
NMEK436

Computational Aspects of Optimization

Course Notes

Martin Branda

Charles University, Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Version: December 15, 2017

Contents

1 Linear programming 3
1.1 Primal simplex algorithm . 3
1.2 Duality in linear programming . 6

1.2.1 Production planning . 7
1.2.2 Transportation problem . 8

1.3 Dual simplex algorithm . 8
1.4 Software tools for LP . 11

2 An introduction to Benders decomposition 12
2.1 Example . 14
2.2 Applications . 16

2.2.1 Two-stage stochastic programming problems 16
2.2.2 Minimization of Conditional Value at Risk 16

3 Integer Linear Programming 18
3.1 Motivation and applications . 18

3.1.1 Facility Location Problem . 19
3.1.2 Scheduling to Minimize the Makespan 19
3.1.3 Lot Sizing Problem . 20
3.1.4 Unit Commitment Problem 21

3.2 Formulation and properties . 21
3.3 Algorithms . 23

3.3.1 Cutting plane method . 24
3.3.2 Branch-and-Bound . 27

3.4 Dynamic programming . 31
3.5 Introduction to computational complexity 33
3.6 Totally unimodular matrices and network flows 35

3.6.1 Minimum cost network flow problem 35
3.6.2 Shortest path problem . 36
3.6.3 Fixed interval scheduling . 37

3.7 Traveling salesman problem . 38
3.7.1 Traveling Salesman Problem with Time Windows 40
3.7.2 Capacitated Vehicle Routing Problem 40

3.8 Heuristic algorithms . 41
3.8.1 Greedy heuristic . 41
3.8.2 Local search heuristic . 42
3.8.3 Basic heuristics for VRP . 42
3.8.4 Tabu search for VRP . 42
3.8.5 Genetic algorithms . 43
3.8.6 Rich Vehicle Routing Problems 43

2

1 Linear programming

To investigate the simplex algorithms, we will consider a linear programming problem
in the standard form

min cTx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n. Assume that h(A) = h(A|b) = m. We denote the set of feasible
solutions by

M = {x ∈ Rn : Ax = b, x ≥ 0}.

We know that the set can be decomposed as M = K + P , where

• Convex polyhedron P – uniquely determined by its vertices (convex hull)

• Convex polyhedral cone K – generated by extreme directions (positive hull)

The Direct method is based on evaluating all vertices and extreme directions, com-
puting the values of the objective function and verifying the optimality condition.

One of these cases is valid:

1. M = ∅,

2. M 6= ∅: the problem is unbounded,

3. M 6= ∅: the problem has an optimal solution (at least one of the optimal
solutions is a vertex).

1.1 Primal simplex algorithm

The simplex algorithm was introduces by George B. Dantzig (1914–2005).
Basis B = regular square submatrix of A, i.e. A can be divided into the basis

and nonbasis part
A = (B|N).

We also consider B = {i1, . . . , im} as the set of column indices which correspond to
the basis. We split also the objective coefficients and the decision vector accordingly:

cT = (cTB, c
T
N),

xT (B) = (xTB(B), xTN(B)),

where
xB(B) = B−1b, xN(B) ≡ 0.

We consider

• feasible basis for which xB(B) ≥ 0,

• optimal basis corresponding to an optimal solution,

• basic solution(s).

3

The simplex algorithm can be represented by the simplex table:

xT

cT

cB xB(B) B−1b B−1A

cTBB
−1b cTBB

−1A− cT

In the table, we can identify

• feasibility condition:
B−1b ≥ 0,

• optimality condition:
cTBB

−1A− cT ≤ 0.

Simplex algorithm – a step: If the optimality condition is not fulfilled:

• Denote the criterion row by

δT = cTBB
−1A− cT .

• Find a positive element δi > 0 and denote the corresponding column by

ρ = B−1A•,i,

where A•,i is the i−th column of A.

• Minimize the ratios

û = arg min

{
xu(B)

ρu
: ρu > 0, u ∈ B

}
.

• Substitute xû by xi in the basic variables, i.e. B̂ = B \ {û} ∪ {i}.

Denote by B̂ the new basis. Simplex algorithm is moving from one basic solution
to another one. We can identify the direction and the step length in our steps. The
direction is

∆u = −ρu, u ∈ B,
∆i = 1,

∆j = 0, j /∈ B ∪ {i}.

If ρ ≤ 0 (û = ∅), then the problem is unbounded (cTx → −∞). Otherwise, we can
move from the current basic solution to another one as

x(B̂) = x(B) + t∆,

4

where 0 ≤ t = xû(B)
ρû

. We should prove that the new solution is a feasible basic
solution and that the objective value decreases

First, we show that the new solution is feasible:

x(B̂) ≥ 0,

Ax(B̂) = Ax(B) + tA∆

= Ax(B)− tBρ+ tA•,i

= b− tBB−1A•,i + tA•,i = b.

Now, we obtain that the objective value decreases

cTx(B̂) = cTx(B) + tcT∆

= cTx(B)− tcTBρ+ tci

= cTx(B)− t(cTBB−1A•,i − ci)
= cTx(B)− tδi,

where δi > 0 is the element of the criterion row.
Finally note

• if ρ ≤ 0, then x(B̂) is feasible for all t ≥ 0 and the objective value decreases in
the direction ∆,

• otherwise the step length t is bounded by xû(B)
ρû

. In this case, the new basis

B̂ is regular, because we interchange one unit vector by another one using the
column i with ρû > 0 element (on the right position).

Realize that not all steps of the simplex algorithm are uniquely determined. Pivot
rules are used for selecting the entering variable if there are several possibilities:

• Largest coefficient in the objective function

• Largest decrease of the objective function

• Steepest edge – choose an improving variable whose entering into the basis
moves the current basic feasible solution in a direction closest to the direction
of the vector c

max
cT (xnew − xold)
‖xnew − xold‖

.

Computationally the most successful.

• Blands’s rule – choose the improving variable with the smallest index, and if
there are several possibilities for the leaving variable, also take the one with the
smallest index (prevents cycling)

For details see Matoušek and Gärtner (2007).

Example 1.1. Consider two table which differ by an objective coefficient.

5

3 -1 0 0
x1 x2 x3 x4

0 x3 2 -2 1 1 0
0 x4 1 1 -2 0 1

0 -3 1 0 0

-1 x2 2 -2 1 1 0
4 x4 5 -3 0 2 1

-2 -1 0 -1 0

We moved in direction ∆T = (0, 1,−1, 2), i.e.

(0, 2, 0, 5) = (0, 0, 2, 1) + t · (0, 1,−1, 2),

where t = 2.

-2 -1 0 0
x1 x2 x3 x4

0 x3 2 -2 1 1 0
0 x4 1 1 -2 0 1

0 2 1 0 0

-1 x2 2 -2 1 1 0
0 x4 5 -3 0 2 1

-2 4 0 -1 0

This problem is unbounded in direction ∆T = (1, 2, 0, 3).

1.2 Duality in linear programming

We review basis of duality in linear programming. Consider primal problem Primal
problem

(P) min cTx

s.t. Ax ≥ b,

x ≥ 0.

and corresponding dual problem

(D) max bTy

s.t. ATy ≤ c,

y ≥ 0.

Denote the sets of feasible solutions:

M = {x ∈ Rn : Ax ≥ b, x ≥ 0},
N = {y ∈ Rm : ATy ≤ c, y ≥ 0}.

Weak duality theorem says

bTy ≤ cTx, ∀x ∈M,∀y ∈ N.

Equality holds if and only if complementarity slackness conditions are fulfilled:

yT (Ax− b) = 0,

xT (ATy − c) = 0.

6

• Duality theorem: If M 6= ∅ and N 6= ∅, than the problems (P), (D) have
optimal solutions.

• Strong duality theorem: The problem (P) has an optimal solution if and only
if the dual problem (D) has an optimal solution. If one problem has an optimal
solution, than the optimal values are equal.

1.2.1 Production planning

Optimize the production of the following products V1, V2, V3 made from materials
M1, M2.

V1 V2 V3 Constraints
M1 1 0 2 54 kg
M2 2 3 1 30 kg

Gain ($/kg) 10 15 10

Primal problem can be formulated as

(P)

max 10x1 + 15x2 + 10x3
s.t. x1 + 2x3 ≤ 54,

2x1 + 3x2 + x3 ≤ 30,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0.

The corresponding dual problem is

(D)

min 54y1 + 30y2
s.t. y1 + 2y2 ≥ 10,

3y2 ≥ 15,
2y1 + y2 ≥ 10,
y1 ≥ 0,

y2 ≥ 0.

We can easily obtained an optimal solution of (D) ŷ =
(
5
2
, 5
)T

. Using the comple-
mentarity slackness conditions we obtain the optimal solution of the primal problem
x̂ = (0, 1, 27)T . The optimal values (gains) of (P) and (D) are 285.

• Both (P) constraints are fulfilled with equality, thus there in no material left.

• Dual variables are called shadow prices and represent the prices of sources
(materials).

• Sensitivity: If we increase (P) r.h.s. by one, then the objective value increases
by the shadow price.

• The first constraint of (D) is fulfilled with strict inequality with the difference
2.5 $, called reduced prices, and the first product is not produced. The
producer should increase the gain from V1 by this amount to become profitable.

7

1.2.2 Transportation problem

We consider the following notation:

• xij – decision variable: amount transported from i to j,

• cij – costs for transported unit,

• ai – capacity,

• bj – demand.

We assume that
∑n

i=1 ai ≥
∑m

j=1 bj, i.e. the demand can be satisfied by the available
capacity. (Sometimes ai, bj ∈ N.)

Primal problem

min
n∑
i=1

m∑
j=1

cijxij

s.t.
m∑
j=1

xij ≤ ai, i = 1, . . . , n,

n∑
i=1

xij ≥ bj, j = 1, . . . ,m,

xij ≥ 0.

Dual problem

max
n∑
i=1

aiui +
m∑
j=1

bjvj

s.t. ui + vj ≤ cij,

ui ≤ 0,

vj ≥ 0.

Interpretation: −ui price for buying a unit of goods at i, vj price for selling at j.
Competition between the transportation company (which minimizes the trans-

portation costs) and an “agent” (who maximizes the earnings):

n∑
i=1

aiui +
m∑
j=1

bjvj ≤
n∑
i=1

m∑
j=1

cijxij

Linear programming duality
Apply KKT optimality conditions to primal LP ... we will see relations with NLP

duality.

1.3 Dual simplex algorithm

Linear programming duality Primal problem (standard form)

min cTx

s.t. Ax = b,

x ≥ 0.

8

and corresponding dual problem

max bTy

s.t. ATy ≤ c,

y ∈ Rm.

Dual simplex algorithm works with

• dual feasible basis B and

• basic dual solution y(B),

where

BTy(B) = cB,

NTy(B) ≤ cN .

Primal feasibility B−1b ≥ 0 is violated until reaching the optimal solution.
Primal optimality condition is always fulfilled:

cTBB
−1A− cT ≤ 0.

Using A = (B|N), cT = (cTB, c
T
N), we have

cTBB
−1B − cTB = 0,

cTBB
−1N − cTN ≤ 0,

Setting ŷ = (B−1)T cB

BT ŷ = cTB,

NT ŷ ≤ cTN .

Thus, ŷ is a basic dual solution.
Dual simplex algorithm – a step ... uses the same simplex table.

• Find index u ∈ B such that xu(B) < 0 and denote the corresponding row by

τT = (B−1A)u,•.

• Denote the criterion row by

δT = cTBB
−1A− cT ≤ 0.

• Minimize the ratios

î = arg min

{
δi
τi

: τi < 0

}
.

• Substitute xu by xî in the basic variables, i.e. B̂ = B \ {u} ∪ {̂i}. We move to
another basic dual solution.

9

Example – dual simplex algorithm
The problem is dual nondegenerate if for all dual feasible basis B it holds

(ATy(B)− c)j = 0, j ∈ B,
(ATy(B)− c)j < 0, j /∈ B.

If the problem is dual nondegenerate, then the dual simplex algorithm ends after
finitely many steps.

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ≥ 0.

Dual problem

max − 5y1 − 7y2

s.t. − y1 − 3y2 ≤ 4

− 4y1 − 2y2 ≤ 5

y1 ≤ 0

y2 ≤ 0.

4 5 0 0
x1 x2 x3 x4

0 x3 -5 -1 -4 1 0
0 x4 -7 -3 -2 0 1

0 -4 -5 0 0

0 x3 -8/3 0 -10/3 1 -1/3
4 x1 7/3 1 2/3 0 -1/3

28/3 0 -7/3 0 -4/3

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

The last solution is primal and dual feasible, thus optimal.
A general step in the dual simplex algorithm

y(B̂) = y(B)− t(B−1)T•,u

i.e.
(0,−4/3) = (0, 0)− 4/3(0, 1),

which can be seen in the criterion row in the columns corresponding to the initial
basis. Dual constraints 1 and 3 are then active.

10

1.4 Software tools for LP

Software tools for solving linear programming problems include

• Matlab

• Mathematica

• GAMS

• Cplex studio

• AIMMS

• ...

• R

• MS Excel

• ...

11

2 An introduction to Benders decomposition

Benders decomposition is a very useful principle in optimization which main idea is
to decompose the original problem into two or more problems These problems are
then solved iteratively where the solutions of one problem are used in the second one
and vice versa. The Benders decomposition can be helpful for solving the problems
from the following classes:

• linear programming,

• mixed-integer (non)linear programming,

• two-stage stochastic programming (called L-shaped algorithm),

• multistage stochastic programming (Nested Benders decomposition).

We will show how the Benders decomposition works on two-stage linear program-
ming problems of the form

min cTx+ qTy

s.t. Ax = b,

Tx+Wy = h,

x ≥ 0,

y ≥ 0.

(1)

We impose the following assumption on the problem:
ASS. B1 := {x : Ax = b, x ≥ 0} is bounded and the problem has an optimal solution.

Benders decomposition relies on decomposing the problem into two (or more)
parts which can be solved easily than the full problem. In our case, both problems
will be linear. We define the recourse function (second-stage value function, slave
problem)

f(x) = min{qTy : Wy = h− Tx, y ≥ 0} (2)

If for some x is {y : Wy = h−Tx, y ≥ 0} = ∅, then we set f(x) =∞. We can show
that the recourse function is piecewise linear, convex, and bounded below .

Proof (outline): We will show the properties in several steps

• f(x) is bounded below and piecewise linear (affine): There are finitely many
optimal basis B chosen from W such that

f(x) = qTBB
−1(h− Tx),

where feasibility B−1(h− Tx) ≥ 0 is fulfilled for x ∈ B1. Optimality condition
qTBB

−1W − q ≤ 0 does not depend on x.

• f(x) is convex: let x1, x2 ∈ B1 and y1, y2 be such that f(x1) = qTy1 and
f(x2) = qTy2. For arbitrary λ ∈ (0, 1) and x = λx1 + (1− λ)x2 we have

λy1 + (1− λ)y2 ∈ {y : Wy = h− Tx, y ≥ 0},

i.e. the convex combination of y’s is feasible. Thus we have

f(x) = min{qTy : Wy = h− Tx, y ≥ 0} (3)

≤ qT (λy1 + (1− λ)y2) = λf(x1) + (1− λ)f(x2). (4)

12

We have an equivalent NLP problem to the original one (1)

min cTx+ f(x)

s.t. Ax = b,

x ≥ 0.

(5)

We can solve the master problem (first-stage problem) in an equivalent form

min cTx+ θ

s.t. Ax = b,

f(x) ≤ θ,

x ≥ 0.

(6)

We would like to approximate f(x) from below by adding cuts (linear inequalities)
leading back to a linear programming problem.

First, we will show how to construct the feasibility cuts. Solve the slave problem
for a given x̂

f(x̂) = min{qTy : Wy = h− T x̂, y ≥ 0} (7)

= max{(h− T x̂)Tu : W Tu ≤ q}. (8)

If the dual problem is unbounded (primal is infeasible according to the LP duality),
then there exists a growth direction ũ such that W T ũ ≤ 0 and (h− T x̂)T ũ > 0. For
any feasible x there exists some y ≥ 0 such that Wy = h− Tx. If we multiply it by
ũ, we obtain

ũT (h− T x̂) = ũTWy ≤ 0,

which has to hold for any feasible x, but is violated by x̂. Thus by

ũT (h− Tx) ≤ 0

the infeasible x̂ is cut off. The last inequality is the feasibility cut.
If the dual problem is not unbounded, then we can derive the optimality cut. We

know that there is an optimal solution û of the dual problem such that

f(x̂) = (h− T x̂)T û.

For arbitrary x we have

f(x) = sup
u
{(h− Tx)Tu : W Tu ≤ q}, (9)

≥ (h− Tx)T û, (10)

because û is feasible for arbitrary x. From inequality f(x) ≤ θ we have the optimality
cut

ûT (h− Tx) ≤ θ.

If this cut is fulfilled for actual (x̂, θ̂), then we STOP the iterations, x̂ is an optimal
solution.

13

The cuts are added to the master problem (one in each iteration). We solve the
master problem with cuts

min cTx+ θ

s.t. Ax = b,

ũTl (h− Tx) ≤ 0, l = 1, . . . , L,

ũTk (h− Tx) ≤ θ, k = 1, . . . , K,

x ≥ 0.

(11)

The algorithm is summarized in the following steps:

0. INIC: Set θ = −∞, L = 0, K = 0.

1. Solve the master problem to obtain (x̂, θ̂).

2. For x̂, solve the dual of the second-stage (recourse) problem to obtain

– a direction of unbounded decrease (feasibility cut), L = L+ 1,

– or an optimal solution (optimality cut), K = K + 1.

3. STOP, if the current solution (x̂, θ̂) fulfills the optimality cuts. Otherwise GO
TO Step 1.

Convergence of the algorithm can be proven as follows. There are finitely many
extreme directions that can generate the feasibility cuts and finitely many (dual) fea-
sible basis which can produce the optimality cuts.

Let (x∗, θ∗) be an optimal solution of the reformulated original problem.

1. The feasibility set of the master problem (6) is always contained in the feasibility
set of the master problem with cuts (11) (no feasible solutions are cut).

2. The optimal solution (x̂, θ̂) obtained by the algorithm is feasible for the master
problem (6), because

θ̂ ≥ (h− T x̂)T û = f(x̂).

Thus, from 1. and 2. we obtain

cTx∗ + θ∗ ≥ cT x̂+ θ̂ ≥ cTx∗ + θ∗.

For more details see Kall and Mayer (2005), Proposition 2.19.
Benders optimality cuts Kall and Mayer (2005)

2.1 Example

We will demonstrate the steps of the Benders decomposition on the following LP
problem:

min 2x+ 2y1 + 3y2

s.t. x+ y1 + 2y2 = 3,

3x+ 2y1 − y2 = 4,

x, y1, y2 ≥ 0.

(12)

14

ht

Figure 1: Benders cuts approximating the value function

Recourse function can be defined as:

f(x) = min 2y1 + 3y2

s.t. y1 + 2y2 = 3− x,
2y1 − y2 = 4− 3x,

y1, y2 ≥ 0,

(13)

i.e. it is a real function of one variable. Now we will proceed in iterations.
Iteration 1: Set θ = −∞ and solve master problem

min
x

2x s.t. x ≥ 0. (14)

We obtained the optimal solution x̂ = 0. Now, solve the dual of the slave problem
for x̂ = 0:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(15)

Optimal solution is û = (8/5, 1/5) with optimal value 28/5, thus no feasibility cut is
necessary. We can construct an optimality cut

(3− x)8/5 + (4− 3x)1/5 = 28/5− 11/5x ≤ θ.

Iteration 2: Add the optimality cut and solve

min
x,θ

2x+ θ

s.t. 28/5− 11/5x ≤ θ,

x ≥ 0.

(16)

Optimal solution (x̂, θ̂) = (2.5455, 0) with optimal value 5.0909. Solve the dual
problem for x̂ = 2.5455:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(17)

15

Optimal solution is û = (1.5, 0) with optimal value 0.6818, thus no feasibility cut is
necessary. We can construct an optimality cut

(3− x)1.5 + (4− 3x)0 = 4.5− 1.5x ≤ θ.

Iteration 3: Add the optimality cut and solve

min
x,θ

2x+ θ

s.t. 28/5− 11/5x ≤ θ,

4.5− 1.5x ≤ θ,

x ≥ 0.

(18)

The iterations continue.

2.2 Applications

In this part, we will outline the applications of the Benders decomposition to more
complicated problems.

2.2.1 Two-stage stochastic programming problems

Consider realization (qs, hs, Ts) of the random coefficients with probabilities 0 < ps <
1,
∑

s ps = 1. Two-stage stochastic programming problem can be formulated as
follows

min cTx+
S∑
s=1

psq
T
s ys

s.t. Ax = b,

Wy1 +T1x = h1,
Wy2 +T2x = h2,

. . .
...

...
...

WyS +TSx = hS,

x ≥ 0, ys ≥ 0, s = 1, . . . , S.

(19)

A modification of the Benders decomposition called “L-shaped algorithm”, considers
one master and S second-stage problems wehere we can apply the dual approach to
each of them.

2.2.2 Minimization of Conditional Value at Risk

If the distribution of asset returns Ri is discrete with realizations ris and probabilities
ps = 1/S, then we can use linear programming reformulation of the minimization

16

formula for the Conditional Value at Risk:

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

[−
n∑
i=1

xiris − ξ]+,

s.t.
n∑
i=1

xiRi ≥ r0,

n∑
i=1

xi = 1, xi ≥ 0,

where Ri = 1/S
∑S

s=1 ris, [·]+ = max{·, 0}.
We consider the master problem

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

fs(x, ξ),

s.t.
n∑
i=1

xiRi ≥ r0,
n∑
i=1

xi = 1, xi ≥ 0,

and S second-stage problems

fs(x, ξ) = min
y

y,

s.t. y ≥ −
n∑
i=1

xiris − ξ,

y ≥ 0.

If we construct the dual problems, we observe that they can be solved very quickly...

17

3 Integer Linear Programming

In this chapter, we will focus on integer linear programming problems. We will discuss
several real life problems, general properties and algorithms.

3.1 Motivation and applications

Consider a knapsack problem with the item values a1 = 4, a2 = 6, a3 = 7, the costs
c1 = 4, c2 = 5, c3 = 11, and the knapsack capacity (budget) b = 10:

max
3∑
i=1

cixi

s.t.
3∑
i=1

aixi ≤ 10,

xi ∈ {0, 1}.

Think about the following modifications

• equality = instead of ≤ in the constraint,

• relaxation 0 ≤ xi ≤ 1 and rounding of the LP optimal solution instead of
xi ∈ {0, 1},

• heuristic based on sorting the items using the ratio ci/ai.

Why is integrality of decision variables so important? There are many real-life
(mixed-)integer programming problems (not always linear) which cannot be formu-
lated without integer variables, for example

• Portfolio optimization – integer number of assets, fixed transaction costs,

• Scheduling – integer (binary) decision variables to assign a job to a machine,

• Vehicle Routing Problems (VRP) – binary decision variables which identify a
successor of a node on the route.

In general, integer (binary) decision variables can be used for modelling of “logical
relations”, e.g.

• at least two constraints from three are fulfilled,

• if we buy this asset than the fixed transaction costs increase.

Below, we will formulate several (mixed-)integer problems which represent general
classes of real-life problems.

18

3.1.1 Facility Location Problem

The basic facility location problems aims at minimizing the building costs for the
facilities and at the same time minimization of the transportation costs to customers.

The following standard notation is used:

• i warehouses (facilities, branches),

• j customers,

• xij – sent (delivered, served) quantity,

• yi – a warehouse is built,

• cij – unit supplying costs,

• fi – fixed costs of building the warehouse,

• Ki – warehouse capacity,

• Dj – demand.

The problem is

min
xij ,yi

n∑
i=1

m∑
j=1

cijxij +
∑
i

fiyi

s.t.
m∑
j=1

xij ≤ Kiyi, i = 1, . . . , n,

n∑
i=1

xij = Dj, j = 1, . . . ,m,

xij ≥ 0, yi ∈ {0, 1}.

3.1.2 Scheduling to Minimize the Makespan

Scheduling deals with assigning of jobs to available machines to optimize various
criteria under specific constraints. The basic problem formulated in this part aims
at minimizing the makespan, i.e. the latest working time of machines. Later, we will
discuss another class of scheduling problems called fixed interval scheduling.

We employ the notation:

• i machines,

• j jobs,

• y – machine makespan,

• xij – assignment variable of job j to machine i,

• tij – time necessary to process job j on machine i.

19

The problem is

min
xij ,y

y

s.t.
m∑
i=1

xij = 1, j = 1, . . . , n,

n∑
j=1

tijxij ≤ y, i = 1, . . . ,m,

xij ∈ {0, 1}, y ≥ 0.

(20)

3.1.3 Lot Sizing Problem

The main goal of the lot sizing problems (LSP) is to balance the production and
storing (warehousing) costs. We will consider the basic variant where only one item
is produced and the goal is to minimize the costs over a planning horizon. We distin-
guish two problems – the uncapacitated and capacitated where a maximal production
capacity is each period is given.

We employ the notation:

• t – time period,

• xt – production at period t,

• yt – on/off decision at period t,

• st – inventory at the end of period t (s0 ≥ 0 fixed),

• Dt – (predicted) expected demand at period t,

• pt – unit production costs at period t,

• ft – setup costs at period t,

• ht – inventory costs at period t,

• M – a large constant.

• Ct – production capacity at period t.

Uncapacitated single item LSP is

min
xt,yt,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt −Dt = st, t = 1, . . . , T,

xt ≤Myt,

xt, st ≥ 0, yt ∈ {0, 1}.

(21)

A traditional assumption called “Wagner-Whitin costs” is that the production at one
period together with the storage costs are greater or equal to the production costs at
the following period, i.e.

pt+1 ≤ pt + ht.

20

Capacitated single item LSP is

min
xt,yt,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt −Dt = st, t = 1, . . . , T,

xt ≤ Ctyt,

xt, st ≥ 0, yt ∈ {0, 1}.

(22)

3.1.4 Unit Commitment Problem

The unit commitment problem (UCP) is usually used in the energy sector where the
“units” are the power generators and the goal is optimize the energy production over
several periods to satisfy the demand taking into account various production costs.
Maybe the main difference between UCP and LSP is that in this case the storage is
not possible and the whole production has to be “consumed”.

We employ the notation:

• i = 1, . . . , n units (power plants),

• t = 1, . . . , T periods,

• yit – on/off decision for unit i at period t,

• xit – production level for unit i at period t,

• Dt – (predicted) expected demand at period t,

• pmini , pmaxi – minimal/maximal production capacity of unit i,

• cit – variable production costs,

• fit – (fixed) start-up costs.

The unit commitment problem can be formulated as

min
xit,yit

n∑
i=1

T∑
t=1

(citxit + fityit)

s.t.
n∑
i=1

xit ≥ Dt, t = 1, . . . , T,

pmini yit ≤ xit ≤ pmaxi yit,

xit ≥ 0, yit ∈ {0, 1}.

(23)

3.2 Formulation and properties

General integer linear programming (ILP) can be formulated as

min cTx (24)

Ax ≥ b, (25)

x ∈ Zn+. (26)

21

Assumption: all coefficients are integer (rational before multiplying by a proper con-
stant). Set of feasible solution and its relaxation are denoted by

S = {x ∈ Zn+ : Ax ≥ b}, (27)

P = {x ∈ Rn
+ : Ax ≥ b} (28)

Obviously S ⊆ P . Not so trivial that S ⊆ conv(S) ⊆ P .
ILP with irrational data need not to fulfill the trichotomy known from linear

programming. We will propose an example where the problem is feasible and the
objective function is bounded but there is no optimal solution, cf. Škoda (2010):

max
√

2x− y
s.t.
√

2x− y ≤ 0,

x ≥ 1,

x, y ∈ N.

(29)

For any feasible solution with the objective value z =
√

2x∗−
⌈√

2x∗
⌉

we can construct

a solution with a higher objective value as follows. Let z =
√

2x∗ −
⌈√

2x∗
⌉

be the
optimal solution. Since −1 < z < 0, we can find k ∈ N such that kz < −1 and
(k− 1)z > −1. By setting ε = −1− kz we get that −1 < z < −ε = 1 +kz < 0. Then

√
2kx∗ −

⌈√
2kx∗

⌉
= kz + k

⌈√
2x∗
⌉
−
⌈√

2kx∗
⌉

= −1− ε+ k
⌈√

2x∗
⌉
−
⌈√

2kx∗
⌉

= k
⌈√

2x∗
⌉
− 1− ε−

⌈⌈√
2kx∗

⌉
− 1− ε

⌉
= −ε > z.

(30)

Note that k
⌈√

2x∗
⌉
− 1 is integral. Thus, we have obtained a solution with a higher

objective value which is a contradiction.

Example 3.1. Consider the integer set given by

x1 + 4x2 ≥ 5, (31)

3x1 + 2x2 ≥ 7, (32)

x1, x2 ∈ Zn+. (33)

Figure 2 contains the integer set, its relaxations and the convex envelope of the integer
set.

We claim without proof, see Wolsey (1998), that the integer linear programming
problem

min cTx : x ∈ S. (34)

is equivalent to

min cTx : x ∈ conv(S), (35)

22

Figure 2: Set of feasible solutions S (crosses), its relaxation P (red) and convex
envelope conv(S) (blue)

x1

x2

0

1

2

3

4

5

6

0 1 2 3 4 5 6 x1

x2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

which is a linear programming problem, because the convex envelope can be described
by linear inequalities. However, explicit description of conv(S) is very difficult to con-
struct – many constraints (“strong cuts”) are necessary. There are some exceptions
where the description is available. Under the LP-relaxation we understand the prob-
lem with the relax set

min cTx : x ∈ P. (36)

Usually, the algorithms are starting with solving the LP-relaxation.
Note that often both integer and continuous decision variables appear in the

problem leading to a Mixed-integer linear programming (MILP)

min cTx+ dTy

s.t. Ax+By ≥ b

x ∈ Zn+, y ∈ Rn′

+ ,

which we do not consider in this introduction.

3.3 Algorithms

We will introduce two basic approaches:

• Cutting Plane Method

• Branch-and-Bound

There are methods which combine the previous algorithms, e.g., Branch-and-Cut
which adds cuts to reduce the problems solved inside the Branch-and-Bound.

23

3.3.1 Cutting plane method

In this part, cutting plane method with a special on Gomory cuts is discussed. The
algorithm can be outlined as follows:

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

– If the solution is integral – END, we have found an optimal solution,

– otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL SIMPLEX
alg.

Example 3.2.

min 4x1 + 5x2 (37)

x1 + 4x2 ≥ 5, (38)

3x1 + 2x2 ≥ 7, (39)

x1, x2 ∈ Zn+. (40)

Use the dual simplex algorithm for the LP-relaxation. After two iterations we
obtain

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

Now, we will show how to derive the Gomory cuts. There is a row in simplex
table, which corresponds to a non-integral solution xi in the form:

xi +
∑
j∈N

wijxj = di, (41)

where N denotes the set of non-basic variables; di is non-integral. We denote

wij = bwijc+ fij, (42)

di = bdic+ fi, (43)

i.e. 0 ≤ fij, fi < 1. The Gomory cut is then defined as∑
j∈N

fijxj ≥ fi. (44)

Before adding to the simplex table, it is transformed into equality using a slack
variable s ≥ 0, i.e. we have

−
∑
j∈N

fijxj + s = −fi.

In general, the cuts (including Gomory ones) has to have these two properties:

24

• Property 1: Current (non-integral) solution becomes infeasible (it is cut).

• Property 2: No feasible integral solution becomes infeasible (it is not cut).

Property 1 for the Gomory cuts: We express the constraints in the form

xi +
∑
j∈N

(bwijc+ fij)xj = bdic+ fi, (45)

xi +
∑
j∈N

bwijcxj − bdic = fi −
∑
j∈N

fijxj. (46)

Current solution x∗j = 0 pro j ∈ N a x∗i = di is non-integral, i.e. 0 < x∗i − bdic < 1,
thus

0 < x∗i − bdic = fi −
∑
j∈N

fijx
∗
j (47)

and ∑
j∈N

fijx
∗
j < fi, (48)

which is a contradiction with the Gomory cut.
Property 2 for the Gomory cuts: Consider an arbitrary integral feasible solution

and rewrite the constraint as

xi +
∑
j∈N

bwijcxj − bdic = fi −
∑
j∈N

fijxj, (49)

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, fi < 1
a
∑

j∈N fijxj ≥ 0, thus RS is strictly lower than 1 and at the same time it is integral,
thus lower or equal to 0, i.e. we obtain Gomory cut

fi −
∑
j∈N

fijxj ≤ 0. (50)

Thus each integral solution fulfills it.
Very simple cuts are so called Dantzig cuts:∑

j∈N

xj ≥ 1. (51)

Remind that non-basic variables are equal to zero at the current solution.
Example 3.2 continues ... After two iterations of the dual SIMPLEX algorithm:

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

25

Figure 3: Cutting plane method – Gomory cut

x1

x2

0

1

2

3

4

0 1 2 3 4

26

For example, x1 is not integral, i.e. we can rewrite the correcponding row of the
simplex table as:

x1 + 2/10x3 − 4/10x4 = 18/10,

x1 + (0 + 2/10)x3 + (−1 + 6/10)x4 = 1 + 8/10.

The Gomory cut is then:

2/10x3 + 6/10x4 ≥ 8/10.

Note that in the original space the cut has the form

x1 + x2 ≥ 3,

which we can obtain from the simplex table by combining the rows using coefficients
(2, 2,−1). This combination causes that the coefficient with variables x3, x4 disap-
pear.

Adding this cut, we obtain new simplex table:

4 5 0 0 0
x1 x2 x3 x4 x5

5 x2 8/10 0 1 -3/10 1/10 0
4 x1 18/10 1 0 2/10 -4/10 0
0 x5 -8/10 0 0 - 2/10 -6/10 1

112/10 0 0 -7/10 -11/10 0

Dual simplex algorithm leads to the Gomory cut:

4/6x3 + 1/6x5 ≥ 2/3.

After adding this cut and running the dual simplex algorithm, we obtain the optimal
solution (2, 1, 1, 1, 0, 0).

3.3.2 Branch-and-Bound

The basic idea of the branch-and-bound algorithm can be described as “divide and
rule”. If we decompose (partition) the original feasibility set into smaller ones

M = M1 ∪M2 ∪ · · · ∪Mr,

we can minimize the objective function on each of these sets easily to obtain

fj = min
x∈Mj

f(x).

Then, it holds in general
min
x∈M

f(x) = min
j=1,...,r

fj.

General principles of branch-and-bound :

• Solve only LP problems with relaxed integrality.

• Branching : if an optimal solution is not integral, e.g. x̂i, create and save two
new problems with constraints xi ≤ bx̂ic, xi ≥ dx̂ie.

27

Figure 4: Branch-and-bound: divide and rule of the set S

x1

x2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

•

•

x1

x2

•

•

•0

1

2

3

4

5

6

0 1 2 3 4 5 6

• Bounding (“different” cutting): save the objective value of the best integral
solution and cut all problems in the queue created from the problems with
higher optimal values1. Cut inperspective branches before solving (using a
bound on the optimal value)

Exact algorithm ..
Branch-and-Bound algorithm:

0. fmin =∞, xmin = ·, list of problems P = ∅
Solve LP-relaxed problem and obtain f ∗, x∗. If the solution is integral, STOP.
If the problem is infeasible or unbounded, STOP.

1. Branching : There is x∗i basic non-integral variable such that k < x∗i < k+ 1 for
some k ∈ N:

– Add constraint xi ≤ k to previous problem and put it into list P .

– Add constraint xi ≥ k + 1 to previous problem and put it into list P .

2. Take problem from P and solve it: f ∗, x∗.

3. – If f ∗ < fmin and x∗ is non-integral, GO TO 1.

– Bounding : If f ∗ < fmin a x∗ is integral, set fmin = f ∗ a xmin = x∗, GO
TO 4.

– Bounding : If f ∗ ≥ fmin, GO TO 4.

– Problem is infeasible, GO TO 4.

4. – If P 6= ∅, GO TO 2.

– If P = ∅ a fmin =∞, integral solution does not exist.

1Branching cannot improve it.

28

– If P = ∅ a fmin <∞, optimal value and solution are fmin, xmin.

There is a possible improvement:

2./3. Take problem from list P and solve it: f ∗, x∗. If for the optimal value of the
current problem holds f ∗ ≥ fmin, then the branching is not necessary, since by
solving the problems with added branching constraints we can only increase the
optimal value and obtain the same fmin.

Algorithmic issues include steps which are not uniquely determined but should be
clear before the algorithm run:

• Problem selection from the list P : FIFO, LIFO (depth-first search), problem
with the smallest f ∗.

• Selection of the branching variable x∗i : the highest/smallest violation of inte-
grality or the highest/smallest coefficient in the objective function.

Example

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ∈ Z+.

After two iterations of the dual SIMPLEX algorithm we obtain the optimal solution
of the relaxed problem.

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

We can see the both positive components of the optimal solution are nonitegral.
Branching based on the variable x1 means adding a cut of the form x1 ≤ 1 to the

table, i.e.
x1 + x5 = 1, x5 ≥ 0.

4 5 0 0 0
x1 x2 x3 x4 x5

5 x2 8/10 0 1 -3/10 1/10 0
4 x1 18/10 1 0 2/10 -4/10 0
0 x5 -8/10 0 0 - 2/10 4/10 1

112/10 0 0 -7/10 -11/10 0

The actual solution is dual feasible, but primal infeasible, thus we run iterations of
the dual simplex algorithm. Figure 5 shows the iterations of the branch-and-bound
algorithm as a binomial tree. Note that this example does not contain any bounding.

29

Figure 5: Branch-and-bound tree

node 0
x∗1 = 1.8
x∗2 = 0.8
f̂ = 11.2

node 2
x∗1 = 2
x∗2 = 0.75
f̂ = 11.75

node 4
x∗1 = 2
x∗2 = 1
f̂ = 13

x
2 ≥ 1

node 3
x∗1 = 5
x∗2 = 0
f̂ = 20

x2
≤ 0x

1 ≥ 2

node 1
x∗1 = 1
x∗2 = 2
f̂ = 14

x1
≤ 1

Example We consider problem with binomial variables only

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

s.t. 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25,

x1, x2, x3, x4, x5 ∈ {0, 1}.

For the tree, see Figure 6. If we solve the subproblems in the order how they are
numbered, we will arrive at node 3 which provides an integral solution. This solution
is saved and used to bound the splitting in node 5. Remind that we are solving a
maximization problem, thus further splitting problem in node 5 cannot lead to better
(higher) optimal value for an integral solution.

Remark 3.3. • If you are able to get a feasible solution quickly, deliver it to the
software (solver).

• Algorithm termination: B&B usually does not end with an empty queue, but
rather with a low (Relative) difference between a lower and an upper bound –
construct the upper bound (for minimization) using a feasible solution, lower
bound can be based on duality.

• Branch-and-Cut: add cuts at the beginning and possibly also during B&B.

30

Figure 6: xxx

node 0
f̂ = 67.45

node 2
f̂ = 67.28

node 4
f̂ = 67.127

node 6
f̂ = −∞

x
1 = 1

node 5
f̂ = 63.32

pruned

x1
= 0x

2 = 1

node 3
f̂ = 65

integral, save

x2
= 0x

3 = 1

node 1
f̂ = 65.26

branching continues ...

x3
= 0

3.4 Dynamic programming

To introduce the dynamic programming algorithm for integer problems, we return to
the knapsack problem

max
n∑
i=1

cixi

s.t.
n∑
i=1

aixi ≤ b,

xi ∈ {0, 1}.

Let ai, b be positive integers. Then we can formulate the value function considering
first r items where the capacity serves as the state variable:

fr(λ) = max
r∑
i=1

cixi

s.t.
r∑
i=1

aixi ≤ λ,

xi ∈ {0, 1}.

There are two possibilities:

• if item r is NOT added to the knapsack x̂r = 0, then fr(λ) = fr−1(λ),

• if item r is added to the knapsack x̂r = 1 then fr(λ) = cr + fr−1(λ− ar).

Thus, we arrive at the Bellman recursion for first r items and capacity λ

fr(λ) = max {fr−1(λ), cr + fr−1(λ− ar)} .

The dynamic programming algorithm can be summarized as follows:

31

0. Start with f1(λ) = 0 for 0 ≤ λ < a1 and f1(λ) = max{0, c1} for λ ≥ a1.

1. Use the forward recursion

fr(λ) = max {fr−1(λ), cr + fr−1(λ− ar)} .

to successively calculate f2, . . . , fn for all λ ∈ {0, 1, . . . , b}; fn(b) is the optimal
value.

2. Keep indicator pr(λ) = 0 if fr(λ) = fr−1(λ), and pr(λ) = 1 otherwise.

3. Obtain the optimal solution by a backward recursion: if pn(b) = 0 then set
x̂n = 0 and continue with fn−1(b), else (if pn(b) = 1) set x̂n = 1 and continue
with fn−1(b− an) ...

Example 3.4. Consider the item values a1 = 4, a2 = 6, a3 = 7, costs c1 = 4, c2 = 5,
c3 = 11, and the budget b = 10:

max
3∑
i=1

cixi

s.t.
3∑
i=1

aixi ≤ 10,

xi ∈ {0, 1}.

The algorithm can be represented by a table where each element contains the locally
best solution.

r/ λ 0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 4 4 4 4 4 4 4
fr 2 0 0 0 0 4 4 5 5 5 5 9

3 0 0 0 0 4 4 5 11 11 11 11

1 0 0 0 0 1 1 1 1 1 1 1
pr 2 0 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 0 0 0 1 1 1 1

Other successful applications of the dynamic programming principles include the
uncapacitated lot-sizing problem, cf. Subsection 3.1.3, and the shortest path problem.

32

3.5 Introduction to computational complexity

This is a short introduction to computational complexity theory adopted from Wolsey
(1998). First, consider decision problems having YES–NO answers. Any optimization
problem

max
x∈M

cTx

can be replaced by a decision (for some k integral)

Is there an x ∈M with value cTx ≥ k?

For a problem instance X = {c,M}, or more precisely X = {c,M, k}, the length of
the input L(X) is the length of the binary representation of a standard representation
of the instance.

Example Consider the knapsack decision problem with an instance

X =

{
n∑
i=1

cixi ≥ k,

n∑
i=1

aixi ≤ b, x ∈ {0, 1}n
}
,

where the length of the input is

L(X) =
n∑
i=1

dlog cie+
n∑
i=1

dlog aie+ dlog be+ dlog ke .

Now, we can define the running time for an algorithm.

Definition 3.5. Let fA(X) be the number of elementary calculations required to run
the algorithm A on the instance X ∈ P . Then the running time of the algorithm A

f ∗A(l) = sup
X
{fA(X) : L(X) = l}.

An algorithm A is polynomial for a problem P if f ∗A(l) = O(lp) for some p ∈ N.

Note that the running time of an algorithm is based on the worst behaviour (supX)
over all problem instances.

Based on the running time, we can define classes NP and P .

Definition 3.6. NP (Nondeterministic Polynomial) is the class of decision prob-
lems with the property that: for any instance for which the answer is YES, there is a
polynomial proof of the YES.
P is the class of decision problems in NP for which there exists a polynomial algo-
rithm.

The class NP may be equivalently defined as the set of decision problems that
can be solved in polynomial time on a non-deterministic Turing machine2.

2NTM writes symbols one at a time on an endless tape by strictly following a set of rules. It
determines what action it should perform next according to its internal state and what symbol it
currently sees. It may have a set of rules that prescribes more than one action for a given situation.
The machine ”branches” into many copies, each of which follows one of the possible transitions
leading to a ”computation tree”.

33

Figure 7: Euler diagram: Is P = NP?

Definition 3.7. If problems P,Q ∈ NP, and if an instance of P can be converted
in polynomial time to an instance of Q, then P is polynomially reducible to Q.

Definition 3.8. NPC, the class of NP-complete problems, is the subset of problems
P ∈ NP such that for all Q ∈ NP, Q is polynomially reducible to P .

The following proposition provides a way how to estimate the complexity of the
problems using the polynomial reduction within the classes.

Proposition 3.9. Suppose that problems P,Q ∈ NP.

• If Q ∈ P and P is polynomially reducible to Q, then P ∈ P.

• If P ∈ NPC and P is polynomially reducible to Q, then Q ∈ NPC.

Even nowadays, an open question is whether there is a problem both in P and
NPC.
Proposition 3.10. If P ∩NPC 6= ∅, then P = NPC.

The relations between the classes are captures by the Euler diagram.
We can return back to the optimiyation problems and define the class of NP-hard

problems.

Definition 3.11. An optimization problem for which the decision problem lies in
NPC is called NP-hard.

We can shortly discuss complexity of the simplex algorithm. Klee–Minty (1972)
proposed an example where the simplex has an exponential complexity:

max
n∑
j=1

10n−jxj

s.t. 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1, i = 1, . . . , n,

xj ≥ 0, j = 1, . . . , n.

(52)

The linear program can be easily reformulated in the standard form. The simplex
algorithm takes 2n − 1 pivot steps, i.e. it is not polynomial in the worst case.

34

3.6 Totally unimodular matrices and network flows

Totally unimodular matrices

Definition 3.12. A matrix A is totally unimodular (TU) iff every square submatrix
of A has determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b if and only
if A is TU.

... based on Laplace expansion for the determinant of a basic matrix and the
Cramer rule.

A set of sufficient conditions:

• aij ∈ {−1, 0, 1} for all i, j

• Each column contains at most two nonzero coefficients, i.e.
∑m

i=1 |aij| ≤ 2,

• There exists a partitioning M1 ∩M2 = ∅ of the rows 1, . . . ,m such that each
column j containing two nonzero coefficients satisfies∑

i∈M1

aij =
∑
i∈M2

aij.

If A is TU, then AT and (A|I) are TU.

3.6.1 Minimum cost network flow problem

• G = (V,A) – graph with vertices V and (oriented) arcs A

• hij – arc capacity

• cij – flow cost

• bi – demand, ASS.
∑

i bi = 0

• V +(i) = {k : (i, k) ∈ A} – successors of i

• V −(i) = {k : (k, i) ∈ A} – predecessors of i

min
xij

∑
(i,j)∈A

cijxij

s.t.
∑

k∈V +(i)

xik −
∑

k∈V −(i)

xki = bi, i ∈ V,

0 ≤ xij ≤ hij, (i, j) ∈ A.

Wolsey (1998), Ex. 3.1 (M1 = {1, . . . ,m},M2 = ∅)

35

Figure 8: xxx

x12 x14 x23 x31 x32 x35 x36 x45 x51 x53 x65
1 1 0 −1 0 0 0 0 −1 0 0 = 3
−1 0 1 0 −1 0 0 0 0 0 0 = 0

0 0 −1 1 1 1 1 0 0 −1 0 = 0
0 −1 0 0 0 0 0 1 0 0 0 = −2
0 0 0 0 0 −1 0 −1 1 1 −1 = 4
0 0 0 0 0 0 −1 0 0 0 1 = −5

Special cases

• Shortest path problem

• Critical (longest time) path problem in project scheduling (PERT = Program
Evaluation and Review Technique)

• Fixed interval scheduling

• Transportation problem

3.6.2 Shortest path problem

Find a minimum cost s− t path given nonnegative arc costs cij, set

• bi = 1 if i = s,

36

Figure 9: Two different assignments of 8 jobs to 3 machines

1 2 3

4 5 6

7 8

s1,s4s7 f1f4 f7 s2 s5f2,s8 s3 f5s6,f8 f6

1

2 3

4

5 6

7

8

s1,s4s7 f1f4 f7 s2 s5f2,s8 s3 f5s6,f8 f6

Figure 10: Fixed interval schedule and corresponding network flow

1 2

3

s1 f1 s3 s2 f3 f2

07

s1

s2

s3

f1

f2

f3

7 0

• bi = −1 if i = t,

• bi = 0 otherwise.

Then the problem can be formulated as

min
xij

∑
(i,j)∈A

cijxij

s.t.
∑

k∈V +(i)

xik −
∑

k∈V −(i)

xki = 1, i = s,

∑
k∈V +(i)

xik −
∑

k∈V −(i)

xki = 0, i ∈ V \ {s, t},

∑
k∈V +(i)

xik −
∑

k∈V −(i)

xki = −1, i = t,

0 ≤ xij ≤ 1, (i, j) ∈ A.

x̂ij = 1 identifies the shortest path.

3.6.3 Fixed interval scheduling

Basic Fixed interval scheduling (FIS) problem: given J jobs with prescribed
starting sj and finishing fj times, find a minimal number of identical machines that
can process all jobs such that no processing intervals intersect.

FIS – network flow reformulation
Network structure:

1. 2J + 2 vertices V : {0, s1, f1, . . . sJ , fJ , 2J + 1}; vertices 0, 2J + 1 correspond
to the source and sink,

37

Figure 11: 5 towns – cycle and subcycles (subroutes), Kafka (2013)

2. oriented edges E: {0, sj}, {sj, fj}, j ∈ J , {fi, sj} if fi ≤ sj, {fj, 2J + 1},
j ∈ J , (2J + 1, 0)

3. demands: d0 = d2J+1 = 0, dsj = −1, dfj = 1, j ∈ J ,

4. return edge (2J + 1, 0): capacity u2J+1,0 = M , c2J+1,0 = 1,

5. edge capacities uuv = 1, and costs cuv = 0, (u, v) ∈ E \ (2J + 1, 0).

Solve the min-cost network flow problem.

3.7 Traveling salesman problem

Traveling salesman problem is characterized as follows

• Consider n towns and in one of them there is a traveling salesman.

• Traveling salesman must visit all towns and return back.

• For each pair of towns the traveling costs are known and the traveling salesman
is looking for the cheapest route.

= Finding a Hamilton cycle in a graph with edge prices.
Assignment problem

min
n∑
i=1

n∑
j=1

cijxij (53)

n∑
i=1

xij = 1, j = 1, . . . , n, (54)

n∑
j=1

xij = 1, i = 1, . . . , n, (55)

xij ∈ {0, 1}. (56)

We minimize the traveling costs, we arrive to j from exactly one i, we leave i to
exactly one j.

Subroute elimination conditions I

• xii = 0, cii =∞

38

• xij + xji ≤ 1

• xij + xjk + xki ≤ 2

• . . .

•
∑

i∈S
∑

j∈S xij ≤ |S| − 1, S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1

Approximately 2n inequalities, it is possible to reduce to |S| ≤ dn/2e.
Subroute elimination conditions II
Other valid inequalities:

ui − uj + nxij ≤ n− 1, i, j = 2, . . . , n.

Eliminate subroutes: There is at least one route which does not go through
vertex 1, denote this route by C and the number of edges by |E(C)|. If we sum all
these inequalities over all edges {i, j}, which are in C, i.e. the corresponding variables
xij = 1, we obtain

n|E(C)| ≤ (n− 1)|E(C)|, (57)

which is a contradiction.
Hamilton cycle is feasible: let the vertices be ordered as v1 = 1, v2, . . . , vn.

We set ui = l, if vl = i, i.e. ui represent the order. For each edge of the cycle {i, j}
it holds ui − uj = −1, i.e.

ui − uj + nxij = −1 + n ≤ n− 1. (58)

For edges, which are not in the cycle, the inequality holds too: ui − uj ≤ n − 1 a
xij = 0.

Subroute elimination conditions – example
Consider subroutes: 1–4–5, 2–3

Add inequalities

u2 − u3 + 5x23 ≤ 4,

u3 − u2 + 5x32 ≤ 4,

or

x23 + x32 ≤ 1.

Computational complexity: NP (Nondeterministic Polynomial) is the class of
decision problems with the property that: for any instance for which the answer is
YES, there is a polynomial proof of the YES.

39

3.7.1 Traveling Salesman Problem with Time Windows

• ti – time when customer i is visited

• Tij – time necessary to reach j from i

• li, ui – lower and upper bound (time window) for visiting customer i

• M – a large constant

min
xij ,ti

n∑
i=1

n∑
j=1

cijxij (59)

n∑
i=1

xij = 1, j = 1, . . . , n, (60)

n∑
j=1

xij = 1, i = 1, . . . , n, (61)

ti + Tij − tj ≤ M(1− xij) i, j = 1, . . . , n, (62)

li ≤ ti ≤ ui, i = 1, . . . , n, (63)

xij ∈ {0, 1}.

3.7.2 Capacitated Vehicle Routing Problem

Parameters

• n – number of customers

• 0 – depo (starting and finishing point of each vehicle)

• K – number of vehicles (homogeneous)

• dj ≥ 0 – customer demand, for depo d0 = 0

• Q > 0 – vehicle capacity (KQ ≥
∑n

j=1 dj)

• cij – transportation costs from i to j (usually cii = 0)

Decision variables

• xij – equal to 1, if j follows after i on the route, 0 otherwise

• uj – upper bound on transported amount after visiting customer j

40

min
xij ,ui

n∑
i=0

n∑
j=0

cijxij (64)

n∑
i=0

xij = 1, j = 1, . . . , n, (65)

n∑
j=0

xij = 1, i = 1, . . . , n, (66)

n∑
i=1

xi0 = K, (67)

n∑
j=1

x0j = K, (68)

ui − uj + dj ≤ Q(1− xij) i, j = 1, . . . , n, (69)

di ≤ ui ≤ Q, i = 1, . . . , n, (70)

xij ∈ {0, 1}.

(64) minimization of transportation costs

(65) exactly one vehicle arrives to customer j

(66) exactly one vehicle leaves customer i

(67) exactly K vehicles return to depot 0

(68) exactly K vehicles leave depot 0

(69) balance conditions of transported amount (serve also as subroute elimination
conditions)

(70) bounds on the vehicle capacity

(All vehicles are employed.)

3.8 Heuristic algorithms

3.8.1 Greedy heuristic

Start with an empty set (solution) and choose the item with the best immediate
reward at each step.

Example: Traveling Salesman Problem with the (symmetric) distance matrix
− 9 2 8 12 11
− 7 19 10 32
− 29 18 6
− 24 3
− 19
−

41

Greedy steps: 1–3 (2), 3–6 (6), 6–4 (3), 4–5 (24), 5–2 (10), 2–1 (9), i.e. the route
length is 54.

3.8.2 Local search heuristic

Choose an initial solution x and search its neighborhood U(x). Repeat until you are
able to find a better solution, i.e. if y ∈ U(x), f(y) < f(x), set x = y.

Example: Traveling Salesman Problem, define the neighborhood U(x) as 2-exchange,
i.e. if S = {(i, j) ∈ A : xij = 1} is a feasible solution, then

U(x) = {S ′ : |S ∩ S ′| = n− 2},

in other words: replace edges (i, j), (i′, j′) by (i, i′), (j, j′).

Greedy steps: 1–3 (2), 3–6 (6), 6–4 (3), 4–5 (24), 5–2 (10), 2–1 (9), i.e. the route
length is 54.

2-exchange: 1–3 (2), 3–4 (29), 4–6 (3), 6–5 (19), 5–2 (10), 2–1 (9), i.e. the route
length is 72.

3.8.3 Basic heuristics for VRP

Insertion heuristic:

• Start with empty routes.

• FOR all customers DO: Insert the customer to the place in a route where it
causes the lowest increase of the traveled distance.

Clustering:

• Cluster the customers according to their geographic positions (“angles”).

• Solve3 the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ...

3.8.4 Tabu search for VRP

For a given number of iteration, run the following steps:

• Find the best solution in a neighborhood of the current solution. Such solution
can be worse than the current one or even infeasible (use a penalty function).

• Forbid moving back for a random number of steps by actualizing the tabu list.

• Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared with a
simple “hill climbing alg.”).

3..exactly, if the clusters are not large.

42

3.8.5 Genetic algorithms

Iterative procedure:

• Population – finite set of individuals with genes

• Generation

• Evaluation – fitness

• Parent selection

• Crossover produces one or two new solutions (offspring).

• Mutation

• Population selection

3.8.6 Rich Vehicle Routing Problems

• Goal – maximization of the ship filling rate (operational planning), optimiza-
tion of fleet composition, i.e. number and capacity of the ships (strategic plan-
ning)

• Rich Vehicle Routing Problem

– time windows

– heterogeneous fleet (vehicles with different capacities and speed)

– several depots with inter-depot trips

– several routes during the planning horizon

– non-Euclidean distances (fjords)

• Mixed-integer programming :-(, constructive heuristics for getting an initial
feasible solution and tabu search

• M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics opti-
mization at EWOS Norway. Research report.

Our approach used

• Mathematical formulation

• GAMS implementation

• Heuristic (insertion heuristic, tabu search) implementation

• Decision Support System (DSS)

43

Literature

• L. Adam: Nelinearity v úlohách stochastického programováńı: aplikace na
ř́ızeńı portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)

• Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming:
theory and algorithms, Wiley, Singapore, 3rd edition.

• J.F. Benders (1962): Partitioning procedures for solving mixed-variables pro-
gramming problems, Numerische Mathematik 4(3), 238–252.

• Boyd, S., Vandenberghe, L. (2004). Convex Optimization, Cambridge Univer-
sity Press, Cambridge.

• M. Branda, K. Haugen, J. Novotný, A. Olstad (2017). Downstream logistics
optimization at EWOS Norway. Research report.

• M. Branda, J. Novotný, A. Olstad (2016) Fixed interval scheduling under un-
certainty - a tabu search algorithm for an extended robust coloring formulation.
Computers & Industrial Engineering 93, 45–54.

• O. Kafka: Optimálńı plánováńı rozvozu pomoćı dopravńıch prostředk̊u, Diploma
thesis MFF UK, 2013. (IN CZECH)

• P. Kall, J. Mayer (2005). Stochastic Linear Programming: Models, Theory,
and Computation. Springer.

• V. Klee, G.J. Minty, (1972). How good is the simplex algorithm?. In Shisha,
Oved. Inequalities III (Proceedings of the Third Symposium on Inequalities
held at the University of California, Los Angeles, Calif., September 1â“9, 1969).
New York-London: Academic Press, 159–175.

• P. Lachout (2011). Matematické programováńı. Skripta k (zaniklé) přednášce
Optimalizace I (IN CZECH).

• Matoušek and Gärtner (2007). Understanding and using linear programming,
Springer.

• G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in
Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.

• P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

• P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.

• L.A. Wolsey (1998). Integer Programming. Wiley, New York.

• L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization.
Wiley, New York.

• Northwestern University Open Text Book on Process Optimization, available
online: https://optimization.mccormick.northwestern.edu [2017-03-19]

44

