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PouZita literatura:

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis.
Academic press.

Hardle, W. K., & Simar, L. (2014). Applied multivariate statistical analysis, 4th
edition. Springer Science & Business Media.

Andgl, J. (1985). Matematickd statistika. SNTL.

Z. Hlavka (KPMS) NMST539 3 /413

.
Mnohorozmérna analyza (NMST539)

Mnohorozmérna data.

Opakovani: linedrni algebra (matice).

Mnohorozmé&rné normalni rozdé&leni, Wishartovo a Hotellingovo
rozdéleni.

Metoda hlavnich komponent, faktorovd analyza.

@ Mnohorozmé&rné skalovani, shlukova a diskriminaéni analyza.
@ Kanonické korelace, korespondenéni analyza.
°

Dal3i metody (hloubka dat, SIR, projection pursuit).
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Tyden 1

/.

PY¥edpoklddané znalosti: zdkladni maticové operace (s¢itdn
apod.)

/
|

, nasobeni

Mnohorozmé&rnd data:

o grafické znazornéni,

@ matice dat a popisné statistiky.
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Comparison of Batches

Figure: An old Swiss 1000-franc bill.
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Example: Swiss bank data

The dataset consists of 200 measurements on Swiss bank notes. One half
of these bank notes are genuine, the other half are forged bank notes.

It is important to be able to decide whether a given banknote is genuine.

We want to derive a good rule that separates the genuine and forged
banknotes.

Which measurement is most informative? We have to visualize the
difference.
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Example

Example: The authorities have measured

X1 = length of the bill

X = height of the bill (left)

X3 = height of the bill (right)

X; = distance of the inner frame to the lower border

Xs = distance of the inner frame to the upper border

Xs = length of the diagonal of the central picture.
NMST539

Graphics

Computers allow easy construction of informative plots:

6/ 413

1D Boxplot, histogram, kernel density estimator (KDE), dotplot,

2D Histogram, KDE, scatterplot.
3D 3D scatterplot.
4+ Scatterplot matrix, parallel coordinates, Chernoff-Flury faces,

One typically needs static graphics (PDF) for reports and interactive

Andrew’s curves.

graphics for data exploration.
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Figure: Variables Xg (diagonal) of bank notes, the genuine at the left. —

Week 1 Graphics
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Boxplots

Median and mean bar indicate the central locations.
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The relative location of median (and mean) in the box is a measure of

skewness.

The length of box and whiskers is a measure of spread.

The length of whiskers indicate the tail length of the distribution.
Outlying points are marked as "+ or"e” outside the outside bars.
Boxplots do not indicate multi modality or clusters.

If we compare the relative size and location of the boxes we are
comparing distributions.
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Figure: Variables X; (length) of bank notes, the genuine at the left. —

MVAboxbank1
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Histograms
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The histogram counts relative frequencies of observations x; falling into

predefined bins:

Fu(x) = nth7? ZZ I{x; € Bj(xo, h)} 1{x € Bj(x0, h)}

jez i=1

@ the histogram is a simple estimator of a probability density,

@ his a smoothing parameter and controls the width of the histogram

bins.
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Swiss bank notes ‘Swiiss bank notes

Swissbark noies Swissbark roies

Swissbank notes Swissbark roes Swiss bank notes ‘Swiiss bank notes

Figure: Diagonal of forged bank notes. Histograms with xo = 137.8 and h = 0.1

(upper left), h = 0.2 (lower left), h = 0.3 (upper right), h = 0.4 (lower right). Figure: Diagonal of forged bank notes. Histogram with h = 0.4 and origins
xo = 137.65 (upper left), xo = 137.75 (lower left),xo = 137.85 (upper right),

xo = 137.95 (lower right).
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For x € B; (assuming that the density f(x) is ‘reasonable’), it is easy to
calculcate the bias Efy(x) — f(x) = f'(mj)(m; — x) and variance En Histograms
var fp(x) = L-f(x).

Modes of the density correspond to strong peaks in the histogram.
It follows that the Mean Squared Error is y P &P &

*

* Histograms with the same h need not be identical because they also
~ 1 h igi f th id.
MSE{7(x)} = — F(x) + {f’(mj)}2(mj B x)2 + o(h) + o(1/nh). depend on the origin xg of the grld.
mn The consequence of a too large h is a too flat, unstructured
histogram (large bias).

A too small binwidth h results in a wiggly histogram (large variance).

*

By integrating MSE and taking limits, we easily obtain

*

*

N 1 It is recommended to use averaged histograms (so-called kernel
AMISE{fs(x)} = — h *H 'I13 density estimators).

leading the asymptotically optimal bandwidth hg = {6/(n||f'[|3)}*/3.
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iz
Kernel density estimators (KDEs)

Kernel density estimator is a natural generalization of a histogram (by
shifting the "bin”, we obtain smooth estimator of the underlying
probability density).

Histogram (at the center of a bin) can be written as

Fa(x) = n 1 (20) 71> T I(1x — xi| < h)
i=1

Fax) =t Y K[
(ORIAEDY (%5
K is the so-called kernel.
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Swiss bank notes
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Figure: Densities of diagonals of genuine and forged bank notes. Automatic
density estimates. — MVAdenbank
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Common kernel functions

- \/% exp(—“;) = p(u) Gaussian

K(u)=31(Jul <1) Uniform
K(u)=(1—|u])I(Ju] £1) Triangle

K(u) = %(1 —u?)I(Jul <1) Epanechnikov
K(u) =21 —-v?)?I(Jul 1) Quartic (Biweight)
K(u)
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The bias of KDE

~ h?
Biasfy(x) = ?f”(x)uz(K) + o(h?)
is of a smaller order than the bias of histogram.

Proceeding similarly, it is straghtforward that the Asymptotic Mean
Integrated Squred Error is

~ 1 h*
AMISE(fy) = — | K13 + - {na(K)}2 1”3
leading the asymptotically optimal bandwidth

1/5
- ( IK13 )ﬂ
[ Bua(K)Y
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Graphics Graphics
Choice of the bandwidth KDEs in R

Assuming normality and using Gaussian kernel K(u) = \/%Texp(—“;), the

unknown constants can be calculated and we obtain the so-called Libraries: KernSmooth, ks, sm.
Silverman’s rule of thumb:

h 1.065 1 See R task-views on CRAN:
G = L.Uoon 5,

o n _ 1D density()
2 _ 1 AV Y\ )
where 5% =5 3 (xi = %) bkde(KernSmooth),
locpoly(KernSmooth),
Using Quartic kernel, the constants are somewhat different: hg = 2.62h¢. 3D sm.density (sm)
6D kde(ks)

In practice, one must be very careful because statistical software may
assume another standardization of the kernel function (i.e., the bandwidth

o0 Unfortunately, multivariate KDEs have slow rates of convergence
parameter may be multiplied by some constant).

(so-called curse of dimensionality) — see Modern Statistical Methods

(NMST434) for more details.
Cross-validation is a popular bandwidth selection method (producing

somewhat unstable results).
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; E Kernel densities

x Kernel densities estimate distribution densities by the kernel method.
« The bandwidth h determines the degree of smoothness of the
estimate f.

« A simple (but not necessarily correct) way to find a good bandwidth
is to compute the rule of thumb bandwidth he = 1.065n~1/>. This
bandwidth is to be used only in combination with a Gaussian kernel ¢.

« Kernel density estimates are a good descriptive tool for seeing modes,
location, skewness, tails, asymmetry etc.

Figure: Contours of the density of Xy, X5, X5 of genuine and forged bank notes.
— MVAcontbank3
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Graphics Graphics
Scatterplots

Swiss bank notes
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@ Draftman plot % " x *?;ﬁ’“
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@ Brushing 2 ¥
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o Parallel coordinate plots : : : xx X
8 9 10 1 12
upper inner frame (X5)
Figure: 2D scatterplot for X5 vs. Xg of the bank notes. Genuine notes are circles,
forged are stars. — MVAscabank56
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Swiss bank notes

14240

14148

14056

Figure: Draftman plot of the bank notes. The pictures in the left column show
(X3, Xa), (X3, X5) and (X3, Xg), in the middle we have (X4, X5) and (X4, Xs), and
in the lower right is (Xs, X5). — MVAdrafbank1

Figure: 3D Scatterplot for (X4, X5, Xg) of the bank notes. Genuine notes are
circles, forged are stars. — MVAscabank456
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Dg— L

Figure: Stereo plot of the bank notes — (Xu, X5, X5).
Figure: Stereo plot of the bank notes — all variables.
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Parallel coordinate plots

H Scatterplots

* Scatterplots in two and three dimensions help us in seeing separated

points or clouds @ based on a orthogonal coordinate system

D -, . @ allows to see more than four dimensions
* They help us in judging positive or negative dependence.

« Draftman scatterplot matrices are useful for detecting structures

.. . ; Idea:
conditioned on values of certain variables.

Instead of plotting observations in an orthogonal coordinate system one
draws their coordinates in a system of parallel axes. This way of
representation is however sensitive to the order of the variables.

« As the brush of a scatterplot matrix is moving in the point cloud we
can study conditional dependence (e.g., in Ggobi).
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Week 1 Graphics

96 - 105

Parallel coordinate plot (Bank data)

Figure: Parallel coordinate plot of observations 96-105 — MVAparcool
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Parallel coordinate plots

Parallel coordinate plots overcome the visulisation problem of the
Cartesian coordinate system for dimensions greater than 4.

Outliers are seen as outlying polygon curves.

33 /413

The order of variables is still important for detection of subgroups for

example.

Subgroups may be screened by selective coloring in an interactive

manner.
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96 - 105

Parallel coordinate plot (Bank data)

Figure: The full bank Data set. Genuine banknotes displayed as solid lines. The

forged bank notes are shown as dashed lines. — MVAparcoo?2
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Faces

Figure: Flury faces for observations 91 to 110 of the bank notes. —

MVAfacebank
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Six variables to the following face elements

X1 = 1, 19 (eye sizes)
Xo = 2,20 (pupil sizes)
X3 = 4, 22 (eye slants)

X4 = 11, 29 (upper hair lines)

X5 = 12, 29 (lower hair lines)

Xe = 13, 14, 31, 32 (face lines and darkness of hair)
library(aplpack)
faces(bank2)

faces(bank2[91:110])
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Summary Statistics

X(n x p) data matrix

X11 oo le
X =
Xn1 Xnp
mean
X1
x=|  |=ntxT1,
Xp
Z. Hlavka (KPMS) NMST539
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H Faces

« faces can be used to detect subgroups in multivariate data
* subgroups are characterized by similar looking faces
* outliers are identified by extreme faces (e.g. dark hair)

x if one element of X is unusual the corresponding face element
changes a lot in shape
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Covariance matrix
S=nlxTx-xx'

=ntxTx—ntxT1,1) 0) =t THY

Centering matrix
H=7T,—n 1,1}

centered data: S =n"1XTX
D = diag(sx;x;), where Xj,j =1,..., p are the columns of X

Correlation matrix R = D~1/28D~1/2
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Linear transformations Mahalanobis Transformation

A (g x p) matrix

y:X‘AT:(yl"”’y")T Z,':S_l/z(x,'—Y)7 i=1,...,n,
y=Ax Sz=n12"HZ =1,
Sy = ASy AT Z=0.

L= T
Example: X = (1,2) where H is the centering matrix.

_ 2
y=4x,xeR Mahalanobis transformation leads to standardized uncorrelated zero mean

y=4x = (4,8)" data matrix Z.
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Tyden 2
m Summary Statistics
« The center of gravity of a data matrix is given by its mean vector Opakovani zkladni maticové algebry:
v olyT
x=n-"X"1,.
« The dispersion of the observations in a data matrix is given by the @ spektrdlni rozklad matice a kvadratické formy.

empirical covariance matrix S = "1 X THX.

The empirical correlation matrix is given by R = D-128p-1/2, Nahodné vektory:

*

« A linear transformation )V = X AT of a data matrix X has mean AX

o ) T @ mnohorozmérnd distribu¢ni funkce a hustota,
and empirical covariance ASyA". L L, o,
i o ) ] @ podminénd a margindlni rozdéleni,
* The Mahalanobis transformation is a linear transformation .
_ _ . . . @ momenty,
z; = 871/?(x; — X) which gives a standardized, uncorrelated data Y
matrix Z. @ mnohorozmérné normalni rozdéleni.
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A short Excursion into Matrix Algebra

an aip
A(n><p) = : :

dnl dnp
Definition Notation
Transpose AT
Sum A+ B
Difference A—-B
Scalar product c-A
Product A-B
Rank rank(A)
Trace tr(A)
Determinant detg.A) = |A]
Inverse A~
Generalised Inverse A~ : AA" A=A

NMST539 45/ 413
Name Definition Notation  Example
. . ., . 1
diagonal matrix  a; =0, i #j, n=p diag(aii) ( 0 g )
identity matrix diag(1 1) 7 10
y g yc P 0 1
P
. . 1 1
unit matrix aj=1l,n=p 1,,1;,r < 11 )
. . 1 2
symmetric matrix ajj = aji 5 3
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Name Definition ~ Notation Example
scalar p=n=1 a 3
1
column vector p=1 3
row vector n=1 al ( 1 3 )

vector of ones

vector of zeros

square matrix

NMSTS539 46/ 413
Name Definition Example
. 00
null matrix a;j=0
1 2 4
upper triangular matrix a;=0,i<y 01 3
0 01
11
idempotent matrix A2 =A < 7 1 )
2 2
1 1
orthogonal matrix ATA=1=AAT f f )
V2 V2
NMSTS539 48/ 413



Eigenvalues and Eigenvectors

Properties of a Square Matrix Square matrix A(n x n)

For any A(n x n) and B(n x n) and any scalar ¢ eigenvalue \ = Eval(A)

tr(A+B) = tr(A)+ tr(B)
tr(cA) = c tr(A)

eigenvector v = Evec(A)

cAl = c"A| Av = Xy
tr(AB) = tr(BA)
AB| = |BA| Eigenvalues describe the ‘size’ of the matrix A:
|AB| = |A||B| n
A = A A= 1T
j=1

n
tr(.A) = E /\_,'
Jj=1
wsTS30 e wwsTS30 0 /413

Spectral Decomposition

H Matrix Algebra Every real symmetric matrix A(p x p) can be written as:
« The determinant |.A] is a product of the eigenvalues of A. A = AT
« The inverse of a matrix A exists if | A] # 0. P -
« The trace tr(A) is the sum of the eigenvalues of A. - Zl A
x The sum of the traces of two matrices equals the trace of the sum of "

N = diag(A, -+, Ap)
I = (717"'7’7p)7

the two matrices.
The trace tr(AB) equals tr(BA).

*

where the matrix I is orthogonal (i.e. I''T = Z7,).

Spectral decomposition allows easier calculation of powers of the matrix A
(very useful is the inverse A~ and ‘inverse square root’ A~1/2).
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Matrix algebra Matrix algebra
Quadratic forms

Example:
Q) = xTAx =2 +x2, A= (3?)
eigenvalues: A\; = Ay = 1 positive definite

Q) =xTAx =33 ayxx Q) = (=) A= (1~

1
i=1j=1 eigenvalues \; = 2, /\2 0 po S|t|ve semidefinite

A(p x p) symmetric matrix

Definiteness Qx) = x¢ — 3
i | =1 = —1 indefinite.
Q(x) >0 forall x#0 positive definite (pd) , eigenvalues Ay =1, A2 indefinite
Q(x)>0forall x#0 positive semidefinite (psd) .

A>0ifandonlyifall \; >0,i=1,...,p
A is pd (psd) iff Q(x) = xT Ax is pd (psd).
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Maximization of quadratic forms

H Quadratic forms

*

Theorem: A, B symmetric, B> 0. The maximum of x" Ax under the A quadratic form can be described by a symmetric quadratic matrix
constraint x T Bx = 1 is given by: A.

*

- Quadratic forms can always be diagonalized.
MaX(,,Tpx=1} X Ax=2MX\

x Positive definiteness of a quadratic form is equivalent to positiveness
M = 1.Eval{B~1A} . quac d P
T 1 of the eigenvalues of the matrix A.
argmax . Tpx=1}y X Ax = l.Evec{B A} _ o _ _
*x Maximum and minimum of a quadratic form under constraints can be
Proof: the proof will be given during derivation of principal components. expressed in terms of eigenvalues.
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Geometrical aspects

Distance function d : R?P — Ry d?(x,y) = (x —y)TA(x—y), A>0
A =1, Euclidean distance
Eg={x€RP|(x—x0)"(x —x0) = d°}

Example: x € R?,xp = 0,X12 + X22 =1

Norm of a vector

x|l = d(0,x) = VxTx
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ook ----------

Y

Figure: Iso—distance sphere.

A=1,, (x1 — x01)*> + (2 — x02)% = d?
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Yop--------

n| A1

Figure: Distance d.

P(x,y) =(x—y) (x—y)
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Figure: Iso—distance ellipsoid.

Eqg = {x:(x —x) " A(x — x0) = d?}, 7 = Evec(A), A >0

Z. Hlavka (KPMS)
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Angle between two Vectors

Angle of vectors x and y can be calculated as

-
X1yl
Norm of a vector
[x]| = d(0,x) = VxTx

Unit vectors

{x: Ixl = 1}

Z. Hldvka (KPMS) NMST539
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Figure: Angle between vectors.

T . .
Y XWY1HXeVs — o501 cos By + sin By sin 02

cosf = = =
=Ty Xyl
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Angle between two Vectors

Example: Angle = Correlation

Observations {x;}7_;, {yi}7;
Xx=y=0
72 ol = cosf

PXYy = 5 5
\/ ZX,' Zy,'

Correlation corresponds to angle between x, y € IR.

Z. Hlavka (KPMS) NMST539

Projection

Y
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Column space

X(n x p) data matrix

C(X)={x€ R"|3Ja€ IRP so that Xa = x}

projection matrix
P(nxn), P=P" =P? (P isidempotent)
let b € IR",a = Pb is the projection of b on C(P)
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H Geometrical aspects

* A distance between two p-dimensional points x, y is a quadratic form
(x — y) T A(x — y) in the vectors of differences (x — y). A distance
defines the norm of a vector.

x Iso-distance curves of a point xp are all those points which have the
same distance from xp. Iso-distance curves are ellipsoids whose
principal axes are determined by the direction of the eigenvectors.
The half-length of principal axes is proportional to the inverse of the
roots of the eigenvalues of A.

. . T
* The angle between to vectors x and y is given by cosf = m
w.r.t. the metric A.
Z. Hlavka (KPMS) NMST539 67 / 413

Projection on C(X)

X(nxp), P=x@xx)a"

PX =X, P is a projector, PP = P.

Q=7,-P,0*=0Q

yx
Px = 7Y
llyll?
PX = X
oxX =0
NMST539 66 / 413

H Geometrical aspects

« For the Euclidean distance with A = 7 the correlation between two
centered data vectors x and y is given by the cosine of the angle
between them, i.e. cosf = pxy.

+ The projection P = X(XTX)*XT is the projection in the column
space C(X) of X.

* The projection of x € IR" on y € IR" is given by
T

=y X
Px = Y-
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Random vector

Let us assume that random variables Xi, ..., X, are defined on the
probability space (2, A, P). In this setup, the vector (Xi,...,X,)" is
called random vector.

Theorem: The p-dimensional random vector X = (X1,...,X,)" is a
measurable function from (2, A, P) to (IR”,Bp)

Proof: See Theorem I1.1.1 in And&l (1985).

The function
F(xt,....xp) = P(X1 < x,... Xp < xp)

is the multivariate (joint) cummulative distribution function of the random
vector X = (X1,...,X,)".
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In the same way, marginal and conditional distributions are defined for all
subvectors:

X =(X,X)", Xie€RK X,ecRP K

marginal density of Xi is fx,(x1) = [*° f(x1, x2)dx

conditional density of X, (conditioned on X; = x1)
Falxi=x (X2) = f(x1,%2) / fx, (x1)

Z. Hlavka (KPMS) NMST539 71/ 413

it v
Multivariate density

A random vector X is absolutely continuous if there exists a probability
density function (pdf), f(.), such that

F(x) = /X f(u)du.

—00

For random vector X = (X1,...,X,) ", we define (one-dimensional):

marginal distributions of X;, i=1,...,p,
conditional distributions of X;|X; = x;, i,j € {1,..., p}.

The expressions for marginal and conditional densities are easy to derive.
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Example:

1 3
5X1 + 5X2 0<x1,x <1,
f(x1,x) =19 2 2 :
0 otherwise.

f(x1,x2) is a density since

’ 1 [x2 ! 3 [x2 !
f d — — |21 122 =
ACIOLE 2{2}05{2}0
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Example: The marginal densities

: . 3 1 3

fX1(X1) = X17X2 dX o Xl + 2X2 dxy = §X1 + Z ;
' 3

fo(x) = / (x1,x2)dxq = / 5

The conditional densities

1 3 1 3
5X1 + 5X2 5X1 + 5X2
fo|x)=2"—"2" and f(x|x)=2"—2".
Ia+3 30+ 3
271 T g 2727 7
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Example:

f(Xl,Xg):l, 0<xy,x <1,

f(Xl,Xz):1+(J4(2X1—1)(2X2—1), 0<x, <1, —-1<a<l
le(Xl) = 1, fXZ(Xg) =1.

-1
/ 14+ a(2x —1)(2% — 1)dx = 1+ a(2xg — 1)[x3 — xo]p = 1.
0
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Definition of (statistical) independence

Absolutely continuous random vectors Xj, X, are independent iff
f(X) = f(Xl,Xz) = le (Xl)fx2(X2).

A Two random variables may have identical marginals but different
joint distribution.
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Moments

EX € IRP denotes the p-dimensional vector of expected values of the
random vector X

EXq [ xaf(x)dx
EX = : = /xf(x)dx = : = /.
EX» [ xpf (x)dx
The properties of expected value follow from the properties of the integral:

E(aX + BY) = aEX + BEY
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If X and Y are independent then

E(XYT) = /xny(x,y)dxdy

— / xf (x)dx / vy f(y)dy = EXEYT

Definition of variance matrix (X)

L= Var(X) = E(X —p)(X —p)"

We say that random vector X has a distribution with the vector of
expected values i and the covariance matrix X,

X~ (Ma Z)
wsTsas s

Properties of Variances and Covariances

var(a' X) = a' Var(X) a= Z aiajox;x;
ij
Var(AX + b) = A Var(X) A"
Cov(X + Y, Z) = Cov(X, Z)+ Cov(Y, 2)
Var(X + Y) = Var(X) + Cov(X, Y) + Cov(Y, X) + Var(Y)
Cov(AX,BY) = A Cov(X,Y)B'.
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Properties of the Covariance Matrix

Elements of X are variances and covariances of the components of the
random vector X:

T = (oxx;)

O'X,-Xj = COV(X,', XJ)

OXiX; — var(X,-)

Computational formula:

T =EMXXT) —ppu’

Variance matrix is positive semidefinite:
>>0
(variance a' ¥a of any linear combination a' X cannot be negative).
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Conditional Expectations

(Absolutely continuous) random vector X = (X1, X2)
Conditional expectation of Xp, given X1 = xy:
E(X2 | x) = /xzf(xz | x1) dxo

and conditional expectation of X7, given Xo = xo:

E(Xl | X2) = /le(Xl | X2) dX1

The conditional expectation E(X; | x1) is a function of x; (it is the
expected value of X5 if we know that corresponding X; = x;—typical

example of this setup is simple linear regression, where
E(Y | X =x)=xp).
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ﬂ Moments

* The expectation of a random vector X is 1 = [ xf(x) dx, the
covariance matrix ¥ = Var(X) = E(X — u)(X — ). We denote
X~ (p, X).

« Expectations are linear, i.e., E(aX + 8Y) = aEX + BEY. If X, Y are
independent then E(XY ") = EXEY .

x The covariance between two random vectors X, Y is
Yxy = Cov(X,Y) = E(X — EX)(Y —EY)" = E(XYT) — EXEY".
If X, Y are independent then Cov(X,Y) = 0.

« The Conditional Expectation E(X>|X1) is the MSE best
approximation of X by a function of Xj.
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Geometry of the N,(u,X) Distribution

Density of Ny(p, X) is constant on ellipsoids of the form

(x—p) = (x—p) = &

If X ~ Np(, X), then the variable Y = (X — ) TS 71X — p) is x3
distributed, since the Mahalonobis transformation
Z=3"2(X—p)~Np(0,Z,) and Y = ZTZ =3P | 72
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G
Multivariate Normal (Multinormal) Distribution

The pdf of a multinormal is (assuming that X has full rank):

() = 2| e { L= ) TE - )}

X~ NP(“? Z)
Expected value is EX = pu,
Variance matrix of X is Var{X} =% > 0.

(what is the meaning of the quadratic form (x — )T "Y(x — p) in the
formula for density?)
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normal sample contour ellipses

Figure: Scatterplot of normal sample and contour ellipses for ;o = (3) and

2
Y = (_1_5 _1'5) — SMScontnorm
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Singular Normal Distribution

Definition of “Normal” distribution in case that the matrix ¥ is
singular—we use its eigenvalues \; and the generalized inverse >~

rank(X) =k <p, Ai--- X

(2m) /2 1 _
WGXP —E(X—M)Tz (x =)
>~ = G-inverse
[N 5 ) i

; ! Multinormal Distribution

* If the covariance matrix X is singular (i.e., rank(X) < p) then it
defines a singular normal distribution.

* The density of a singular normal distribution is given by

o) —k/2 1 _

where ¥~ denotes the G-inverse of X.
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; ! Multinormal Distribution

* The pdf of a p-dimensional multinormal X ~ N,(,X) is

() = 2| e { -3 - ) E - )}

The contour curves of a multinormal are ellipsoids with half-lengths
proportional to v/\;, where \; denote the eigenvalues of ¥.

« The Mahalanobis transformation transforms X ~ N,(x, %) to
Y = ¥ Y2(X — ) ~ N,(0,Z,). Vice versa, one can create a
X ~ Np(p, Z) from Y ~ N,(0,Z,) via X = £2Y + 4.
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Tyden 3

Mnohorozmérné normalni rozdéleni:

@ hustota transformovaného ndhodného vektoru.
@ centrdlni limitni v&ta a transformace,

@ vlastnosti mnohorozmérného normalniho rozdéleni.

Z. Hlavka (KPMS) NMST539 88 / 413



Transformations

Theorem: Assume that random vector (X1, ..., X,)" has density p(x)
and that t is an injective and regular function on a set G such that

Jc p(x)dx = 1. Let 7 denote the inverse function to t : G — t(G). Then
the random vector Y = t(X) has the density

aly) = { p{7(y)}abs(|7(y)l) for y € t(G),

0 otherwise,
where J(y) denotes the Jacobian of the inverse function 7.

Proof: See Theorem I11.2.5 in And&| (1985).
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Multivariate normal distribution
Multivariate Normal distribution

Elementary properties
pdf:
F(x) = |27 E[ 2 exp { = (x — 1) T2 (x — o)}

E(X)=pu, Var(X) =X >0

Linear transformations

Linear transformations turn normal random variables into normal random
variables.

X ~ Np(p, ), A(p x p) full rank, c € IRP

Y =AX + ¢ ~ Np(Ap+ ¢, AZAT).
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Density of a linear transformation

Y =AX+b, A nonsingular
X =AY - b)
J=A"
fy(y) = abs(JA| )i {A™(y — b)}

Starting from X ~ Np(0p, Z,), it is now easy to calculate the
p-dimensional density of Y = ¥¥/2X 4 1 ~ N,(u, X) (assuming that ©
has full rank).

Note that the multivariate standard normal density (or characteristic
function) can be defined as a product of univariate standard normal
densities exp(—x2/2)/v/2w (or characteristic functions exp(—t2/2)).
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Alternative definition (Cramér-Wold characterization)

We have defined Ny(p, X) by writing down its density. Unfortunately, this
approach has some disadvantages because we assumed that X has full
rank.

Definition: X has multivariate Normal distribution if and only if a’ X is
univariate normal for all a € IR”.

It easily follows that Y = Ax + ¢ has multivariate normal distribution even
when A is not square and it does not have full rank.

The random variable Z = t "X ~ N(t"p, t" Xt) has the characteristic
function

bz(s) = E(expisZ) = exp(ist ' ju — st Lt/2).

Therefore, the characteristic function of X is

dx(t) = E(expit' X) = E(expiZ) = ¢7z(1) = exp(it ' — t ' Xt/2).
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Partitioned Matrices Inverse of Partitioned Matrix

A nonsingular, A1, A square matrices

A(n x p)
-/411 -A12 1 All A12
A= A= 21 22
Azr A A%t A
Ajj(ni x pj) where
A+ B A1 + B A+ B2 AE = (A - A1§A2_21A2%)71 = (Au2)™!
Ao1 4+ Bar Az + B2 A= = —(A111~2)_ A2 A5
T B), By A = A A (Arr2) 7t
5= ( B, By ) A2 = A+ A Ao (Arna) T A A
ABT = ./4116; + .AlzBsz ./4116;1 + A1252TQ _
A2131T1 + A22[51T2 -/4218;1 + A22B2TZ Determinant:
|A| = [A11]| A2 — Aot A Ara| = | A Ar1 — A1 Ay Ao |
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Multivariate normal distribution Multivariate normal distribution
Correlations and independence
H Partioned Matrices

* For A nonsingular, A11, A2 square matrices,

A—l _ ( .All .A12 >

X
Corollary: Let X = <X1> ~ Np(p, X), then X is independent of X; if
2

and only if X7 and X, are uncorrelated.

A2t 422 Proof: factorization of density (X > 0) or characteristic function.
_1 _ _
AR = (An - A12A3, A2i) ! = (An2)™t Interestingly, for two jointly multivariate Normal vectors (i.e.,
A = —(Ai12) T A A, X = (XY (. 5)). pair-wise independ  thei .
A2V = A Ay (Appo) = x b(1, X)), pair-wise independence of their components
A2 = A4+ A Asi(Ar12) T AR AL implies complete independence.
« For B — < 1 b" ) we have |B| = [A — abT| = |A||1 — bTA 4. The independence of two linear transforms of a multinormal X can be
A shown via the following corollary.
_apTYy-1 g1, AlabTA~!
P (A=ab ) = AT Corollary: If X ~ Ny(i,X), A and B matrices, then AX and BX are

independent if and only if AXBT = 0.
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Marginal and conditional distributions

Marginal distribution is just a special case of linear transform:

X
X1 = (Zg 0g4 X 0;)()(;)

For conditional distribution X,|X; = x1 we have the following:

Theorem: The conditional distribution of X, given X; = xj is normal with
mean [ + Zglifll(xl — p1) and covariance Y21 = Yo — Zzliﬂlilz,
ie.,

(Xa | X1 =x1) ~ Np—p(p12 + o1 X7 (ca — p11), 2.1)-

Proof: e.g. via the following lemma or by factorizing the density (using the
formula for inverse of partitioned matrix).
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0 1 -08
pmar=on (0) <—0.8 2 >

Yi1=1, X2 = —0.8, X201 =2 — (0.8)? = 1.36.

2
= fx,(x1) = 12 exp (—%)

1 ) 2
= fholn) = s e {-SuRT

Z. Hlavka (KPMS) NMST539 99 / 413

Decomposition of Normal Random Vector

Lemma:
X = (3), XeR
Xo1 = Xo—InI X1
Y11 Z12)
p = .
<221 22
= X1~ Ne(p1,X11),
independent
= Xo1 ~ Np—r(p21,%221)
f21 = po— TnTitm
Y1 = Xoo—YXn¥ Y
Z. Hldvka (KPMS) NMST539

Theorem: If X7 ~ /V,(Ml, 211) and (XQ‘X:[ = X1) ~ /for(.AXl + b, Q)

where  does not depend on xp, then

X1
X = ~N 2
<X2> P(Ma )7

where
= H1
A+ b
and
s _ Y1 Y AT
N A¥X11 Q-+ AleAT '
Z. Hlavka (KPMS) NMST539
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Example: X, € R, X, € R’ Consider the case where r = p — 1.
. Now X> € IR and B is a row vector 3" of dimension (1 x r)
E(Xo|X1) = po + Xon X 17 (X1 — 1)
Xo = B+ “BT X1+ U.

linear approximation!
This means that the best MSE approximation of X5 by a function of Xj is

Xo = E(Xp|X1)+ U, U~ Np,r(O, Y1) a straight line.
_ T
= Potp X+ The marginal variance of X can be decomposed as
*[))TZ ﬂ+ o z—l +
Y11 o1 022 = 11 0221 = 021297 012 + 022.1.
g2 = Val’(Xg) > =
021 022 51
T S 2 _onkfjpon
= [ Luf+opi= 021211 012 + 0221 P21..r = o5
is the square of the multiple correlation between X5 and the r variables
X1.
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Mahalanobis Transformation (Sphering) i
Elementary Properties

If X ~ Np(u,X) then the Mahalanobis transformation is + If X ~ Np(z, ) then a linear transformation

AX + ¢, A(q x p), ¢ € R? has distribution Ny(Au + ¢, AZAT).
* Two linear transformations AX and BX of X ~ N,(u,X) are
and it holds independent if and only if AXB' = 0.
YTY=(X-p)" =71 (X —p)~ X;27' If X1 and X3 are partitions of X ~ N,(1,X) then the conditional
distribution of X, given X1 = x; is normal again and Xj is

Y = £ V2(X — 1) ~ N(0,Z,)

*

Notice that Y is random vector. Y 'Y is scalar which “measures the independent of X, if and only if X1 = 0.
distance” between X and its expected value u. Y'Y can be easily used « The conditional expectation of (Xz|X1) is a linear function for
for testing (assuming that X is known). X

g ( g ) (X;) ~ Np(pt, X).

In practice, we do not know X. The tests in this situation can be carried The multiple correlation coefficient is the percentage of the variance
out using Wishart and Hotelling distributions (multivariate generalizations of X, explained by the linear approximation 8y + 3" X;.
of x2 and Student's t distribution).

*
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Central Limit Theorems

Central Limit Theorem describes the (asymptotic) behaviour of sample Eh / 5

mean o )

X1, Xo, ..., Xy, i.i.d with X,'N(/L,Z) . ~ . o
V(X — p) =5 Np(0,5)  for n—> oco. " i

The CLT can be easily applied for testing.

0.5

0.4

0.3
1

density
density

0.1

0.0
1

T T T T T
-4 -2 0 2 4

1000 random samples with n=5 1000 random samples with n=35
Normal distribution plays a central role in statistics.

Figure: The CLT for Bernoulli distributed random variables. Sample size n =5
(left) and n = 35 (right). — SMScltbern
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Transformation of statistics

If /At — 1) =5 Np(0,5) and if £ = (f,..., %) : RP — R
are real valued functions which are differentiable at . € IRP, then f(t) is
asymptotically normal with mean f () and covariance DTYD, i.e.,

Va{f(t) = F(u)} = Ng(0,DTED)  for n—s o0,

(p x q) matrix of all partial derivatives.

where

t=p

Figure: The CLT in the two-dimensional case. Sample size n =5 (left) and This theorem can be applied, e.g., to find the “variance stabilizing”
n =500 (right). — SMScltbern3 transformation.
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Example:

Suppose

n (0 /1 05 B

We have by CLT for n — o

V(% — 1) -5 N(0,X).

72 =
The distribution of < X )?
X1 + 3x>

This means to consider f = (f, )" with

fi(xi, %) = xF —xa, F(xi,x) =x +3x, q=2.

Z. Hldvka (KPMS)

NMST539

H Limit Theorems

« If Xi,..., X, are i.i.d. random vectors with X; ~ (u, X) then the
distribution of v/n(x — 1) is asymptotically N(0,X) (Central Limit
Theorem).

« If X1,..., X, are i.i.d. random variables with X; ~ (u, o) then an
asymptotic confidence interval can be constructed by the CLT:

X+ % ulfoz/2'

« For small sample sizes the Bootstrap improves the precision of this
confidence interval.

x If t is a statistic that is asymptotically normal, i.e.,

Vn(t —p) £, Np(0,X), then this holds also for a function f(t), i.e.,

Vn{f(t) — f(u)} is asymptotically normal.

Z. Hlavka (KPMS) NMST539
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Then f(u) = (8) and
o 2X1 1
X=p ; -1 3

of
D) o= ()

We have the covariance

0 -1 1 3 0 1Y) _ 1 -1
1 3 ;1 -1 3 —-7 13
DT b3 D D'YD

This yields

Z. Hlavka (KPMS) NMST539

Tyden 4

Datové matice, testovani mnohorozmérné stfedni hodnoty:

@ Wishartovo a Hotellingovo rozdélent,

@ testy vicerozmérné stfedni hodnoty.

Z. Hlavka (KPMS) NMST539
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Further matrix algebra: Kronecker product

Let A ® B denote the Kronecker product of matrices A and B and vec(A)
denote the vector obtained by stacking the columns of A. Kronecker
product and vectorization are useful tools for working with (random)
matrices:

o a(A®B) = (ad)®B= A (aB)
0o A2 (B&C)=(A0B)®C

o (AB)T=AT®BT

o (A® B)(C®D) = (AC) ® (BD)
o (A®B) 1=(A1eB1

o (A+B)@C=A®C+BaC

e AR (B+C)=A®B+ARC

o vec(AXB) = (BT ® A)vec(X)

o tr(A® B) = tr(A)tr(B)

~— — ~— ~—
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55 etz U A
Normal data matrices: independence

Theorem: If X' is a data matrix from N,(y,X) then ) = AXB and
Z = CXD are independent if and only if BT¥D =0 or ACT =0.

Proof: assume (WLOG) that p = 0, then vec()) = (B' ® A)vec(X), and
the covariance matrix between vec())) and vec(Z) is
Evec(V)vec(Z2)" = (B' @ A)Evec(X)vec(X)" (DT @C)"
B'"2AX®Z,)(DeC)
= B'ED®AC'.
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Normal data matrices
Definition: Let Xi,..., X, be a random sample from N,(1,X). Then
X = (X1,...,X,)" is called a data matrix from N,(u, ¥).

Clearly, if X' is a data matrix from N,(u, %) then
Xp=XT1,/n~ Ny(p, Z/n).

Theorem: If X' is a data matrix from N,(y, X) then
Y = AXB ~ Ng(aB' u, BBTLB) if and only if:

o Al, = al,, forsome o € IR, or B ;x =0, and
o AAT = BZ,, for some B € R, or BTY¥B = OqOI.

The proof is based on vectorization of X’ (i.e., column stacking):
vec(X) ~ Npp(pt ® 15, X @ Z,) and vec(AXB) = (BT @ A)vec(X).
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Wishart distribution

Definition: Assuming that X’ is a data matrix from N,(0p, ), the
random matrix
M(p x p) = XTX ~ W, (X, n),

where W,(X, n) denotes Wishart distribution with parameters ¥ and n.

Example:
p = 1, X ~ Ni(0,0?)
X1 .
X = : M = XTX =Y x2~0%3
i=1
Xn

It follows that Wishart distribution is generalisation of x?2
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Theorem:

M~ Wy(Z,n) and B(p x q) = B' MB ~ W,(B"LB,n)

Theorem:(Cochran) X'(n x p) is data matrix with Ny(u, X). Then:

@ X'CX, where C is symmetric, has the same distribution as a
weighted sum of independent W,(%, 1) matrices, where the weights
are eigenvalues of C.

0 nS=XTHX ~ W,(Z,n—1),
@ x and § are independent.

Proof: see Theorem 3.4.4. (page 68) in MKB (using spectral
decomposition of C or H).
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Data matrices, Wishart, Hotelng
Hotelling's T2-distribution

Definition: Assume that random vector Y ~ N,(0,Z) is independent of
random matrix M ~ Wy(Z, n). Then

n YT MY ~ T2(p, n),
where T?(p, n) denotes Hotelling’s distribution with parameters p and n.
Hotelling’s T2 generalizes Student's t-distribution

The critical values of Hotelling's T2 can be calculated using F-distribution:

np
T?(p,n) = P Fpn—p+1
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Wilks" A-distribution

Definition: Assume that A ~ W,(Z, m) and B ~ W,(Z, n) are
indepependent, m > p, we say that the random variable

A= AJ|A+B]

has Wilks' lambda distribution with parameters p, m, and n, i.e.,
A~ N(p, m, n)

This distribution occurs frequently in likelihood ratio tests.

The random variable A is basically a ratio of two ‘generalized
variances'—therefore, Wilks' A distribution can be seen as a multivariate
generalization of F distribution.

Z. Hlavka (KPMS) NMST539 118 / 413

[ [

; ! Distributions related to multinormal

+ The Wishart distribution is a generalization of the x?-distribution.
* Assuming normality, the empirical covariance matrix S has a

LW, (Z, n — 1) distribution.
* In the normal case, X and S are independent.
« Hotelling’s T2-distribution is a generalization of the t-distribution.
(n—1)(X —p)'S™HX — p) has a T?(p,n — 1) distribution.
The relation between Hotelling’s T?2— and Fisher's F-distribution is
given by T2(p,n) = o Fpn—pit.
Wilks' A-distribution can be seen as a multivariate generalization of F
distribution (ratio of two variances).

*

*

*
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TeStmg the multivariate mean R: library(DescTools); help(HotellingsT2Test)
Xi ~ Np(p,X) iid.

Confidence region for p

(”;pp> (x=p)'S7Hx — p) ~ Fpnp

Ho : = po, X unknown, Hi ' no constraints.

Under Ho: (n — 1)(X — o) 'S™Y(x — o) ~ T?(p,n—1).
p

n—p

{M € IRP ’ (/J, — )_()Tsil(u —>_<) < Fl—a;p,n—p}

Equivalently:

is a confidence region at level (1-«) for p; it is the interior of an
iso-distance ellipsoid in IRP.

n— _ _ _
( ) ”) (% — 10) TS % — t0) ~ Fonp

When p is large, ellipsoids are not easy to handle for practical purposes.

The rejection region may be defined as One is thus interested in finding confidence intervals for pi1, pi2, ..., ptp SO
. that simultaneous confidence on all the intervals reaches the desired level
n P = Ts—l = F
D (X - MO) (X - /~LO) > F1—a;p,n—p- say, 1 — a.
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Simultaneous Confidence Intervals for a' 1

library(mvtnorm)
s=matrix(c(1,-0.5,-0.5,1),2) ;x=seq(-3,3,by=0.015) Obvious confidence interval for certain a' y is given by:
contour (x,x,outer (x,x,
function(x,y){dmvnorm(cbind(x,y),sigma=s)})) vVn—T1(a"p—a'x) <t
>-%n-1
Va'Sa 2"
n=20;X=rmvnorm(n, sigma=s) ;m=apply(X,2,mean) ; S=cov(X) ]
points(m[1] ,m[2],pch=8,col="red", cex=2) or equivalently
—\12
- ] (n—1){a" (4 — %)
#contour (x,x,outer (x,x,function(x,y){(n-2)* t2(a) — { } < Fi_ai1n-1

# diag(t(t(cbind(x,y))-m)%*%solve(S)%*%(t(cbind(x,y))-m))< a'Sa
# 2xqf(0.95,2,n-2)}),col="red",add=TRUE)

. . o . . T .
S1=solve(S) which provides the (1 — «) confidence interval for a' u:

contour (x,x,outer (x,x,function(x,y){(n-2)* T TS
. . 0/ L0 0/ L0 a a a a
apply (t(t(cbind(x,y))-m),1,function(x){t (x) %*%S1%*%x})< alx — Fioain1 < aTH < alx+ Fiain-1
2%qf (0.95,2,n-2)}),col="red",add=TRUE) n—1 n—1
bodyx=m[1]+c(-1,1)*sqrt(S[1,1]*2*qf (0.95,2,n-2) /(n-2)) Using Theorem on maximum of quadratic forms we see that:
bodyy=m[2]+c(-1,1)*sqrt(S[2,2]*2xqf (0.95,2,n-2) /(n-2)) ) B Tal/o )
polygon(x=bodyx[c(1,1,2,2,1)],y=bodyy[c(1,2,2,1,1)] ,border="blue") met (@) =(-1)(x—p) S (x—p)~T(p,n—1).
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max t2(a) = (1~ 1)(% — p) S (% — 1) ~ T2(p.n— 1)

implies that the simultaneous confidence intervals for all possible linear
combinations a' i, a € IRP of the elements of 1 is given by:

(aT)'( —VK,aTSa, a'x+ v KaaTSa> ,
where K, = nfppFl_a;p,,,_p.
Example:

95% confidence region for 1ir, the mean of the forged banknotes, is given
by the ellipsoid:

_ _ _ 6
{M € R° ‘(/J — %) S M —x¢) < 94":0.95;6,94}
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Testing the difference of two multivariate means

Suppose Xj1 ~ Np(p1,%),i =1,---,npand Xjp ~ Np(po,X),j =1,---, ny,
all the random vectors being independent.

Ho : p1 = po, Hi : no constraints.

Both samples provide the statistics x, and S, k=1,2.

Let § = u1 — p2,we have

(%1 — %) ~ N, <5, Mt 2 Z)

nym

Sy +mS ~ WP(Z, ny 4+ np — 2)
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95% simultaneous c.i. are given by (using Fo.95.6.94 = 2.1966)

214692 < pp < 214.954
130.205 < pup < 130.395
130.082 < pu3z < 130.304
10.108 < g4 < 10.952
10896 < us < 11.370
139.242 < pug < 139.658

Comparison with po = (214.9,129.9,129.7,8.3,10.1,141.5) " shows that
almost all components (except the first one) are responsible for the
rejection of pg.

In addition, choosing e.g. a' = (0, 0, 0, 1, —1, 0) gives c.i.
—1.211 < g — pus < 0.005 shows that for the forged bills, the lower
border is essentially smaller than the upper border.
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The rejection region is:

nina(ng+ny—p—1)
p(ni + np)?

(% — %)) S7H((% — %))

> Fl*a;P7”1+"2*P*1
A (1 — «) * 100% confidence region for § is given by the ellipsoid centered
at ()_(1 — )_(2)
(- (a—%) 8- (% — %))

< p(n + 172)2

~ (m+nm—p—1)(nmny)
and the simultaneous confidence intervals for all linear combinations of the
elements of § : a'§ are given by

Fl—Oé;P7"1+n2—P—17

T Tio = p(n + ny)?
Je — X))+ Fi_a: _p-1a'Sa.
a a (Xl X2) \/('71 +np—p— 1)(”1”2) 1—a;p,m+n—p—14 a
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Example: We want to compare the mean of the assets (Xi) and of the

sales (X2) of the two sectors energy (group 1) and manufacturing (group The observed value of the test statistic is Fy,c = 2.7036.
2).
Since Fo.95.2,20 = 3.4434 the hypothesis of equal means of the two groups
We have the following statistics n; = 15, no =10, p = 2, is not rejected although it would be rejected at a less severe level
g A084 o (8072 (p — value = 0.0892).
2580.5 4925.2
1.6635 1.2410 The 95% simultaneous confidence intervals for the differences are given by
81 =107 ( 1.2410 1.3747 >
Uoas 1 1a0 —4628.6 < i, — s < 41822
=107 ' ' — . < — < .0.
S, =10 >k< 11425 15112), 6662.4 < 15— pos < 1973.0
1.4880 1.2016
— 107
& =107 ( 1.2016 1.4293 >
Z. Hldvka (KPMS) NMST539 129 / 413 Z. Hldvka (KPMS) NMST539 130 / 413

Testing means with unequal covariance matrices |

Suppose Xi1 ~ Np(u1,%1),i =1,---,ny and Example: Let us compare the forged and the genuine bank notes again
Xja2 ~ Np(p2,%2),j =1, -+, m, all the variables being independent. (n1 and ny are both large). The test statistic turns out to be 2436.8 which
is again highly significant. The 95% simultaneous confidence intervals are
Ho : p1 = po, Hy : no constraints. now:

—0.0389 <41 < 0.3309

—0.5140 <4, < —0.2000

- - Y, o —0.6368 <43 < —0.3092

(0 = %) ~ Ny (5’ o n_2> ‘ —2.6846 <0, < —1.7654

Therefore, —1.2858 <5 < —0.6442

1.8146 < <  2.3194

5%
n ny

(x1—%)" B (31— %) ~ x5
(%)

Since S; is a consistent estimator of ¥;, i = 1,2 we have

showing that all the components except the first are different from zero,
the larger difference coming from Xg (length of the diagonal) and X4
(lower border).
S S\
- - \T 1 2 - - 2

— — 4+ —= — —
(x1 — X2) (nl + n2> (1 — %) = Xp
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Testing means with unequal covariance matrices Il

Clearly, the x? approximation to the distribution of the test statistic

(31— %) " (81 + S2> - (X1 — X2)

n.m
is usable only for sufficiently large sample sizes.

For smaller sample sizes, one can use approximate likelihood ratio tests
(Mardia et al, Section 5.4.1) or Welch approximation to degrees of
freedom (Mardia et al, Section 5.4.2).

Note: the problem of testing equality of means without equality of
variances is known as the Behrens-Fisher problem (at least in the
univariate case).
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Estimation

~

The aim is to estimate vector of parameters 6 from a sample X" through
estimators 6(X).

Most common approaches:

@ maximum likelihood,
@ Bayesian approach,

@ robust methods (M-estimation).

In the following, we shortly discuss maximum likelihood theory.
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Tyden 5

Odhadovani a testovani:

@ odhady metodou maximalni vérohodnosti,
@ testovani pomérem vérohodnosti,

e priklady.
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Testing and estimation
The Likelihood Function

X ~ f(x,0) pdf. parameter 0

Likelihood function

MLE R
0 = arg max L(X;0)

log-likelihood
UX;0)=logL(X;0)
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Testing and estimation
Derivatives

Function f : RP = IR

%(XX) is the gradient, i.e., column vector of partial derivatives

() 20

%’Zﬁ) row vector of the same derivative
PF() s th Hessi ix of second derivati
S-5o7 is the (p x p) Hessian matrix of second derivatives
0?f(x) - .
axi(ng,/ =1,....,p,j=1....p.
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Testing and estimation
Derivative of trace and determinant

This is useful for derivation of MLEs for multivariate normal distribution:

otrxA AT if elements of A are distinct,
ox | A+ AT —diag(A) for A symmetric.
X
olX| = x;j if elements of A" are distinct.
Oxjj

olxX|  x; fori=j
Oxj  2x; fori#j

for X symmetric.

For V = ¥~ symmetric it follows that:

Olog |V

5y = 2% — diag(X).
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Some useful formulae

Linear transformations:

A(p x p),x € IRP

Quadratic form (i.e., A is symmetric):

Ox " Ax
Xaix = (.A—i—.AT)x = 2Ax
P?xT Ax o
OxOxT
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; E Derivatives

* The column vector ag—(xx) is called the gradient.

*

. T T
The gradient of agxx = agx‘? equals a.

The derivative of the quadratic form ‘()X;% equals 2.A4x.

« The Hessian of f : IRP — IR is the (p x p) matrix of second
Of (x)

(9x,-8XXj'

+ The Hessian of the quadratic form x 7 Ax equals 2.A.

*

derivatives
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Example: {x;}"_; is a sample from a normal distribution N (s, X)

Due to the symmetry of ¥, the unknown parameter 6 is in fact
{p+ 3p(p + 1)}-dimensional.

1 n
L) — —n/2 _= AN et YA
L(X;0) = 27| exp{ 5 El(x, w) XX ,u)}

n 1 -
0X;0) = 5 log 27X | — 5 Z(X,’ — )T — ).
i=1

After some calculations, the log-likelihood function for Nj(u, X) is:

ox;0) = —g log 27X | — gtr{fls} - g(y 1) T (% - p)
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Testing and estimation
Score and Fisher information

The score function s(X'; 0) is the derivative of the log-likelihood function
w.rt. 6 € R

s(x:0) = Loy = L9

X;0).
00 )

— (X
L(X;0) 06 (
The covariance matrix

82
Fpn=E{s(X;0)s(X;0)"} = Var{s(x;0)} = —E {WE(X; 0)}

is called the Fisher information matrix.
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Reparametrizing V = Y1 we obtain:

onx;0) . _
I TR Gt D)

and
oU(X;0)

oV
where M=% -8 — (x — pu)(x — ) .

= n{2M — diag(M)}/2,
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Testing and estimation
Cramer-Rao theorem

The importance of the Fisher information matrix is explained by the
Cramer-Rao theorem, which gives the lower bound for the variance matrix
for any unbiased estimator of 6.

Theorem: If § = t = t(X) is an unbiased estimator for 6, then under
regularity conditions
Var(t) > F, b

The proof can be based on some special properties of the score function.

An unbiased estimator with the variance equal to F, ! is called a minimum
variance unbiased estimator.
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T 10 il
Asymptotic normality of MLEs

Another important result says that the MLE is asymptotically unbiased,
efficient (minimum variance), and normally distributed.

Theorem: Suppose that the sample {x;}7_; isi.i.d. If 9 is the MLE for
0 € IR* then under some regularity conditions, as n — oco:

V(0 = 0) =5 N(0, 7Y,
where F7 denotes the Fisher information for sample size n = 1.

This result gives us a very useful and simple approximation whenever we
are not able to calculate the exact distribution of the MLE 6.

Even in very complicated situations, the Fisher information matrix can be
approximated numerically.
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Ul o e
Likelihood ratio tests (LRTs)

Consider hypotheses:

Hy : 0¢€Qq,
Hy 9691,

where 6 is a parameter of the distribution of {x;}!_;, x; € IRP.
Wilks" Theorem says:

Theorem: If Q; C IRY is a g-dimensional space and if Qp C Q; is an
r-dimensional subspace, then under regularity conditions:

VHEQO:—2Iog)\:2(€*{—€3)i>xf,,, as n— oo,

where 6}‘, Jj = 1,2 are the maxima of the log-likelihood for each hypothesis.
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H Hypothesis Testing

x Maximum likelihood estimators are easy to calculate but we have to
know the true distribution.

x MLEs have asymptotically normal distribution.

* The asymptotic normality of transformed MLEs can be derived by
using Delta theorem.

« MLEs are asymptotically optimal.
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Ui edld i 255
Testing the multivariate mean

Xi ~ Np(p, X) i.id.

Ho : = po, X unknown, Hi ' no constraints.

Under Hp it can be shown that
05 =po,S+dd"), d=(X— o)

and under H; we have
1 =4(x,S).

This leads to
—2log A = 2(¢5 — £5) = nlog(1 + d 'S 1d).

Note that this statistic depends on (n — 1)d " S~1d which has, under Hp, a
Hotelling's T2-distribution.
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Testing the variance matrix

Xi ~ Np(p, X) iid.

Ho: X =%g, p unknown, Hi :  no constraints.

Looking at the log-likelihood function, we observe that the MLEs are X
and Yo under Hp and X and S under the alternative.

Therefore:
1 1 1 1
5= —§n|og|27r20| — Entrzals, and lf = —Enlog |27S| — 5P
This leads to
—2log A = ntrXytS — nlog|Z,'S| — np = np(a — log g — 1),

where a and g denote respectively the arithmetic and geometric mean of
eigenvalues of ZalS.
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Test of independence

Let X; ~ Np(p,X), i =1---,n be independent,

Hy : X10 =0, Hi : no constraints.

We partition the variables into two sets with dimensions p; and p. The
estimators under Hy is

f= Xn

& S11 0
2= (% o)

and
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Test of homogeneity of covariances

LetX,'hN Np(lu’hazh)x j=1--- , Np; h = 1, ’k
all variables being independent,

Hy: X1 =% =" =24, Hi : no constraints.

S is the MLE estimator of ¥} under the alternative and the weighted
average S = ’”‘Sﬁi,f”ksk is the MLE of X under the null (Hp).

The likelihood ratio test leads to the statistic

k

—2log A = nlog|S| — Z np log |Sh|
h=1

which under Hg is approximately distributed as a X2 where
m= 3(k = 1)p(p+1),
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It follows that the LRT test statistics for Hy : 1o = 0 is:

—2logA = —nlog ‘2_15| = —nlog |522 - 52151_11512‘/‘522|
k
= —n Iog |I — 52_2152151_11512| = —n Iog H(l — )\,‘),
i=1

where )\; are non-zero eigenvalues of S,,'S»1 577! S1a.

It can be shown that the test statistics follows the so-called Wilks’ lambda
distribution (distribution of a ratio of determinants of independent Wishart
matrices).

This test is applicable in canonical correlation analysis (investigating
correlations between two sets of variables).

For p1 = 1, the LRT test statistics simplifies to a function of multiple
correlation coefficient.

Z. Hldvka (KPMS) NMST539 152 / 413



Tests of multivariate normality Tests of multivariate normality

Multivariate skewness: Assuming normality, the distribution of b; , and b, , (the sample

_ counterparts of 31, and B2 ) is:
B = E(X =) E (Y = ), p and 2)

where X and Y are iid. 6”[’14) ~ Xin(p+1)(P+1)/6

Multivariate kurtosis:

and b ( 2)
2.p — P\P +
_ n—"———-%~ N(0,1).
Bop = E{(X =) TZ7HX = p)}? 8p(p +2)
It can be shown that 81, =0 and B2, = p(p+2) for X ~ N,(, ). This ) _ ) o
easily follows from the symmetry of V = (X — p) T ~1(Y — 1) and Note: QQ diagram can be plotted using quantiles of X,2; distribution and
(X =) =X = p) ~ 2. ordered values of n(X; — x)"S71(X; — x).
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Tyden 67 Principal Components

Principal components are (orthogonal) linear combinations maximizing the
variance of standardized linear combinations (SLC):
Metoda hlavnich komponent:

P
§TX =" 6;X; such that [|3]| =676 = 1.
j=1

@ definice a interpretace,
@ standardizace,
@ asymptotické vlastnosti, Maximizing:
@ pouZiti.
max var(d' X)= max &' Var(X)d
CHIEEY {s:ll6]|=1}

is easy using the spectral decomposition Var(X) = A",
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Week 6-7 Principal components

Example:

Bivariate normal distribution N(0,X), ¥ = (})f) ,p>0.

Eigenvalues of this matrix are A1 =1+ p and A\ =1 — p with
corresponding eigenvectors

n=le) e a)

The PC transformation is thus

1 1 1
_ T _ —
Y = (X - @(1_1>X
<Y1> B 1<X1+X2
Yo 2\ X=X )

Z. Hldvka (KPMS) NMST539
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IR
Properties of PCs

Let X ~ (1, X) and let Y be the PC transformation Y =TT (X — p).

Then
EY = 0,
var(Y) = A
var(Y1) > >var(Y,) >0
dovar(Yy) = D N =tr(D) =) var(X))
J J J

—
5
=
I
™

157 / 413

Note: |X| is called the (population) generalized variance and tr(X) the

(population) total variation.
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Week 6-7 Principal components

The first principal component is
Yi = (X1 4+ %)
1= v/ 1 2
and the second is )
Y2 — E(X]_ - XQ)
Let us compute the variances of these PCs:
1

var(Yi) = var{\/E
— % {var(Xl) + var(Xz) + 2COV(X1-/ X2)}

1
(Xl + Xz)} = 5 var(X1 + X2)

1
= 5(1+1+2p):1+/)
= AL

Similarly we find that: var(Y2) = \o.
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Week 6-7 Principal components

Example: In practice, the sample principal components are calculated

from the sample variance matrix:

S = GLg'
Y = (X -1x7)g

data(bank2)
eigen(var (bank2))

pcb=prcomp (bank?2)
pcb

plot(pcb)

pcb$x
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el s
PCA stopping rules

For dimension reduction, the number of PCs is usually chosen by simple
ad-hoc rules:

@ scree-plot (of eigenvalues),
o log-eigenvalue diagram (LEV),
@ percentage of total variation (explain 80 or 90% of total variation),

e Kaiser criterion (choose PCs with higher than the “average
variance”).

The interpretation of the Kaiser criterion simplifies for standardized data
sets: tr X = p implies that the average variance is 1.
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Week 6-7 Principal components

In practice, one should consider standardization of variables before running
PCA.

prcomp (bank2,scale.=TRUE)

Example: Some examples:

@ bank2,
@ athletic records,
@ geopol,

@ timebudget.
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Week 6-7 Principal components

Interpretation

The interpretation of PCs is based on its variances (eigenvalues) and its
coefficients (eigenvectors).

Warning: rescaling can change everything.

Example: bank2[,1]=bank2[,1]*1000; prcomp(bank?2)
Cov(X,Y) =X =TAT'T =TA

A\ 1/2
PX:Y; = Vij

OX; X

Interestingly > pg(;Yj = ... =1.
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G o0
Asymptotic properties

Theorem: For normal data and ¥ with distinct eigenvalues, the sample
principal components and sample eigenvalues are the maximum likelihood
estimators of the (true) principal components and eigenvalues.

Proof: The theorem follows from the inveriance of maximum likelihood
estimators (and because S is MLE of ¥).

Theorem: Assume that ¥ = FAI'" > 0 with with distinct eigenvalues and
U=GLG" ~ mIW,(Z,m). Then

Vm(l = A) 5 N,(0,2A2)
and

L
Vi =1(g; =) == N [ 0,0 D Mevere /(e = A))?
k)
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Week 6-7 Principal components

The proof uses transformation ml' Ul ~ W, (A, m), see MKB, p. 231.

Example:
Assuming normality:
nS ~ Wo(X,n—1)
L .
V=14 = ) = N(0,2)?), j=1,...,p,
using log transformation:

n—1
2

(log £; — log \;) - N(0,1)
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Week 6-7 Principal components

Example: The first PC for Swiss bank notes resolves 67% of the variation.
Let us test whether the true proportion could be 75%.

The 95% confidence interval for the true proportion is

0.142
0.668 = 1.961/ — = = (0.615,0.720).

We reject the hypothesis that 1) = 75%!
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Week 6-7 Principal components

Clearly, the estimator of variance explained by first g PCs

~

P
= (l1+---+44)/> ¢ is a nonlinear transformation of /.

j=1
Therefore,
V= 1(% — 1) =5 N(0,w?),
where
2

r 2
- ﬁ%;;wﬂ—ww+m,

where 8= (A3 4+ +A2)/(AF + -+ + A2).

Remark: use tr(A) = tr(X) and tr(A?) = tr(X?) to simplify the calculation!
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e i
Application of PCA

The usual flow of PCA:

@ s it necessary to standardize the data set?
@ How many PCs?
© |Interpretation!

Usual applications:

@ dimension reduction,
e visualization (plotting) of high-dimensional datasets,

@ regression on PCs (removes multicollinearity).
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Tyden 7-8

Faktorova analyza:

@ model faktorové analyzy,
@ odhadovani a rotace faktoru,

@ interpretace.
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st
Factor Analysis Model

We want to explain p components of X by smaller number of common
factors.

X = QF+U+u
Q = (p loadings
F = (k common factors

Ly,
nd Cov(F,U) =0

where F and U are centered, Var(
Var(U) = V = diag(¢11, - - -, ¥pp),

Estimates of the loadings O and specific variances W are deduced from
var X (usingvar X =¥ = QO + V).

X k)
x 1)
U = (px1) specific factors
F)=
a
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Week 7-8 Factor analysis

Factor analysis

Factor analysis has provoked rather turbulent controversy throughout its
history.

.. each application of the technique must be examined on its own merits
to determine its success.

The essential purpose of factor analysis is to describe, if possible, the
covariance relationships among many variables in terms of a few
underlying, but unobservable, random quantities called factors.

Factor analysis can be considered as an extension of principal component
analysis . . . the approximation based on the factor analysis model is more
elaborate.

(Johnson and Wichern, Applied Multivariate Statistical Analysis, Prentice
Hall, 1992)
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Week 7-8 Factor analysis

Example: Perfect FA is PCA with only k positive eigenvalues:

k
X = ZW

Q = (VA1 VAK)

F = k — dim vector (random)
EF = 0
Var(F) = Ik

Clearly, the matrix @ is not unique (because rotation leads to equivalent
solution).
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Week 7-8 Factor analysis Week 7-8 Factor analysis

Communality and specific variance Invariance of scale

Define Assume that we have the following FA model for X: var X = QXQ; + Wy,

k
2 _ 2 : :
hy = 52—:1 gj; communality What happens if we change the scale of X?

, . Y = CX,C=di ey
jj specific variance ag(c1 )
Var(Y) = c¥C’
Notice that var X; = hJ2 + 1}, i.e., the communality is the part of variance = COxQxCT +CwxCT
of X; explained by the common factors. The specific variance is the
unexplained part. Hence the k-factor model is also true for Y with

Qy = (CQx

Two important properties of FA model are invariance of scale and Wy = CWUxCT.

non-uniqueness (with respect to rotations).

NMSTS39 S NMISTS39 174/ 413
st iz el
Non-Uniqueness of Factor Loadings Interpretation of the Factors

For orthogonal matrix G we get:

Interpretation of unobserved latent factors F is based on covariances and
X =(QG)(G"F)+ U+ p. correlations: .
Yxr = E{(QF +U)FT}=2Q

We get a k-factor model with factor loadings QG and common factors

T . . . . . . Pxr = D_I/QQ,
G ' F. In practical analysis, we will choose the rotation which gives
“desirable” interpretation. where D = diag(ox,x;, - - - -0X,X,)-
For the purpose of evaluation, the non-uniqueness can be solved by Correlations Pxg show the relationship between the original variables
imposing additional constraints, e.g., Xi,...,Xp and the common factors Fy, ..., Fy.

QT\II_IQ is diagonal.
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Week 7-8 Factor analysis

Number of parameters in the model

We have p(p + 1)/2 equations and pk + p parameters ( pk parameters
from Q and p parameters from W) with 3{(k(k — 1)} constraints (e.g.
QTv-1Q0is diagonal):

= d = 4 pars for ¥ unconstrained
— # pars for X constrained

= 3(p— k)= 3(p+ k).

d < 0 infinity of exact solutions
d > 0 look for approximate solutions
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Week 7-8 Factor analysis

A The solution in the case d = 0 might be numerically correct but
inconsistent with statistical interpretation.

Example:
1 09 07
>=| 09 1 04
0.7 04 1
[Wll = *0.575!, qi11 = 1.255].
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Week 7-8 Factor analysis

Example: p=3, k=1=d=0

9% + P11
L=| qiq2 9 + U
q193 4243 a3 + 33

A d = 0 yields only a unique numerical solution! It need not be
consistent with statistical thinking
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Week 7-8 Factor analysis

Example: Suppose now p =2 and k =1, then d < 0.

()= (a v )
Z: s 2
p 1 qq g+ WV

We have an infinity of solutions: for any a(p < a < 1) a solution is
provided by:

G =0a; @ =pla; Y1 =1-0a% Wy =1—(p/a)’
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Week 7-8 Factor analysis Week 7-8 Factor analysis

H Factor Analysis Model

« The factor analysis model aims to describe the dependencies between H Factor Analysis Model
the p variables in a data set by a lower number k < p of latent ) . )
factgrs e it assumes X — Qy,__ + U+ . The randopm vector F + A normalized analysis is obtained by the model P = QQ" + W The
(k-dimensional) contains the common factors, U (p-dimensional) the gt.er;);eta’iongof the factors is given directly by the loadings
specific factors, Q(p x k) the loadings matrix. CIXE T = _ _ o _

« It is supposed that F and U are uncorrelated and have mean zero and « The factor analysis model is scale invariant. The loadings are not
uncorrelated components, i.e., F ~ (0,Z), U ~ (0, W) with a diagonal unique (only up to multiplication by an orthogonal matrix).

— « The non-uniqueness of the model is determined through the degrees

v, Cov(F,U) =0.
This leads to the covariance structure ¥ = QQ" + V. of freedom d = 1/2(p — k)2 —1/2(p + k)

* The interpretation of the factor F is obtained through the correlation
Pxe = D12Q.
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Estimation of the Factor Model

Example: Data set carmean?2 consists of the averaged marks (from 1 low
It is often easier to make the calculations for the standardized model to 7 high) for 31 car types.

(recall that FA is scale invariant).
We consider price, security and easy handling.

Define:
Y = HXD /2 1 0.975 0.613
4 R = 1 0.620
centering matrix 1

Find a decomposition of the correlation matrix 7: We look for one factor, i.e. k = 1. (# number of parameters of X

~ = ~ trained — # parameters of ¥ constrained) equals here
D — 5,387+ Uy uncons
i Hp— kP = 3(p+ k)= 3317 - 3B+1) =0,
QYQ\T/ common factors So there is an exact solution!
vy specific factors
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The equation Together with '(/711 =1-397, Voo =1— g5 and ’1/733 =1-— 33 we get the
—~ solution
1 max max @ +Yvn Qg 9193 R N N
e ke[ PP Bape g1 = 0.982 G = 0.993 G; = 0.624
bomws | = R= RGN " 0.035 i 0.014 n 0.610
~ > ) = . = . = . .
1 @+ 33 11 22 33
yields the communalities F,Z = 6,2 Since the first two communalities are close to one, we conclude that the
first two variables, namely price and security, are explained by the factor
~2 X Xo XX ~2 X Xo XX ~2 X X3MXoXs
32 = g5 = 2 g; = =02 very well.
rX2X3 rX1X3 rX1X2
This factor might be interpreted as a “price+security” factor.
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The Principal Component Method Error of approximation

Decompose var(X) =S = GLG .

Residual matrix S — (QQ" + W)
Retain the first k eigenvectors to build

O =[Vlhe,. . Vil

Omitting p — k eigenvectors shouldn’t cause big error if the corresponding
eigenvalues \;, i = k+1,...,p are small. [5— AOT 4 <P Lp
> (007 + )u—"“+ +

Specific variance are estimated by diagonal elements of

[ diag is 0 but off-diag not]

Analytically:

A A ives an estimate of error of the approximation (using Frobenius norm).
S—0aT. g PP (using )

This gives simple criterion for the choice of number of the factors.

This gives v
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Method of Principal Factors
Algorithm of Principal Factors Method

D = 1-— K2
We start with an estimate of the communality: i 1 hL
Construct R—-V
T2 _ . . - p
1) h? = the square of thezmultlpli correlation R—-V = > vy
coefficient, i.e. p(V, Wp) with V = X R (=1
W X, . ’ ! qe = VA, {=1,...k
b ( @)é;ﬁj Q\ T /\1/2
B = OLS of regression of V on W = 1174
- r = ()
2) ko= ?;flf&le M = diag(A1, ..., Ak)
R = correlation matrix. . B k =
Vjj = 1-> a3
(=1
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The Maximum Likelihood Method

Log-likelihood function ¢ for a data matrix X of observations for By substituting ¥ = QQ " + WV

X ~ Np(p, X): R B
plis, ) (7.0 W) =~ [log{| 2(QQT + W) [} —tr{(QQT + ¥) 15}]
n 1
UXmE) = —Zlog|2rE | 5> (x—pE 10 —p)'
2 2 2 This model is not well defined.
= —Jlog| 27X | —otr(T L) — (X — )T Mz —p)" . TUole e o .
- 5 198 2 2 K K- Therefore, we require that Q' WV~ Q is diagonal matrix.

The maximum likelihood estimates of @ and W are obtained using an
iterative numerical algorithm (function factanal() in R library MASS).

x|

Evaluated at its maximum g =

WXL E) = —g {log(| 27 |) — tr(Z15)} .
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Week 7-8 Factor analysis

LR test for the Number of Common Factors

The test follows directly from the assumption of normality. We test
Ho: £ =0QQ" + WV
Hy : X arbitrary (positive definite) matrix

See the chapter on Likelihood Ratio tests.

The likelihood ratio statistic is

maximized likelihood under Hg
maximized likelihood

—2A = —2log {

~ leg (rQQWI

—n/2
‘5 ’ ) + n{tr[(QQT + ITJ)_ISN] - p}

with (1/2)[(p — m)? — p — m] degrees of freedom.
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Week 7-8 Factor analysis

Varimax

The varimax method tries to find “reasonable rotation” automatically.

The interpretation of the loadings would be simple if the variables split
into disjoint sets, each of which is associated with one factor. A well
known analytical algorithm which tries to rotate the loadings in this way is
the varimax rotation method.

Varimax method tries to find the rotation which maximizes the sum of the
variances of the squared loadings a?‘j within each column of Q* (this
should lead to gjjs close to 0 or 1):

k 2
1 4 1 o
rotartTi]oan)s( Q* _/z—; E z]:(qU) B [ Z(qu) ]
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Week 7-8 Factor analysis

Rotation

The factor analysis model is not uniquely defined and the factors can be
rotated without any loss of information.

We are free to rotate the estimated factors rather arbitrary. This feature of
factor analysis is rather controversial.

Usually, we rotate the factors in a way which provides reasonable
interpretation which is consistent with the measured variables.

In the most simple case of kK = 2 factors a rotation matrix G is given by

g(e):< cosf sin0>

—sinf cosf

which represents a clockwise rotation of the coordinate axes by the angle 4

(then O* = OG(9)).
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Week 7-8 Factor analysis

Promax

The promax rotation is similar to varimax but it works without the
condition of orthogonality (so-called oblique rotation).

The resulting correlated(!) factors are typically easier to interpret.
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Week 7-8 Factor analysis Week 7-8 Factor analysis

Strategy for Factor Analysis
H Estimation of the Factor Model

* In practice @ and W have to be estimated from S = @Q\T + V. The

. : . ff isd=1(p—k)?2-1 k).
© Perform a principal component factor analysis, look for suspicious number of free parameters is d = 3(p ) 2(p+K)

observations, try varimax rotation The maximume-likelihood method supposes a normal distribution for

the data, a solution can be found by numerical algorithms.

*

@ Perform maximum likelihood factor analysis including varimax rotation

*

The method of principal factors is a two-stage method which

Compare the factor analyses: do the loadings group in the same ) )
° P y g5 group calculates Q from the reduced correlation matrix R — W, ¥V a

manner? . . . .
_ pre-estimate for W. The final estimate for W is found by
@ Repeat the previous steps for other number of common factors - kK 2
Yip=1-— Zj:l qj;-

© For large data sets, split them in half and perform a factor analysis on
each part. Compare the solutions.

*

Principal components can be interpreted as a simple factor analysis

model with loadings Q = Fk/\i/2.

*

A better interpretation can be found by rotating the loadings O.
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Week 7-8 Factor analysis Week 7-8 Factor analysis

Factor scores

Factor scores are estimates of the unobserved random vectors Fy, Assuming joint normality, the conditional distribution of F|X is

=1,k for each individual i, i =1,....n. multinormal with E(F|X = x) = Q"¥71(X — p) and the covariance

- ) - Ty-1
Factor scores may be useful for interpretation as well as in the diagnostic matrix var(F|X = x) =T, - Q' Q.

analysis In practice, we replace the unknown Q, ¥ and u by corresponding

The idea of the regression method (or Thomson method) is to consider estimators, leading to the estimated individual factor scores:

the joint distribution of (X — 1) and F (assuming multivariate normality) 7 @TS_I(x- %)

and then derive the conditional distribution F|X. T ! '

We prefer to use the original sample covariance matrix S as an estimator

of ¥, instead of the factor analysis approximation Q0T + V. in order to
(X _ M) (QQT + v Q) be more robust against incorrect determination of the number of factors.

var = .

The joint covariance matrix of (X — u) and F is:

F )~ or Ty

Note that the upper left entry of this matrix equals ¥ and that the matrix
has size (p + k) x (p + k).
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Week 7-8 Factor analysis

Notes

@ The same rule can be followed when using R instead of S. In this
case the factors are given by

fi=Q0 "R Yz),

where z; = Dgl/Z(x,- —X), @ is the loading obtained with the matrix
R, and Ds = diag(si1, - -, Spp)-

@ Using MLE (treating F as unknown parameters), one arrives to
Bartlett's scores.

© Clearly, if the factors are rotated by the orthogonal matrix G, the
factor scores have to be rotated accordingly, that is

o
i =0"%.
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Tyden 9

Mnohorozmé&rné skalovani:

@ matice vzdalenosti,
@ metrické fedeni,
@ nemetrické fedeni (PAVA a STRESS).
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Week 7-8 Factor analysis

Concluding remarks

In practice, this technique is also called Exploratory Factor Analysis.

After exploring the factors, one can perform the so-called Confirmatory
Factor Analysis allowing more detailed investigation of the underlying
factors (one can imagine that oblique factors could be explained by
another factor analysis leading to a hieararchical model).

Relationship between the unobserved factors can be investigated using
Structural Equation Models (R library sem, M-plus, LISREL).

Factor analysis models are popular mainly in psychology and behavioral
science.
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Euclidean distance

Tofp-------------3

Yof---------f--

Z1 (51

d(x,y) = (x=y)T(x—y)
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Distance matrix

Distance and similarity

X(n x p) with n measurements (objects) of p variables.

The distance matrix D(n x n) is a matrix of all distances between all pairs

of observations:

distance, L; distance, Mahalanobis distance, etc.)

d11 d12 d1,-, Example:
o data(bank2)
dist(bank2,method="euclidean™)
D— dist(scale(bank2),method="euclidean™)
: : For nominal (or binary) variables it is easier to define a measure of
dn dno dnn similarity (e.g., various ratios of “number of concordances” such as
Jaccard, Tanimoto, Simple Matching, etc.)
Example: Ly-norm: djj = ||x; — Xj||2, where x; and x; denote the rows of
the data matrix X
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Example: Let us consider data set on songs in 20 medieval songbooks.

spev

HOMO QUIDAM
FACTUM EST
ELEVANS AUTEM
ROGO ERGO
DIVES ILLE
DEUS CARITAS
HOMO QUIDAM
EXI CITO
DOMINE FACTUM
10 DICO AUTEM
11 QUIS EX
12 CONGRATULAMINI

© 0 NO O > WN -

Z. Hlavka (KPMS)

LI T T T R T A R - - A v

LT T T R T A - - I A =

LT T T T R
LT o T T o A

Lol e - - - |
Lol e B B I |

Considering observations x; and x; and denoting

G KLSMF PaSMWLCBFSGToCMe QR a = jg::le(xm = xjp ="x"),
X X X _ _XX X__ X XX XXX p
X X X XXX _ _ __ X XX XXX a2 = Zk:1|(xik— - s Xjk = x"),
X X - - - - - _ - - - __. xxx P non non
X X X XX _X X __ X X_ XXX a3 = Zk:1|(xik* X Xjk = ),
X X X _ _ _ _ ___ %X XX X _ _ - ZP (e = 6 = ")
- X _ - _ _ X _ X X _ k=1
X X X XXXX XXX X XX XX _ ) .
¥ ¥ ¥ XxXxxr¥ XXX X XX X% _ we can define a proximity measure as
X X X _ _ - - _- _- _ X _ X X X al—|-($a4
X X X _ _X_ ___ _ _%X XXX sij =
X X X XXX _ XXX X XX XXX a1+ das + A(a2 + a3)
PR oo E e E R R by choosing some § and .
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Distance can be easily calculated for numerical measurements (Euclidean

206 / 413

208 / 413



Name o A Definition
d1
Jaccard 0 1 o
i a1+ as
Tanimoto 1 5 F 2o F 23 T o
Simple Matching (M) 1 1 %})5’4
Dice 0 05 2a;

2a1 + (a2 + a3)

In the songbooks example, the Jaccard measure seems to be reasonable.
Calculating the similarity measure for all pairs of songbooks, we obtain a
similarity matrix S = s;;.
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H The Proximity between Objects

* The proximity between data points is measured by a distance or
similarity matrix D whose components dj; give the similarity
coefficient or the distance between two points x;, ;.

« There exists a variety of similarity (distance) measures for binary data
(e.g., Jaccard, Tanimoto, Simple Matching coefficients) and for
continuous data (e.g., L,-distances).

* The nature of the data could impose to choose a particular metric A
for defining the distance (standardization, x2-metric etc.).
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Distance and similarity

Distances and similarities are closely related. It may be useful to
“transform” similarity to distance because some methods require distances.

Denoting similarities as sj;, distances can be defined as

dij = \/sii — 2sjj + sjj or djj = max; j{s;j} — s;j (we want symmetry and
dii = 0).

In the songbook example, we can define

a + az
d,j-:izl—s,-j
ap+ a» + a3

as a ratio of “common songs” (from songs that are contained in

songbooks i and j).
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Euclidean matrix

It is easy to calculate distance matrix D from the data matrix X but is it
possible to calculate the data matrix X from a distance matrix D?

Definition: We say that D = (dj;) is a distance matrix if djj = dji > 0 and
d,','ZO, for i,jzl,...,n.

The first step would be to verify that the matrix D is Euclidean (i.e., that
it contains Euclidean distances).

Definition: We say that a matrix D = (dj;) is Euclidean if for some points
Xi,...,%n € IRP; dg = (x — x;) " (xi — xj).
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Theorem: Define A = (aj), ajj = %d? B = HAH, H being the
centering matrix. Then the matrix D is Euclidean if and only if B is

positive semidefinite.
Idea of the proof:

1/ Assuming that D is Euclidean for centered data matrix X', we have

2 _ T
d xx,+x XJ—2XIXJ

Writing B = HAH implies that bjj = a; —3; —3;+a. == x-ij.

1
Therefore B=XXT > 0.

2/ Assuming that B > 0 and rank(B) = p, we can write B =T,A,l} and

it follows (similarly as above) that D is matrix of Euclidean distances of
1/2

points in X = ;A

Note that the matrix X = I'P/\}J/2 is centered.
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iz 22 i
MDS solution (metric MDS)

Recall that B = HAH, where a; = —3d7.

Assuming that rank(B) = p and writing B=T /\,,F;, we obtain data
matrix X' = Fp/\,l,/2 that preserves the observed distances in p-dimensional
space.y

If some of the eigenvalues are small, we can obtain a good representation
(of the distances) in k-dimensional space by X' = Fk/\l/2

Note that the final configuration of points in IR* can be arbitrarily rotated
and shifted without changing the distances.
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Multidimensional scaling

MDS uses proximities (distances) between objects to produce a spatial
representation of these items.

In contrast to the techniques considered so far MDS does not start from
the raw multivariate data matrix, &X', but from a (n x n) dissimilarity or a
distance matrix D. Hence, the underlying dimensionality of the data under
investigation is not known.

More precisely: MDS searches for a “configuration” of points in R that
“preserves” the distances of objects in IRP (where p is not known).

MDS-techniques can help to understand how people perceive and evaluate
certain items:

metric MDS is based on Euclidean distances,

non-metric MDS assumes that distances are on ordinal scale.
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Example: Consumers’ impressions of the dissimilarity of certain cars.

Audi 100  BMW 5 Citroen AX Ferrari

Audi 100 0 2.232 3.451 3.689
BMW 5 2.232 0 5.513 3.167
Citroen AX 3.451 5.513 0 6.202
Ferrari 3.689 3.167 6.202 0

library(SMDdata) ; library (MASS) ;data(carmean?2)
X=cmdscale(dist (carmean?2))

plot (X,type="n")
text (X,labels=row.names (carmean?2))
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Metric MDS
@ ferrarj
N
artburg
trgbant Jagupr
—
>
lada rover
bm
o citroemazda audi
itsubishi
fiat nissanf 4

- hyundai ~ opel_ygetragiercedes

. one!fc&}%apm .

-4 2 0 2 4

X
MDS solution.
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Correlations MDS/Variables

Correlations between the MDS direction and the original variables.
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The dissimilarities were in fact computed as Euclidean distances from the
original data containing car marks data on economy, price, security, ...

Therefore, we can plot the correlation between the MDS projection and
the original variables (see next slide).

The first MDS direction is highly correlated with service(-), value(-),
design(-), sportiness(-), safety(-) and price(+). We can interpret the first
direction as the price direction since a bad mark in price (“high price”)
obviously corresponds with a good mark, say, in sportiness ( “very
sportive").

The second MDS direction is highly positively correlated with practicability.

We see that we have a non-linear relationship between price and
practicability.
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Relation to principal components

Let X’ be a data matrix. Assume (WLOG) that X is centered.

Notice that nS = XTX and B = XX T have the same non-zero
eigenvalues.

The SVD decomposition X = ULV implies that the spectral
decomposition of X T X is VL2V . Therefore, the principal compoments
XV =ULVTV =UL =TA/? (where XXT =TATT (=ULUT)).

Therefore, the metric MDS solution recovers the first k principal
components (of the original data set).
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Multidimensional scaling Multidimensional scaling
Nonmetric MDS

m Multidimensional Scaling

Nonmetric MDS is based on a “loose” relationship between dissimilarities

« MDS uses distances between n items to project high-dimensional data _
and distances.

in a low-dimensional space.

+ MDS (using Euclidean distances in p dimensions) leads to first The distance is defined as an arbitrary monotone function of the
k principal components of the original data set. dissimilarities (i.e., nonmetric MDS is based on the rank order of the
* It can be shown that the metric solution to MDS leads to optimal dissimilarities).

representation of the original data set in k dimensional space (from

the point of view of E(dﬁ _ 85) where dj; are the original distances The most common approach is to determine (some) (non-Euclidean)

distances and then obtain the coordinates of the objects by using the

and d;; are the projections in IRK—note also that d;; < dj;).
v b i < dy) iterative Shepard-Kruskal algorithm.
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b o) i i) i
Shepard-Kruskal algorithm

Example: Consider a small example with 4 objects based on the car marks

@ calculate Euclidean distances from arbitrarily chosen inital data set.
configuration X (or use metric MDS to obtain the initial coordinates),

@ define new distances so that they are monotone function of the ] 1 2 3 4

original dissimilarities (using monotone regression), Mercedes Jaguar Ferrari VW

|
© calculate new configuration of the data which is more closely related 1 Mercedes -
to the distances obtained in step 2 (minimize STRESS, numerical 2 Jaguar 3
approximation on a computer is needed), 3 Ferrari 2 1 -
4 VW 5 6 -

@ check the change of STRESS, if it isn't small enough, iterate the
algorithm.

We demonstrate each step of the algorithm using a simple example.
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Our aim is to find a p* = 2 dimensional representation via MDS. Suppose
that we choose as initial configuration Ay the coordinates as:

Initial Configuration
- [ Xi1 X2
) 1 Mercedes 3 2
i 2 Jaguar 7
3 Ferrari 1 3
e 4 VW 10 4
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Dissimilarities and distances

(34)

Distance

A plot of the dissimilarities is not satisfactory since the ranking of the ¢;;
did not result in a monotone relation of the corresponding distances dj;.
We apply therefore the PAV algorithm.
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The corresponding distances d;; = v/(x; — x;) T (x; — x;) are

I_/ d," rank(d,-j) (S,J

12 5.1 3 3
1,3 22 1 2
14 7.3 4 5
23 4.1 2 1
24 85 5 4
34 0.1 6 6
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PAVA = “pool adjacent violators” algorithm (= algoritmus “zprimérovani
sousednich narusiteli”) is used to calculate the LS estimator under
assumption of monotonicity.

The first violator of monotonicity is the second point (1,3) we therefore
average the distances di3 and db3 to obtain the disparities
. N diz+dy  22+4.1

= = - .1 .

We apply the same procedure to the pair (2,4) and (1, 4) to yield
do4 = dig = 7.9. The plot od J;; versus the disparities dj; represents a
monotone regression relationship.

In the initial configuration, the point 3 (Ferrari) could be moved so that
the distance to object 2 (Jaguar) is smaller. This procedure however also
alters the distance between objects 3 and 4. More care has therefore to be
taken for an establishment of a monotone relation between §;; and dj;.
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STRESS

In order to assess how well the derived configuration fits the given
dissimilarities Kruskal suggests a measure called STRESS1 that is given by

~ 1
Yicj(di — di)*\
>ic;di

An alternative measure of STRESS1 is given by

STRESS1 = (

NI

_i(dyj — dy)?
STRESS2 = (Z’<f( i~ %) )

i<j(di' —3)2

where d denotes the average distance.
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The aim is a point configuration that balances the effects STRESS and
non monotonicity. This is achieved by an iterative procedure defining new
position of object i relative to object j by

x;’/VEWZX;/+O‘< _iJ:>(le_X”)’ I=1,....p"

Here o denotes the step width of the iteration.

The configuration of object i is improved relative to object j. In order to
obtain an overall improvement relative to all remaining points one uses:

. .

Q djj

i =i 2 (1_C1.J.>(>g,—x,-,), I=1....p"
J=1#i -

The choice of step width « is crucial. Kruskal proposes a starting value of
a = 0.2. The iteration is continued by a numerical approximation
procedure.
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STRESS calculations for the car example:

(i) 65 dy dy  (dj—dy)*  di (dyj—d)?
23) 1 41 315 09 168 38
(1,3) 2 22 315 09 48 148
(1,2) 3 51 51 0 260 0.9
(24) 4 85 79 04 723 6.0
(14) 5 73 79 04 533 16
34) 6 91 91 0 82.8 9.3
pa 36.3 2.6 2560  36.4

The average distance is d = 36.4/6 = 6.1. The corresponding STRESS
measures are: STRESS1 = /2.6/256 = 0.1,

STRESS2 = \/2.6/36.4 = — .27
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In a fourth step, the evaluation phase, the STRESS measure is used to
evaluate if its change as a result of the last iteration is sufficiently small to
terminate the procedure, or not. At this stage the optimal fit has been
obtained for a given dimension. Hence, the whole procedure needs to be
carried out for a several dimensions.

Let us compute the new point configuration for i = 3 (Ferrari). The initial
coordinates are x31 = 1, x3» = 3. Applying the above formula yields:

3 ‘ d
NEW 31 .
31 —1+47_1'§_ <1d31>(le 1)
J=1j#3

1+<1-2‘f) (3—1)+<1—3éf) (2—1”(1—2:1) (10— 1)

=1-0.86+0.23+0=0.37

Similarly we obtain x}5F"W = 4.36.
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Similarity of cars in R:

First iteration for Ferrari

d=matrix(c(0,3,2,5,3,0,1,4,2,1,0,6,5,4,6,0) ,nrow=4)

© sager row.names (d)=c("Mercedes","Jaguar","Ferrari","VW")

colnames(d)=row.names (d)

### the initial configuration

init=matrix(c(3,2,1,10,2,7,3,4),ncol=2)

qX§mﬂM o | par (mfrow=c(1,2))

plot(init,xlim=1.1*range(init),ylim=1.1*range(init),
Ferrar_irit xlab="",ylab="")

N N text (init,labels=row.names(d))

### the non-metric solution

mds=isoMDS(d,trace=TRUE,y=init)

plot (NULL,x1lim=1.1*range (mds$points),
ylim=1.1*range(mds$points) ,xlab="",ylab="")

First iteration for Ferrari. text (mds$points,labels=row.names(d))
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Example: Inter-city distances in Czech Republic.

Example: Dissimilarity matrix for car marks data set:
d=matrix(c(0,3,1,5, 3,0,4,2, 1,4,0,6, 5,2,6,0),nrow=4)

row.names (d)=c("Praha","Brno","Plzen","Ostrava") _
colnames (d)=row.names (d) J
### the metric solution

1 2 3 4
Nissan Kia BMW Audi

|

body=cmdscale(d) 1 Nissan -
plot(body,xlim=1.1*range (body) ,ylim=1.1*range (body), 2 Kia 2

xlab="",ylab="") 3 BMW 5 6 B
text (body,labels=c("Praha","Brno","Plzen","Ostrava")) 4 Audi 3 4 1 -
### the non-metric solution
mds=1soMDS (d, trace=TRUE) The dissimilarity matrix contains obviously only ranks of dissimilarity.
plot (NULL,x1lim=1.1*range (mds$points), Applying metric MDS may not be appropriate in this situation.

ylim=1.1*range (mds$points) ,xlab="",ylab="")
text (mds$points,labels=c("Praha","Brno","Plzen","Ostrava"))
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nonmetric MDS

Nissan

-2 0 2 4

X1

The outcome of the Shepard-Kruskal algorithm. It is important that both

axes have the same scale, different scales could lead to wrong

interpretations.

Z. Hldvka (KPMS)
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Example: The nonmetric MDS solution for the songbooks example (—

SMSclussong):

Z. Hlavka (KPMS)

AL

[
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239 / 413

The Euclidean distances between the points are:

] 1 2 3 4
Nissan Kia BMW Audi
Nissan -
Kia 2.00 -

BMW  5.02 6.02 -
Audi 320 416 1.88 -

AW N T

These distances are different from the original dissimilarities but their
order is the same, i.e., the STRESS measure is equal to 0.
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; ! Nonmetric Multidimensional Scaling

« Nonmetric MDS is based only upon the rank order of dissimilarities.

* The object of nonmetric MDS is to create a spatial representation of
the objects with low dimensionality.

x A practical algorithm is given as:

Choose an initial configuration

Normalize the configuration.

Find dj from the normalized configuration

Fit 8,, the disparities by the PAV algorithm

Find the new configuration X, 11 by using steepest descent.
Go to 2 and interate until STRESS is small enough.

©00000
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Tyden 10 Cluster analysis
Cluster analysis is a set of tools and methods for building groups (clusters)

from multivariate data objects. The aim is to find groups with
homogeneous properties out of heterogeneous large samples.

Shlukova analyza: The algorithm is usually divided into two fundamental steps:
@ shlukovaci algoritmy, @ the choice of a proximity measure,
@ hierarchické aglomerativni algoritmy, @ the choice of a group-building algorithm.

@ dendrogram.
We have already discussed several distance and proximity measures. The
choice of proximity measure typically follows from the type of
measurements in the data set.

In the following, we assume that we have (n x n) distance matrix D
(calculated from p-dimensional data set X).

NMSTS39 S NMISTS39 20/ 413
Sl il Cirizy il
Group-building algorithms Agglomerative algorithms

Two types of clustering methods: The agglomerative algorithm consists of the following steps:
@ partioning algorithms (typically computationally intensive

..o . L © Construct the finest partition.
optimization of a given criterion),

. . . @ Compute the distance matrix D.
@ hierarchical algorithms:

o agglomerative,
e partioning.

DO

o . . . . 3. Find the clusters with the closest distance.
In partitioning techniques the assignment of objects into groups may

change during the (iterative) algorithm. 4. Put those two clusters into one cluster.
5. Compute the distance between the new groups and obtain a reduced

In hierarchical clustering this assignment cannot be changed (the distance matrix D.

algorithm produces a sequence of clusters by “splitting” or “joining”).

. . . UNTIL all clusters are agglomerated into X.
In the following, we look at agglomerative techniques.
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\WEIM Cluster analysis

Agglomerative techniques are computationaly simple because the distances
between clusters can be easily calculated from the distance matrix D.

If two objects or groups P and @ are to be united one obtains the distance
to another group (object) R by the following distance function

d(R,P+ Q) = 01d(R,P)+02d(R, Q)+ d3d(P, Q)+ d4|d(R, P)—d(R, Q)|

d0; weighting factors

Z. Hldvka (KPMS) NMST539 245 / 413

Example: x; = (0,0),x = (1,0),x3 = (5,5) and the squared Euclidean
distance matrix with single linkage weighting.
The algorithm starts with N = 3 clusters P = {x1 }, Q = {x2}, R = {x3}.
The single linkage distance between the remaining two clusters:
1 1 1
d(R,P+Q) = Zd(R,P)+d(R,Q)~7ld(R,P)—d(R, Q)|
= min(d(R, P),d(R, Q))

— min(d(R, P), d(R, Q))
= 41
The reduced distance matrix is then <401 401).

Single linkage = nearest neighbor!
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(WO Cluster analysis

01 02 03 94
Single linkage 1/2 1/2 0 -1/2
Complete linkage 1/2 1/2 0 1/2
Average linkage 1/2 1/2 0 0
(unweighted) N
Average linkage np Q 0 0
(weighted) np :;”Q np ;;”Q oo
Centroid npt+ng  TpF ng —(nP n nQ)2 0
Median 1/2 1/2 -1/4 0
Ward Ll ;i_ np - IR ;: nQ f,ZTR 0

np =Y i1 I(x; € P) denotes the number of objects in group P
n . =nr-+np+ng
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(WO Cluster analysis

Dendrogram

Dendrogram:

@ a graphical representation of the sequence of clustering,

@ displays the observations, the sequence of clusters and the distances
between the clusters.

Construction of dendrogram:

@ tree displaying the progress of the agglomerative clustering algorithm,
@ the row name (or row number) is given on the horizontal axis.

@ the vertical axis gives the distance between clusters.
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\WEIM Cluster analysis

Example:

8 points

second coordinate

1 2

-2 0 2 4
first coordinate

The 8 points example:
eight=cbind(c(4,2,-2,-3,-2,-2,1,1),c(-3,-4,-1,0,-2, 4,2,4))
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G
Cutting the tree

If we decide to cut the tree at the level 10 we define three clusters: {1,2},
{3,4,5} and {6,7,8}.

gr=cutree (hclust(dist(eight) "2,method="single") ,k=3)
In practice, it is important to interpret the resulting clusters using tables of

means and (multivariate) graphics:

sapply(data.frame(eight) ,tapply,gr,
function(x)sprintf ("%0.1f" ,mean(x)))

plot(eight,col=as.numeric(gr) ,pch=as.numeric(gr)+1)

In practice, the choice of the number of clusters is usually based on the
visual inspection of the dendrogram.
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(WO Cluster analysis

Single Linkage Dendrogram - 8 points

15

Squared Euclidian Distance
0

The dendrogram for the 8 points example (single linkage algorithm with
squared Euclidean distances).

plot(hclust(dist(eight) "2,method="single"))
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Qi el
Group building algorithms

Single linkage nearest neighbor, tends to build “chains”.

Complete linkage furthes neighbor, creates groups where all points are
close.

Average linkage computes average distance (compromise between single
and complete linkage).

Centroid uses geometrical distance.

Ward joins groups that do not increase too much a given measure
of heterogeneity (and creates nice looking homogeneous

groups).

In practice, most “usable” results are typically obtained by Ward algorithm.
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\WEIM Cluster analysis (WO Cluster analysis

Ward algorithm Example: US companies data set.
The measure of heterogeneity for a group R is the inertia inside the group: data (uscomp)
1 &R 0, uscomp$Sales=as.numeric(as.character(uscomp$Sales))
Ik = nr Z d*(xi. Xr). uscomp$Sales[65]= 1601
=1 d=dist(scale(uscomp[,c(-7)]1))
where Xg is the mean (center of gravity) of the group R. plot(cluscomp.c<-hclust(d)

plot(cluscomp.s<-hclust(d,method="single"))

When two objects or groups P and @ will be joined, the new group P 4+ @ plot (cluscomp.w<-hclust(d,method="ward"))

will have a larger inertia Ip;g. The increase of inertia is given by

AP, Q) = nphQ d?(P, Q). gr3=cutree(cluscomp.w,k=3)
np +nQ sapply(uscomp[,-7],tapply,gr3,function(x)round(mean(x)))
parcoord(uscomp[,-7],col=as.numeric(gr3))
The Ward algorithm joins groups P and Q that give the smallest increase table (gr3,uscompl,7])
of A(P, Q).
This interpretation is correct if we are working with squared Euclidean It seems that better results could be obtained by logarithmic
distances (note that hclust () contains two versions of Ward algorithm). transformation of the data set.
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Cluster Dendrogram H Cluster analysis

3.0
|

25

« The class of clustering algorithms can be divided into two types:
hierarchical and partitioning algorithms. Partitioning algorithms start

20
I

R from a preliminary clustering and optimize given criterion by
g o exchanging group elements.
1 2 « Hierarchical agglomerative techniques start from the finest possible
R TE’—_‘ETW - . s structure, compute the distance matrix, and join clusters with the
oxuwegans e 2% 5%s0 g« smallest distance. This step is repeated until all points are united in
one cluster.
helue - ward 07 * The agglomerative procedure depends on the definition of the

distance between two clusters. Often used distances are single

linkage, complete linkage, Ward distance.
The dendrogram for the songbooks example (Ward algorithm based on Jaccard L .
x The process of the unification of clusters can be graphically

measure): two cluster solution corresponds to the division of Francia into West
represented by a dendrogram.

Francia (more-or-less current France) and East Francia (more-or-less current
Germany) in the 9th century (after the death of Charlemagne) — SMSclussong
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Rl e Ve
Tyden 10-11 Discriminant analysis

The aim of discriminant analysis is to construct discriminant rules allowing
classification of new items (subjects) into known populations I},
Diskriminaéni analyza: Jj=1...,J
e motivace a maximalnf v&rohodnost, Discriminant rule is a partition of the sample space:

@ linearni a kvadratickd diskrimina&ni analyza,

J
. R = IRP
@ pravdépodobnost chybné klasifikace, j91 !
@ Fisheriv pfistup. T
partition

The new observation is classified into population [1; if it falls in R;.
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Bayes rule Example: A discrimination rule based on observations of a

one-dimensional variable with an exponential distribution.

The pdfis f(x) = Aexp {—Ax} for x > 0. Comparing the likelihoods for
two populations Iy : Exp(A1) and MMy : Exp(\2), we allocate the
observation x into population Iy if

Suppose that observations from [1; have density f;(x) and that the 7; is
the prior probability of ;.

Using Bayes theorem:

Li(x)/La(x) = 1
fi(x)m; A1
P(Mj|X =x) = —22L x(A1— A < log —.
an ) ST 0m (A1—A2) < g5,
Interpreting P(IN;|X = x) as the posterior probability of population ; Assuming that A; < Az, we obtain:
(after observing X = x), we classify X to I'Ia,gmaxj P(M;|X)- . { . log A1 — log /\2}
1 =<X:ix> ———"2"°=3
The corresponding discriminant rule R; is defined as AL — A2

{x« fi(x)mj 2 filx)mi, i # j} (maximum likelihood). The observation x is classified into [y if it is greater than the constant

(|Og )\1 — |Og )\2)/()\1 — )\2)
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Week 10-11 Discriminant analysis

Credit scoring

Example: Let v denote the gain of the bank from a correctly classified
good client. Let Iy denote the population of good clients.

My represents the population of bad clients that bring the loss C(2|1) if
they are classified as good clients.

C(1|2) denotes the cost of loosing a good client classified as bad.

The gain of the bank as a function of the discriminant rule “client is good
if he falls in region R" is:

G(R) = ~m /‘/(x € R)h(x)dx — C(2]1)m / I(x € R)A(x)dx

_ C(1]2)ms /{1 ~I(x € R)}Ma(x)dx
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Week 10-11 Discriminant analysis

One-dimensional normal distributions

Consider two normal populations My : N(u1,02) and My : N(uo,03) and

T, = To.
1 [/ x— i 2
Li(x) = (2m0?) M2 exp { — = (X4
() = (@ro?) 2 exp 5 (X

and Li(x) > Lx(x) (i.e., x € Ry is classified to ;)
o 1| /x— 2 X — 2
<= 2exp{— [( Ml) —< Mz) ]}>1
o1 2 o1 02

1 1 2 2
= x? <22> 2x<”§“§> + (N%Hg) <2|ogg.
o5 03 o5 05 o5 0 o1

Then

This is quadratic inequality <= 0% # 03.
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Week 10-11 Discriminant analysis

Straightforward calculations lead to

N f(x) C(2]1)m
"= { R C {C(12>+v}m}‘

Theorem: The rule minimizing the Ecpected Cost of Misclassification
ECM = C(2‘1)p217‘1’1 + C(l’2)p127‘1’2 (Where pij is the probability that
observation from [1; falls into region R;) is given by

R = {X: 2(2 = (%3) <:>}
) (112)
) (2[1)

o [ () 3)

Clearly, the Bayes rule is a special case of the ECM rule for equal
misclassification costs.
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Week 10-11 Discriminant analysis

The quadratic rule classifies distant observations into the group with larger
variance.

Example: Suppose that 1 =0, 01 =1 and up =1, 0o = %:

{XZX<1(4— 4+6|0g(2)) orx>;<4+\/4+67|og(2)>},

Ry 3

R, = R\R.

If o1 = o then (for u1 < u2) we obtain a very simple linear discriminant
rule:

1
Ri = {xixs S+ )l

1
Re = {x:ix>5(m+p2)}.
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Week 10-11 Discriminant analysis Week 10-11 Discriminant analysis

Multinormal distribution with common variance matrix

2 Normal distributions

08

Suppose IM; : Np(ui, X).

06

The Bayes rule (assuming equal prior probabilities) allocates x to I1;,
where j € {1,...,J} is the value that minimizes the square Mahalanobis
distance between x and p;:

04

densities

02

i) =(x—p) T M x—p), i=1,...,J.

In the case of J = 2: x is allocated to Iy if

(x = pa) "7 (x = ) < (x = p2) TETH(x = o).

Maximum likelihood rule for one-dimensional normal distributions with
different variances.

NMST539 265 / 413 Z. Hldvka (KPMS) NMST539 266 / 413
Dt e Dt e
Multinormal distribution with common variance matrix Probability of misclassification

Suppose that 1; : Np(ui, X).

Rearranging terms leads to: Consider

Ty—1 Ts—1 Ts—1 Ts—1
AR X2k Xtk ke <0 piz = P(x € Ry | M2) = P{a” (x = 1) > 0| N2}
2pa — 1) T x A (1 — p2) T E T (1 + ) <O
_ 1 .
(1 — p2) "= Hx — 5(,111 +u2)t > 0 In My, o' (X —p)~ N (—%52,52) where 62 = (pu1 — p2) " X1 — p2) is
T( ) > 0 the squared Mahalanobis distance between the two populations, we obtain
a (x—p ,
1
where oo = (g — p2) and p = 3(p1 + p1o). pi2 = (—25) .

The resulting discriminant rule is linear (see also R command 1da()).

Similarly, we obtain the probability of misclassification into population 2
for x from Iy as pp1=% (—%5).
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Week 10-11 Discriminant analysis

Two multinormal distributions

Assuming that IN; : Np(pi, Xi), for i = 1,2, the discriminant rule becomes
more complicated.

1 _ _ _ _
Ry = {x : —EXT(le — S x4 (] Tt = g Ty x — k

n (SR HEN)

where k = 3In (J2}) + 36 Tt — ] 3 n2).

This is a quadratic classification rule (notice that %XT(ZII — Y x=0if
Ty =Xo).
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Week 10-11 Discriminant analysis

Discriminant rules in practice

The unknown parameters (u;, % ;) are estimated by (X;, S;) in each ;.

The common variance matrix > can be estimated by the pooled variance

J J
: S
matrix S, = > nj (nffj) where n = )" n;.
=1 j=1

R library MASS contains the following simple functions for discriminant
analysis:

Ida(): linear discriminant analysis (assuming equal variance
matrices),

qda(): quadratic discriminant analysis (with possibly different
variance matrices).
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Week 10-11 Discriminant analysis

H Discriminant Analysis

« Discriminant analysis is a set of methods for distinguishing between
groups in data and allocating new observations into groups.

* The Bayes discriminant rule allocates an observation x to the
population [1; that maximizes max; 7;f(x).

* For the ML rule and J = 2 multivariate normal populations, the
discriminant rule can be derived from ratio of the densities. The
discriminant rule is linear for common variance matrices and quadratic
if the variance matrices are different.

* For the ML rule and J = 2 normal populations with common variance
matrix, the probabilities of misclassification are given by
pro=p1=9o (—%6) where § is the square root of the Mahalanobis
distance between the 2 populations.
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Week 10-11 Discriminant analysis

Example:

library(MASS) ;library (MSES) ;data(bank?2)
1lda.b2=1da(bank2,pf<-rep(c("Prave","Fales"),each=100))
lda.b2

table(predict(lda.b2,bank2)$class,pf)

gda.b2=qda(bank2, pf)
qda.b2

table(predict(lda.b2,bank2)$class,pf)

7lda
7qda

Note: applying 1da() with x;, x,.2, and x;x; is similar (but not equivalent)
to qda().
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Week 10-11 Discriminant analysis

Apparent and actual error rate

The apparent error rate (APER) is defined as the percentage of
misclassified observations. APER is based on the observations which were
used to construct the discriminant rule and it might be too optimistic.

In order to obtain a more appropriate estimate of the misclassification
probability, we may use simple leave-one-out (or cross-validation)
algorithm:

@ Calculate the discrimination rule from all but one observation.
@ Allocate the omitted observation according to the rule from step 1.

© Repeat steps 1 and 2 for all observations and count the number of
correct and wrong classifications.

The estimate of the misclassification rate based on this procedure is called
the actual error rate (AER).
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Week 10-11 Discriminant analysis

Three (or more) groups

Allocation regions for J = 3 groups:

o) = (71— %) 80— 5 (71 + %))
hiz(x) = (x1—%3)' S, (x — % (X1 +X3))
hs(x) = (k2 —%3)8, (x5 (%2 +%3)).

The ML rule is to allocate x to

My if h12(X) >0 and h13(X) >0
(D) if h12(X) <0 and h23(X) >0
M3 if h13(X) <0 and h23(X) < 0.

In R, discriminant analysis with 3 groups works differently.
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Week 10-11 Discriminant analysis

Example:

1lda.b2.cv=1da(bank?2,pf,CV=TRUE)
table(lda.b2.cv$class,pf)
gda.b2.cv=qda(bank2,pf ,CV=TRUE)

table(lda.b2.cv$class,pf)
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Week 10-11 Discriminant analysis

Example:

data(iris)

## training data set
train=sample(1:150,75) ;table(iris$Species[train])

z=1da(Species”.,iris,prior=c(1,1,1)/3,subset = train)
table(predict(z, iris[-train,-5])$class,

iris[-train,"Species"])

## cross-validation

z.cv.cl=1lda(Species ~ ., iris, prior = c(1,1,1)/3,
CV=TRUE) $class
z.al.cl=predict(lda(Species ~ ., iris, prior =

c(1,1,1)/3),iris[,-5])$class
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Week 10-11 Discriminant analysis

Fisher's approach

Based on projections )) = X a of the original data set X.

Projections leading to a good separation are found by maximizing the ratio
of the between-group-sum of squares to the within-group-sum of squares.

The within-sum-of-squares measures the sum of variations within each

group:
J

J
Zij’ijj = Z aT/'\,’J-THija =a Wa,

j=1 Jj=1
where )); denotes the j-th submatrix of ) corresponding to observations of
group j and H; denotes the (n; x nj) centering matrix.
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Week 10-11 Discriminant analysis

L T
Theorem: The vector a that maximizes 2-52
a'Wa

that corresponds to the largest eigenvalue.

is the eigenvector of W11

Idea of the proof: see Theorem on maximization of quadratic forms.

Discrimination rule: We classify x into the group j for which aTSg is
closest to a'x, i.e.,

x — M where jo = argmin|a' (x — X;)|.
J
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Week 10-11 Discriminant analysis

The between-sum-of-squares is
J J

Y o=y =) nf{a (x-x)}*=a Ba.

j=1 j=1
The total-sum-of-squares >"7_(yi —¥)? =YV ' HY =a' X THXa=a"Ta
can be decomposed as
total SS = within SS + between SS.
a'Ta = a'Wa + a'Ba

The idea is to select a maximizing maximizes the ratio

a'Ba
alWa’
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Week 10-11 Discriminant analysis

Example: For two groups of sizes n; and np, we obtain:

a'Ba = mi{a' (%1 —x)}>+ m{a' (X — x)}?
= nl{aT(Yl—YQ)/2}2+n2{aT(Y1 —Y2)/2}2
- TR 1_ 14T (%1 — %2)%)

Clearly, B = {(n1 + n)/4}dd", where d = (X1 — X») and the largest
eigenvalue of W1B is (n; + ny/4)d T W™1d.

Therefore, the corresponding eigenvector has to satisfy:

W1By {(n1 + m)/4}d "W tdr
W lddTy = dTWldy

leading v = W™ld = Wl (x1 — x2).
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Week 10-11 Discriminant analysis

Proportion of trace and more groups

In this way, we find only one direction maximizing the differences between
two groups.

For three groups, rank(BB) = 2, and we obtain two directions (i.e., a linear
transformation of the original data set maximizing the between-group
differences w.r.t. the within-group variability). The eigenvalues of W~1B
correspond to the importance of these directions (its percentages can be
interpreted as percentages of between-group differences explained by the
corresponding directions).

For g groups, rank(B) < min(p,g — 1). l.e., we obtain at most g — 1
linear discriminants.
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Discriminant analysis
Other usable methods

logistic regression
classification trees
k-nearest neighbors
support vector machine

neural networks
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Week 10-11 Discriminant analysis

Example:

data(iris)

## training data set
train=sample(1:150,75) ;table(iris$Species[train])

z=1da(Species”.,iris,prior=c(1,1,1)/3,subset = train)
pz<-predict(z, iris[-train,-5])
table(pz$class,iris[-train, "Species"])

egscplot(pz$x, type="n",xlab="LD1",ylab="LD2")
spec=as.numeric(iris[-train,5],1,1)

text (pz$x,labels=spec,col=spec)

z ## see "proportion of trace"
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Week 10-11 Discriminant analysis

; E Discrimination Rules in Practice

x Linear discriminant rule allocates x to the population with smallest
Mahalanobis distance

82 (x; i) = (x — i) T (x — i)
x Classification for different covariance structures in the two

populations leads to quadratic discrimination rules.

* The probability of misclassification can be estimated by
cross-validation.

« Fisher's linear discrimination finds a linear combination a' x that
maximizes the ratio of the “between-sum-of-squares” and the
“within-sum-of-squares”. This rule is identical to the (linear) ML rule
in the case of J = 2 for normal populations.
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Tyden 11

Kanonické korelace:

@ kanonické promé&nné, kanonické vektory a kanonické korelace,

@ praktické pouziti a ptiklad.
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Week 11-12 Canonical correlations

Assuming that
XN ([ Txx Txy
Y v)’ Yvx Zyy
we want to find a, b maximizing the correlation p(a, b) = p,Tx pTy-

Note that p(ca, b) = p(a, b) for any ¢ € IR. Therefore, we can maximize
a' Y xyb under the constraints a' Xxxa=b'Tyyb=1.

And this is the same as maximizing uTz;jfzxyz;%v under the
constraints [[ul| = ||v| = 1.
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WWESSREPIN  Canonical correlations

Canonical correlations

We have random vectors X € IR and Y ¢ IR.

Consider linear combinations:

a' X

and b'Y

Correlation of the linear combinations:

p(a,b) = paTxpTy-

We want to find a, b maximizing the correlation p(a, b).

The linear combinations a' X and b' Y describe the structure of “common

variability” of X and Y.

Z. Hldvka (KPMS)
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Week 11-12 Canonical correlations

1/2

Denoting K = X/ nyz;;/z, we have uTZ;(;QZXyZ;%,QV =ul

Clearly, for each v fixed such that ||v|| = 1, we have the following

max (u'Kv)?
u[|ull=1

< max u' Kw'KTu

u,llull=1
= vIK'Kv
< A

where )\ is the largest eigenvalue of XK.

The SVD decomposition K = TAY2AT with k = rank(K) and
A1 > Ao > .. > A > 0 then leads

o Koy = 0% (= (55

Z. Hlavka (KPMS)
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Theorem: Define f, = mz;)x a' X xyb under the constraints
a7

a'Yxxa=b'Zyyb=1and a/Txxa=b/Zyyb=0fori=1,...,r—1
(for some r € {1,..., k} fixed).

The maximum of p(a, b) under the above constraints is given by f, and it
is attained when a = a, = Z;olffy, and b= b, = Z;,%,/zér.

The correlation p(a, b) is maximized for a = a; and b = by and
p(ai, b1) = Aim is the correlation of random variables 71 and ;.

The vectors a, and b, maximize the correlation subject to the condition
that a' X and b" X are uncorrelated with the previous canonical variables
a,-TX and b,-TX, respectively.
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Week 11-12 Canonical correlations

Properties

Theorem: Let 77 and ¢ be the canonical variables, i.e., the components of
the vector 7 are

ni = (Z;ol/%i)T X,

and the components of the vector ¢ are

o= (535 v,

n T /\1/2
Var(()@):(/\l/2 - ;

where A2 = diag(\)/?,..., A/?).

for 1 < i< k. Then
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WWESSREPIN  Canonical correlations

Terminology

Canonical correlation vectors

—1/2
aj = Z)(x i
—1/2
bi = T ¥/26;
Canonical variables
T
ni = a,- X
T
pi=b; Y
Canonical correlation coefficients
1/2 1/2
AL A
Z. Hldvka (KPMS) NMST539 290 / 413

Week 11-12 Canonical correlations

Relation to principal components

Both PC and CC are calculated using eigenvalues and eigenvectors of
some (covariance) matrices.

PC analysis decomposes the “total variability” of one dataset.

CC analysis decomposes the total “common variability” of two datasets.

The “common variability” is described in terms of linear combinations (it
is common and therefore we get description of the common variability in
terms of both datasets).

The canonical variables in both datasets are related: the first canonical
variable in the first dataset describes the same part of the common
variablity as the first canonical variability in the second dataset.
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i E Canonical correlation analysis

« Canonical correlation analysis aims to identify possible links between
two (sub-)sets of variables X € IR9 and Y € IRP. The idea is to find
indices a' X and b"Y such that the correlation p(a, b) = p,7xpTy is
maximal.

. . ~1/2 -1/2
The maximum correlation is found by a; = X3/ i and b; = X/ "9,
where ~; and §; denote the eigenvectors of KT and KT K,
K =50 Sxv T
The vectors a; and b; are the canonical correlation vectors, n; = a,-TX
and p; = b,-TY are the canonical variables.

*

*

« The covariance between the canonical variables is cov(n;, pi) = Vi,
i=1,... k.

Canonical correlations are invariant w.r.t. linear transformations of
the original variables X and Y.

*
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Week 11-12 Canonical correlations

Test of independence

We have already seen that —2log A = —nlog|Z — 82_2182181_11512|.

It can be shown that this LRT test statistic is distributed as a ratio of
determinants of independent Wishart matrices (this is the Wilks' lambda
distribution).

For large values of n, the Wilks' lambda distribution can be approximated
(Bartlett's approximation):

—{n—(p+q+3)/2}0g|T — 85,' 8151, S12| ~ Xzg:
i.e., we reject independence of X and Y if

—{n—(p+qg+3)/2}log|Z — 52_2182181_11812| > Xf,p(l — a).
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WWESSREPIN  Canonical correlations

Canonical Correlations in Practice

In practice, the covariance matrices > xx, X xy, Xyy are estimated by
sample covariance matrices Sxx, Sxy, Syy. The canonical correlation
analysis is carried out on the estimates.

Before running the analysis, one should test the hypothesis of
independence between X and Y (using, e.g., the ML test described
previously):

Let Z; = (X;, Y;")T ~ Ngip(1,X), i =1---, n be independent,

Ho: Xxy =0, Hi : no constraints.

Z. Hlavka (KPMS) NMST539 294 / 413

Week 11-12 Canonical correlations

Example: What is the relationship between the datasets on US crimes
(murder, rape, robbery, assault, burglary, larceny, autotheft) and US health
(accident, cardiovascular, cancer, pulmonar, pneumonia, diabetis, liver)?

data(uscrime)
x=sqrt(as.matrix(uscrime[,3:9]))
x=scale (x)

data(ushealth)
y=sqrt (as.matrix(ushealth[,3:9]))
y=scale(y)

n=nrow(x); p=ncol(x); g=ncol(y)

x denotes US crimes
y denotes US health

Z. Hlavka (KPMS) NMST539 296 / 413



WWESSREPIN  Canonical correlations

sxx=cov(x) ;syy=cov (y) ; sxy=cov(x,y)

t=-(n-(p+q+3)/2) *log(det (diag(l,q) -
solve (syy) %x%t (sxy) %x%solve (sxx) %x%sxy))
format.pval(1-pchisq(t,p*q)) ## test of independence

e=eigen(sxx)
sxx12=e$vectorsy*%(sqrt(diag(1/e$values)))%*lt (e$vectors)
e=eigen(syy)

syyl2=e$vectors¥*%(sqrt (diag(1/e$values)))%*%t (e$vectors)
kkt=sxx12%*%sxyh*hsyy12%*%syy12)x%t (sxy) fhxhsxx12
ktk=syy12%*%t (sxy) h*l%hsxx12%*)sxx12)*%sxyh*hsyy12
el=eigen(kkt)

e2=eigen(ktk)

print (cbind(el$values,e2$values))

a=sxx12%*%el$vectors

b=syyl2%*%e2$vectors
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(WESSNEVIN  Canonical correlations

; E Canonical Correlations in Practice

* In practice, we estimate 2 xx, Lxy, ~yy by the empirical covariances
and to compute estimates ¢;, g;, d; for A;, 7;, 6; from the SVD of

K = Sy *SxySyy>.

« The coefficients of the canonical variables (i.e., the canonical vectors)
tell us the influence of these variables.

* The independence of the two random vectors can be tested by a
likelihood ratio test leading to Wilks' lambda distribution.

« Barlett's test of the null hypothesis that only s population canonical
correlation coefficients are non zero is based on the statistic

—{n—(p+q+3)/2}log nggfiq)(l - r;) ~ X%pfs)(qfs)’ where r; are
the sample canonical correlation coefficients.
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WWESSREPIN  Canonical correlations

## canonical variables
cvx=x%*%ha
cvy=yh*%b

## plot of the first pair
plot(cvx[,1],cvy[,1],type="n"
text(cvx[,1],cvy[,1],row.names (ushealth))

## canonical correlation
cor(cvx[,1],cvy[,1])
sqrt (el$values[1])

## R library stats

cancor(x,y)
## coefficients are divided by sqrt(dim)?

Z. Hlavka (KPMS) NMST539

Tyden 12

Korespondenéni analyza:

@ testy nezavislosti v kontingenéni tabulce,

@ reprezentace ¥adki{ a sloupci.
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Correspondence analysis

Categorical scales are pervasive in the social sciences for measuring
attitudes and opinions on various issues and demographic characteristics
such as gender, race, and social class.

Categorical scales (...) occur frequently in the behavioral sciences, public
health, ecology, education, and marketing. They even occur in highly
quantitative fields such as engineering sciences and industrial quality
control. Such applications often involve subjective evaluation of some
characteristic—how soft to the touch a certain fabric is, how good a

particular food product tastes, or how easy a worker finds a certain task to
be.

(Alan Agresti, Categorical Data Analysis, Wiley, 1990)
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Week 12 Correspondence analysis

Example:

8 4 3 <— Beer

2 1 6 <— Wine
L= 3 6 2 <— Spirit

13 11 1135
T Czechia
T Russia
1 GB

Joint distribution: m;; = P(Z =i, Y = j) is the probability that Z is
equal to 7 and at the same time Y is j.

Marginal distribution of Z: ;. is the probability that Z is equal to i

Marginal distribution of Y: 7 is the probability that Y is equal to j
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\WEL WAl Correspondence analysis

Two-way contingency table

Variable Z has [ levels
Variable Y has J levels
This gives IJ combinations of levels of Z and Y

We count the responses (Z, Y') in our sample and display this information
in rectangular table which has / rows and J columns.

In each cell we give the number of subjects in our sample having the
corresponding combination of responses on Z and Y.

The entry x;; in the contingency table X (n x p) is the number of
observations in a sample that simultaneously fall in the ith row category
and the jth column category.
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WES ¥ Correspondence analysis

Sampling Distributions

This is the way in which the table was created. It is important for
understanding the table correctly.

The likelihoods depend on the sampling distribution.

Poisson sampling: everything is random,
Multinomial sampling: total number of observed subjects is fixed,

Independent multinomial sampling: number of subject in each row or
column is fixed.

Estimators and likelihood ratio tests are often identical for all types of
sampling (NMST432 Advanced Regression Models).
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Correspondence analysis
Maximum Likelihood Estimates

By maximizing the likelihood function we obtain the ML estimator
Rij = pij = Xij/Xu:

where Xee = D[ ; Xjo = Zf:l Xej is the total number of observations.

Notice that Z and Y are independent if for all i and j: m;; = m;/m; = ;.

or 7TJ-|,- = 7rj,'/7[',n =TT or or Tjj = T .

The ML estimators of cell probabilities 7;; under independence are
A o /2
Tjj = PiePej = (Xl.X'J)/Xoﬂ

Xie = ZJ'-':l xjj is the number of observations falling into the ith row

category.
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Example: Alcohol consumption in three countries.

alc=matrix(c(8, 4, 3, 2, 1, 6, 3, 6, 2),3,byrow=T)
row.names(alc)=c("Beer","Wine","Spirit")
colnames(alc)=c("Czechia","Russia","GB")

chisq.test(alc)

Pearson’s Chi-squared test

data: alc
X-squared = 9.8406, df = 4, p-value = 0.0432

Warning message: Chi-squared approximation may be incorrect
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\WEL WAl Correspondence analysis

Test of independence

Likelihood-Ratio Test of Independence can be derived by following
standard arguments.

The x? test of independence is more popular. It is based on differences
between the observed frequencies x;; and E;;, the estimated expected
values under the assumption of independence, i.e.,

Xje Xeoj
E; =20,

ij=
X..

Under the hypothesis of independence of the row and column categories,
the statistic
nop
2
t= > (xj— Ej)*/E;
i=1 j=1

has a X%n—l)(p—l) distribution.
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WES ¥ Correspondence analysis

Individual contributions

The correspondence analysis is targeted toward the analysis of the
individual contributions to the y?-statistic:

cj = (xj — E5)/E;, (1)

which may be viewed as a measure of the departure of the observed x;;
from independence.

Example:

a=apply(alc,1,sum); b=apply(alc,2,sum); n=sum(alc)
E=alx’t (as.matrix(b))/n
round (C<-(alc-E)/sqrt(E),2)
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Decomposition of y?-statistic

The SVD of C = (c¢jj)i=1,... ,n;j=1,...p yields
C =TAY2AT

with AL/2 = diag()\}p, .. .,)\}?/2), where \1,..., \g are the nonzero
eigenvalues of both C'C and CCT.

Now, it is easy to see that

n p n p R
t= > (- E)?/Ej=) > ci=t(CCT) =) A

i=1 j=1 i=1 j=1 k=1

Hence, the SVD of the matrix C decomposes the y?-statistic t.
NMSTS539 309 / 413

G e
Marginal frequencies

Defining A = diag(xje) and B = diag(xs;) leads the vectors of marginal
row and column frequencies:

a=Al, and b=DBl1,.

This allows to write E = ab' x;;} and C = A~Y2(X — E)B~Y/2 /Xe.
It is easy to verify that

cVb=0 and c'va=0,
SiVb=0 and i va=0.
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\WEL WAl Correspondence analysis

Example:

decomp=svd (C)

gammal=decomp$ul, 1]
deltal=decomp$v[,1]

lambda=decomp$d

sum(lambda”2) ## chi2 statistika
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WES ¥ Correspondence analysis

Row and column coordinates

. _1 . _1
The row coordinates ri, = A~2Cdy and column coordinates s, = B 2CT7k
satisfy

ra=0lCTA2a=6]C"\/a=6]0=0
and
Th=~JCB 2b=~]CVb=~]0=0.

The true meaning of relations rk =0and s, I'h=0is

1
rla=0 and 5, =

Xoeo Xeoo

T = S;(rb: 0,

where means are (of course) weighted by the row and column marginal
frequencies. Hence, both row and column factors are centered.
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Example:

decomp=svd(C); gammal=decomp$ul,1]; deltal=decomp$v[,1]
A=diag(a); B=diag(b)

ri=diag(1/sqrt(a))%*%Cl*%deltal
sl=diag(1/sqrt (b)) %*%t (C)%*)gammal

row.names (r1)=row.names (C)
row.names (s1)=colnames(C)

Z. Hldvka (KPMS) NMST539

Example:

## prumery
sum(ri*a)
sum(s1*b)

## rozptyly
sum((r1~2)*a)/n
sum((s1°2)%*b)/n

##
(lambda[1]"2)/n

Z. Hlavka (KPMS) NMST539
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\WEL WAl Correspondence analysis

Variance of row and column factors

For the sample variances of ry and s; we have the following:

_— 1 n A\
Vv = i® 2' = y o0 — (5T T 1) o0 — 7k
ar(ry) o ;X e = re Arg/x L C ' Coy/x o
Var BN 2 T T nT Ak
Var(sk) = - Zx.jskj = 5] Bsk/xee =7 CCT i /Xe = L

L] J:l

In practice, statistical software may return differently scaled values (than
r nad si). Functions corresp() and ca() in R libraries MASS and ca
standardize row and column factors by px = (Ax/Xee)'/?.

This means that the row and column factors given by standard software
are standardized.
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WES ¥ Correspondence analysis

Proportion of explained variance

Hence, the proportion of the variance explained by the kth factor is
- R R
Var(rx)/ ZVar(rk) = A\¢/ Z i
i=1 i=1

The variance of the kth row factor, Var(ry), can be further decomposed
into the absolute single row contributions defined as

2
Ca(i,rk):x'/;:k’, fori=1,....n, k=1,...,R.

Similarly C,(j, sx) = x.js,%j/)\k forj=1,...,p, k=1,...,R are the
absolute contributions of column j to the variance of the column factor sy.

These absolute contributions may help to interpret the row and column
factors obtained by the correspondence analysis.
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Relation between row and column coordinates Example: Plot of two pairs of indices.

From the properties of SVD we know the relationship between d; and ~:
gamma2=decomp$ul[,2]; delta2=decomp$v[,2]

5, — 1 cT and 1 ) r2=diag(1/sqrt(a))%*%Ch*%delta2
A, vl RV, vt s2=diag(1/sqrt (b)) %*%t (C) %*%gamma2
Therefore 1/2AT 1/ cumsum (lambda”~2) /sum(lambda~2)
Sk:B_/C 'yk:\//\kB_/ Ok.
Using the definition of r,, we have plot (NULL,x1im=c(-1,1),ylim=c(-1,1),xlab="",ylab="")
text(rl,r2,labels=row.names(C))
re = A_1/2C5k = \/X..A_1/2A_1/2(X - E)B_1/25k text(s1,s2,labels=colnames(C),col="blue")
T
— Xeo ;1 _ Xeo 1 ab Sk
= " A (X — E)si =4/ " A (Xsk T T > library(ca)
5 calc=ca(alc)
— )\" A7 txs,. plot(calc)
k
Z. Hldvka (KPMS) NMST539 317 / 413 Z. Hldvka (KPMS) NMST539 318 / 413
Week 12 Correspondence analysis WES ¥ Correspondence analysis
Covariance Correlation

_ 1 2
Cov(rk,sk) = ZZXUSkj

X, ) . .
** =1 j=1 It follows that the sample correlation coefficient of r, and sy is:
[ Ak
= rl;rXSk/Xoo: 7r[;rArk/Xoo )\k
Xeo Pk =1/ —.

Ak v\( ) Yoo
= 4/ —Var(rk
X.. . .
SV This means that the correlation structure of the row and column
k Ak

= coordinates (in correspondence analysis) is similar to the structure of
Xee X . . . . , :
oo e canonical variables (in canonical correlation analysis).

1

X..

ZX,‘.I‘l,'I’Q,' = rlTArg/x.. = 51TCTC52/X.. =0
i=1

60\\/(r1, r2) =
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Example: Analysis of Journaux data set (newspapers in Belgium).

# load data
data(journaux); x = journaux;a = rowSums(x);b = colSums(x)
e = matrix(a) %*% b/sum(a)

# chi-matrix
cc = (x - e)/sqrt(e)

# singular value decomposition
sv = svd(cc);g = svdu;l = svdd;d = sv$v

# eigenvalues
11 =1 x*1

# cumulated percentage of the variance

aux = cumsum(1ll)/sum(1l); perc = cbind(11l, aux)
NMST539 321/ 413

# labels for journals
typeS =C("Va" llvbll IIVCII Ilvdll Ilvell ||ffll llfg" Ilfhll
Ilfill Ilbj n ||bkll llblll "VIH" Ilfnll ||fo||)

# labels for regions
regions =c("brw", "bxl", "anv", "brf", "foc", "for", "hai",
Illigll lllimll IIlqul)

# plot

plot(rr, type="n", xlim=c(-1.1, 1.5), ylim=c(-1.1, 0.6),
xlab="r_1,s_1", ylab="r_2,s_2", main="Journal Data",
cex.axis=1.2, cex.lab=1.2, cex.main=1.6)

text (rr, types, cex=1.5, col="blue")

text(ss, regions, col="red"); abline(h=0, v=0, lwd=2)

## library(ca); plot(ca(journaux)); plot3d.ca(ca(journaux))
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\WEL WAl Correspondence analysis

rl=matrix(l, nrow=nrow(g), ncol=ncol(g), byrow=T) * g
r=r1/matrix(sqrt(a),nrow=nrow(g) ,ncol=ncol(g) ,byrow=F)
sl=matrix(1l, nrow=nrow(d), ncol=ncol(d), byrow=T) * d
s=s1/matrix(sqrt(b) ,nrow=nrow(d) ,ncol=ncol(d) ,byrow=F)

car=matrix(matrix(a), nrow=nrow(r), ncol=ncol(r), byrow=F

) * r~2/matrix(1°2,nrow=nrow(r), ncol=ncol(r), byrow=T)
row.names (car)=row.names (x)
cas=matrix(matrix(b), nrow=nrow(s), ncol=ncol(s), byrow=F

) * s72/matrix(1°2, nrow=nrow(s), ncol=ncol(s), byrow=T)
row.names (cas)=colnames (x)

rr=r[, 1:2]; row.names(rr)=row.names(x)
ss=s[, 1:2]; row.names(ss)=colnames(x)
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Example:

data(food); plot(ca(food))
plot3d.ca(ca(food))

Example:

data(carmean); plot(ca(carmean?2))
plot(ca(5-carmean?2))

Example:

data(uscrime); plot3d.ca(ca(uscrime[,3:9]))
7ca ##
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H Correspondence Analysis

« Correspondence analysis investigates dependencies in contingency
tables.

*

Correlations between row and column coordinates correspond to
contributions to x? statistic.

x The structure of row and column coordinates is similar to canonical
variables in canonical correlation analysis.

*

Plot of the row and column coordinates displays dependencies in the
contingency table.

*

The solution allows adding of additional (supplementary) variables
that do not influence the calculation of the original coordinates.

Z. Hlavka (KPMS) NMST539 325 / 413

Week 13 Elliptical distributions

Characteristic function

The characteristic function (CF) of a random vector X € RP is:
ox(t) = E(eitX) = / et XF(x) dx, t€ RP.
The CF has many interesting and useful properties, e.g.:

@ The CF always exists, ¢x(0) =1, and |px(t)] < 1.

@ Two random vectors have the same CF if and only if they have the
same distribution. If CF ¢x(t) is absolutely integrable then

F(x) = ooy J o €7 Xeox(t) dt.

© Random vectors X; and X, are independent if and only if
px(t) = ox, (t1)px,(t2), where X = (X7, X, )T

© CF of the sum of two independent random vectors X and Y is the
product px(t)ey(t) = ox+v(t).
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Tyden 13

Obecné&jsi mnohorozmérnd rozdé&leni:

@ sféricka a elipticka rozdéleni,

@ kopule.
Kvantily mnohorozmérnych rozdéleni:
@ hloubka.

Smérova data.
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WES k] Elliptical distributions

Cramér-Wold device

Theorem: (Cramér-Wold) The distribution of X € RP is completely
determined by the set of all (one-dimensional) distributions of t" X where
t € RP.

Proof: Let Y = tT X, then CF E(e'sY) = E(e'st' X) and this becomes the
CF ox(t) = E(et'X) for s = 1.

Corollary: The random vector X ~ Np(u,X) if and only if the random
variable Y = a' X ~ N(a'u,a' £a) for all a € IRP.

Recall that we have already used this characterization to define
multivariate normal distribution (see lecture 3).
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Ellptical distributions
Spherical distributions

Definition: A (p x 1) random vector Y is said to have a spherical
distribution Sp(¢) if its characteristic function vy (t) satisfies:

Yy (t) = ¢(t't) for some scalar function ¢(.) (the characteristic generator
of the spherical distribution). We will write Y ~ S,(¢).

Clearly, px,(t1) = ¢x(t1,0,...,0). This implies that all marginal
distributions of a spherical distribution are identical (and symmetric).

Example: The multivariate t-distribution. Let Z ~ N,(0,Z,) and S ~ x2,
be independent. The random vector

Y= vim %

has a multivariate t-distribution with m degrees of freedom.
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=] d e
Elliptical distributions

The characteristic function of elliptically symmetric X is of the form
Y(t) = e 1ot Te)

for a scalar function ¢.

Marginal distributions of elliptically distributed variables are elliptical.

The assumption that the returns on all assets available for portfolio
formation are jointly elliptically distributed is used in portfolio theory
(multinormal distribution of returns usually does not work).

Clearly, the contours of a spherical distribution are p-dimensional spheres
and contours of an elliptical distribution are p-dimensional ellipsoids (if the
density exists).
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Week 13 Elliptical distributions

Elliptical distributions

Definition: A (p x 1) random vector X has an elliptical distribution with
parameters p(p x 1) and X(p x p) if X has the same distribution as

p+ ATY, where Y ~ Si(¢) and A is a (k x p) matrix such that

ATA =¥ with rank(X) = k. We shall write X ~ EC,(11, X, ¢)

The elliptical distribution can be seen as an extension of Nj(u,X).

Example: The CF of standard multinormal distribution is

oy(t) = et /2 and it is spherically symmetric with the characteristic
generator exp(—x/2). The CFof X = pu+ ATY is

ox(t) = et ntTATAY2 hecayse t (1 + AT Y) has univariate normal
distribution and

it (u+AT itTpus—tT AT Ats/2
Eeit / / |s—1.

) = 99N(tTM,tTAT.At)(S)‘5:1 =€
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WES k] Elliptical distributions

H Spherical and elliptical distributions

« The characteristic function is always defined and it uniquely
determines the probability distribution.

* An arbitrary function ¢ : IR" — C is the characteristic function of
some random variable if and only if ¢ is positive definite, continuous
at the origin, and if ¢(0) = 1 (Bochner's theorem).

* Spherical distribution can be seen as a generalization of N,(0,Z,),
elliptical distributions generalize N,(f, X).

« Elliptical distributions can also be defined in terms of their density
functions (if it exists): f(x) = k- g((x — u)’Z "1 (x — p)) for some
density g(.).
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Copula

A copula allows a generalized representation of (complicated)
dependencies between random variables (risk factors).

The basic idea is to describe the joint distribution of a random variable
X = (X1,...,X,)" using a function C : [0,1]” — [0, 1]:

F(xt,- %) = C(Fi(x1), -, Fo(xp)),

where F1, ..., F, represent the marginal cumulative distributions function
of the variables X;, j =1,--- ,p.

A copula C typically depends on some “tuning parameters” determining
the dependence.

Z. Hldvka (KPMS) NMST539 333 / 413

(WSS Copulas

Example: The product copula I: two random variables X; and X, are
independent if and only if

H(X1,X2) = F1(X1) : F2(X2)'

Hence, the so-called product copula C = I1 is given by:
p
M(ur, - up) = HUP‘
j=1
Example: Gaussian or normal copula:

¢;1(u1) ¢;1(u2) 4 1
Cy(un, u)— / / (11, r2)dradry = ©, {07 (u1), D3 (1)},

where ¢, denotes the bivariate normal density function with correlation p
and ®;, j = 1,2 represent the gaussian marginal distribution (GOOGLE:
gaussian copula financial crisis).
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(WS Copulas

Two-dimensional copula

Definition: A two-dimensional copula is a function C : [0,1]?> — [0, 1]
with the following properties:

e For every u € [0,1] C(0,u) = C(u,0) = 0 (grounded function).

@ For every u € [0,1]: C(u,1) = wu and C(1,u) = u (uniform
marginals).

e For every (u1, up), (v1,v2) € [0,1] x [0,1] with u; < v; and up < va:
C(v1,v2) — C(v1,u2) — C(u1,v2) + C(u1, u2) > 0 (two-increasing).

Theorem: (Sklar) Every joint distribution function H(.) with marginal
distributions F1(.) and F»(.) can be expressed as:

H(X17X2) = C(Fl(X1)7 F2(X2))

and the copula C(.) is unique when Fy(.) and F;(.) are continuous.
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Example: An important class of copulas is the Gumbel-Hougaard family:

Co(uy, up) def exp {— {(— Inup)? 4+ (= In uz)e} 1/6} .

For § = 1 we obtain the product copula: Ci(u1, u2) = M(u1, up) = vy us.
For & — oo we obtain the so-called minimum copula:

Co(uy, up)— min(uy, up) def M(uy, up)

(that dominates every other copula; M(.) is therefore referred to as the
Fréchet-Hoeffding upper bound.

: . . f -
The two-dimensional function W (uy, up) = max(u1 + up — 1, 0) satisfies

W (uy, up) < C(u1, uz) for all copulas and is called the Fréchet-Hoeffding
lower bound.
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; ! Copulas

x Copulas provide a very flexible way of describing dependencies
between random variables. Mathematically, a copula is a multivariate
probability distribution function for which the marginal probability
distribution of each variable is uniform.

x Copulas are popular in high-dimensional statistical applications as
they allow to model and estimate the distribution of random vectors
by estimating marginals and copulae separately.

* There are many parametric copula families available, which usually
have parameters that control the strength of dependence.
Archimedean copulas are defined by 1/%_1] (o(ur) + -+ 4+ vo(uq)),
where 1)g(.) is a generator function. This allows modeling of
dependence in high dimensions with only one parameter ().

* More information can be found in [Nelsen, R. B. (1999). An
Introduction to Copulas, Springer, New York.]
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Week 13 Depth

Quantiles in more dimensions

THE AIM IS to generalize the definition of “one-dimensional” quantiles to
more dimensional data sets.

The definition of quantiles in 1D uses the order of observations (but
observations in more dimensions are not clearly ordered).

In order to define some kind of “ordering” we may define depth
function—a measure of “how deep in the dataset” is some point.

The p-dimensional data set will be ordered from outside to inside instead
from left to right.
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Week 13 Depth

Multivariate quantiles

The contours (iso-density regions) for multinormal (and elliptical)
distributions are ellipsoids that can be understood as multivariate
generalization of quantiles. Unfortunately, defining multivariate quantiles
in general is very complicated.

Notice that:

@ Median and other quantiles are naturally defined for 1-dim random
variable BUT definition of quantile (apart of multinormal or elliptical
distribution) is not straigtforward,

@ Median: measure of location, “most central” point.

@ Quantiles: testing, construction of prediciton regions, boxplots. ..
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WES k] Depth

Motivation

Example: boxplot(carmean2)

The standard definition of boxplot is based on sample quantiles (median
and quartiles) that are not naturally defined in two and more dimensions.

Boxplot (defined without quantiles, by using the inside xoutside ordering):

Central box contains 1/2 of "most central” observations.

Whiskers extend to most extreme observations by (at most)
1.5x" central box".

Outliers are “too far away” from the centre.
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Depth

Example: X is one-dimensional random variable with d.f. Fx(.).

The required insidexoutside ordering can be based on values of some D(x) =1-2|F(x) —1/2]
depth function.

Technically: for a given random vector X € IRP (with distribution function Deepest point: F(x) = 1/2 (median).

. . . op
Fx) depth is a function D : R® — . Point with min. depth: F(x) = 0 (extremes).

Region R(a) with given depth ain IRP is {x € RP : D(x) > a} ...the
border of the region R(a) is the a-depth contour (and this is the
“multivariate contour”).

Note: for a random sample Xi, ..., X,, we define sample version of the

depth function as D(x) =1 — 2|Fp(x) — 1/2|.
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Depth functions

Some desired properties of (sample) depth functions:

@ Depth should not depend on the coordinate system (rotation and
scale invariance). Popular depth functions:

o If a distribution is symmetric around s then s is the deepest point. o Simplicial depth (Liu depth).

@ Decreasing along rays from the deepest point. o Halfspace depth (Tukey).

e Vanishing at infinity, i.e., D(x) — 0 if ||x| — oo.

@ Quasi-concavity (level sets of depth function are convex). Implementation in R: library(depth), commands: perspdepth, isodepth,

depth. ..
More details: Liu (1990), Serfling (2000).

Other approaches: convex hull peeling, zonoids, L1-depth, location-scale
Example: pairs(carmean2); How to find deepest point in more depth, and many other.

dimensions?
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Simplicial depth

The simplicial depth (or Liu depth) of a data point x is defined as the
number of convex hulls formed from all possible selections of p + 1 points
covering x (convex hull of p + 1 points = simplex).

The multivariate median (the deepest point) may be defined as the point
with the largest simplicial depth, i.e.,

Xmed = argmax#{ko,...,kp € {1,...,n}: x; € huII(xkO,...,xkp)}.
1

in 1D: closed intervals given by 2 points [x;, x;],
in 2D: triangles given by 3 points,
in 3D: “pyramids” given by 4 points etc.
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-5
Liu depth in R

library(depth)

perspdepth(carmean2[,1:2] ,method="Liu")
d=perspdepth(carmean2[,1:2] ,method="Liu",output=TRUE)
contour (d)

text (carmean2[,1:2] ,rownames (carmean2))
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Simplicial Depth Example
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Halfspace depth

The (sample) halfspace depth of point x (with respect to sample points
Xi,...,Xp) is defined as the minimum number of sample points on one
side of a hyperplane through the point x.

In other words, minimum number of sample points in a halfspace
containing the point x.

Example: 1D, points are lying on real line. ..

Example: 2D

isodepth(carmean2[,1:2] ,mustdith=TRUE)
text (carmean2[,1:2] ,rownames (carmean?2))
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Halfspace depth

Example: 3D

for (i in 1:nrow(carmean2)) {

print (rownames (carmean?2) [i])

print (depth(carmean2[i,1:3],carmean2[,1:3]))
}

Example: 8D, almost all point are “outside” (see also Ggobi).
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H Depth

« Depth can be seen as a multivariate generalization of (empirical)
quantile.

* The most popular depth functions are simplicial (Liu) depth and
halfspace (Tukey) depth but many other depth functions have been
proposed [D. Hlubinka: Vypravy do hlubin dat, Robust 2008,
http://www.karlin.mff.cuni.cz/ hlubinka/soubory/robust08.pdf;
D. Hlubinka: O kvantilech ve vice rozmé&rech, Robust 2002,
http://www.statspol.cz/oldstat/robust/2002_hlubinka.pdf].

x Most depth functions are computationally intensive.

x Using depth, it is possible to define bagplot as a two-dimensional
generalization of the boxplot.
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Bagplot

Example: Command bagplot in library(aplpack).

library(aplpack)
7bagplot # what is BAG, FENCE, LOOP?

library(SMSdata)
data(carmean?2)

bagplot(carmean2[,1:2]) # Service & Value
text (carmean2[,1:2] ,rownames (carmean?2))
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Week 13 Directional data

Directional data

Directional statistics is the analysis of data that are directions: these are
unit vectors in a space of any number of dimensions and can be visualized
as points on the surface of a hypersphere (in two- or three-dimensional
spaces we have points on the circumference of a circle or on the surface of
a sphere, i.e. circular and spherical data).

Directional statistics differs from ‘usual linear’ statistics because of the
specific structure of its sample spaces. As hyperspheres have different
characteristics than general Euclidean spaces, standard linear methods for
analyzing data cannot be used and special directional methods are
required.

References: [Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. 2nd
ed., Wiley Series in Probability and Statistics. Wiley, Chichester] or [Mala, O. C.
(2012) Fisherovo-Binghamovo rozdéleni, bakaldtska prace, MFF UK.]
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Distribution function and density Summary statistics

Let € be a random angle. Its distribution function F is given by

FO)=P0<0<6), 0<60<2r Let's have a set of independently observed directions in the plane that are
represented by unit vectors Vi, ..., V, (these correspond to unique angles
and 01,...,0, and to unique points on the unit circle Xi,..., X;,.)
F(O0+2r)—F(O) =1 —oo0<6<o0.
By summing these unit vectors and taking their mean, we obtain the mean
resultant vector V = 3" V;/n and the endpoint X of the vector V

Let the distribution function F of random angle 8 be absolutel ) .
& y represents the ‘centre of mass’ (if points Xi,..., X, have equal masses).

continuous. Then for the probability density function f of random angle 6,

the following holds: Points X; have Cartesian coordinates (cos6;,sin6;), i.e., the centre of

mass X has Cartesian coordinates (C, S), where C = 3" cos(6;)/n and
@ f(6) > 0 almost everywhere on (—00, 00), S =Y sin(0;)/n.

@ (6 + 27) = f(0) almost everywhere on (—o0, c0),
© [T F(8)d =1and [T F(0)d = 1.
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Denoting (R, ) the polar coordinates of X, we obtain: Srendard alreuler e iien

Definition: The sample mean resultant length R > 0 is given by

Re|IV| = \/ﬁ The density of von Mises distribution is:
Fxi k) = co(k)exp{n x}, x € S,

If R > 0, the sample mean direction 8 is defined as follows:
where ¢p(x) is constant.

arctan(S/C), if C>0,5>0,
/2 if C=0,5>0, Notice that
0 = arctan*(S§/C) = { arctan(S/C) +m, if C <O, .
arctan(S/C) +2r, if C>0,5<0, 1" x = (cos 1, sin p)(cos B, sin @) " = (cos i cos @ + sin pusin §) = cos(f — p).
undefined if C=0,5=0.

and the probability density function of random angle 6 is

Definition: The sample circular variance V is defined as g(0; p, k) = co(k) exp{rcos(d — p)}, 0<6 < 2m.

V=1—-R. 0<V<I. We only used a different way of representation corresponding to ‘unrolling

the circle’.

Y
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von Mises distribution (for angle )

k=4

(6, 7. 1)

Z. Hidvka (KPMS) NMST539

Week 13 Directional data

H Directional statistics
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« See [Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. 2nd
ed., Wiley Series in Probability and Statistics. Wiley, Chichester] or

[Malg, O. C. (2012) Fisherovo-Binghamovo rozdg&leni, bakala¥ska

prace, MFF UK] for more information.

*

* von Mises distribution can be generalized to more dimensions
(Fisher-Bingham distribution, von Mises-Fisher distribution, etc.)

Directional (or axial) data are encountered in various fields: geology,
meteorology, astronomy, geography, medicine and others.

« One can also consider distributions defined on more general ‘surfaces’

(manifolds).
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Week 13 Directional data

von Mises distribution (on the unit circle)

Z. Hlavka (KPMS) NMST539
Tyden 13

Dalgi zajimavé metody:

@ jadrové odhady hustoty,

@ projection pursuit.
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Week 14 Kernel density estimators

Histograms

The histogram counts relative frequencies of observations x; falling into
predefined bins:

-~

fo(x) = nth 1> N T 1{x; € Bj(x0, h)} I{x € Bj(x0, h)}

jez i=1

@ the histogram is a simple estimator of a probability density,

@ his a smoothing parameter and controls the width of the histogram
bins.
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Kernel density estimators

Kernel density estimator is a natural generalization of a histogram (by
shifting the “bin”, we obtain smooth estimator of the underlying
probability density).

Assume we have n independent observations xi, ..., x, from the random
variable X. The kernel density estimator f,(x) for the estimation of the
density value f(x) at point x is defined as

~ 1 n Xj — X
fh(X):nh;K< b ),

where K(.) denotes a kernel function and h the bandwidth.
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Week 14 Kernel density estimators

Example: Diagonal of forged bank notes. Histograms with h = 0.1 (upper
left), h = 0.2 (lower left), h = 0.3 (upper right), h = 0.4 (lower right).

Swiss bank notes Swiss bank notes

el

3% %S 19 185 W0 1405

Swiss bank notes Swiss bank notes

ﬂ[l
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Week 14 Kernel density estimators

Multivariate KDEs

The kernel density estimator can be generalized to the multivariate case in
a straightforward way.

Suppose we have observations xi, ..., x, where each of the observations is
a d-dimensional vector x; = (xi1,...,Xq)". The multivariate kernel
density estimator at a point x = (xi,...,xg)" is defined as

-~ 1< 1 Xji1 — X1 Xid — Xd
f = — K ey ———
h(X) n,zl hl...hd ( hl ’ ’ hd ’

where K is a multivariate kernel funcion and h is a vector of bandwidths
h=(hy,..., hq)".

It can be shown that the optimal MISE is O(n=*/(4+4) (curse of
dimensionality).
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library(sm); library(MSES); data(athletic)

# univariate kernel density estimator
plot(density(athletic[,"100m"]))
plot(density(athletic[,"Marathon"]))

## bivariate kernel density estimator

library (MASS)
plot(athletic[,"Marathon"],athletic[,"100m"])
di=kde2d(athletic[, "Marathon"],athletic[,"100m"])

image(dl, zlim = c(0, 0.13))

persp(dl, phi = 30, theta = 20, d = 5)

contour (d1l)

# add original points
points(athletic[,"Marathon"],athletic[,"100m"])

identify(athletic[,"Marathon"],athletic[,"100m"],
label=row.names (athletic))
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Week 14 Projection pursuit

Projection pursuit

Projection pursuit searches for interesting directions in a p-dimensional
data set by maximizing a chosen index.

Exploratory projection pursuit: look for interesting linear
combinations— "interestingness” is usually defined by some measure
(index) of non-normality.

Projection pursuit regression: the goal is to estimate regression function
m(x) = E(Y|x) using approximating function f(x) = 3" gx(A] x)
(obviously, lower dimensional projections defined by A, improve statistical
properties of the nonparametric regression estimator).

Z. Hlavka (KPMS) NMST539 367 / 413

Week 14 Kernel density estimators

; E Kernel density estimators

x KDEs are sometimes introduced as “average shifted histograms”
(ASH).

* High-dimensional KDEs suffer from “curse of dimensionality” because
the optimal MISE is of order O(n~=%/(4+4)) where d denotes the
dimension.

* The various implementations of KDEs in R are not mutually
compatible (for example, the bandwidth parameter used by one R
function typically does not have exactly the same meaning in other R
function).

* One should consider dimension reduction techniques before
calculating high-dimensional KDEs.
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Week 14 Projection pursuit

Exploratory projection pursuit

Given p-dimensional random vector X with zero mean (and typically with
unit variance, i.e., Var(X) = Z,), we try to find a € IR” such that al X is
“interesting”.

Interestingness of projections o' X is measured by index /().

Example: PCA: /(a) = var(a' X) works only if the data set is not
sphered.

In practice, we have the data matrix X and we optimize the (sample)
projection pursuit index numerically.
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Friedman and Tukey index

10000 directions

Let ?h,a(z) denote the kernel density estimator of the pdf of the projection
Z = a' X, where h denotes the bandwidth.

0.4

0.3

Friedman and Tukey (1974) proposed the index:

0.2

0.1

IFT n(c _nlthaax

0.0

that can be rewritten as lrr p(a) = [ fha )dFn(z) (i.e., it estimates o
[ f(z) = [ f2(2)dz) Ieadlng to the maximization offf2 )dz.
The Friedman-Tukey index is minimal for a parabolic density and, by its M % ‘ ‘ .
maximization, we search for a distribution that is as far from the parabolic The least and the most informative from 10000 randomly chosen
density as possible. directions (FT index) for Swiss bank notes — SMSeppbank.
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Entropy index Jones and Sibson index

An alternative approach is based on the (minus) entropy measure

Jones and Sibson (1987) suggested to approximate the entropy index by a
| f(z)log f(z)dz leading to the entropy index:

moment-based index:

Ie n(c - Z log{fha(a' Xi)} (o) = {r5(a " X) + e X)/4}/12,
=1 where r3(aTX) = E{(aTX)3} and ka(aTX) = E{(aTX)*} — 3 are
that can be interpreted as an estimator of minus entropy [ f(z)log f(z)dz. cumulants of " X (skewness and kurtosis).
The index is minimal for normal distribution and maximization of /g y(«) The maximization of /;5(a) also leads to the least-normal view of the data
leads to non-normal projections. set.
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Week 14 Projection pursuit

Computational aspects

The optimal projection « € IRP can be found by standard (iterative)
optimization routines.

The optimization task is not very simple because the parameter « is
p-dimensional and the function /(«) has many local maxima.

In practice, one is interested in finding optimal one- and two-dimensional
projections.

It is recommended to use various starting points in order to verify the
stability of the result. Often, the optimization of « is used to define a
guided tour through the data set.
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Week 14 Projection pursuit

Exercise: Swiss bank notes

O library(SMSdata); data(bank2)

@ sphering (Mahalanobis transformation),

© generate randomly N directions aq, ..., ap
Q calculate the value /(«;j) for i=1,...,N

© plot kde of the directions that both maximize and minimize the
chosen index,

@ compare the result obtained for PCA index with standard PCA
analysis (this will work only without sphering),

@ compare least and most informative projections obtained by JS and
FT index,

Q try to find the optimal direction using numerical optimization in R
(optim()), compare results obtained by different algorithms
(Nelder-Mead, BFGS, ...).
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Week 14 Projection pursuit

White noise analysis

White noise projections that are most similar to white noise are identified
and discarded while the remaining informative projections are used to look
for interesting relationships [Hui and Lindsay, 2010, Projection pursuit via
white noise matrices, Sankhya B 72(2), 123--153 ]

The White Noise Analysis (WNA) is based on the eigen-analysis of the
standardized Fisher information matrix for the square transformed density
estimated by the kernel method.

WNA is computationally simpler than the classical Projection Pursuit
searching for low-dimensional least-normal projections.
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Week 14 Projection pursuit

Ggobi: 1D and 2D guided tour

Guided tour through a multivariate data set is a sequence of
low-dimensional projections that improve the chosen index.

library(SMSdata)
data(bank?2)

library(rggobi) # using ggobi is easy if this works
ggobi (bank2)

write.csv(bank2,file="bank2.dat")
# START GGOBI AND LOAD DATA SET FROM CSV FILE
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Week 14 Projection pursuit

R: tourr

Guided and grand tours work similarly as in Ggobi (same authors) but R
does not allow interaction.

library(SMSdata)
data(bank2)

library(tourr)
animate(bank2, guided_tour(index_f=holes), display_xy()

, sphere=FALSE)
animate (bank2, guided_tour (index_f=cmass), display_xy())
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Week 14 Projection pursuit

Indices in Ggobi and tourr

Holes 1 T
1— -exp(—zz' /2)

1—exp(—p/2) ’
where z; is the i-th row of Z = X« (the index works also for more
dimensional projections).

IHoIes(a) =

Central mass

L exp(—2ziz' /2) — exp(—p/2)
1 —exp(—p/2) ’

lem(a) =

is basically the opposite of lyoles.

Both indices are based on % exp(—zz /2) = [ exp(—zz /2)dF,(z)
estimating Eexp(—Z"Z/2).
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Week 14 Projection pursuit

R: tourr

# tourr SHOULD work also with other type of graphics

animate_dist(bank2[95:106,],guided_tour (index_f=holes))
animate_image (bank2[95:106,] ,guided_tour (index_f=holes))
animate_pcp(bank2[95:106,] ,guided_tour(index_f=holes))
animate_scatmat (bank2[95:106,] ,guided_tour (index_f=holes))
animate_faces(bank2[95:106,] ,guided_tour(index_f=holes))
animate_stars(bank2[95:106,] ,guided_tour (index_f=holes))
animate_stereo(bank2[95:106,] ,guided_tour(index_f=holes))
animate_trails(bank2[95:106,] ,guided_tour(index_f=holes))
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Central mass and Holes

Cook, Buja, Cabrera (1993) Projection Pursuit Indexes Based on
Orthonormal Function Expansions. Journal of Computational and
Graphical Statistics 2(3), 225-250.

The derivation of both indeces is based on Fourier expansion of density
function:

F(x) = aipi(x),
i=0

where p;(x) are (standardized) orthonormal polynomials with weight
function w(x) and a; = (f, p;) = [ f(x)pi(x)w(x)dx are Fourier
coefficients.
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Week 14 Projection pursuit

Fourier approximation of normal density

4 02 b

y 01l N
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Week 14 Projection pursuit

Fourier approximation from 100 observations

08

0.6
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Week 14 Projection pursuit

Fourier coefficients can be rewritten as expectation

3= (f.p) = / F()Pilx)w(x)d = / pix)w(x)dF(x) = E{pi(X)w(X)}

that can be estimated from random sample Xi, ..., X, by sample mean
1 n
R AL
j=1

In practice, the density can be approximated by finite sum
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Distance from Normal distribution

Cook, Buja & Cabrera (1993) define natural Hermite index

R RUOE GO
as a measure of dissimilarity of probability densities f(x) and ¢(x).

It is easy to show that Iy = >_(a; — b;)?, where b; are (known) Fourier
coefficients of ¢(x).

The sample version of Iy is naturally defined as:

M
I =G — bi)?,
i=0
where 3; = 3771 pi(X;)w(Xj)/n.
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Week 14 Projection pursuit

Distance from Normal distribution

Cook, Buja & Cabrera (1993) investigate the sample natural Hermite
index for M =0, i.e., Ino = (30 — bo)?.

Clearly, the quadratic function (3p — bg)? achieves its minimum 3y — bo
and is maximized by extreme values of ap.

Cook, Buja & Cabrera (1993) show that, in a family of distributions with
mean zero and variance at most one, ag is minimized by the central hole
distribution:

P(X=1)=05, P(X=-1)=05

and ag is maximized by the central mass distribution:
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Gz D
Interpretation

Original data matrix X.
Sphered data matrix Y = (X —1,x")S™1/2.
Interesting linear combinations are:

Ya = (X — lnYT)S*1/2a = XS Y2q + const = Xax + const.
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Week 14 Projection pursuit

Central mass and holes

The central mass index in Ggobi looks for the rotation az maximizing ap(«).
The holes index in Ggobi looks for the rotation o maximizing —ap(«).

Distributions with very small or very large ag should have large distance
(natural Hermite index) from Normal distribution.

Switching repeatedly between maximization of these two indeces leads to
informative displays of the data set.

Example: Swiss bank notes in Ggobi and R (tourr).
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Week 14 Projection pursuit

Visual inference

Chowdhury, Cook, Hofmann, Majumder, Lee & Toth (2015) Using visual
statistical inference to better understand random class separations in high
dimensions, low sample size data, Computational Statistics 30: 293-316.

[The paper can be found using scholar.google.com.]

The problem: lower dimensional projections (especially based on LDA) can
be misleading (see Figure 1).

Example:

d=data.frame(matrix(rnorm(150) ,ncol=10))
animate(d,guided_tour (index_f=holes) ,display_xy() ,sphere=TRUE)
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Week 14 Projection pursuit

Visual inference

Proposed solution: use visual statistical inference via Amazon'’s
Mechanical Turk (the original “lived” from 1770-1854).

amazonmechanical turk

[ Yournccount | s Qualiicatins
Introducton | Dashboard | Status | Account Settings
Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

330,783 HITs available. View them now.

Make Money Get Results
by working on HITs hanic:

HITs - Human Inteligence Tasks - are individual tasks that
rouwe it

Developers | ress | Paliies | Blog | Service Health Dashboard
its Affiaes ‘An amazoncom. company

T30 29/ a1
Tyden 14

Gentle introduction:

@ kernel regression estimators,
@ additive models,

@ projection pursuit regression.
Sliced inverse regression:

kernel regression estimators,

additive models and projection pursuit regression,

SIR,

o
°
@ inverse regression curve,
o
e SIRII.
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Week 14 Projection pursuit

Exercise: simulated data set

© generate three independent samples with the same p-variate
distribution (using, e.g., rmvnorm(mvtnorm)),

@ use function animate (tourr) to find interesting projections
(preferably using the 1da_pp index),

© plot the resulting projections (take care about scaling) denoting the
three groups by different symbol—can you see some differences?

@ repeat the simulation both for small and high dimension.
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Week 14 Kernel regression

Kernel regression estimators

Suppose that we have independent observations Yi,..., Y, and the
explanatory variable Xi, ..., X,. The Nadaraya-Watson kernel regression
estimator is defined as:

(%) = S K () ¥ _
k(A

It can be shown that the asymptotic MSE is:

1 n
- > Wai(x) Y.
i=1

1
AMSE(n, h) = = C1 + h* G,
nh
where C; and G, are constants depending on the kernel function, the
(derivatives of) the regression function and the density of X. Using the

optimal bandwidth h = C3n~/%, AMSE is of order O(n=%/%).
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Week 14 Kernel regression

Kernel regression estimates in R:

Typically 1 response and 1 or 2 explanatory variables.

1D ksmooth(), locpoly(KernSmooth)
2D sm.regression(sm)

library(sm); library(MSES); data(athletic)

# most simple univariate kernel regression estimates

# (better functions exist in other libraries)

plot(athletic[,"Marathon"],athletic[,"100m"])

lines (ksmooth(athletic[,"Marathon"],athletic[,"100m"],
kernel="normal", bandwidth=20),col="red",lwd=2)

library(KernSmooth)
plot(athletic[,"Marathon"],athletic[,"100m"])

lines(locpoly(athletic[, "Marathon"] ,athletic[,"100m"] ,bandwidth=10),
col="red",lwd=2)
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Week 14 Kernel regression

## bivariate kernel regression

library(sm)

sm.regression(athletic[,c("Marathon","400m")] ,athletic[,"100m"])
sm.regression(athletic[,c("Marathon","400m")],athletic[,"100m"],

display="image")

The asymptotic properties of the kernel regression estimator are bad for
high-dimensional explanatory variable (curse of dimensionality). Moreover,
it is difficult to plot the resulting estimator for p > 2.
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Week 14 Kernel regression

sm.regression(athletic[,"Marathon"],athletic[,"100m"])

## bivariate kernel density estimator

library (MASS)
plot(athletic[,"Marathon"],athletic[,"100m"])
di=kde2d(athletic[, "Marathon"],athletic[,"100m"])

image(dl, zlim = c(0, 0.13))

persp(dl, phi = 30, theta = 20, d = 5)

contour (d1l)

# add original points

points(athletic[,"Marathon"],athletic[,"100m"])

# add kernel regression line

lines (ksmooth(athletic[,"Marathon"],athletic[,"100m"],
kernel="normal" ,bandwidth=20),col="red",6 lwd=2)
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Week 14 Kernel regression

Curse of dimensionality (from Wikipedia)

One way to illustrate the “vastness” of high-dimensional Euclidean space
is to compare the proportion of an inscribed hypersphere with radius r and
dimension d, to that of a hypercube with edges of length 2r. The volume
of such a sphere is: %. The volume of the cube would be: (2r)9. As
the dimension d of the space increases, the hypersphere becomes an
insignificant volume relative to that of the hypercube. This can clearly be
seen by comparing the proportions as the dimension d goes to infinity:

d/2 .
dzd—wlir/(d/z) — 0 as d — oo. Furthermore, the distance between the center

and the corners is r\/a, which increases without bound for fixed r.

In this sense, nearly all of the high-dimensional space is “far away” from
the centre. To put it another way, the high-dimensional unit hypercube
can be said to consist almost entirely of the "corners” of the hypercube,
with almost no “middle”.
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Kernel regression
Additive model

In order to avoid the curse of dimensionality, it can be useful to consider
additive model (AM) with response p-dimensional explanatory variable X:

E(Y|X = x) =

J

p
fi (%) + ¢,
=1

where ¢ = E (Y) and the (univariate) additive components are centered,
e, E{fi(X;)} =0for1 <) <p.

The components of the additive model (and its various generalizations) are
usually estimated by iterative algorithms (backfitting).
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Week 14 Sliced inverse regression

Sliced inverse regression

Sliced Inverse Regression (SIR) is a dimension reduction technique that
can be described as a generalization of projection pursuit regression.

The idea is to find EDR-directions (i.e., projections of explanatory
variables) suitable for nonparametric regression estimator for the response.

Given a response variable Y and a (random) vector X € IRP of explanatory
variables, SIR is based on the model:

Y =m(B{ X,...,B X,e),

where 1, ..., 8k are unknown projection vectors
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\WEPA  Sliced inverse regression

Projection pursuit regression

Projection pursuit regression [Friedman, J.H. and Stuetzle, W. (1981)
Projection Pursuit Regression. Journal of the American Statistical
Association, 76, 817-823]:

r

E(YIX =x) = Y68 %) +c,

j=1

applies the additive model on projections of explanatory variables, i.e., it
reduces the dimensionality of the space of explanatory variables (keeping
in mind that we model the conditional expectation of Y).

Implementation in R: function ppr () in library stats.
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Week 14 Sliced inverse regression

Centered inverse regression curve

Recall that Y = m(B] X, ..., 8] X,e).

According to Theorem 20.1 in [Hardle and Simar, Applied Multivariate
Statistical Analysis, 4th edition] we have that: “Under some assumptions,
the (p-dimensional) centered inverse regression curve E(X|Y =y) — EX
lies in the linear subspace spanned by ¥ 5;,i=1,...,k, ¥ =VarX."

It follows that for Z = ¥~1/2(X — EX), the standardized inverse

regression curve my(y) = E(Z|Y = y) lies in a linear subspace spanned by
ni = XH25;.

The idea of SIR algorithm is to generate points lying on the inverse
regression curve and then estimate the linear subspace. ..
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S B B
SIR Algorithm (part 1)

The algorithm to estimate the EDR-directions via SIR is as follows:

@ Standardize x: A
zZi = 271/2(X,' — )_()

e Divide the range of y; in S non-overlapping intervals (slices) Sttks,
s=1,...,5. ns denotes the number of observations within slice Sttks
and Iss, is the indicator function for this slice (ns = >"7 1 stk (¥i)):

o Compute the mean of z; over all slices. This is a crude estimate
for the inverse regression curve my:

.1
Zs = P Zzi ISttks(yi)-
s =1
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Sliced inverse regression
Simulated data set

Example: Let us investigate data simulated from the model
yi = B xi + (8 x)° + 4(B2x)* + &
with 81 = (1,1,1)T, Bo = (1,-1,-1)".

Looking at the data, it is difficult to find the underlying structure (the
surface in 3D plot).

— MVAsirdata
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S B G
SIR Algorithm (part 2)

e Calculate the estimate for Var{my(y)}:
S
V=nt Z nSESEST.
s=1

@ ldentify the eigenvalues \; and eigenvectors #j; of V.

@ Transform the standardized EDR-directions #; back to the original
scale. Now the estimates for the EDR-directions are given by

5= 12,
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Trueindex vs Response Trueindex vs Response
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Plot of the true response versus the true indices. The monotonic and the
convex shapes can be clearly seen — MVAsirdata
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AWV Sliced inverse regression

XBetal vs Response XBetal XBeta2 Response

- 3.column

XBeta2 vs Response Scree Plot

[e]

SIR algorithm works quite well (although the IR curve may not span the
entire EDR space).

Z. Hldvka (KPMS) NMST539 405 / 413

SIR I

In some situations SIR does not find EDR directions because the inverse
regression curve does not have to span the entire EDR space.

Example: Suppose that (X1, X2)" ~ N(0,Z,) and Y = X2.
Notice that the EDR space is spanned by 51 = (0,1) and the IR curve is
E(Xily) = E(X2ly) = 0.

SIR 11 algorithm uses the (inverse) conditional variance Var(X|y) instead
of the inverse regression curve. In practice, it is recommended to use SIR
and SIR Il jointly.
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US companies
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SIR scree plot
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EDR directions for US companies (for market values).
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Simulated example

Example:Let us simulate a data set with
X ~ N4(0,Z4), Y = (Xl + 3X2)2 + (X3 — X4)4 +ecand e ~ N(O, l) and
use the SIR and SIR Il technique to find the EDR directions.

The true response variable depends on the explanatory variables
nonlinearly through the linear combinations X3; = X; + 3X5 and
XBo = X3 — Xy, where 81 = (1,3,0,0)" and 3> = (0,0,3, —4)7.

We simulate altogether 200 observations.

— SMSsir2simu
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Modifications

L
200 250 300
L

SAVE The algorithm sliced average variance estimates is based on
the conditional variance matrix (similarly as SIR 11).

response
response

response
0 50 100 150 200 250 300

0 50 100 150 200 250 300

T o P i ae e S : a1 a s I pHd The method of principal Hessian directions is based on the
Hessian matrix E{(Z — EZ)(X — EX)(X — EX) "}, where

e the vector Z is given either by the response Y or by the

1 linear model residuals.

SIR scree plot SIR Il scree plot

response

0 50 100 150 200 250 300

00 02 04 06 08 10
00 02 04 06 08 10

1 o R library dr:

T T T T T
3 -2 -1 0 1 2 3 10 15 20 25 30 35 40 2 2 1 0 1 2 3 10 15 20 25 30 35 40

3rd projection 3 3rd projection 3

method: This character string specifies the method of
fitting. The options include "sir", "save",

i i n hd n s n hd n d "3 n
SIR and SIR Il applied on the simulated data set. Screeplot and phdy phdres” and “ire

scatterplots of first three indices against the response. — SMSsir2simu
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Week 14 Sliced inverse regression Conclusion

E SIR

SIR serves as dimension reduction tool for regression problems.

*

* Inverse regression helps to avoid the curse of dimensionality.

* The dimension reduction can be conducted without estimation of the Opakovani a shrnuti:
regression function y = m(x) .

@ shrnuti,

*

SIR searches for the eefective dimension reduction (EDR) by
computing the inverse regression IR. @ informace o zkousce.

*

SIR 1l bases the EDR on computing the inverse conditional variance.

*

In certain circumstances, SIR might miss EDR directions that are
found by SIR 1.
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Conclusion Summary

Summary

Multivariate distributions:

@ random vector and its characteristics,

@ multinormal, spherical and elliptical distributions, copulas.

Estimation and testing: maximum likelihood techniques.

Analysis of multivariate data:

@ summary statistics, principal components,
e factor analysis, canonical correlations,

o discriminant analysis, cluster analysis,

@ correspondence analysis, projection pursuit,

@ projection pursuit regression, SIR.
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