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1 Time Series: Basic Concepts

1. Suppose that X1, X2, . . . is a sequence of random variables with E(Xi) <∞ and E(Xi) =
µ for all i ∈ N.

(a) Show that the random variable f(X1, . . . , Xn), n ∈ N, that minimises

E
[
(Xn+1 − f(X1, . . . , Xn))2 |X1, . . . , Xn

]
is f(X1, . . . , Xn) = E (Xn+1 |X1, . . . , Xn ).

(b) Deduce that the random variable f(X1, . . . , Xn), n ∈ N, that minimises

E
[
(Xn+1 − f(X1, . . . , Xn))2

]
is also f(X1, . . . , Xn) = E (Xn+1 |X1, . . . , Xn ).

(c) If X1, X2, . . . is i.i.d. with with E(Xi) <∞ and E(Xi) = µ for all i ∈ N, where µ is
known, what is the minimum mean squared error predictor of Xn+1 in terms of X1,
. . . , Xn?

(d) Under the conditions of point (c) show that the best linear unbiased estimator of µ
in terms of X1, . . . , Xn is X̄n = 1

n(X1 + · · ·+Xn).

(e) Under the conditions of point (c) show that X̄n is the best linear predictor of Xn+1

that is unbiased for µ.

(f) If X1, X2, . . . is i.i.d. with with E(Xi) < ∞ and E(Xi) = µ for all i ∈ N, and
if S0 = 0, Sn = X1 + · · · + Xn, n ∈ N, what is the minimum mean squared error
predictor of Sn+1 is terms of S1, . . . , Sn?

2. Let {Zt}t∈Z be a sequence of independent normal random variables, each with mean 0
and finite variance σ2, and let a, b and c be constants. Which, if any, of the following
processes are (weakly) stationary? For each (weakly) stationary process specify the mean
and autocovariance function.

(a) Xt = a+ bZt + cZt−2

(b) Xt = Z1 cos(ct) + Z2 sin(ct)

(c) Xt = Zt cos(ct) + Zt−1 sin(ct)

(d) Xt = a+ bZ0

(e) Xt = Z0 cos(ct)

(f) Xt = ZtZt−1

3. If {Xt}t∈Z and {Yt}t∈Z are uncorrelated stationary sequences, show that {Xt + Yt}t∈Z is
stationary with autocovariance function equal to the sum of the autocovariance functions
of {Xt}t∈Z and {Yt}t∈Z.

4. Let {Zt}t∈Z be i.i.d. N(0, 1) noise and define

Xt =

{
Zt if t is even,
Z2
t−1−1√

2
if t is odd.

(a) Show that {Xt}t∈Z is WN(0, 1) but not i.i.d. noise.

(b) Find E(Xn+1|X1, . . . , Xn) for n odd and n even and compare the results.
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5. Let {x1, . . . , xn} be observed values of a time series at times 1, . . . , n, and let ρ̂(h) be the
sample autocorrelation function at lag h.

(a) If xt = a+ bt, where a and b are constants and b 6= 0, show that for each fixed h ≤ 1
it holds: ρ̂(h)→ 1 as n→∞.

(b) If xt = c cos(ωt), where c and ω are constants (c 6= 0 and ω ∈ (−π, π]), show that for
each fixed h it holds: ρ̂(h)→ cos(ωh) as n→∞.

6. Let {Yt}t∈Z be a stationary process with mean zero and let a and b be constants.

(a) If Xt = a + bt + st + Yt, where st is a seasonal component with period d = 12 (i.e.
st = st+d for all t), show that ∆∆12Xt := (1 − B)(1 − B12)Xt (B denotes the lag
operator) is stationary and express its autocovariance function in terms of that of
{Yt}t∈Z.

(b) If Xt = (a + bt)st + Yt, where st is a seasonal component with period d = 12 (i.e.
st = st+d for all t), show that ∆2

12Xt := (1 − B12)2Xt (B denotes the lag operator)
is stationary and express its autocovariance function in terms of that of {Yt}t∈Z.

7. Let us consider the dataset DEATHS , which contains the monthly accidental deaths in
the USA during the period 1973-1978:

(a) Display this time series, its histogram and its autocorrelation function. The presence
of a strong seasonal component with period 12 is evident in the graph of the data
and in the sample autocorrelation function.

(b) Deseasonalise the data (e.g. by using some simple methods or dummy variables).

(c) Estimate a suitable polynomial trend in the deseasonalised data.

(d) Calculate estimated random errors and analyse their dependence structure.

2 Time Series: ARMA and ARIMA Models

1. Suppose that X1, X2, . . . is a sequence of random variables with mean µ ∈ R and auto-
correlation function ρ(·). Show that the best predictor of Xn+h of the form aXn + b is
obtained by choosing a = ρ(h) and b = µ(1− ρ(h)).

2. Find the autocovariance function of the time series Xt = Zt + 0.3Zt−1 − 0.4Zt−2, where
{Zt}t∈Z ∼WN(0, 1).

3. Let {Yt}t∈Z be the AR(1) plus noise time series defined by

Yt = Xt +Wt,

where {Wt}t∈Z ∼WN(0, σ2w) and {Xt}t∈Z is the AR(1) process defined as

Xt = φXt−1 + Zt, {Zt}t∈Z ∼WN(0, σ2z), φ ∈ (−1, 1),

and E(WsZt) = 0 for all s and t.

(a) Show that {Yt}t∈Z is stationary and find its autocovariance function.

(b) Show that the time series Ut := Yt − ψYt−1 is an MA(1) process.

(c) Show that {Yt}t∈Z is an ARMA(1,1) process and express the three parameters of this
model in terms of φ, σ2w and σ2z .
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4. Suppose that in a sample of size 100 from an AR(1) process Xt = φXt−1 + Yt, {Yt}t∈Z ∼
WN(0, σ2), φ ∈ (−1, 1), with mean µ, φ = 0.6 and σ2 = 1 one obtains x̄100 = 0.271.
Construct an approximate 95% confidence interval for µ. Are the data compatible with
the hypothesis that µ = 0?

5. Let us consider the yearly dataset SUNSPOTS , which contains the sunspot number in
the years 1770-1869:

(a) Display this time series and its sample autocorrelation function.

(b) Fit AR(p) models with mean for p = 1, 2, 3 and compare them by the Akaike infor-
mation criterion (select the best one according to this criterion).

(c) Calculate estimated random errors for the model from (b) and display them.

(d) Verify the model selected in (b) by using appropriate diagnostic tools.

(e) Predict the next ten values of the sunspot series.

6. Determine which of the following ARMA processes are casual and which of them are
invertible (in all cases {Zt}t∈Z ∼WN(0, 1)):

(a) Xt + 0.2Xt−1 − 0.48Xt−2 = Zt

(b) Xt + 1.9Xt−1 + 0.88Xt−2 = Zt + 0.2Zt−1 + 0.7Zt−2

(c) Xt + 0.6Xt−1 = Zt + 1.2Zt−1

(d) Xt + 1.8Xt−1 + 0.81Xt−2 = Zt

(e) Xt + 1.6Xt−1 = Zt − 0.4Zt−1 + 0.04Zt−2

7. For those processes in Problem 5 that are casual, compute and graph their autocorrelation
and partial autocorrelation functions (using software).

8. For those processes in Problem 5 that are casual, compute the first six coefficients ψ0, . . . ,
ψ5 in the casual representation Xt =

∑∞
j=0 ψjZt−j , ψj ∈ R for all j ∈ N0.

9. Compute the (partial) autocorrelation function of the AR(2) process

Xt = 0.8Xt−2 + Zt, {Zt}t∈Z ∼WN(0, σ2), σ2 ∈ (0,∞).

10. Let {Yt}t∈Z be the ARMA plus noise time series defined by

Yt = Xt +Wt,

where {Wt}t∈Z ∼WN(0, σ2w) and {Xt}t∈Z is the ARMA(p,q) process defined as

(1− φ1B − · · · − φpBp)Xt = (1 + θ1B + · · ·+ θqB
q)Zt, {Zt}t∈Z ∼WN(0, σ2z),

φ1, . . . , φp ∈ R, θ1, . . . , θp ∈ R, φp 6= 0, θq 6= 0, and E(WsZt) = 0 for all s and t. Note that
B denotes the lag operator.

(a) Show that {Yt}t∈Z is stationary. Find its autocovariance function.

(b) Show that the process Ut := (1 − φ1B − · · · − φpBp)Yt is an MA(r) process, where
r = max(p, q). Show that {Yt}t∈Z is an ARMA(p,r) process.

11. Show that the following two MA(1) processes

Xt = Zt + θZt−1, {Zt}t∈Z ∼WN(0, σ2),

Xt = Z̃t +
1

θ
Z̃t−1, {Z̃t}t∈Z ∼WN(0, σ2θ2),

where 0 < |θ| < 1 and σ2 ∈ (0,∞), have the same autocovariance function.
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12. By matching the autocovariances and sample autocovariances at lags 0 and 1, fit a model
of the form

Xt − µ = φ(Xt−1 − µ) + Zt, {Zt}t∈Z ∼WN(0, σ2), µ, φ ∈ R, σ2 ∈ (0, 1),

to the dataset STRIKES . Use the fitted model to compute the best linear predictor
of the number of strikes in 1981. Estimate the mean square error of this prediction
and construct 95% prediction bounds for the number of strikes in 1981 assuming that
{Zt}t∈Z ∼ i.i.d N(0, σ2). Verify this model.

13. Find the Yule-Walker estimates of φ1, φ2 and σ2 in the AR(2) model

Xt = φ1Xt−1 + φ2Xt−2 + Zt, {Zt}t∈Z ∼WN(0, σ2), φ1, φ2 ∈ R, σ2 ∈ (0,∞).

14. Consider the AR(2) model

Xt = φXt−1 + φ2Xt−2 + Zt, {Zt}t∈Z ∼WN(0, σ2), φ ∈ R, σ2 ∈ (0,∞).

(a) For what values of φ is this a casual process?

(b) The following sample moments are computed after observing X1, . . . , X200: γ̂(0) =
6.060 and ρ̂(1) = 0.687, where γ̂(·) denotes the estimated autocovariance function
and ρ̂(·) denotes the estimated autocorrelation function. Find estimates of φ and σ2

by solving the Yule-Walker equations. If one finds more than one solution, the casual
one is preferred.

15. Given two observations x1, x2 (|x1| 6= |x2|) from the casual AR(1) process satisfying

Xt = φXt−1 + Zt, {Zt}t∈Z ∼WN(0, σ2), φ ∈ (−1, 1), σ2 ∈ (0,∞),

find the (quasi) maximum likelihood estimates of φ and σ2.

16. Suppose that {Xt}t∈Z is an ARIMA(p, d, q) process satisfying the difference equation

φ(B)(1−B)dXt = θ(B)Zt, {Zt}t∈Z ∼WN(0, σ2), σ2 ∈ (0,∞),

where φ(B) = (1− φ1B − · · · − φpBp) and θ(B) = (1 + θ1B + · · ·+ θqB
q) (B denotes the

lag operator), φ1, . . . , φp ∈ R, θ1, . . . , θp ∈ R, φp 6= 0, θq 6= 0, d ∈ N. Show that these
difference equations are also satisfied by the process Wt = Xt+A0 +A1t+ · · ·+Ad−1t

d−1,
where A0, . . . , Ad−1 are arbitrary random variables.

17. Apply the augmented Dickey-Fuller and KPSS test to the levels of Lake Huron data
(consider the yearly dataset LAKE , which contains the average level in feet of Lake
Huron in the years 1875-1972). Interpret the outputs. Identify, estimate and verify the
model suitable for this dataset.

18. Consider the dataset AIRPASS , which contains the number of international airline pas-
sengers (in thousands) for each month from January 1949 through December 1960, with
the last twelve values deleted. Find an ARIMA model for the logarithms of the given
data. Estimate and verify the model. Construct and display 12-step ahead forecasts and
the corresponding 95% prediction bounds.

19. Consider the dataset AIRPASS , which contains the number of international airline pas-
sengers (in thousands) for each month from January 1949 through December 1960, with
the last twelve values deleted. Decompose the logged series into the trend, seasonal and
residual component. Find an appropriate ARMA model for the residual component. Es-
timate and verify the model. Construct and display 12-step ahead forecasts and the
corresponding 95% prediction bounds. Compare the twelve forecast errors found from
this approach with those found in Problem 18.
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20. Consider the dataset TUNDRA . It contains the average maximum temperature over
the month of February for the years 1895-1993 in an area of the USA whose vegetation is
characterised as tundra.

(a) Fit a straight line to the data using OLS. Is the slope of the line significantly different
from zero?

(b) Find an appropriate ARMA model to the residuals from the OLS fit in (a).

(c) Calculate the MLE estimates of the intercept and the slope of the line and the ARMA
parameters in (a). Is the slope of the line significantly different form zero?

(d) Use the model to forecast the average maximum temperature for the years 1994 to
2004.

21. Suppose that the daily log return of a security, {rt}t∈Z, follows the model

rt = 0.01 + 0.2rt−2 + εt,

where {εt}t∈Z is a Gaussian white noise series with mean zero and variance 0.02. What
are the mean and variance of the return series rt? Compute the lag -1 and lag -2 auto-
correlations of rt. Assume that r100 = −0.01 and r99 = 0.02. Compute the 1-step and
2-step ahead forecasts of the return series at the forecast origin t = 100. What are the
associated standard deviations of the forecast errors?

22. Consider the monthly log returns of CRSP equal-weighted index from January 1962 to
December 2016. One may obtain the data from the CRSP website directly.2

(a) Build an AR model for the series and check the fitted model.

(b) Build an MA model for the series and check the fitted model.

(c) Compute 1-step and 2-step ahead forecasts of the AR and MA models built in the
previous two questions.

(d) Compare the fitted AR and MA models.

23. Let {X1, . . . , X142} denote the data in the file WINE (it represents monthly sales in
kilolitres of red wine by Australian winemakers from January 1980 through October 1991)
and let {Y1, . . . , Y142} denote their natural logarithms. Denote by m the sample mean of
the differenced series ∆12Yt = (1−B12)Yt (B denotes the lag operator).

(a) Fit the MA(12) model for ∆12Yt −m and verify it.

(b) Use the model in (a) to compute forecasts X131, . . . , X142.

(c) Compute the mean squared error for the 12 forecasts obtained in (b).

(d) Repeat steps (b) and (c) for the corresponding forecasts obtained by applying the
seasonal Holt-Winters method (with period 12) to the logged data {Y1, . . . , Y142}.

(e) Repeat steps (b) and (c) for the corresponding forecasts obtained by applying the
non-seasonal Holt-Winters method to the logged data {Y1, . . . , Y142}.

(f) Compare the mean squared errors obtained by these three methods.

2http://www.crsp.com/products/software-access-tools, last access 13th November 2017.
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3 Time Series: Multivariate ARMA Models

1. Let {Yt}t∈Z be a stationary process and define the bivariate process Xt1 = Yt, Xt2 = Yt−d,
where d 6= 0. Show that {(Xt1, Xt2)

>}t∈Z is stationary and express its cross-correlation
function in terms of the autocorrelation function of {Yt}t∈Z. If the autocorrelation function
of {Yt}t∈Z, ρY (h), fulfills that ρY (h) → 0 as h → ∞, show that there exist a lag k for
which ρ12(k) > ρ12(0) (ρ12(·) denotes the cross-correlation function).

2. Determine the covariance matrix function of the VARMA(1,1) process satisfying

Xt −ΦXt−1 = Zt + ΘZt−1, {Zt}t∈Z ∼WN(0, I2),

where I2 is the 2× 2 identity matrix and Φ = Θ =

(
0.5 0.5
0.0 0.5

)
.

3. Consider the dataset STOCK7 . It contains the daily returns on seven different stock
market indices from 27th April 1998 through 9th April 1999. Fit a multivariate autoregres-
sion model to the trivariate series consisting of the returns on the Dow Jones Industrials,
All Ordinaries and Nikkei indices. Check the model for goodness of fit, verify it and
interpret the results.

4. The bivariate AR(4) model xt −Φ4xt−4 = φ0 + et is a special seasonal model with peri-
odicity 4, where {et}t∈Z is a sequence of independent and identically distributed normal
random vectors with mean zero and covariance matrix Σ. Such a seasonal model may be
useful in studying quarterly earnings of a company.

(a) Assume that xt is weakly stationary. Derive the mean vector and covariance matrix
of xt.

(b) Derive the necessary and sufficient condition of weak stationarity for xt.

(c) Show that Γ` = Φ4Γ`−4 for ` > 0, where Γ` is the lag ` autocovariance matrix of xt.

5. The bivariate MA(4) model xt = et −Θ4et−4 is another seasonal model with periodicity
4, where {et}t∈Z is a sequence of independent and identically distributed normal random
vectors with mean zero and covariance matrix Σ. Derive the covariance matrices Γ` of xt
for ` = 0, . . . , 5.

4 Time Series: Nonlinear Models

1. Derive multi-step ahead forecasts for a GARCH(1,2) model at the forecast origin h.

2. Suppose that r1, . . . , rT are observations of the AR(1)–GARCH(1,1) returns

rt = µ+ φrt−1 + et, et = σtεt, σ
2
t = ω + α1e

2
t−1 + β1σ

2
t−1,

where εt is a standard Gaussian white noise series and µ, φ, ω, α1 and β1 are the real
parameters. Derive the conditional log likelihood function of the data.

3. In the previous Problem 2, assume that εt follows a standardised Student-t distribution
with ν degrees of freedom. Derive the conditional log likelihood function of the data.

4. Consider the daily prices of Intel stock from January 1981 to December 2016. One may
obtain the data from the Yahoo! Finance website directly.3 Transform the prices into log
returns. Build a GARCH model for the transformed series and compute 1-step to 5-step
ahead volatility forecasts.

3https://finance.yahoo.com/quote/INTC/history?p=INTC, last access 13th November 2017.
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5. Consider the daily prices of General Motors (GM) stock from January 1980 to December
2016. One may obtain the data from the Yahoo! Finance website directly.4

(a) Build a GARCH model with Gaussian innovations for the log returns of GM stock.
Check the model and write down the fitted model.

(b) Build a GARCH-M model with Gaussian innovations for the log returns of GM stock.
What is the fitted model?

(c) Build a GARCH model with Student-t distribution for the log returns of GM stock,
including estimation of the degrees of freedom. Write down the fitted model. Let ν be
the degrees of freedom of the Student-t distribution. Test the hypothesis H0 : ν = 6
versus H1 : ν 6= 6, using the 5% significance level.

(d) Build an EGARCH model for the log returns of GM stock. What is the fitted model?

(e) Obtain 1-step to 6-step ahead volatility forecasts for all the models obtained. Com-
pare the forecasts.

6. Consider the daily prices of General Motors (GM) stock from January 1980 to December
2016. One may obtain the data from the Yahoo! Finance website directly.5

(a) Build a GJR-GARCH model for the log return series using the standard Gaussian
innovations. Write down the fitted model. Is the leverage effect significant at the 1%
level?

(b) Build a GJR-GARCH model for the log return series using the Student-t innovations.
Write down the fitted model. Is the leverage effect significant at the 1% level?

(c) Build a GJR-GARCH model for the log return series using the GED innovations.
Write down the fitted model. Is the leverage effect significant at the 1% level?

7. Suppose that the monthly log returns, in percentages, of a stock respect the following
Markov switching model:

rt = 1.25 + et, et = σtεt,

σ2t =

{
0.10e2t−1 + 0.93σ2t−1 if st = 1,
4.24 + 0.10e2t−1 + 0.78σ2t−1 if st = 2,

where the transition probabilities are

P(st = 2|st−1 = 1) = 0.15, P(st = 1|st−1 = 2) = 0.05.

Suppose that r100 = 6.0, σ2100 = 50.0 and s100 = 2 with probability 1. What is the 1-step
ahead volatility forecast at the forecast origin t = 100? Also, if the probability of s100 = 2
is reduced to 0.8, what is the 1-step ahead volatility forecast at the forecast origin t = 100?

5 Time Series: State-space Models

1. Consider the ARMA(1,1) model

yt − 0.8yt−1 = εt + 0.4εt−1, {εt}t∈Z ∼ i.i.d. N(0, 0.49).

Convert the model into a state-space form.

4https://finance.yahoo.com/quote/GM/history?p=GM, last access 13th November 2017.
5https://finance.yahoo.com/quote/GM/history?p=GM, last access 13th November 2017.
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2. Consider the following AR(3) model

xt = ϕ1xt−1 + ϕ2xt−2 + ϕ3xt−3 + εt, εt ∼ i.i.d. N(0, σ2ε), σ
2
ε ∈ (0,∞),

and suppose that the observed data are

yt = xt + et, et ∼ i.i.d. N(0, σ2e), σ
2
e ∈ (0,∞),

where {εt}t∈Z and {et}t∈Z are independent and the initial values of xj with j ≤ 0 are
independent of et and εt for t > 0.

(a) Convert the model into a state-space form.

(b) If E(et) = c, which is not zero, what is the corresponding state-space form for the
system?

6 Econometrics: Regression Models

1. Consider the least squares regression of y on K variables (with a constant) X. Consider
an alternative set of regressors Z = XP , where P is a nonsingular matrix. Thus, each
column of Z is a mixture of some of the columns of X. Prove that the residual vectors
in the regressions of y on X and y on Z are identical. What relevance does this have to
the question of changing the fit of a regression by changing the units of measurement of
the independent variables?

2. A data set consists of n observations on Xn and yn. The least squares estimator based
on these n observations is bn = (X>nXn)−1Xnyn. Another observation, xs and ys,
becomes available. Prove that the least squares estimator computed using this additional
observation is

bn,s = bn +
1

1 + x>s (X>nXn)−1xs
(X>nXn)−1xs

(
ys − x>s bn

)
.

Note that the last term is es, the residual from the prediction of ys using the coefficients
based on Xn and bn. Conclude that the new data change the results of least squares only
if the new observation on y cannot be perfectly predicted using the information already
in hand.

3. For the classical normal regression model y = Xβ + ε with no constant term and K
regressors, assuming that the true value of β is zero, what is the exact expected value of
FK,n−K = (R2/K)/[(1− R2)/(n−K)]? Note that R2 denotes the coefficient of determi-
nation.

4. Prove that E[b>b] = β>β + σ2
∑K

k=1
1
λk

, where b is the ordinary least squares estimator
in the classical normal regression model y = Xβ + ε and λk is a characteristic root of
X>X.

5. For the simple regression model yi = µ + εi, εi ∼ i.i.d. N(0, σ2), prove that the sample
mean is consistent and asymptotically normally distributed. Now consider the alternative
estimator µ̂ =

∑
iwiyi, wi = i

n(n+1)/2 . Note that
∑

iwi = 1. Prove that this is a consistent
estimator of µ and obtain its asymptotic variance.

6. Consider the dataset SHIPS containing the number of incidents of damage to a sample
of ships, with the type of ship and the period when it was constructed. There are five
types of ships and four different periods of construction. Use F tests and dummy variable
regressions to test the hypothesis that there is no signficant ”ship type effect” in the
expected number of incidents. Now, use the same procedure to test whether there is a
significant ”period effect”.
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7. Does first differencing reduce autocorrelation? Consider the models yt = β>xt+εt, where
εt = ρεt−1 + ut and εt = ut − λut−1. Compare the autocorrelation of εt in the original
model with that of vt in yt − yt−1 = β>(xt − xt−1) + vt, where vt = εt − εt−1.

7 Econometrics: Systems of Econometric Equations

1. Prove that in the following SUR system consisting of two regression equations:

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

the SUR estimator is equivalent to equation-by-equation ordinary least squares if X1 =
X2. Does your result hold if it is also known that β1 = β2?

8 Econometrics: Models for Discrete and Limited Responses

1. Suppose that a linear probability model is to be fit to a set of observations on a dependent
variable y that takes values zero and one, and a single regressor x that varies continu-
ously across observations. Obtain the exact expressions for the least squares slope in the
regression in terms of the mean(s) and variance of x, and interpret the result.

2. Consider the dataset STRIKES DUR containing the strike duration in days [T ] and
unanticipated industrial production [PROD] for a number of strikes in each of 9 years.
Use the Poisson regression model to determine whether PROD is a significant determinant
of the number of strikes in a given year.

Note: If not specifically specified, use 5% significance level to draw conclusions in the exercises.
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