a Gaussian random sequence of
i.i.d.random variables with zero mean and variance 02 we can easily conclude that the
spectral density of this sequence is

0_2

f\) = o A E [—m, 7]

since {X;,t € Z} is the white noise. From Theorem 61 and properties of the x? distri-
bution we have for r =1,...,m,



0_4

oz~ )

We can see that the variance of the periodogram in this case does not depend on n. More
generally, it can be proved that for any Gaussian stationary centered sequence with a
continuous spectral density f it holds that

lim var I,(\) = f2(\), A#0, A€ (—m,7)
n—oo
=2f*(\), A=0, A==x

(Andeél, 1976, p. 103, Theorem 10). We see that the variance of the periodogram does
not converge to zero with increasing n. It means that the periodogram is not consistent
estimator of the spectral density.

var I,(\,) =4

Periodogram was originally proposed to detect hidden periodic components in a time
series. To demonstrate it, let us consider a sequence {X;,t € Z} such that

X, = ™ 1Y, Y, ~ WN(0, 0?)

where « is a nonzero constant and \g € [—7, w]. Then

1 — . 1 & 4 1 &
- Xtefzt)\ = Y*tefzt)\ + efzt()\f)\o) (136)

and from here we can see that if A = )g, the nonrandom part of the periodogram
represented by the second sum on the right-hand side of (136) tends to co as n — oo
while for A # )\ is negligible. It means that if there is a single periodic component at
frequency Ay the periodogram takes in it the largest value. Since usually the frequency
Ao is unknown, it is reasonable to consider maximum of the values of the periodogram
at the Fourier frequencies.

Theorem 62. Let {X;,t € Z} be a Gaussian random sequence of i. i. d. random variables
with zero mean and variance 0. Let n = 2m+1 and I,,(\,) be the periodogram computed
from Xq,..., X, at the frequencies \, = %, r=1,...,m. Then the statistic

maxi<r<m In(>\r)

W= L)+ + L) (187)

has density

[1/a] B
g(x) =m(m —1) Z(—l)j_1 (T;_ 1) (1—jo)™ 2 O0<w<l

: 1
7j=1
and
[1/2] -
PW >z)=1- —1’““( )1—kwm_1, 0<z<l. 138
W= =1=3 (0 J 0=k (138)
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x 107 Sunspots: Periodogram
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Figure 15: Periodogram of the Sunspots, Wolf index. The maximum corresponds to the
cycle with period 11.0769 years

Proof. Andél (1976), pp. 79-82. ]

Fisher test of periodicity We want to test the null hypothesis of no periodic compo-
nent Hy : “X,..., X, arei.i.d. with distribution N'(0, %) “ against the alternative that
the null hypothesis is violated. The test statistic is based on Theorem 62 and reject the
null hypothesis at level o if W > ¢, where ¢, is a critical value that can be computed
from (138).

Estimators of spectral density

We have seen in Theorem 60 that the periodogram is the asymptotically unbiased
estimator of the spectral density, but it is not consistent since its variance does not
converge to zero neither is the simplest case of the Gaussian white noise. It can be
however shown that under some smoothing assumptions,

/ LYK\

where K is a kernel function with properties

K(\) >0, K(A) = K(-)\), /W K(\)d\ =1, /7r K*(\)d\ < oo,
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is an asymptotically unbiased and consistent estimator of

NN
Jm

Then a consistent estimator of f(Ag) is considered to be
FuXo) = / K (X = Xo)L,(\)dA.

If we expand function K into the Fourier series with the Fourier coefficients w; and
express the periodogram by using formulas (132) and (133), we get

Falro) = / Z e CLE (X — A\o)dA

k——n+1

=5 Z Ch / e FAK (A = No)dA

k*—n—i—l
-5 Z Ck/ ik Z (HO=0)
k=—n+1 j=—00

1 > g LA
=5 Z Cy Z e”’\owj/ eWIA=RA) I\
™ —T

k=—n+1 j=—00

n—1 n—1
= Z e~ Ry, = Cowg + 2 Z Crwy cos(kN). (139)
k=—n+1 k=1

One of the commonly used kernel function is so-called Parzen window, which is
usually presented by coefficients

k2 k| 3 M
1_6<M) _6<M>7 |]€’<7
3
wy, = 2(1-%), Mok <M
0, |k| > M

where M is a truncation point that depends on n (g < M < %). For more information

on the choice of K, respectively of wy, see, e.g., Andél, 1976, or Brockwell and Dayvis,
Chap. 10.
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Sunspots: Spectral Density Estimate, Parzen window
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Figure 16: Sunspots, Wolf index. Estimator of the spectral density, Parzen kernel
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List of symbols

set of natural numbers

set of nonnegative integers

set of integers

set of real numbers

set of complex numbers

column vector

matrix

identity matrix

norm in a Hilbert space

Borel o—algebra

(u,c?) normal distribution with parameters s, o
X ~ N(p,0%) random variable with distribution N (u, o%)
{X,, teT} stochastic process indexed by set T'
M{X;, t €T} linear span of {X;, t € T'}

H{X;, t € T} Hilbert space generated by the stochastic process {X;, t € T'}

ZmTNRR AFNZZ

AR(p) autoregressive sequence of order p

MA (g0 moving average sequence of order ¢

ARMA(p, q) mixed ARMA sequence of orders p and ¢
WN(0, 0%) white noise with zero mean and variance o
X1lY orthogonal (perpendicular) random variables
lim limes superior

SLEN convergence in probability

- convergence in distribution

l.i. m. convergence in mean square (limit in the mean)
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