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Data and Workfile Documentation
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• Part10.wf1 contains monthly data from January 1960 - December 2011.

✓M1 – money supply, billions of USD

(source: Board of Governors of the Federal Reserve)

✓ IP –industrial production, index levels

(source: Board of Governors of the Federal Reserve)

✓Tbill – 3-month US Treasury rate

(source: Board of Governors of the Federal Reserve)

✓CPI – Consumer Price Index, level

(source: Bureau of Labor Statistics)
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Time Series Estimation 

• EViews has a built-in toolkit that allows you to estimate time series models

ranging from the simplest to the most complex types.

• This tutorial demonstrates how to perform basic single equation time series

regression techniques using EViews. For more details, see User Guide.

• The main topics include:

✓ Specifying and Estimating Time Series Regressions

✓ Static and dynamic models

✓ Date functions

✓ Trends and seasonality

✓ Serial Correlation
✓ Testing for Serial Correlation

✓ Correcting for Serial Correlation: ARMA models

✓Heteroskedasticity and Autocorrelation
✓ Testing for Heteroskedasticity and ARCH terms

✓ HAC Standard Errors

✓ Weighted Least Squares
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Simple Time Series Regressions:

Example 1 (Part I)

• Suppose you wish to estimate a model that captures movements in M1

(money supply) based on other variables: IP (industrial production) CPI, and

Tbill rate.
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• As a first step, it may help to open these

variables as a group, and plot the series

in order to observe trends in the data.

• M1 seems to grow over time, so adding a

time trend may improve the fit of the

model.

• CPI and IP seem to move together with

M1 and also grow over time.

• Tbill appears to have a different pattern

from M1 (and other series).



Simple Time Series Regressions:

Example 1 (Part II)

• Specifying a time series equation in EViews is very easy and follows the

same basic steps we introduced in Part 9.
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Estimation:

1. Open a workfile.

2. In the main menu, select Object → New Object →

Equation and click OK.

3. The Equation Estimation box opens up. Specify

here your variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(ip) – 1st independent variable

✓ log(cpi) – 2nd independent variable

✓ tbill – 3rd independent variable

The model is formulated as follows:
log 𝑀1𝑡 = 𝛽0 + 𝛽1 log(𝐼𝑃𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝑇𝐵𝐼𝐿𝐿𝑡 + 𝜀𝑡 ,

𝑡 = 1, … , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .



Simple Time Series Regressions:

Example 1 (Part III)

• The estimation output is displayed here.
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 All variables appear to be highly statistically significant

(based on p-values/t-stats).

 The R-squared value is very high: results imply that

around 99.25% of the variation in log(m1) can be

explained by the other variables in the model. Normally

this would imply a very good fit for the model.

 We caution against these results: high R-squared does

not necessarily imply that the model is a good or useful

one.



Simple Time Series Regressions:

Example 1 (Part IV)

• Let’s inspect the behavior of residuals in the Equation View. 
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Graphical Examination of Residuals:

1. Click View on the Equation Object menu

bar.

2. Select Actual, Fitted, Residual → Actual,

Fitted, Residual Graph.

Note that the residuals of this regression

appear to have long periods of positive

values followed by long periods of

negative values, providing strong visual

evidence of serial correlation.



Simple Time Series Regressions:

Example 2 (Part I)

• Distributed lag models are easy to specify in EViews.

• In these models, one/more variables affects the dependent variable with a

lag. Lags of dependent or independent variables can be specified directly in

the equation box in EViews.
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Estimation:

Suppose you want to examine how M1 is affected by CPI and its first two lags in log form.

1. Open a workfile.

2. In the main menu, select Object → New Object → Equation and click OK.

3. The Equation Estimation box opens up. Specify here your variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(cpi) – 1st independent variable

✓ log(cpi(-1)) – 2nd independent variable

✓ log(cpi(-2)) – 3rd independent variable

This model is formulated as follows:

log 𝑀1𝑡 = 𝛽0 + 𝛽1 log(𝐶𝑃𝐼𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡−1) + 𝛽3 log(𝐶𝑃𝐼𝑡−2) + 𝜀𝑡 ,
𝑡 = 3,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .



Simple Time Series Regressions:

Example 2 (Part II)
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 Notice that we now have 622 instead of 624 observations

because we are using two lags of CPI.

 R-squared and F-statistic values are high, which is

surprising especially since some coefficients do not

appear to be very significant. For example, current CPI is

statistically significant only at the 10% level, while the first

lag of CPI is not significant.

 What causes these results? It turns out, there is

substantial correlation between CPI, CPI(-1) and CPI(-2).

• The estimation output is displayed here.



Simple Time Series Regressions:

Example 2 (Part III)
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• One can inspect the correlation matrix of CPI and its

first two lags. To create the correlation matrix, follow

these steps:

1. Type in the command window:

show cpi cpi(-1) cpi(-2)

to open these series as a group.

2. On the top menu of the group, click on View →

Covariance Analysis.

3. The Covariance Analysis box opens up. Click the

Correlation box under Statistics.

 As you can see from the correlation matrix, the series are highly

correlated (multicollinearity). This multicollinearity makes it

difficult to estimate the effect at each lag.



Simple Time Series Regressions:

Example 2 (Part IV)
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Coefficient Variance Decomposition:

1. Open an equation.

2. On the top menu of the equation box, click on

View → Coefficient Diagnostics → Coefficient

Variance Decomposition.

Note that decomposition calculations follow

Besley, Kuh and Welsch (2004). In general, there

is a high degree of collinearity if:

✓ A condition number is smaller than 1/900

(0.001)

✓ There are two or more variables with higher

covariance decomposition proportion than 0.5

(associated with a small condition number).

• A more formal way to investigate collinearity among regressors is the

Coefficient Variance Decomposition from the View menu of the Equation

box. This test is particularly useful if there is a linear relationship between

regressors which the simple correlation matrix may fail to detect.



Simple Time Series Regressions:

Example 2 (Part V)
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• The Equation View displays a table

showing Eigenvalues, Condition Numbers,

Variance Decomposition Proportions and

Eigenvectors:

✓ The top portion shows the Eigenvalues

sorted from the smallest to the largest.

✓ In our case, the condition numbers are much

smaller than 1/900=0.001, which indicates

the presence of collinearity. (Note that the

last condition number is always equal to 1).

✓ The middle panel displays the variance

decomposition proportions. The proportions

associated with the smallest condition

number. As you can see, 3 of the values are

above 0.5, indicating that there is a high

degree of collinearity between CPI, CPI(-1)

and CPI(-2).



Simple Time Series Regressions:

Example 3 (Part I)

• You can just as easily specify a model containing a large number of lags

without having to explicitly type out all the lags.
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Estimation:

1. Suppose you would like to examine how M1 is

affected by current CPI values and its 12 lags. On

the main menu, select Object → New Object →

Equation and click OK.

2. The Equation Estimation box opens.

3. Specify here your variables:

✓ m1 – dependent variable

✓ c – constant

✓ CPI(0 to -12) – current and lagged values of CPI.

This model is formulated as follows:

𝑀1𝑡 = 𝛽0 +෍

𝑖=0

12

𝛽𝑖𝐶𝑃𝐼𝑡−𝑖 + 𝜀𝑡 ,

𝑡 = 13,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .



Simple Time Series Regressions:

Example 3 (Part II)

• The estimation output is displayed here. 
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 Again, taken individually, none of the coefficients (except lag 12)

is statistically significant.

 However, the R-squared value and the F-statistic are very high.

 Similar to the previous example, the issue here is that there is a

high degree of collinearity among all regressors (since these are

lags of the same variable).

 A way to deal with high collinearity is to fit a polynomial

distributed lag model (not discussed in this tutorial).



Simple Time Series Regressions:

Example 4 (Part I)

• You can just as easily specify a dynamic model containing lags of dependent

and independent variables.
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Estimation:

1. On the main menu, select Object → New Object

→ Equation and click OK.

2. The Equation Estimation box opens. Specify

here your variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(m1(-1))

✓ log(cpi)

✓ log(cpi(-1))

✓ log(cpi(-2))

This model is formulated as follows:

log(𝑀1𝑡) = 𝛽0 + 𝛽1 log 𝑀1𝑡−1 + 𝛽2 log 𝐶𝑃𝐼𝑡
+𝛽3 log 𝐶𝑃𝐼𝑡−1 + 𝛽4 log 𝐶𝑃𝐼𝑡−2 + 𝜀𝑡 ,

𝑡 = 3,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .



Simple Time Series Regressions:

Example 4 (Part II)

• The estimation output is displayed here. 
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 Notice that the lagged dependent variable

(log(m1(-1)) is close to unity and is highly

significant.

 If errors are serially correlated, OLS estimates

are biased and inconsistent in the presence of

lagged dependent (see User Guide for details).



TIME SERIES ESTIMATION:

DATE FUNCTIONS
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Time Series Regressions:

Date Dummies (Part I)

• EViews allows you to estimate regression models using dummy variables

directly in the estimation window without first having to create the dummies.

20

• For example, judging by the behavior

of M1 in the graph shown here, it

appears that the series grew at a

much more rapid pace since 2008,

thanks to the many rounds of

quantitative easing (QE) carried out

by the Federal Reserve.
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• Let’s check whether the period since 2008 has indeed had an outsized impact 

in the growth of M1. For more dummy operators see the previous parts.

Time Series Regressions:

Date Dummies (Part II)

Date Dummies:

1. On the main menu, select Object → New

Object → Equation and click OK.

2. The Equation Estimation box opens.

Specify here your variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(cpi)

✓ log(ip)

✓ tbill

✓ @year>2008 - dummy variable, equal to 1

for the period after 2008 and 0 otherwise

This model is formulated as follows:

log(𝑀1𝑡) = 𝛽0 + 𝛽1 log 𝐶𝑃𝐼𝑡 + 𝛽2 log 𝐼𝑃𝑡
+𝛽3𝑇𝐵𝐼𝐿𝐿𝑡 + 𝛽41[𝑡>𝑌2008] + 𝜀𝑡 ,

𝑡 = 1,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

Notice that the impact of the dummy variable on

M1 is large and significant. This means that

post-2008, there is a sizable and significant

increase in M1.



TIME SERIES ESTIMATION:

TRENDS AND SEASONALITY
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Time Trend (Part I)

• Many economic time series have a

tendency to grow over time.

• Ignoring the fact that two series contain a

time trend (are trending together) can

lead us to falsely conclude that changes

in one variable actually cause changes in

the other variable.

• Finding a relationship between two or

more trending variables simply because

they are growing over time is an example

of a spurious regression problem.

• The good news is that adding a time-

trend to the regression eliminates this

problem.

• For example, judging from their graphs

(shown below), M1 and IP appear to

grow together over time.
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Time Trend (Part II)
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• Time trends can be accommodated easily in EViews using function @trend.

Time trend:

1. On the main menu, select Object → New

Object → Equation and click OK.

2. The Equation Estimation box opens. Specify

here your variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(ip)

✓ @trend – trend variable

This model is formulated as follows:

log(𝑀1𝑡) = 𝛽0 + 𝛽1 log 𝐼𝑃𝑡 + 𝛽2𝑡 + 𝜀𝑡 ,
𝑡 = 1,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 The coefficient of log(ip) is negative and not

significant. In addition, the coefficient of the time

trend is positive and statistically significant.

 The R-squared is very high even though the

coefficient of log(ip) is not significant. Movements

in log(m1) are explained by the time trend.

 This means that omitting @trend can result in a

spurious regression yielding biased estimators of

the impact of log(ip) on log(m1).



Seasonality (Part I)
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• Sometimes time series exhibit seasonal patterns. For example, retails sales

tend to be higher in the last quarter of the year because of the Holiday

Shopping season.

• Most macroeconomic series are already seasonally adjusted beforehand so

there is no need to worry about seasonal issues.

• If you suspect a series displays seasonal patterns, you can include a set of

dummy variables to account for the seasonality in the dependent variable.

• EViews has a built-in function that creates dummy variables corresponding to

each month (or quarter, if the data is quarterly).



Seasonality (Part II)
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Regression with seasonal factors: 

1. On the main menu, select Object → New Object →

Equation and click OK.

2. The Equation Estimation box opens. Specify here your

variables:

✓ log(m1) – dependent variable

✓ c – constant

✓ log(ip)

✓ log(cpi)

✓ @trend – trend variable

✓ @seas(2), …, @seas(12) - seasonal dummies

This model is formulated as follows:

log(𝑀1𝑡) = 𝛽0 + 𝛽1 log 𝐼𝑃𝑡 + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝑡

+෍

𝑗=2

12

𝛼𝑗1[𝑡:𝑚𝑜𝑛𝑡ℎ∼𝑗] + 𝜀𝑡 , 𝑡 = 1,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 The seasonal dummies are not

individually statistically significant (you

can also carry out a Wald test for joint

significance and conclude the same).

 This means that the M1 series does

not display seasonal patterns (this is

because the series is already adjusted

for season patterns).



TIME SERIES ESTIMATION:

TESTING SERIAL CORRELATION
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Serial Correlation
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• As we have seen in the previous examples, residuals from our time series

regressions appear to be correlated with their own lagged values (they

display serial correlation).

• Serial correlation is a common occurrence in time series data because the

data is ordered (over time); it is therefore not surprising that neighboring error

terms turn out to be correlated. Serial correlation violates the standard

assumption of regression theory that error terms are uncorrelated.

• If untreated, serial correlation leads to a number of issues:

✓ Reported standard errors and t-statistics are invalid (even

asymptotically).

✓ Coefficients may be biased, though not necessarily inconsistent (if data

is weakly dependent). In the presence of lagged dependent variables,

OLS estimates are biased and inconsistent.

• EViews provides tools for detecting serial correlation and correcting

regressions to account for its presence.



Detecting Serial Correlation:

Visual Inspection (Part I)
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• You can visually inspect your residuals to see if serial correlation is present.

1. Open an equation.

2. Click View on the Equation box menu bar.

3. Select Actual, Fitted, Residual → Actual, Fitted, Residual Graph.

• From the graph shown here, residuals seem to display runs of positive and

negative values, providing strong visual evidence of serial correlation.



Detecting Serial Correlation:

Visual Inspection (Part II)
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• Another way to visually inspect the residuals

is to obtain a scatter plot of residuals against

their lagged values.

Creating such a scatterplot:

1. Click the Proc button on the top menu of the

Equation box, and select Make Residual Series.

2. Name the residuals resid_eq1.

3. Create a group consisting of residuals and their

lagged values by typing in the command window

(and pressing Enter after typing):

show resid_eq1 resid_eq1(-1)

4. The Group Spreadsheet opens up. On the top

menu of the Group Spreadsheet, select View →

Graph.

5. The Graph Options dialog box opens up. Select

Scatter under Graph type → Specific.
 There is strong evidence that residuals and

their lagged values are positively correlated.



Detecting Serial Correlation:

Visual Inspection (Part III)
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Correlogram of residuals:

1. On the Equation box, click View → Residual

Diagnostics → Correlogram-Q-Statistic.

2. The Lag Specification box opens up. Select

the number of lags.

• Another visual approach is to look at the Correlogram which shows the

empirical pattern of correlation between residuals and their own past values.

 The correlogram is shown here.

 If there is no serial correlation the AC and PAC at all

lags should be near zero and all Q-statistics should be

insignificant.

 Clearly, this is not the case here: the correlogram

shows substantial and persistent autocorrelation in

residuals.



Testing Serial Correlation
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• Visual checks provide important information, but we may want to carry out

formal tests for serial correlation.

• EViews provides three test statistics:

1. Durbin-Watson

2. Breusch-Godfrey

3. Ljung-Box Q-Statistic (see the previous slide)



Testing Serial Correlation:

Durbin-Watson Statistic
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• EViews automatically computes the DW statistic and includes it in every

equation object.

✓ To test the hypothesis of no serial correlation, compare the reported DW statistic to a

table of critical values. Note that EViews does not compute p-values for the DW

statistic.

✓ In this case, the DW=0.02768; it means we reject the null of no serial correlation.



Testing Serial Correlation:

Breusch-Godfrey Test
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Breusch- Godfrey Test:

1. On the Equation box menu, click View→Residual

Diagnostics→ Serial Correlation LM test.

2. The Lag Specification box opens up. Here you

need to specify the highest order of serial

correlation you would like to test. If testing for first

order serial correlation, specify lags=1.

The null hypothesis is that there is no serial

correlation in the residuals up to the specified

order.

• A more general test for serial correlation is the Breusch-Godfrey test.

 The top panel reports the test statistics in two versions: the

F-statistic and the Chi-squared statistics. The associated

p-values are also shown next to each statistic.

 The bottom panel provides additional information of the

auxiliary regression that is carried out to create the test

statistic.

 The null hypothesis of no serial correlation is easily

rejected, corroborating our previous findings.



TIME SERIES ESTIMATION:
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Correcting Serial Correlation
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• If you detect serial correlation, a specific action needs to be done.

• Serial correlation in the error term may be evidence of a serious problem of

model misspecification.

• If your goal is to estimate a model with complete dynamics, you need to

respecify the model.

• If you do not wish to estimate a fully dynamic model, but would like to carry

out statistical inference, then you need to account for serial correlation so that

test statistics are valid.

• EViews has built-in features to correct for either autoregressive (AR(p)) or

moving average (MA(q)) errors, or both.



Correcting Serial Correlation:

AR Example (Part I)
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• Let’s illustrate with a new model how to:

✓ Check for serial correlation. 

✓ Correct for serial correlation. 

Assume the following model:

𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log(𝑀1𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝐼𝑃𝑡 + 𝛽4𝑡 + 𝜀𝑡 , 𝑡 = 1,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

• There is plenty of evidence that errors are serially correlated based on: 

✓ DW-statistic (which is near 0 here)  

✓ Residual plot (next slide)

✓ Breusch-Godfrey test (next slide). 



Correcting Serial Correlation:

AR Example (Part II)
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• Residual Plot

1. Click View on Equation box.

2. Select Actual, Fitted, Residual→Actual, 

Fitted Residual Graph.

• Breusch-Godfrey Test

1. Click View on Equation box.

2. Select Residual Diagnostic→Serial 

Correlation LM Test (select 2 lags).



Correcting Serial Correlation:

AR Example (Part III)
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• Now let’s correct for serial correlation in this model. Suppose you suspect the

error term in the previous model follow an AR(1) process.

Correcting example 1: AR(1) Model

𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log(𝑀1𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝐼𝑃𝑡 + 𝛽4𝑡 + 𝜀𝑡, 𝑡 = 2,… , 𝑇, 𝜀𝑡 = 𝜑1𝜀𝑡−1 + 𝑢𝑡, 𝑢𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 The coefficient estimate for AR(1) is shown in the middle

panel. This is the serial correlation coefficient and in our case

it is large and statistically significant.

 “Inverted AR roots” are shown at the bottom of the equation

box. Stationarity requires that inverted roots lie inside the unit

circle. There is no particular issue if roots are imaginary, but

EViews issues a warning if the process is non-stationary.

 Notice that the number of observations has declined by 1;

EViews adjusts the sample to free up the pre-sample

observation needed for estimation of an AR model.

 The summary statistics at the bottom of the table are now

based on the one-period-ahead forecast errors (which

includes the information from lagged residuals) and not on the

unconditional residuals.

 Versions of EViews prior to EViews 9 used constrained least

squares as an estimation method for ARMA models. EViews 9

introduced Maximum Likelihood (ML) and Generalised Least

Squares (GLS) estimation of ARMA models. You can change

the ARMA estimation method (Options tab of the est. dialog).



Correcting Serial Correlation:

AR Example (Part IV)
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• You can also check for serial correlation now by inspecting residuals and

carrying out the Breusch-Godfrey Test.

Residual Plot:

1. On the Equation box menu, click on

View.

2. Select Actual, Fitted, Residual →

Residual Graph.

 As you can see, residuals behave better

now compared to the original model, though

there are still some concerns regarding

serial correlation.



Correcting Serial Correlation:

AR Example (Part V)
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Breusch-Godfrey Test:

1. Re-estimate the equation using CLS ARMA

estimation method. (Options tab)

2. On the equation toolbar, click

View→Residual Diagnostics→ Serial

Correlation LM test.

3. The Lag Specification box opens up.

Specify lags=2. Click OK.

 As you can see from the test results, we fail to reject

the presence of serial correlation after including an

AR(1) term. This means the AR(1) model is not a

suitable specification (it does not fully address serial

correlation).



Correcting Serial Correlation:

AR Example (Part VI)
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 Notice that now both AR(1) and AR(2) terms are estimated. They

are both statistically significant. The adequacy of this model can

be verified as before.

 EViews allows you to include non-contiguous AR terms.

 The downside to this is that if you are estimating a higher-order

AR process, EViews requires you to include all lower-order terms.

For example, to estimate an AR(3) model, you need to include:

ar(1) ar(2) a(3). If you simply type ar(3) and omit other terms, this

forces the estimate of ar(1) and ar(2) to zero. You may want this

on rare occasions (for example, when dealing with seasonal

components), but not on a routine basis.

• EViews allows you to estimate higher order (AR(p)) models just as easily.

• This should help you address issues of higher-order serial correlation.

Correcting example 1: AR(2) Model

𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log(𝑀1𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝐼𝑃𝑡 + 𝛽4𝑡 + 𝜀𝑡 , 𝑡 = 3,… , 𝑇,
𝜀𝑡 = 𝜑1𝜀𝑡−1 + 𝜑2𝜀𝑡−2 + 𝑢𝑡, 𝑢𝑡 ∼ 𝑊𝑁 0, 𝜎2 .



Correcting Serial Correlation:

MA Example

43

• You can correct for serial correlation, when errors follow an MA process.

Correcting example 1: MA(3) Model

𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log(𝑀1𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝐼𝑃𝑡 + 𝛽4𝑡 + 𝜀𝑡 , 𝑡 = 4,… , 𝑇,
𝜀𝑡 = 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2, +𝜃3𝑢𝑡−3, 𝑢𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 As it must be obvious by now, if your errors follow an MA(3)

process, you need to include both ma(1), ma(2) and ma(3) terms in

the regression.

 Unlike nearly all other EViews estimation procedures, MA models

require a continuous sample. If your sample includes a break or

has missing data (NA values), EViews will give an error message.

 Notice that in general, MA models are notoriously difficult to

estimate. In particular, higher order MA terms should be avoided

unless absolutely required for your model.
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• You can just as easily specify higher order ARMA(p,q) models.

Correcting example 1: ARMA(2,1) Model

𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log(𝑀1𝑡) + 𝛽2 log(𝐶𝑃𝐼𝑡) + 𝛽3𝐼𝑃𝑡 + 𝛽4𝑡 + 𝜀𝑡, 𝑡 = 4,… , 𝑇,
𝜀𝑡 = 𝜑1𝜀𝑡−1 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2, +𝜃3𝑢𝑡−3, 𝑢𝑡 ∼ 𝑊𝑁 0,𝜎2 .



Correcting Serial Correlation:

ARMA Example (Part II) - Correlogram
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ARMA Correlogram:

1. On the top menu of the Equation box, click View →

ARMA Structure.

2. The ARMA Diagnostic Views dialog box opens up.

Select Correlogram, the number of lags (24 here)

and click Graph (if you want to see a graph).

Note: For other diagnostic tools, see User Guide.

• EViews provides access to several diagnostic views to help you assess the

ARMA terms. One of the most useful tools is the correlogram.
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Correcting Serial Correlation:

ARMA Example (Part III) - Correlogram

 The graph shows autocorrelations (ACF) and partial

correlations (PACF) for:

▪ Theoretical correlogram (red line) corresponding to

ARMA terms.

▪ Empirical correlogram of residuals (blue spikes)

corresponding to original residuals with no ARMA

terms.

 If the model is properly specified, the blue spikes and

red line should be “close”.

 Note that if the ARMA model is non-stationary, EViews

shows only the sample structural residual

autocorrelation patterns.



Differencing and Serial Correlation (Part I)
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• An alternative way to deal with serial correlation is to difference the data.

• In fact, differencing the data (e.g., taking first-order differences) addresses a

number of issues that arise in time series data:

✓ It eliminates most (perhaps not all) serial correlation

✓ It de-trends the data

✓ It transforms an I(1) process to an I(0).



Differencing and Serial Correlation (Part II)
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• Let us first estimate the following model in levels:
𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1 log 𝐼𝑃𝑡 + 𝛽2𝑇𝐵𝐼𝐿𝐿𝑡−1 + 𝛽4𝑡 + 𝜀𝑡, 𝑡 = 2,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 There is evidence that serial correlation is

present in this model. DW-statistic is low, and

the Breusch-Godfrey test (not shown here)

detects the presence of serial correlation.



Differencing and Serial Correlation (Part III)
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• Now let us estimate the same model in first differences.
[Note that EViews allows to difference the data very easily by typing d() or dlog() before the name of the variable.]

• Let us estimate the following model:
Δ𝑇𝐵𝐼𝐿𝐿𝑡 = 𝛽0 + 𝛽1Δ log 𝐼𝑃𝑡 + 𝛽2Δ𝑇𝐵𝐼𝐿𝐿𝑡−1 + 𝛽4𝑡 + 𝜀𝑡 , 𝑡 = 3,… , 𝑇, 𝜀𝑡 ∼ 𝑊𝑁 0, 𝜎2 .

 The DW-statistic is now a lot closer to 2, suggesting that

we have eliminated some of the serial correlation in the

error term (not all disappears; BG test shows errors are

serially correlated, but the problem is less severe now).

 The time trend is now not significant: taking first-

differences has de-trended the data.

 The R-squared value is much lower now reflecting the

fact that it is harder to fit differenced data.



TIME SERIES ESTIMATION:

HETEROSKEDASTICITY AND 

AUTOCORRELATION 

EViews: Introductory User Guide
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Heteroskedasticity and Autocorrelation

in Time Series (Part I)
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• Nothing rules out the possibility that both heteroskedasticity and serial

correlation are present in a regression model.

✓Serial correlation has a larger impact on standard errors and efficiency of

estimators than heteroskedasticity

✓However, heteroskedasticity may be of concern especially in small samples.

• In addition, in many financial time series, the conditional variance of the error

term depends on past values of the error term. This is also known as

autoregressive conditional heteroskedasticity (ARCH).

• In this section, we demonstrate the following:

✓ Testing for heteroskedasticity in time series models

✓ Testing for ARCH terms

✓ HAC standard errors



Heteroskedasticity and Autocorrelation

in Time Series (Part II)
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• Testing for Heteroskedasticity in time series data is very similar to cross

section data (see Part 9):

✓The one caveat is that, when testing for heteroskedasticity, residuals should not be

serially correlated.

✓Any serial correlation will generally invalidate tests for heteroskedasticity.

✓ It thus makes sense to test for serial correlation first, correct for serial correlation,

and then test for heteroskedasticity.

✓Most commonly, you can correct for both heteroskedasticity and autocorrelation of

unknown form using the HAC Consistent Covariance (Newey-West).



Testing for Heteroskedasticity 

in Time Series Models (Part I)
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• Suppose you want to see whether

the regression shown here suffers

from heteroskedasticity.

• Let us perform the White test.

✓ Recall, the White test is a test of the null

hypothesis of no heteroskedasticity,

against heteroskedasticity of unknown,

general form.



Testing for Heteroskedasticity 

in Time Series Models (Part II)
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White Test:

1. Open an equation. On the top menu of the Equation

box, select View → Residual Diagnostics →

Heteroskedasticity Tests.

2. The Heteroskedasticity Tests window opens up.

Select White under the drop-down menu.

3. You may chose to include or exclude the cross terms.

If you do not wish to include the cross term, uncheck

the box “Include White cross terms” (as we do here).

The test will simply be carried out with only the

squared terms. Click OK.

 Based on the test statistics, we reject the null of

homoskedascity, which means that the error term is

heteroskedastic and standard errors should be adjusted.



Testing for ARCH Terms (Part I)
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• It is also possible that the previous

regression has ARCH terms.

• To test for this, let’s perform an ARCH LM test.

✓ The null hypothesis is that there is no ARCH up

to order q in the residuals.

ARCH LM Test:

1. On the equation box, select View → Residual

Diagnostics → Heteroskedasticity Tests.

2. The Heteroskedasticity Tests window opens up.

Select ARCH under the drop-down menu.

3. Select the number of lags (4 in this case). Click OK.



Testing for ARCH Terms (Part II)
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 The top panel shows the results of the ARCH LM

test, while the bottom panel shows the auxiliary

regression used to compute the test statistics.

 We reject the null of no ARCH, which means that

residuals suffer from this specific form of

heteroskedasticity.



Addressing Heteroskedasticity and 

Autocorrelation: Robust Std Errors (Part I)

• EViews provides built-in tools that allow you to adjust standard errors for the

presence of both heteroskedasticity and autocorrelation of unknown form

(HAC –Newey-West).

57

HAC (Newey-West) standard errors:

1. Click Estimate on the equation box.

2. The Equation Estimation box opens up. Click

Options.

3. Under the Coefficient Covariance matrix drop-down

menu, choose HAC (Newey-West). Click OK.



Addressing Heteroskedasticity and 

Autocorrelation: Robust Std Errors (Part II)
• EViews re-estimates the equation, this time adjusting the standard errors for

heteroskedasticity and autocorrelation of unknown form.

• For purpose of comparisons, we also show results with unadjusted standard errors.

• As expected, the estimated coefficient values do not change. But, the adjusted

standard errors (and associated t-statistics) are different from the original regression.
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