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EViews: Introductory User Guide

TIME SERIES ESTIMATION:
DATA



Data and Workfile Documentation

« Part10.wfl contains monthly data from January 1960 - December 2011.
v"M1 — money supply, billions of USD
(source: Board of Governors of the Federal Reserve)
v"IP —industrial production, index levels
(source: Board of Governors of the Federal Reserve)
v Thbill = 3-month US Treasury rate
(source: Board of Governors of the Federal Reserve)
v"CPIl — Consumer Price Index, level
(source: Bureau of Labor Statistics)



EViews: Introductory User Guide

TIME SERIES ESTIMATION:
BASICS



Time Series Estimation

- EViews has a built-in toolkit that allows you to estimate time series models
ranging from the simplest to the most complex types.

- This tutorial demonstrates how to perform basic single equation time series
regression techniques using EViews. For more details, see User Guide.

- The main topics include:

v Specifying and Estimating Time Series Regressions
v* Static and dynamic models
v Date functions
v Trends and seasonality

v" Serial Correlation

v" Testing for Serial Correlation
v" Correcting for Serial Correlation: ARMA models

v Heteroskedasticity and Autocorrelation
v" Testing for Heteroskedasticity and ARCH terms

v" HAC Standard Errors
v Weighted Least Squares




Simple Time Series Regressions:
Example 1 (Part |)
« Suppose you wish to estimate a model that captures movements in M1

(money supply) based on other variables: IP (industrial production) CPI, and
Thill rate.

@ Group: UNTITLED Workfile: TUTORIALLO_DATA:Tutoriall0_datal - B X

[ViewlProcIDbject] [PrinthamelFreeze] lDefauh vl [DptionsIPositionISampIeIShen

« As a first step, it may help to open these
variables as a group, and plot the series = .
in order to observe trends in the data. '

* M1 seems to grow over time, so adding a
time trend may improve the fit of the
model. 3 e —
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« CPI and IP seem to move together with e e
M1 and also grow over time.

« Thill appears to have a different pattern
from M1 (and other series).
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Simple Time Series Regressions:
Example 1 (Part II)

« Specifying a time series equation in EViews is very easy and follows the
same basic steps we introduced in Part 9.

Estimation:
1. Open a Workflle_ Equation Estimation ﬁ
2. In the main menu, select Object — New Object — Spedfication | Options

Equation spedification

Dependent variable followed by list of regressors induding ARMA
and PDL terms, OR an explicit equation like Y =c{1)+c(2)™X.

Equation and click OK.

3. The Equation Estimation box opens up. Specify
here your variables:

v log(m1) — dependent variable
v’ ¢ — constant

log{m1) c loa(ip) loalcpi) thill

v log(ip) — 1stindependent variable Estimation settings
v log(cpi) — 2" independent variable Method: 15 - Least Squeres (N5 and ARMA) _
Sample: [ ae0mo1 2011M12

v tbill — 3" independent variable

The model is formulated as follows: C o [ con
log(M1,) = By + B11log(IP;) + B, log(CPI;) + B3TBILL; + &,
t=1,..,T,& ~WN(0,c2).




Simple Time Series Regressions:

Example 1 (Part Ill)

* The estimation output is displayed here.

-

O All variables appear to be highly statistically significant
(based on p-values/t-stats).

0 The R-squared value is very high: results imply that
around 99.25% of the variation in log(ml) can be
explained by the other variables in the model. Normally
this would imply a very good fit for the model.

0 We caution against these results: high R-squared does
not necessarily imply that the model is a good or useful
one.

E] Equation: EQO1  Worlfile: RESULTS: TirmeSeries_Estimation’, - A Xx
[UiewlProcIDbjectl [PrinthamelFreeze] [EstimatelForecast[Stats[Residsl
Dependent Variable: LOG{M1)
Method: Least Squares
Date: 03/25M3 Time: 0257
Sample: 1960M01 201112
Included observations: 624
Wariable Coefficient Std. Error t-Statistic Prob.
c 0.855324 0.042875 20.04261 0.0000
LOGI{IP) 0.1963549 0.025865 7.591598 0.0000
LOGI{CPI) 1.055454 0.015406 68.511249 0.0000
TBILL -0.021441 0.000986  -21.74826 0.0000
F-squared 0.9925530 Mean dependentvar G.286356
Adjusted R-squared 0.9925228 5.0 dependentvar 0.825190
E. ofregression . Akaike info criterion -2 435840
Sum squared resid 3156971  Schwarz criterion -2.407403
Log likelihood 763.8320 Hannan-Quinn criter. -2.424789
F-statistic 27564.63 Durbin-Watson stat 0.027685
Prob(F-statistic) 0.000000




Simple Time Series Regressions:
Example 1 (Part V)

* Let’s inspect the behavior of residuals in the Equation View.

GraDhlcaI Exam|nat|0n Of ReS|duaIS . Equation: LlJ'N'I"ITLEF} Workﬁfe:TUTORIAI'._ID_RESULTS::Tuton'aflﬂ_dj... s I 4
] ] ] ] Wiew CICIDbJECt] [PrmtINameIFreezel [EstlmatelForecastlStatsIResms]

1. Click View on the Equation Object menu
bar. 20
7.5
2. Select Actual, Fitted, Residual — Actual, -
Fitted, Residual Graph. 3 | ec
2 6.0

F5.5
AN [
Note that the residuals of this regression WA “ .5
appear to have long periods of positive -1+
values followed by long periods of I R

negative values, providing strong visual g & W78 & = s 00 050
evidence of serial correlation. [ Residual —— Actual — Fitea|




Simple Time Series Regressions:
Example 2 (Part |)

* Distributed lag models are easy to specify in EViews.

* In these models, one/more variables affects the dependent variable with a
lag. Lags of dependent or independent variables can be specified directly in
the equation box in EViews.

Estimation:
Suppose you want to examine how M1 is affected by CPI and its first two lags in log form.

1. Open a workfile.
2. In the main menu, select Object — New Object — Equation and click OK.
3. The Equation Estimation box opens up. Specify here your variables:

v log(m1) — dependent variable

v’ ¢ — constant

v log(cpi) — 1stindependent variable

v log(cpi(-1)) — 2" independent variable

v log(cpi(-2)) — 3 independent variable

This model is formulated as follows:

log(M1,) = By + By 10g(CPI;) + B2 1og(CPIl;_1) + B3log(CPI,_3) + &,
t=3,..,T, & ~WN(0,02).
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Simple Time Series Regressions:

Example 2 (Part Il)

* The estimation output is displayed here.

0O Notice that we now have 622 instead of 624 observations
because we are using two lags of CPI.

0O R-squared and F-statistic values are high, which is
surprising especially since some coefficients do not
appear to be very significant. For example, current CPI is
statistically significant only at the 10% level, while the first
lag of CPI is not significant.

O What causes these results? It turns out, there is
substantial correlation between CPI, CPI(-1) and CPI(-2).

=] Equation: EQ02 Workfile: TUTORIALLO_RESULTS: Tutorialld_datah - B8 X

[‘ufiewlProc[Dbject] [PrintINameIFreeze] [EstimateIForecastlStatsIResids]

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 1119112 Time: 20012

Sample (adjusted). 1960M03 201112

Included observations: 622 after adjustments

Variable Coefficient Std. Error t-Statistic FProb.

C 1.019323 0.026417 3858627 0.0000

LOG(CPI) -2 672317 1531671 -1.744707 0.0815
LOG(CPI-1)) -2 267378 2754062  -0.823285 0.4107
LOG(CPI-2)) 6.117664 1.530592 3096926 0.0001
R-squared 0.986847 Qean dependentvar 6.290681
Adjusted R-squared 0. 985?83 b.D. dependent var 0.822974
E. ofregression 4 Akaike info criterion -1.871608
Sum squared resid 5 532245 Schwarz criterion -1.843100
Hannan-Cuinn criter. -1.860528
Durbin-Watson stat 0.031493
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Simple Time Series Regressions:

Example 2 (Part Ill)

« One can inspect the correlation matrix of CPI and its
first two lags. To create the correlation matrix, follow
these steps:

1. Type in the command window:
show cpi cpi(-1) cpi(-2)
to open these series as a group.

2.0n the top menu of the group, click on View —
Covariance Analysis.

3. The Covariance Analysis box opens up. Click the
Correlation box under Statistics.

U As you can see from the correlation matrix, the series are highly
correlated (multicollinearity). This multicollinearity makes it
difficult to estimate the effect at each lag.

[G] Group: UNTITLED Workfile: RESULTS: TimeSeries_Estima... — M X

[View[ Pmcl Dbjectl [Printl Namel Freezel ’De*fault

= | [sort | Edit+/-| sn

4 I

Group Members CPI("‘” CP'('2}|
MNA MNA -
Spreadsheet 29370 A I
Dated Data Table 29.410 29.370 TN
Graph... 29.410 29.410
29.540 29.410
Descriptive Stats »| 29.570 29.540
: . 29.610 29.570
Cowvariance Analysis... 29 550 29 610
M-Way Tabulation... LM e y
a Tests of Equality...
Principal Components...
Correlogram (1] ...
Cross Correlation (2) ...
Leng-run Covariance...
Unit Root Test...
Cointegration Test »
Granger Causality...
Label
5] Group: GROUPOZ Workfile: TUTORIALIO_RESULTS:... - B X
[View[Prochbject] [Print[NamelFreeze] [SamplelSheetIStatslSpecl
Correlation
LOGI(CF) | LOG(CFI-1)) | LOGICFI(-2)) |
LOG(CPI) 1.000000 0.999990 0.999966 -
LOG(CPI-1)) |  0.999980 1.000000 0.999990 m
LOGICPI-2)) | 0.9999E66 0.999990 1.000000 ful

1] | »
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Simple Time Series Regressions:
Example 2 (Part V)

- A more formal way to investigate collinearity among regressors is the
Coefficient Variance Decomposition from the View menu of the Equation
box. This test is particularly useful if there is a linear relationship between
regressors which the simple correlation matrix may fail to detect.

Coefficient Variance Decomposition:
1. Open an equation.

E]Equation: EQD2 Workfile: RESULTS: TimeSeries_Estimation’, - B8 X
2.0n the top menu of the equation box, click on [View] Prac] Object] [Prin | Name | Freeze | [Estimate | Forecast] stats] Resids]
View — Coefficient Diagnostics — Coefficient E;f::;:ffu”t;ut
Variance Decomposition. Actual Fitted Residual vho
ARMA Structure... stments
Gradients and Derivatives "} gtg Error  t-Statistic  Prob.
Note that decomposition calculations follow ceverencelen o0zer7  3soeszr 00000
Besley, Kuh and Welsch (2004). In general, there ot | comemeimons.
Is a high degree of collinearity if: Stability Diagnostics | Em
v A condition number is smaller than 1/900 m e e
(0.001) SN R
v There are two or more variables with hlgher FropFettel® o Redundant Variables Test - Likelihood Ratio...
covariance decomposition proportion than 0.5 AT

(associated with a small condition number).
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Simple Time Series Regressions:

Example 2 (Part V)

- The Equation View displays a table
showing Eigenvalues, Condition Numbers,
Variance Decomposition Proportions and
Eigenvectors:

v The top portion shows the Eigenvalues
sorted from the smallest to the largest.

v In our case, the condition numbers are much
smaller than 1/900=0.001, which indicates
the presence of collinearity. (Note that the
last condition number is always equal to 1).

v The middle panel displays the variance
decomposition proportions. The proportions
associated with the smallest condition
number. As you can see, 3 of the values are
above 0.5, indicating that there is a high
degree of collinearity between CPI, CPI(-1)
and CPI(-2).

E] Equation: EQ02 Workfiles RESULTS:TimeSeries_Estimation, = I 4
[ViewIProcIDbject] [PrintINameIFreeze] [Estimate[Forecast[Stats[Residsl
Coefficient Variance Decomposition
Date: 04/26/13 Time: 01:32
Sample: 1960M01 2011M12
Included observations: 622
Eigenvalues 1137741 0896239 0000637  2.23E-07
Condition 200E-08 2A84E-07 0000358 1.000000
Yariance Decomposition Proportions
Associated Eigenvalue
Variable 1 2 3 4
C G.30E-05 0101787 0.898145  5.06E-06
LOGICPI) 0808877 0191122 A1A4YVE-06  3.19E-08
LOG(CPI-1)) 1.000000  Z27BE-0B8  4.34E-07  9.86E-09
LOG(CPI-2)) 0808856 0191142 166E-06  319E-08
Eigenvectors
Associated Eigenvalue
Variable 1 2 3 4
C -6.22E-05 0.008903 0992187 -0.124440
LOGICPI) 0408399 -0.707209 -0.065526 -0.573263
LOG(CPI-1)) -0.816482 -0.000485 -0.071895 -0.572863
LOG(CPI(-2)) 0408106 0706248 -0078115 -0.572462
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Simple Time Series Regressions:

Example 3 (Part |)

- You can just as easily specify a model containing a large number of lags
without having to explicitly type out all the lags.

Estimation:

1. Suppose you would like to examine how M1 is
affected by current CPI values and its 12 lags. On
the main menu, select Object — New Object —
Equation and click OK.

2. The Equation Estimation box opens.
3. Specify here your variables:
v"m1l — dependent variable
v’ ¢ — constant
v CPI(0 to -12) — current and lagged values of CPI.

This model is formulated as follows:

12
M]‘t - BO + Zﬁlcplt_l + Et,
i=0

t=13,..,T,& ~ WN(0,02).

Equation Estimation ﬂ

Spedification Im‘

Equation spedfication

Dependent variable followed by list of regressors induding ARMA
and PDL terms, OR an explicit equation like Y =c(1)+c{2)*X.

m1lcopi(D to -12)

Estimation settings

Method:| |5 - Least Squares (MLS and ARMA) -

Sample: [ 1o60mo1 2011m12

[ oK ] [ Cancel

15




Simple Time Series Regressions:

Example 3 (Part Il)

* The estimation output is displayed here.

O Again, taken individually, none of the coefficients (except lag 12)
is statistically significant.

0 However, the R-squared value and the F-statistic are very high.

O Similar to the previous example, the issue here is that there is a
high degree of collinearity among all regressors (since these are
lags of the same variable).

O A way to deal with high collinearity is to fit a polynomial
distributed lag model (not discussed in this tutorial).

1420.155

E] Equation: EQD2A Workfile: RESULTS: TimeSeries_Estimation’, - B8 X
[ViewIProcIDbjectl [PrintINamelFreezel [EstimatelForecastIStatisesidsl
Dependent Variable: M1
Method: Least Squares
Date: 12/10M2 Time: 00:06
Sample (adjusted); 1961M01 2011M12
Included observations: 612 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
c -104.7026 8.063640 -12.98453 0.0000
CPI -4 664840 10.94955  -0.426030 0.6702
CPI-1) -1.266860 2040829  -0.062076 0.9505
CPI(-2) -5.402067 2200400  -0.245504 0.8062
CPI-3) 6.963252 2213892 0.314525 0.7532
CPI(-4) -0.714523 2217279 -0.032225 0.9743
CPI(-5) -2.113961 2232003 -0.094711 0.9246
CPI-5) -2.018993 2243649  -0.089987 0.9283
CPI-7) 4 547749 22.34103 0.203560 0.8388
CPI(-8) -4.054178 2221367  -0.182508 0.8552
CPI-9) -1.175856 2221645  -0.052927 0.9578
CPI(-10) 3.759427 2210938 0170038 0.8650
CPI(-11}) -23.07787 2053068  -1.124087 02614
CPI{-12) 37.26513 11.04690 3373385 0.0008
R-squared 0.968625 gMean dependentvar 736.1742
Adjusted R-squared 0.967943 §5.D. dependentvar 501.4292
e — e /\kaike info criterion 11.85516
Sum squared resid 4819906. Schwarz criterion 11.95620
g licalinand i 0 Hannan-Cuinn criter. 11.89446
F-statistic Durbin-Watson stat 0.027281

16




Simple Time Series Regressions:
Example 4 (Part |)

- You can just as easily specify a dynamic model containing lags of dependent
and independent variables.

Estimation:
1. On the main menu, select Object — New Object
— Equation and click OK. Equation Estimation [
2. The Equation Estimation box opens. Specify Specfication | Options
here your variables: Equation specification
Dependent variable followe_d_ by list c?f regressors including ARMA
v |Og(m 1) — dependent Varlable and POL terms, OR an explidt equation like Y=c(1)+c(2)*X.

log(m1) ¢ log{m 1{-1)) leg{cpi) log{cpi(-1)) log(cpi(-2})|

v ¢ — constant
v log(m1(-1))

v log(cpi)
‘/ I Og (C pl ('1)) Estimation settings
v | og (C p| (_2)) Method: |15 - Least Squares (MNLS and ARMA) -

Sample: [ aeom01 2011m12

This model is formulated as follows:
log(Mlt) = ﬁo + ﬁl log(Mlt_l) + Bz log(CPIt) Ok ] [ Cancel

+pB31og(CPI._1) + B4 log(CPI,_;) + &,
t=3,..,T,& ~WN(0,052).

17



Simple Time Series Regressions:

Example 4 (Part Il)

* The estimation output is displayed here.

O Notice that the lagged dependent variable
(log(m1(-1)) is close to unity and is highly
significant.

Q If errors are serially correlated, OLS estimates
are biased and inconsistent in the presence of
lagged dependent (see User Guide for details).

E] Equation: EQ03  Workfile: RESULTS:: TimeSeries_Estirnation’,

= 0 X
[‘JiewlPrncIDbject] [PrinthamelFreeze] [EstimatelFnrecastlStatsIResids]
Dependent Variable: LOGM1)
Method: Least Squares
Date: 04/0513 Time: 22:40
Sample (adjusted). 1960M03 2011M12
Included observations: 622 after adjustments
Yariable Coeflicient Std. Errar t-Statistic Praob.
C 0.010950 0.003446 3178026 0.0016
LOGMA(-1)) 0.994099 0.002349 3489773 0.0000
LOG(CPI) 0.070822 0109118 0.649043 0.5166
LOG{CPI(-1)) -0.421052 01895764  -2.150814 0.0319
LOG(CPI-2)) 0357229 0.110003 3.247445 0.0012
R-squared 0.999934 WMean dependentvar 6.290681
Adjusted R-squared 0.999933 35.0D. dependentvar 0.822974
S.E. of regression 0.006723 Akaike info criterion -7.158591
Sum squared resid 0.0278387 Schwarz criterion -7. 122956
Log likelihood 2231.322 Hannan-CGuinn criter. -7.144741
F-statistic 2326285, Durbin-Watson stat 1.486173
Prob(F-statistic) 0.000000
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EViews: Introductory User Guide

TIME SERIES ESTIMATION:
DATE FUNCTIONS



Time Series Regressions:
Date Dummies (Part |)

* EViews allows you to estimate regression models using dummy variables
directly in the estimation window without first having to create the dummies.

ESEHEMI Workfile: TUTORLALLO_RESULTS:Tutonalld_data', - B8 X
[‘u"iewlProchbjecthroperties] [Printhame[Freeze] [Log VI [DptionslSampleIG
Log M1
N
- For example, judging by the behavior ]
of M1 in the graph shown here, it ?'5
appears that the series grew at a '
much more rapid pace since 2008, 1
thanks to the many rounds of N
quantitative easing (QE) carried out 27
by the Federal Reserve. 717
7.0+
6.9 B R e T T T T T B TR o [ VR
0o 01 0z 03 04 05 06 07 08 09 m N
2000M01 [2] 2011M12
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Time Series Regressions:
Date Dummies (Part II)

- Let’s check whether the period since 2008 has indeed had an outsized impact
in the growth of M1. For more dummy operators see the previous parts.

Date Dummies:

1. On the main menu, select Object — New
Object — Equation and click OK.

2. The Equation Estimation box opens.
Specify here your variables:

v log(m1) — dependent variable
v’ ¢ — constant

v log(cpi)

v log(ip)

v thill

v @year>2008 - dummy variable, equal to 1
for the period after 2008 and O otherwise

This model is formulated as follows:

log(M1;) = By + B, 10g(CPI;) + B log(IP;)
+B3TBILL; + B4lit>y2008] T &t
t=1,..,T,& ~WN(0,02).

E] Equation: EQ04  Waorkfile: RESULTS: TimeSeries_Estimation, - B X

[ViewIProcIDbjectl [PrintINameIFreezel [Estimate[ForecastIStatsIResidsl

Dependent Yariable: LOG(M1)
Method: Least Squares

Date: 1111912 Time: 23:.47
Sample: 1960M01 2011M12
Included observations: 624

Wariable Coefficient Std. Error t-Statistic Prob.

C 0.847154 0.041678 20.32641 0.0000

LOGICPI) 1.037515 0.015235 68.10099 0.0000
LOG{IP) 0.214960 0.025293 3.498799 0.0000

TBILL -0.018851 0.001044  -18.05355 0.0000
@YEAR=2008 0.085273 0.013727 6.211980 0.0000
R-zquared 0.892995 Mean dependentvar 6.286356
Adjusted R-squared 0.992850 S.D. dependentvar 0.825190
S.E. ofregression 0.068288 Akaike info criterion -2.493109
Sum squared resid 2971713 Schwarz criterion -2.457563
Log likelihood 782.8500 Hannan-Cinn criter. -2.479296
F-statistic 2193649 Durbin-Watson stat 0.028152

Prob(F-statistic) 0.000000

Notice that the impact of the dummy variable on
M1 is large and significant. This means that
post-2008, there is a sizable and significant
increase in M1.

21




EViews: Introductory User Guide

TIME SERIES ESTIMATION:
TRENDS AND SEASONALITY



Time Trend (Part |)

Many economic time series have a
tendency to grow over time.

Ignoring the fact that two series contain a
time trend (are trending together) can
lead us to falsely conclude that changes
in one variable actually cause changes in
the other variable.

Finding a relationship between two or
more trending variables simply because
they are growing over time is an example
of a spurious regression problem.

The good news is that adding a time-
trend to the regression eliminates this
problem.

For example, judging from their graphs
(shown below), M1 and IP appear to
grow together over time.

[E] Group: UNTITLED Workfile: TUTORIALL0_RESULTS:Tutorialld_datal

- 08 X

[ViewIProcIDbject] [Pri

nthameIFreeze] [Log

v] [DptionsIPOSitinnlSﬁmpI&lSh

al

754

704

654

6.0+

504

45

48

[T

4104

364

324

Log M1

T T T T T T T T T T T T
B8] B W 75 81 &8 8) % 00 05 10

Log IF

28 e

1960M01 ]

[ 2011m12
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Time Trend (Part Il)

* Time trends can be accommodated easily in EViews using function @trend.

Time trend:

1.0On the main menu, select Object — New
Object — Equation and click OK.

2. The Equation Estimation box opens. Specify
here your variables:

v log(m1) — dependent variable
v/ ¢ — constant

v log(ip)
v @trend — trend variable

This model is formulated as follows:

log(M1,) = By + B1log(IP;) + Bt + &,
t=1,..,T, & ~WN(0,c2).

[=] Equation: EQ10 Waorkfile: RESULTS: TimeSeries_Estimation’, =

[View[Prochbject] [PrintINamel Freezel [EstimatelForecastlStatsIResids]

Dependent Variable: LOG(M1)
Method: Least Squares

Date: 11/25M12 Time: 23:10
Sample: 1960M01 2011M12
Included observations: 624

Wariable Coefficient Std. Error t-Statistic Prob.
C 5020579 0.212328 23 64536 0.0000
LOG(IP) -0.042588 0.063964 -0.665823 0.5058
@TREMD 0.004612 0.000147 31.45030 0.0000
R-squared 0973727 Mean dependentwvar 6.286356
Adjusted R-squared 0.973643 3.D. dependentwvar 0.825190
S.E. ofregression 0.133969 Akaike info criterion -1.77614
Sum squared resid 11.14558 Schwarz criterion -1.156286
Log likelinood 3704156 Hannan-Quinn criter. -1.169326
F-statistic 11507.80 Durbin-Watson stat 0.002548
Prob(F-statistic) 0.000000

O The coefficient of log(ip) is negative and not
significant. In addition, the coefficient of the time
trend is positive and statistically significant.

O The R-squared is very high even though the
coefficient of log(ip) is not significant. Movements
in log(m1) are explained by the time trend.

O This means that omitting @trend can result in a
spurious regression yielding biased estimators of
the impact of log(ip) on log(m1).

24




Seasonality (Part 1)

- Sometimes time series exhibit seasonal patterns. For example, retails sales
tend to be higher in the last quarter of the year because of the Holiday
Shopping season.

- Most macroeconomic series are already seasonally adjusted beforehand so
there is no need to worry about seasonal issues.

- If you suspect a series displays seasonal patterns, you can include a set of
dummy variables to account for the seasonality in the dependent variable.

- EViews has a built-in function that creates dummy variables corresponding to
each month (or quarter, if the data is quarterly).

25



Seasonality (Part Il)

Reqgression with seasonal factors:

1. 0On the main menu, select Object — New Object —
Equation and click OK.

2. The Equation Estimation box opens. Specify here your
variables:

v log(m1) — dependent variable

v/ ¢ — constant

v log(ip)

v log(cpi)

v @trend — trend variable

v @seas(2), ..., @seas(12) - seasonal dummies

This model is formulated as follows:
10182(M1t) = Bo + By log(IP) + [, 1og(CPI,) + Pst

+Z ajl[t:montth] + Et, t = 1, ...,T, Et ~ WN(O, 0-2).
j=2

E] Equation: EQ12 Workfile: RESULTS: TimeSeries_Estimation® - B X
[ViewlProcIObject] [PrintINameIFreeze] [EstimatelForecastIStatsIResids]
Dependent Variable: LOG(M1) |-
Method: Least Squares
Date: 11/26M12 Time: 01:50
Sample: 1960M01 2011M12
Included observations: 624
Variable Coeflicient Std. Error t-Statistic Prob.
C 2.699636 0.148310 18.20261 0.0000 |5
LOG(IP) -0.136870 0.039139  -3.497040 0.0005
LOG(CPI) 0.791548 0.024327 3253799 0.0000
@TREMD 0.001846 0.000123 14.95019 0.0000
@SEAS(Z) -0.000666 0.016032 -0.041545 0.9669
@SEAS(3) -0.000627 0.016032  -0.039090 0.9688
@SEAS(4) -0.000722 0.016032  -0.045041 0.9641
@SEAS(S) -0.001008 0.016032  -0.062870 0.9499 -
@SEAS(B) -0.001478 0.016032  -0.092207 0.9266
@SEAS(T) -0.001122 0.016033  -0.070004 0.9442
@SEAS(B) -0.000531 0.016033  -0.033142 0.9736
@SEAS(9) 0.000386 0.016033 0.024079 0.9808
@SEAS(10) 0.000169 0.016033 0.010522 0.9916
@SEAS(11) 0.001791 0.016034 0111733 0.9111
@SEAS(12) 0.003615 0.016034 0.225470 0.8217
R-=zquared 0.990406 MWean dependent var 5.286356
Adjusted R-squared 0.990186 35.D. dependentwvar 0.825190
S.E. ofregression 0.081748 Akaike info criterion -2.146599
Sum squared resid 4069813 Schwarz criterion -2.039961
Log likelihood 6847390 Hannan-Quinn criter. -2.105160
F-statistic 4490.8089 Durbin-Watson stat 0.008287
Prob(F-statistic) 0.000000
U The seasonal dummies are not

individually statistically significant (you
can also carry out a Wald test for joint
significance and conclude the same).

U This means that the M1 series does
not display seasonal patterns (this is
because the series is already adjusted
for season patterns).
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Serial Correlation

« As we have seen in the previous examples, residuals from our time series
regressions appear to be correlated with their own lagged values (they
display serial correlation).

« Serial correlation is a common occurrence in time series data because the
data is ordered (over time); it is therefore not surprising that neighboring error
terms turn out to be correlated. Serial correlation violates the standard
assumption of regression theory that error terms are uncorrelated.

* |f untreated, serial correlation leads to a number of iIssues:

v Reported standard errors and t-statistics are invalid (even
asymptotically).

v Coefficients may be biased, though not necessarily inconsistent (if data
Is weakly dependent). In the presence of lagged dependent variables,
OLS estimates are biased and inconsistent.

* EViews provides tools for detecting serial correlation and correcting
regressions to account for its presence.
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Detecting Serial Correlation:

Visual Inspection (Part I)

- You can visually inspect your residuals to see if serial correlation is present.

1.
2.

Open an equation.
Click View on the Equation box menu bar.

3. Select Actual, Fitted, Residual — Actual, Fitted, Residual Graph.

- From the graph shown here, residuals seem to display runs of positive and
negative values, providing strong visual evidence of serial correlation.

=D

E] Equation: EQ01  Workfile: TUTORIALLD_RESULTS:Tutoriall0_datal - B0 X

=] Equation: EQD1  Workfile: TUTORIALLD_RESULTS:Tutoriall0_datal - B8 X

View ochbjectl [PrintINameIFreeze] [EstimatelForecast[Statisesids]

[ViewlProcIObjectl [PrinthameIFreeze] [Estimate[ForecastlStatsIResids]

Dependent Variable: LOG(M1)
Method: Least Squares

Date: 1127112 Time: 14:30
Sample: 1960M01 2011M12
Included observations: 624

Variable Coefficient Std. Error t-Statistic Prob.

C 0.859324 0.042875 20.04261 0.0000

LOG{IP) 0.196359 0.025865 7.591598 0.0000
LOG{CPI) 1.055454 0.015406 68.51129 0.0000

TBILL -0.021441 0.000986  -21.74826 0.0000
R-zquared 0.992558 Mean dependentvar 6286356
Adjusted R-squared 0.992522 3.D. dependentwvar 0.825190
S.E. of regression 0.071357 Akaike info criterion -2.435840
Sum squared resid 3156971 Schwarz criterion -2.407403
Laog likelihood TE3.8820 Hannan-Quinn criter. -2.424789
F-statistic 2756463 Durbin-Watson stat 0.027685

Prob(F-statistic) 0.000000
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Detecting Serial Correlation:

Visual Inspection (Part Il)

- Another way to visually inspect the residuals
IS to obtain a scatter plot of residuals against
their lagged values.

Creating such a scatterplot:

1. Click the Proc button on the top menu of the
Equation box, and select Make Residual Series.

2. Name the residuals resid _eql.

3. Create a group consisting of residuals and their
lagged values by typing in the command window
(and pressing Enter after typing):

show resid eql resid eql (-1)
4. The Group Spreadsheet opens up. On the top

menu of the Group Spreadsheet, select View —
Graph.

5. The Graph Options dialog box opens up. Select
Scatter under Graph type — Specific.

[€] Group: GROUPO4  Waorkfile: TUTORIALLO_RESULTS: Tutoriall0_data',

- 8 X

[\Jiewl Proc[ Object] [Print] Name[ Freeze] ’Defauh

v] [OptionsIPositionlSampleISh

1)

RESID_EQ1

20
A5+
A0+
054
.00 H
-5 4
-0
-154

-.20

RESID_EQ1

1980M01 ]

I 2011m12

O There is strong evidence that residuals and
their lagged values are positively correlated.
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Detecting Serial Correlation:
Visual Inspection (Part Ill)

- Another visual approach is to look at the Correlogram which shows the
empirical pattern of correlation between residuals and their own past values.

Correlogram of residuals:

1. On the Equation box, click View — Residual
Diagnostics — Correlogram-Q-Statistic.

2. The Lag Specification box opens up. Select
the number of lags.

O The correlogram is shown here.

A If there is no serial correlation the AC and PAC at all
lags should be near zero and all Q-statistics should be
insignificant.

O Clearly, this is not the case here: the correlogram
shows substantial and persistent autocorrelation in
residuals.

E] Equation: EQ01  Workfile: RESULTS:TimeSeries_Estimation',

- 8

x

[Viewl ProcIDbject] [Printl NameIFreeze] [EstimatelForecast[ StatsIResids]

Correlogram of Residuals

Date: 041413 Time: 21:23
Sample: 1960001 2011M12
Included observations: 624

Autocorrelation Partial Correlation AC PAC  Q-Stat

Prob

0.980 0980 601.28
0.952 -0.204 11707
0.925 0058 1709.0
0.899 -0.028 22179
0.872 -0.010 26982
0.845 0035 31527
0.827 0.045 35852
0.808 0.040 39992
0.788 -0.072 43933
0763 -0103 4763.7
0737 -0.016 5109.6
0710 -0.024 54315
0.687 0092 57333
0.665 -0.034 60162
0.641 -0.0568 6279.3
0.617 0002 6524.0
0.594 -0.039 67511
0.569 -0.046 6959.8

00 == O (N 3 P =

[N W —y
[ I Ry

=
- - — — = O —-— — - =
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—
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0.000
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0.000
0.000
0.000
I
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Testing Serial Correlation

- Visual checks provide important information, but we may want to carry out
formal tests for serial correlation.

- EViews provides three test statistics:
1. Durbin-Watson
2. Breusch-Godfrey
3. Ljung-Box Q-Statistic (see the previous slide)

32



Testing Serial Correlation:
Durbin-Watson Statistic

- EViews automatically computes the DW statistic and includes it in every
equation object.

v" To test the hypothesis of no serial correlation, compare the reported DW statistic to a
table of critical values. Note that EViews does not compute p-values for the DW
statistic.

v" In this case, the DW=0.02768; it means we reject the null of no serial correlation.

E] Equation: EQO1 Workfile: TUTORIALL0_RESULTS:TuteriallD_datat - 8 X

[‘u’iewIProc]Dbjectl [PrintINameIFreezel [EstimatelForecastIStats]Resids]

Dependent Variable: LOG{M1)
Method: Least Squares

Date: 11/27M12 Time: 18:52
Sample: 1960M01 2011M12
Included observations: 624

Variable Coefficient Std. Error t-Statistic Prob.
C 0.859324 0.042875 20.04281 0.0000
LOG(IP) 0.196359 0.025865 7.591598 0.0000
LOG(CPI) 1.055454 0.015406 68.51129 0.0000
TBILL -0.021441 0.000986 -21.74826 0.0000
R-squared 0.992558 Mean dependentvar 6.286356
Adjusted R-squared 0992522 3.0. dependentwvar 0.825180
S.E. ofregression 0.071357 Akaike info criterion -2 435840
Sum squared resid 31586971 Schwarz criterion -2.407403
Laog likelihood TE3.8820 Wl_ i i i
F-statistic 27564 63 JDurbin-Watson stat 0.027685
Prob(F-statistic) 0.000000
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Testing Serial Correlation:

Breusch-Godfrey Test

- A more general test for serial correlation is the Breusch-Godfrey test.

Breusch- Godfrey Test:

E] Equation: EQD1 Workfile: TUTORIALLOD_RESULTS:Tutonall0_datal, - =

x

1. On the Equation box menu, click View—Residual
Diagnostics— Serial Correlation LM test.

. The Lag Specification box opens up. Here you
need to specify the highest order of serial
correlation you would like to test. If testing for first
order serial correlation, specify lags=1.

The null hypothesis is that there is no serial
correlation in the residuals up to the specified
order.

The top panel reports the test statistics in two versions: the
F-statistic and the Chi-squared statistics. The associated
p-values are also shown next to each statistic.

The bottom panel provides additional information of the
auxiliary regression that is carried out to create the test
statistic.

The null hypothesis of no serial correlation is easily
rejected, corroborating our previous findings.

[ViewIProcIDbject] [PrintINameIFreeze] [Estimate]Forecast]Stats[Residsl

Breusch-Godfrey Serial Correlation LM Test:

22044.02
6069566

F-statistic
Obs*R-squared

Prob. F(1,619)
Prob. Chi-Square(1)

0.0000
0.0000

Test Equation:

Dependent Variable: RESID
Method: Least Squares
Date: 112712 Time: 1928
Sample: 1960M01 2011M12
Included observations: 624

Presample missing value lagged residuals setto zero.

Variable Coefficient Std. Errar t-Statistic Prab.
C 0.009233 0.007092 1.301857 01934
LOG(IP) -0.005533 0.004278  -1.293263 0.1964
LOG[CPI) 0.003444 0.002548 1.351658 0770

TBILL -0.000429 0000163 -2.629070 0.00aa
RESID(-1) 0.992783 0006687 148 4723 0.0000
R-squared 0.972687 Mean dependentvar -1.26E-15
Adjusted R-squared 0.972510 3.D. dependentvar 0071185
5.E. of regression 0.011803 Akaike info criterion -6.033019
Sum squared resid 0.086227 Schwarz criterion -5997473
Log likelinood 1887.302 Hannan-Quinn criter. -6.019206
F-ztatistic 5511.005 Durbin-Watson stat 1.443291

ProbiF-statistic) 0.000000
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Correcting Serial Correlation

* If you detect serial correlation, a specific action needs to be done.

« Serial correlation in the error term may be evidence of a serious problem of
model misspecification.

 If your goal is to estimate a model with complete dynamics, you need to
respecify the model.

* If you do not wish to estimate a fully dynamic model, but would like to carry
out statistical inference, then you need to account for serial correlation so that
test statistics are valid.

- EViews has built-in features to correct for either autoregressive (AR(p)) or
moving average (MA(q)) errors, or both.
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Correcting Serial Correlation:

AR Example (Part I)

« Let’s illustrate with a new model how to:

v Check for serial correlation.
v" Correct for serial correlation.

Assume the following model:

TBILL; = Bo + B log(M1,) + B, log(CPI,) + L31P; + Bat + &, t =1, ...

* There is plenty of evidence that errors are serially correlated based on:

v DW-statistic (which is near O here)
v Residual plot (next slide)
v Breusch-Godfrey test (next slide).

,T, &, ~WN(0,02).

[=] Equation: EQ13 Workfile: RESULTS: TimeSeries_Estimation’, - B x
[ViewIProcIDbjectl [PrinthameIFreezel [EstimatelForecastIStatsIResids]
Dependent Variable: TBILL
Method: Least Squares
Date: 12/0212 Time: 2335
Sample: 1960M01 2011M12
Included obsemnvations: 624
Wariable Coefficient Std. Error t-Statistic Prob.
C -59.43675 3.474332 -17.10739 0.0000
LOG(M1) -10.24916 0765226 -13.39365 0.0000
LOG(CPI) 2057633 0760181 27 06767 0.0000
LOG(P) 14.37032 0.746583 19.24812 0.0000
@TREMND -0.068292 0.002726 -25.05265 0.0000
R-zquared 0729276 Mean dependentwvar 5127516
Adjusted R-squared 0727527 S.0. dependentvar 2957858
S.E. of regression 1.543971  Akaike info criterion 3714573
Sum sguared resid 1475.602 Schwarz criterion 3750119
LUg |IkE|IhUUd _115394? PP o Cgine critor he B ir I =l T o]
F-statistic 416.8657 § Durbin-Watson stat 0.082899 I

Prob(F-statistic) 0.000000
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Correcting Serial Correlation:

AR Example (Part Il)

Residual Plot
1. Click View on Equation box.

2. Select Actual,
Fitted Residual Graph.

Fitted, Residual— Actual,

Breusch-Godfrey Test
1. Click View on Equation box.

2. Select Residual Diagnostic—Serial
Correlation LM Test (select 2 lags).

=] Equation: EQ13 Workfile: RESULTS: TimeSeries_Estimation’, -

B X

[View[ProcIDbject] [PrintINameIFreeze] [EstimatelForecastIStatisesids]

[=] Equation: EQ13 Waorkfile: RESULTS: TimeSeries_Estimation’, - =

x

[‘u’iewIProcIDbject] [PrintINamelFreeze] [EstimateIForecastIStatsIResids]

ﬁ' AV L

T WS A

4 TTTT T T T T T T T T T TT T T T T T T T T T T TTT T TTTTTTTTTTTTTTTT

60 65 70 T3 a0 &5 50 85 oo 05 10

Residual —— Actual —— Fitted |

Breusch-Godfrey Serial Correlation LM Test:

3789435
S77.0241

F-statistic Prob. F(2,617)

Prob. Chi-Square(2)

Obs*R-squared

Test Equation:

Drependent Variable: RESID

Method: Least Squares

Date: 04/05M13 Time: 17:10

Sample: 1960M01 2011M12

Included observations: 624

Presample missing value lagged residuals set to zero.

‘ariable Coefficient Std. Error t-Statistic Prob.
C -0.526637 0.955624 -0.551093 0.5818
LOG(M1) 0.239897 0211124 1.609935 0.1079
LOG(CPIL)Y -0.289158 0.210080 -1.852433 0.0644
LOG(IP) 0.045833 0.205278 0.228145 0.8196
@TREMND -0.000129 0.000749 -0.185794 0.8527
RESID(-1) 1.220008 0.038747 31.48633 0.0000
RESID{(-2) -0.269668 0.038962 -6.921374 0.0000
R-squared 0.924718 Mean dependentvar -4 30E-14
Adjusted R-squared 0.923986 S.D. dependentvar 1.539007
S.E. of regression 0424314 Akaike info criterion 1.134487
Sum squared resid 111.0860 Schwarz criterion 1.184232
Log likelihood -346.9537  Hannan-Ciuinn criter. 1.153805
F-statistic 1263.145 Durbin-Watson stat 1.876415
Prob(F-statistic) 0.000000
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Correcting Serial Correlation:

AR Example (Part IlI)

* Now let’s correct for serial correlation in this model. Suppose you suspect the
error term in the previous model follow an AR(1) process.

Correcting example 1: AR(1) Model

TBILLt = ,30 + ,31 lOg(Mlt) + ,82 log(CPIt) + B3IPt + B4t + &t t = 2, ...,T, & = P1&t—1 + Ue, Up ~ WN(O, 02).

0O The coefficient estimate for AR(1) is shown in the middle
panel. This is the serial correlation coefficient and in our case
it is large and statistically significant.

O “Inverted AR roots” are shown at the bottom of the equation
box. Stationarity requires that inverted roots lie inside the unit
circle. There is no particular issue if roots are imaginary, but
EViews issues a warning if the process is non-stationary.

0O Notice that the number of observations has declined by 1;
EViews adjusts the sample to free up the pre-sample
observation needed for estimation of an AR model.

0 The summary statistics at the bottom of the table are now
based on the one-period-ahead forecast errors (which
includes the information from lagged residuals) and not on the
unconditional residuals.

O Versions of EViews prior to EViews 9 used constrained least
squares as an estimation method for ARMA models. EViews 9
introduced Maximum Likelihood (ML) and Generalised Least
Squares (GLS) estimation of ARMA models. You can change
the ARMA estimation method (Options tab of the est. dialog).

t

[=] Equation: EQ14 Wor

ile: RESULTS:Time5eries_Estimation',

E=8 Hon =<2

[ViewlProcIObject] [Pri

lNameI Freeze] [EstimateIForecastI StatsIResids]

Dependent Variabl

- TBILL

Method: ARMA Magimum Likelihood (BFGS)

Date: 07/29/15 T
Sample: 1960M01
Included observa

e: 11:45
2011M12
ns: 624

Convergence achieved after 6 iterations
nce computed using outer product of gradients

Coefficient covar]

Variable Coefficient  Std. Error  t-Statistic Prob.
c -77.71905 17.99783  -4.318245 0.0000
LOG(M1 -1.659585 2650218 -0.626207 0.5314
LOG(CP 13.70239 4115248 3.329662 0.0009
LOG(IP 14.04829 1.860123 7.552343 0.0000
@TRE -0.079405 0.018511  -4.289689 0.0000
AR(1) 0.966300  0.012059 80.13358 0.0000
SIGMASQ 0.188071 0.004441 42 35236 0.0000
R-squared 0978469 Mean dependent var 5127516
Adjusted R-squared 0978260 S.D. dependent var 2.957858
S.E. of regression 0436125 Akaike info criterion 1.193729
Sum squared resid 1173566 Schwarz criterion 1.243493
Log likelihood -365.4434  Hannan-Quinn criter. 1.213067
F-statistic 4673.219 Durbin-Watson stat 1.468547
Prob(F-statistic) 0.000000
Inverted AR Roots ar
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Correcting Serial Correlation:
AR Example (Part 1V)

- You can also check for serial correlation now by inspecting residuals and
carrying out the Breusch-Godfrey Test.

Residual Plot: (=] Equation: EQ14 Workfile: RESULTS: TimeSeries_Estimation’, - B X
1. OI"I the Equation bOX menu C”Ck on [‘JiewIPrnchbjectl [PrintINamelFreezel [EstimatelFnrecastIStatisesidsl
View.

2.Select Actual, Fitted, Residual —
Residual Graph.

U As you can see, residuals behave better
now compared to the original model, though
there are still some concerns regarding
serial correlation.

-3

65 0 75 &0 &5 80 95 0o 05 10

— TBILL Residualz
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Correcting Serial Correlation:
AR Example (Part V)

Breusch_Godfrev TeSt =] Equation: EQJ14 Workfile: RESULTS: TimeSeries_Estimation', - B X
. X . [ViewIProcIDbject] [PrintINamelFreeze] [EstimateIForecastIStatisesidsl
1. Re-estimate the equation using CLS ARMA _ _ 7
. . ) Breusch-Godfrey Serial Correlation LM Test:
estimation method. (Options tab)
. . F-statistic 42 28100 Prob. F(2,615) 0.0000
2.0n the equatlon toolbar, C||Ck Obs*R-squared 7530730 Prob. Chi-Square(2) 0.0000
View—Residual Diagnostics—  Serial
i Test Equation:
Correlation LM test. Dependent Variable: RESID
e . Method: Least Squares =
3.The Lag Specification box opens up. Date: 04/0513 Time. 1915
Specify Iags:2. Click OK. Sample: 1960M02 2011M12
Included observations: 623
Presample missing value lagged residuals set to zero.
0 As you can see from the test results, we fail to reject variable Coeficient  Std.Eor  t-Staistc  Prob.
the presence of serial correlation after including an
: ; C 0.659192 14.21048 0.046388 0.896320
AR_(]') term. 'T'hls_megns the AR(]') model is nOt_a LOG{M1) 0.656228 2285837 0287072 07742
suitable specification (it does not fully address serial LOG(CPI) -0.056660 3238314  -0.017500  0.9860
correlation). LOG(P) -1.000581 2114127 0515854  0.6061
@TREMD -0.000515 0.013497 -0.038163 0.9696
AR(T) -0.003684 0.011136 -0.330822 0.74048
RESIDI-1) 0.3329789 0.040428 8.236314 0.0000
RESIDI-2) -0.224751 0.041038 -5 4T7BR2T 0.0000
R-squared 0120878 Mean dependentvar 1.45E-13
Adjusted R-squared 0110872 S.D. dependentvar 0.434256
S.E. of regression 0409476 Akaike info criterion 1.064879
Sum squared resid 1031172 Schwarz criterion 1121823
Log likelinood -323.7098 Hannan-Cuinn criter. 1.087008
F-statistic 12.08028 Durbin-Watson stat 1.981309
Prob(F-statistic) 0.000000
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Correcting Serial Correlation:
AR Example (Part VI)

- EViews allows you to estimate higher order (AR(p)) models just as easily.
- This should help you address issues of higher-order serial correlation.

Correcting example 1: AR(2) Model

TBILL, = By + B1 log(M1,) + B, 10g(CPI,) + BsIP; + But + &4, t = 3, ..., T,

&t = P1&¢—

+ (ngt_z + ut,ut ~ WN(O, 0-2).

[=] Equation: EQ15 Workfile: RESULTS:: TimeSeries_Estimation',

fo [ ]es]

[ViewIProcI Objed:] [PrintINameIFreezel [EstimatelForecastIStatsIResids]

0O Notice that now both AR(1) and AR(2) terms are estimated. The
are both statistically significant. The adequacy of this model can
be verified as before.

0O EViews allows you to include non-contiguous AR terms.

0 The downside to this is that if you are estimating a higher-order
AR process, EViews requires you to include all lower-order terms.
For example, to estimate an AR(3) model, you need to include:
ar(1) ar(2) a(3). If you simply type ar(3) and omit other terms, this
forces the estimate of ar(1) and ar(2) to zero. You may want this
on rare occasions (for example, when dealing with seasonal
components), but not on a routine basis.

Dependent Variable: TBILL

Method: ARMA Maximum Likelihood (BFGS)
Date: 07/29/15 Time: 11:51

Sample: 1960M01 2011M12

Included observations: 624

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient ~ Std. Error  t-Statistic Prob.
C -58.13466 16.61489  -3.408950  0.0005
LOG(M1) -2.710568 2648626 -1.023386 0.3065
LOG(CPI) 13.74863 4244990  3.238791 0.0013
LOG(IP) 9.676880  2.098578 4611159 0.0000
TREND -0.065524 0.017272  -3.793582 0.0002
AR(1) 1.252827 0.018392 6811769 0.0000
AR(2) -0.294976 0.016812 -17.54522 0.0000
SIGMASQ 0.172832 0.004475 38.62024 0.0000
R-squared 0980214 Mean dependent var 5127516
Adjusted R-squared 0.979989 S.D. dependent var 2957858
S.E. of regression 0.418422 Akaike info criterion 1.112781
Sum squared resid 1078473 Schwarz criterion 1.169654
Log likelihood -339.1875  Hannan-Cluinn criter. 1.134881
F-statistic 4359.498 Durbin-Watson stat 1.868507
Prob(F-statistic} 0.000000
Inverted AR Roots 94 |
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Correcting Serial Correlation:
MA Example

- You can correct for serial correlation, when errors follow an MA process.

Correcting example 1: MA(3) Model

TBILLt - ﬂo + ﬂl log(Mlt) + ﬁz log(CPIt) + ﬁ3IPt + ﬂ4t + gt, t = 4,

& = Uy + OqUp_q + Oup_o, +03u,_5,u, ~ WN(O, 02).

U As it must be obvious by now, if your errors follow an MA(
process, you need to include both ma(1), ma(2) and ma(3) terms in
the regression.

U Unlike nearly all other EViews estimation procedures, MA models
require a continuous sample. If your sample includes a break or
has missing data (NA values), EViews will give an error message.

U Notice that in general, MA models are notoriously difficult to
estimate. In particular, higher order MA terms should be avoided
unless absolutely required for your model.

ITI

[=] Equation: EQ19 Workfile: RESULTS: TimeSeries_Estimation\,

(o= sl

[Viewl Pm(l Dhject] [Printl NameIFreeze] [Estimatel Forecastl StatsIResids]

Dependent Variable: TBILL
Method: ARMA Maximum Likelihood (BFGS)
Date: 07/29/15 Time: 11:55
Sample: 1960M01 2011M12
Included observations: 624

Convergence achieved after 10 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient  Std. Error  t-Statistic Prob.
c -54.99223 6419515  -B.566415 0.0000
LOG{M1) 8913111 1.181876  -7.541494 0.0000
LOG(CFI1) 19.38389 0.852676 2273300  0.0000
LOG(IF) 12.25341 1.110789 11.03127 0.0000
@TREND -0.065006 0.005198 -12.50512 0.0000
MA{1T) 1.494225 0.017448 8563869 0.0000
MA{2) 1.245272 0.028195 4416674 0.0000
MA{3) 0.586943 0.023470  25.00781 0.0000
SIGMASQ 0272124 0.011602 2345438 0.0000
R-squared 0668846 Mean dependent var 5127516
Adjusted R-squared 0968441 S.D. dependent var 2. 957858
S.E. of regression 0525458 Akaike info criterion 1.569772
Sum squared resid 169.8053 Schwarz criterion 1.633755
Log likelihood -480.7690 Hannan-Quinn criter. 1.594636
F-statistic 2390.734  Durbin-Watson stat 1.588388
Prob(F-statistic) 0.000000
Inverted MA Roots =33+ 7T -33-TTi -.84
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Correcting Serial Correlation:
ARMA Example (Part I)

 You can just as easily specify higher order ARMA(p,q) models.

Correcting example 1: ARMA(2,1) Model

TBILL, = By + B, 1og(M1,) + B,10g(CPL,) + B3P, + Bt + &, t = 4, ..., T,
& = P16—1 + U + 01U + Oyup_o, +03u;_3,u, ~ WN(0,02).

(=] Equation: EQ20 Workfile: RESULTS: TimeSeries Estimation', =l =]
[V\ewl Proc]Object] [PrintINameIFreeze] [EstimateIForecastIStatsIResids]
Dependent Variable: TBILL
Method: ARMA Maximum Likelihood (BFGS)
Date: 07/28/15 Time: 11:56
Sample: 1960M01 2011M12
Included observations: 624
Convergence achieved after 13 iterations
Coefficient covariance computed using outer product of gradients
Variable Coefficient  Std. Error  t-Statistic Prob.
C -56.92676 17.34743  -3.281567 0.0011
LOG(M1) -2.435588 2563601  -0.950065 0.3425
LOG(CPI) 12.80266 4398146 2.910921 0.0037
LOG(IP) 9.844700 2029720  4.850275 0.0000
@TREND -0.063479 0.018378  -3.454037 0.0006
AR(1) 0.713765 0.043304 16.48259 0.0000
AR(2) 0.227503 0.044395 5124579 0.0000
MA(1) 0.618351 0.042066 14.69954 0.0000
SIGMASQ 0.164751 0.005299 31.09019 0.0000
R-squared 0981139 Mean dependent var 5127516
Adjusted R-squared 0.980893 S.D. dependent var 2957858
SE. of regression 0.408855 Akaike info criterion 1.068400
Sum squared resid 102.8048 Schwarz criterion 1.132383
Log likelihood -324 3407 Hannan-Quinn criter. 1.093263
F-statistic 3998.940 Durbin-Watson stat 1.994871
Prob(F-statistic) 0.000000
Inverted AR Roots 95 -24
Inverted MA Roots -62
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Correcting Serial Correlation:
ARMA Example (Part Il) - Correlogram

- EViews provides access to several diagnostic views to help you assess the
ARMA terms. One of the most useful tools is the correlogram.

ARMA Correlogram:

1. On the top menu of the Equation box, click View —
ARMA Structure.

2. The ARMA Diagnostic Views dialog box opens up.
Select Correlogram, the number of lags (24 here)
and click Graph (if you want to see a graph).

Note: For other diagnostic tools, see User Guide.

-
ARMA Diagnostic Views [
Select a diagnostic: )
Correlogram Display
Roots _
g (24 || @G
Impulse Response - (7 Table
Frequency Spectrum
o]
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Correcting Serial Correlation:
ARMA Example (Part Ill) - Correlogram

E]Equation: EQ21 Waorkfile: RESULTS: TimeSeries_Estimation, — B X

[UiewIP'rcncI Dbject] [Printl NameIFreeze] [EstimateIFnrecastIStatsIResids]

1.0

= [~
2 08
O The graph shows autocorrelations (ACF) and partial =
correlations (PACF) for: 5 %%
= Theoretical correlogram (red line) corresponding to g 041
ARMAtermS. {:Iz IIIIIIIIIIIIIIIIII |I|I|I|I|II

= Empirical correlogram of residuals (blue spikes)
corresponding to original residuals with no ARMA

terms.
O If the model is properly specified, the blue spikes and

— Actual —— Theorstical |

red line should be “close”. 5 10
O Note that if the ARMA model is non-stationary, EViews c

shows only the sample structural residual g 07

autocorrelation patterns. = i | |
m 0.0 1
= \V i T T L
£
g St

Actual —— Theorstical
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Differencing and Serial Correlation (Part 1)

- An alternative way to deal with serial correlation is to difference the data.

- In fact, differencing the data (e.g., taking first-order differences) addresses a
number of issues that arise in time series data:

v It eliminates most (perhaps not all) serial correlation
v It de-trends the data

v It transforms an I(1) process to an 1(0).
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Differencing and Serial Correlation (Part 1)

- Let us first estimate the following model in levels:
TBILL; = By + B1log(IP;) + BoTBILL;_1 + Bat + &, t = 2, ...

U There is evidence that serial correlation is
present in this model. DW-statistic is low, and
the Breusch-Godfrey test (not shown here)
detects the presence of serial correlation.

,T, e, ~ WN(0,02).

E] Equation: EQ22 Worldfile: RESULTS: Time5eries_Estimation',

= 0 X
[UiewlPrncIDbject] [PrinthameIFreeze] [EstimateanrecastlStatslﬁesi:js]
Dependent Variable: TBILL
Method: Least Squares
Date: 12/0312 Time: 00:22
Sample (adjusted): 1960M02 2011M12
Included observations: 623 after adjustments
Wariable Coefficient Std. Error t-Statistic Prob.
C -2.792855 Q797777 -3.500795 0.0005
LOG(IP) 0.899720 0247337 3637627 0.0003
TBILL{-1) 0.974549 0.007347 132.6380 0.0000
@TREMD -0.002233 0000582  -3.836287 0.0001
R-squared 0977187 Mean dependentvar 5128764
Adjusted R-squared 0977077 5.0. dependentwvar 2 960070
S.E. of regression 0448168 Akaike info criterion 1.239103
Sum squared resid 1243291 Schwarz criterion 1.267576
Log likelihood -381.9307 Hannan-Cuinn criter. 1.250168
F-statistic 8838.302 Durbin-Watson stat 1.336255
Prob(F-statistic) 0.000000
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Differencing and Serial Correlation (Part Ill)

- Now let us estimate the same model in first differences.
[Note that EViews allows to difference the data very easily by typing d() or dlog() before the name of the variable.]

- Let us estimate the following model:

ATBILLt - ﬂo + ﬂlA log(lpt) + ﬂzATBILLt_l + ﬁ4t + gt;t - 3,

U The DW-statistic is now a lot closer to 2, suggesting that
we have eliminated some of the serial correlation in the
error term (not all disappears; BG test shows errors are
serially correlated, but the problem is less severe now).

U The time trend is now not significant: taking first-
differences has de-trended the data.

U The R-squared value is much lower now reflecting the
fact that it is harder to fit differenced data.

,T,¢€

. ~WN(0,02).

E] Equation: EQ23 Workfile: RESULTS: Time5Series_Estimation, - B8 X
[VimIPmc]Dbjectl [Print[Name]Freeze] [Estimate[ForecastIStatsIResids]
Dependent Variable: DITBILL)
Method: Least Squares
Date: 04/05/13 Time: 22:20
ample (adjusted). 1960M032 2011M12
§cluded observations: 622 after adjustments
\ Yariable Coefficient Std. Error t-Statistic Prob.
& C -0.018652 0.034911 -0.534280 0.5933
DLOGIIP) 9952048 2257113 4411852 0.0000
D{TBILL{-1)) 0295673 0.038230 77338967 0.0000
@TREMND -2 52E-05 948E-05  -0.265719 0.7905
R-sguared 0138837 Mean dependent var -0.006350
Adjusted R-squared 0134656 S.D. dependentvar 0453535
S.E. of regression 0421895 Akaike info criterion 1.118292
Sum squared resid 110.0014  Schwarz criterion 1146798
Log likelihood -33. 7887 Hannan-Quinn criter. 1.128371
F-statistic 3321131 Durbin-Watsaon stat 1.889581
Prob(F-statistic) 0.000000
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Heteroskedasticity and Autocorrelation
In Time Series (Part |)

- Nothing rules out the possibility that both heteroskedasticity and serial
correlation are present in a regression model.

v’ Serial correlation has a larger impact on standard errors and efficiency of
estimators than heteroskedasticity

v"However, heteroskedasticity may be of concern especially in small samples.

- In addition, in many financial time series, the conditional variance of the error
term depends on past values of the error term. This is also known as
autoregressive conditional heteroskedasticity (ARCH).

+ In this section, we demonstrate the following:

v Testing for heteroskedasticity in time series models
v Testing for ARCH terms
v HAC standard errors
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Heteroskedasticity and Autocorrelation
In Time Series (Part II)

- Testing for Heteroskedasticity in time series data is very similar to cross
section data (see Part 9):

v The one caveat is that, when testing for heteroskedasticity, residuals should not be
serially correlated.

v Any serial correlation will generally invalidate tests for heteroskedasticity.

v It thus makes sense to test for serial correlation first, correct for serial correlation,
and then test for heteroskedasticity.

v"Most commonly, you can correct for both heteroskedasticity and autocorrelation of
unknown form using the HAC Consistent Covariance (Newey-West).
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Testing for Heteroskedasticity

In Time Series Models (

- Suppose you want to see whether
the regression shown here suffers
from heteroskedasticity.

- Let us perform the White test.

v Recall, the White test is a test of the null
hypothesis of no heteroskedasticity,
against heteroskedasticity of unknown,
general form.

Part 1)

(=] Equation: EQ24  Weorkfile: RESULTS: TimeSeries_Estimation’,

- 0 X
[UiewlPrncIDbject] [PrintINameIFreeze] [EstimatelFnrecastlStatsIResids]
Dependent Variable: TBILL
Method: Least Squares
Date: 041113 Time: 19:05
Sample (adjusted): 1960M04 2011M12
Included observations: 621 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C -2.358020 0742286 -3.176699 0.0016
LOG(P) 0767407 0.229862 3.338551 0.00049
@TREMD -0.001928 0000540  -3.5694973 0.0004
TBILL{-1) 1.373592 0.039437 3482993 0.0000
TBILL{-2) -0.608719 0063402  -9.600992 0.0000
TBILL{-3) 0.210453 0.039091 5.383677 0.0000
R-squared 0.980699 WMean dependentvar 8.133575
Adjusted R-squared 0.8980542 S.0. dependentvar 2 863565
S.E. of regression 0.413389 Akaike info criterion 1.080757
Sum squared resid 105.0974  Schwarz criterion 1123572
Log likelihood -329.5751 Hannan-Cluinn criter. 1.097393
F-statistic 6249850 Durbin-Watson stat 1.985804
Prob(F-statistic) 0.000000
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Testing for Heteroskedasticity
In Time Series Models (Part Il)

White Test: r Heteroskedasticity Tests ﬁ‘
1. Open an equation. On the top menu of the Equation FETET
i ; ; : Test type:
box, select V|_e\_/v — Residual Diagnostics — e Dependentvarable: RESID"2
HeterOSkedaStICIty TEStS. giaerj:? Tl'1t=-T White Test regresses the squared
2. The Heteroskedasticity Tests window opens up. O — R L
Select White under the drop-down menu. Custom Test Wizard...

. [ indude white te
3. You may chose to include or exclude the cross terms. s T s

If you do not wish to include the cross term, uncheck
the box “Include White cross terms” (as we do here).
The test will simply be carried out with only the
squared terms. Click OK.

[ OK ] [Cancel]

=] Equation: EQ24 Workfile: RESULTS:TimeSeries_Estimation', - O Xx

[ViewIProcIDbjectl [PrintINameIFreezel [EstimateIForecastIStatsIResidsl

0 Based on the test statistics, we reject the null of

. . . Heteroskedasticity Test: White
homoskedascity, which means that the error term is

[l »

; : F-statistic 6093915 Prob. F(5,615) 0.0000
heteroskedastic and standard errors should be adjusted. Obs“R.squared 2057377 Prob, Chi-Square(s) 0.0000
Scaled explained 55 1725479 Prob. Chi-Square(s) 0.0000
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Testing for ARCH Terms (Part |)

- It is also possible that the previous eterosedssticiy Tests

regression has ARCH terms.

- To test for this, let’'s perform an ARCH LM test.

v The null hypothesis is that there is no ARCH up
to order q in the residuals.

ARCH LM Test:

1.0On the equation box, select View — Residual
Diagnostics — Heteroskedasticity Tests.

2. The Heteroskedasticity Tests window opens up.
Select ARCH under the drop-down menu.

3. Select the number of lags (4 in this case). Click OK.

Spedfication

Test type:

Breusch-Pagan-Godfrey
Harvey

White
Custom Test Wizard. ..

Gleiser

Dependent variable: RESID™2

The ARCH Test regresses the squared
residuals on lagoed squared residuals
and a constant.

Mumber of lags: 4]

(0]4

] [ Cancel ]
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Testing for ARCH Terms (Part Il)

-~

E] Equation: EQ24 Workfile: RESULTS:: TimeSeries_Estimation’, - B X

Estimate | Forecast | Stats | Resids

Heteroskedasticity Test: ARCH

F-statistic 8284362 Prob. F(4,612) 0.0000
Obs*R-squared 216.7305 Prob. Chi-Square(4) 0.0000
Test Equation:

Dependent Variable: RESIDM2
Method: Least Squares
O The top panel shows the results of the ARCH LM Date: 04/11/12 Time: 19:22

test, while the bottom panel shows the auxiliary Sample (adjusted) 1960M08 2011M12
regression used to compute the test statistics. Included observations: 617 after adjustments

O We reject the null of no ARCH, which means that Variable Coefficient Std. Error  t-Statistic Prob.
residuals suff_e_r from this specific form of c 0.064720  0.024071 2683665  0.0074
heteroskedasticity. RESID2{-1) 0580041 0039760 1483749  0.0000

RESIDM2{-2) 0026327 0.045741 0575570 0.5651

RESIDM2{-3) -0 1TE965 0045725 -3870162 0.0001

RESIDM2{-4) 0177584 0.039723 4 470537 0.0000
R-squared 0351265 WMean dependent var 0169116
Adjusted R-squared 0347025 S.D. dependentvar 0702323
3.E. of regression 0567526 Akaike info criterion 1.7130049
Sum squared resid 197 1162 Schwarz criterion 1.748867
Log likelihood -523.4633 Hannan-Cluinn criter. 1.726950
F-statistic 8284362 Durbin-Watson stat 2089907
Prob{F-statistic) 0.000000
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Addressing Heteroskedasticity and
Autocorrelation: Robust Std Errors (Part I)

- EViews provides built-in tools that allow you to adjust standard errors for the
presence of both heteroskedasticity and autocorrelation of unknown form

(HAC —Newey-West).

HAC (Newey-West) standard errors:
1. Click Estimate on the equation box.

2. The Equation Estimation box opens up. Click
Options.

3. Under the Coefficient Covariance matrix drop-down
menu, choose HAC (Newey-West). Click OK.

Equation Estimation
Specification Options

Coeffident covariance

Covariance
method: HAC (Mewey-West)

[Ad.f. adjustment | HAC options

Optimization

EViews legacy

500
0.0001

Display settings in output

Weights
Type: Mone w

EViews default

Coeffident name

=

Cancel
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Addressing Heteroskedasticity and

Autocorrelation: Robust Std Errors (Part 1)

- EViews re-estimates the equation, this time adjusting the standard errors for
heteroskedasticity and autocorrelation of unknown form.

- For purpose of comparisons, we also show results with unadjusted standard errors.
- As expected, the estimated coefficient values do not change. But, the adjusted

standard errors (and associated t-statistics) are different from the original regression.

=] Equation: EQ24A Workfile: RESULTS: TimeSeries_Estimation’,

- =

[View[ProcIDbjectl [Print]Name[Freezel [EstimatelForecast[StatsIResids]

Dependent Variable: TBILL

Method: Least Squares

Date: 0411113 Time: 19:320

Sample (adjusted): 1960M04 2011012

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 7.0000)

Variable Coefficient Std. Error t-Statistic Prob.

C -2.358020 0.768225 -3.069439 0.0022

LOG(IF) 0767407 0.249015 3081764 0.0021
@TREND -0.001928 0.000603  -3.194121 0.0015
TBILL{-1) 1.373592 0.115009 11.94333 0.0000
TBILL(-2) -0.6087149 0.205489  -2.962301 0.0032
TBILL(-3) 0.210453 0.112398 1.872393 0.0616
R-squared 0.980699 WMean dependentvar 5.133575
Adjusted R-squared 0980542 3.D. dependentwvar 2 B63565
S.E. ofregression 0.413389 Akaike info criterion 1.080757
Sum squared resid 105.0974 Schwarz criterion 1.123572
Log likelihood -329 5751 Hannan-Cluinn criter. 1.087398
F-statistic 5249.850 Durbin-Watson stat 1.985804
Prob(F-statistic) 0.000000 Wald F-statistic 42485777

Prob(\Wald F-statistic) 0.000000

E] Equation: EQ24  Workfile: RESULTS:Time5Series_Estimation', - 0 X
[ViewlProcIDbject] [PrintINameIFreeze] [Estimate[Forecast]StatsIResidsl

Dependent Variable: TBILL

Method: Least Squares

Date: 041113 Time: 19:05

Sample (adjusted): 1960M04 2011012

Included observations: 621 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.

C -2.358020 0742286 -3.176699 0.0016

LOG(IF) 0767407 0229862 3338551 0.0009
@TREMD -0.001928 0.000540  -3.569973 0.0004
TBILL{-1} 1.373592 0.039437 34 82093 0.0000
TBILL{-2) -0.608719 0.063402  -9.600992 0.0000
TBILL{-3) 0.210453 0.039081 5.38B36TT 0.0000

R-zquared 0.980699 Mean dependentvar B.133575

Adjusted R-squared 0.880542 3S.D. dependentvar 2.8963565

3.E. of regression 0.413389 Akaike info criterion 1.080757

3um squared resid 105.0974  Schwarz criterion 1123572

Laog likelihood -329.5751 Hannan-Quinn criter. 1.087398

F-statistic 6249 850 Durbin-Watson stat 1.985804

Prob(F-statistic) 0.000000
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