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Preface

Mathematical Statistics I — Statistical Methods is the course in winter semester in the
frame 4/2 hours. It is devoted to the students who intend to continue to study probability,
mathematical statistics, and econometry.

The course contains also some practical statistical methods and numerical examples.
However, their number is very limited, because they will be trained in a special course.
We expect that the material will be complemented by programme R.

The end of a proof is denoted by 2 and the end of an example by ♦.

Prague January 11, 2017
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Chapter 1

Random variables

1.1 Introduction

In our life we frequently meet random events. To work with them mathematically, it is
necessary to build a model for them. All possible results of an experiment constitute
a space of elementary events Ω. Elements of the space Ω are denoted by ω. If the
space Ω is too rich, we cannot deal with individual elementary events ω separately. A
useful mathematical model uses only such sets of elementary events which form σ-algebra.
Remember that σ-algebra is a non-empty system of subsets such that

(i) If A ∈ A, then Ω \ A ∈ A.

(ii) If A1 ∈ A, A2 ∈ A, . . . , then ∪Ai ∈ A.

Here Ω\A = Ac is the complement of the set A. From the definition of σ-algebra it is
possible to derive its further properties, especially:

(iii) ∅ ∈ A, Ω ∈ A.

(iv) If A1 ∈ A, A2 ∈ A, . . . , then also ∩Ai ∈ A.

The pair (Ω,A) is called measurable space. Assume now, that to every set A ∈ A it
is possible to define a number P(A) such that the following conditions are fulfilled:

(a) P(A) ≥ 0 for every A ∈ A.

(b) If A1, A2, . . . are disjoint sets belonging to A, then P(∪Ai) =
∑

P(Ai).

(c) P(Ω) = 1.

We get function P defined on A, which is called probability measure (shortly probabil-
ity). Conditions (a)–(c) can be formulated in words that probability is σ-additive normed
set function. The subsets of the space Ω belonging to A are called random events.

We can ask why probability is introduced in such a complicated way. Why probability
is not defined for every subset of the space Ω? Generally, it is not possible and this answer
is related to the existence of non-measurable sets.

It is worth to notice that this definition of probability contains no instruction how to
calculate it. This problem is, however, solved in other courses of mathematical statistics.
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10 CHAPTER 1. RANDOM VARIABLES

Recall that Borel σ-algebra Bn of subsets of n-dimensional Euclidean space Rn is the
minimal σ-algebra, which contains all open intervals. Instead of B1 we usually write B
and instead of R1 we write R.

We say that X is a measurable mapping of the space (Ω,A, P) into (R,B), if

{ω : X(ω) ∈ B} ∈ A for every set B ∈ B.

A measurable mapping X is called random variable. The random variable X is a
function defined on the space Ω and its values X(ω) are real numbers. Of course, the
definition implies that the function must be measurable.

The distribution function F of the random variable X is defined by the formula

F (x) = P(X ≤ x), x ∈ R.

More precisely, instead of P(X ≤ x) we should write P{ω : X(ω) ≤ x}, but the argument
ω is usually dropped. On the measurable space (R,B) there exists a probability measure
corresponding to the distribution function P and it is called the distribution of the random
variable X.

Some distributions have their fixed abbreviations. For example, the normal distribu-
tion with parameters µ and σ2 is denoted by N(µ, σ2). The fact that the random variable
X has the distribution N(µ, σ2) is written as X ∼ N(µ, σ2). Analogous abbreviation is
used also in other cases.

The mean value of the random variable X is

EX =

∫

Ω

X(ω) dP(ω), (1.1)

if this integral exists. The denotation E is abbreviation of the word expectation. Formula
(1.1) is starting point for many theoretical considerations but it is not suitable for practical
calculations. The reason is that the measure P is only rarely known. It is a good luck
that EX can be also expressed using integral where the measure is described only by
distribution function.

Theorem 1.1 We have

EX =

∫ ∞

−∞

x dF (x). (1.2)

If g is such a function that Eg(X) exists, then we have

Eg(X) =

∫ ∞

−∞

g(x) dF (x). (1.3)

Proof. See Anděl (2007). 2.

Formula (1.3) is very important. A direct calculation of Eg(X) using only (1.2) would
need the following steps. We would define Y = g(X), then from the known distribution
function F of the variable X we would have to calculate the distribution function G
of the variable Y and finally using(1.2) we would get EY =

∫∞

−∞
y dG(y). However,

calculation of G is usually very complicated. Thus theorem that integral
∫

y dG(y) is
equal to considerably simpler

∫
g(x) dF (x) is really very important.
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Practically we use only two families of distribution functions. If there exists such a
function f , that for every real x

F (x) =

∫ x

−∞

f(t) dt, (1.4)

holds, then we say that F corresponds to a continuous distribution. The function f is
called density of the distribution. Since F is nondecreasing, the density f is nonnegative
almost everywhere. Using (1.4) we see that f(x) = F ′(x) almost everywhere.

The second case arises when F je a step funcion. It means that there exists maximally
counted set of numbers x1, x2, . . . , in which F has steps p1, p2, . . . . Otherwise F is
constant. So we have

∑
pi = 1. In this case we say that F correspons to a discrete

distribution.
Formula (1.3) implies that for the continuous distribution we have

Eg(X) =

∫ ∞

−∞

g(x)f(x) dx

and for the discrete distribution we have

Eg(X) =
∑

i

g(xi) pi.

Notice that (1.3) enables to calculate probability P(X ∈ B) that X belongs to set
B ∈ B. If we take g = χB (the characteristic function of the set B), then from(1.3) we
get

P(X ∈ B) =

∫

B

dF (x).

In the continuous case we have

P(X ∈ B) =

∫

B

f(x) dx

and in the discrete case
P(X ∈ B) =

∑

{i: xi∈B}

pi.

1.2 Moments

Let X be a random variable. Moment of the k-th order is

µ′
k = EXk, k = 0, 1, . . . (1.5)

and central moment of the k-th order is

µk = E(X − EX)k, k = 0, 1, . . . . (1.6)

It is clear that the moments can be defined only in the cases when the integrals (1.5) and
(1.6) exist. Further we define absolute moments

µabs

k = E|X|k, k ≥ 0.
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Here µ′
1 = EX is expectation and it is shortly denoted by µ. We have µ′

0 = 1, µ0 = 1,
µ1 = 0. An important moment is µ2. It is called variance and denoted by σ2. From
formula (1.6) we get that

σ2 = EX2 − (EX)2.

If we want to emphasize that it is the variance of the random variable X, we write σ2
X

or varX instead of σ2. The parameter σ is called standard deviation.
Using binomial theorem we get from (1.6)

µk =

k∑

i=0

(
k

i

)

(−1)iµ′
k−iµ

i.

Thus

µ3 = µ′
3 − 3µ′

2µ + 2µ3,

µ4 = µ′
4 − 4µ′

3µ + 6µ′
2µ

2 − 3µ4.

If σ2 > 0 and if the moments µ3 and µ4 exist we define kurtosis α3 and skewness α4

using formulas

α3 =
µ3

σ3
, α4 =

µ4

σ4
.

Theorem 1.2 Define Y = a + bX. If EX exists, then EY = a + bEX. If EX2 < ∞ then
varY = b2 var X.

Proof. Formulas follow by easy insertion. 2

Especially for b = 1 we have var(a + X) = var X. We see that variance is shift -
invariant.

Theorem 1.3 Kurtosis and skewness fulfill the inequality

α4 − α2
3 ≥ 1.

Proof. Let EX4 < ∞. Define Y = X − EX. Then EY = 0 and EY k = E(X − EX)k

for every k. Choose real numbers a, b, c and introduce the vector u = (a, b, c)′. Then we
have

0 ≤ E(a + bY + cY 2)2 = E(a2 + 2abY + 2acY 2 + b2Y 2 + 2bcY 3 + c2Y 4)

= a2 + 2acµ2 + b2µ2 + 2bcµ3 + c2µ4 = u′Mu,

where

M =





1 0 µ2

0 µ2 µ3

µ2 µ3 µ4



 .

The matrix M is symmetric. The inequality u′Mu ≥ 0 holding for every vector u proves
that M is positive semidefinite. Its determinant is thus nonnegative. This implies

0 ≤ |M | = µ2µ4 − µ2
3 − µ3

2,
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which gives
µ2µ4 − µ2

3 ≥ µ3
2.

We divide the last inequality by µ3
2, and this gives the assertion of the theorem. 2

Some distributions have moments of all orders, e.g. rectangular distribution R(0, 1)
with the density

f(x) =

{
1 for x ∈ (0, 1),
0 for x /∈ (0, 1).

We shall quite often work with densities that are nonvanishing only on a set M . Then
we write only the formula for density f(x) for x ∈ M . If we do not introduce formula for
x /∈ M , then we understand f(x) = 0 for x /∈ M . There are distributions where even the
moment of the first order does not exist. This is the case of Cauchy distribution C(a, b)
with the density

f(x) =
1

π

b

b2 + (x − a)2
, x ∈ R, b > 0.

Let us mention that this is not the worst case. If we consider absolute moments µabs
k

for all nonnegative k (not only for nonnegative integers), the distribution C(a, b) would
have finite absolute moments µabs

k for k ∈ [0, 1). But the distribution with the density

f(x) =
1

2|x| ln2 |x| for |x| > e

has no finite absolute moments of the k-th order for k > 0. (See Stoops, Barr 1971.)
In connection with moments some important problems have been formulated. We can

ask, for example, if a distribution having all moments µ′
k (k = 0, 1, . . . ) finite is uniquely

determined. The answer is: sometimes yes, sometimes not. Consider the density of the
log-normal distribution

p1(x) =
1√
2πx

exp

{

−1

2
ln2 x

}

for x > 0

and the density defined by the formula

p2(x) = [1 + a sin(2π ln x)]p1(x) for x > 0,

where a ∈ [−1, 1] is an arbitrary number. Both the densities have the same series of the
moments µ′

0, µ
′
1, . . . . This situation is quite unpleasant since the lognormal distribution

is frequently used in theory as well as in practical applications. We have shown that this
distribution cannot be characterized by its moments.

However, many distributions are determined uniquely by their moments. In many
cases the following theorem is used.

Theorem 1.4 Let µ′
1, µ

′
2, . . . be a sequence of moments. If the series

∞∑

k=1

µ′
k

k!
tk

for some t > 0 converges absolutely, then the given series of the moments determines the
distribution function uniquely.
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Proof. See Rao (1978). 2

The condition introduced in Theorem 1.4 implies that the normal distribution N(µ, σ2)
with the density

f(x) =
1√
2πσ

exp

{

−(x − µ)2

2σ2

}

, x ∈ R, σ > 0,

is determined uniquely by its moments. We can see it on the distribution N(0, σ2), the
moments of which are

µ′
2k−1 = 0, µ′

2k =
(2k)! σ2k

k! 2k
for k = 1, 2, . . . .

Since the distribution N(0, σ2) has vanishing expectation, the moments µ′
k are the same

as µk.
If µ = 0, σ2 = 1, we have the standard normal distribution. Its density is

ϕ(x) =
1√
2π

e−x2/2

and the distribution function

Φ(x) =

∫ x

−∞

ϕ(u) du.

The function ϕ is even, because ϕ(−x) = ϕ(x). It implies that Φ(−x) = 1 − Φ(x).
We say that a random variable X has a degenerated distribution if X is equal to a

constant µ with probability 1. It is clear that in this case EX = µ, varX = 0. Thus this
degenerated distribution is considered as N(µ, 0).

Not every sequence of numbers is a sequence of moments . For example, there exists
no distribution with the moments µ′

1 = 2, µ′
2 = 1. For such a distribution it would hold

σ2 = µ′
2 − (µ′

1)
2 = 1 − 22 = −3 < 0.

This is not possible, because the variance is nonnegative (see its definition). Let us
investigate the problem when a finite series of numbers µ′

0 = 1, µ′
1, . . . , µ

′
2n is a series of

moments. Consider an arbitrary vector c = (c0, . . . , cn)′ with real components. It is easy
to verify that

0 ≤ E

( n∑

j=0

cjX
j

)2

= E

n∑

j=0

n∑

k=0

cjckX
j+k =

n∑

j=0

n∑

k=0

cjckµ
′
j+k = c′Ac,

where

A =







µ′
0 µ′

1 · · · µ′
n

µ′
1 µ′

2 · · · µn+1

. . . . . . . . . . . . . . . . . . . .
µ′

n µ′
n+1 . . . µ′

2n







.

It means that the matrix A must be positively semidefinite. It can be proved that it
is also a sufficient condition (see Krejn, Nudelman 1973). In the mentioned book it is
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proved that an infinite series of numbers µ′
0 = 1, µ′

1, µ
′
2, . . . is a series of of moments if

and only if the infinite quadratic form
∞∑

j=0

∞∑

k=0

cjckµ
′
j+k

is positive definite.
The following formulas can be used for calculating moments (see Shao 2005).

Theorem 1.5 Let F be a distribution function and a a real number. Then
∫

[F (x+a)−
F (x)] dx = a.

Dkaz. Assume first that a > 0. Then using Fubini theorem we get
∫

[F (x+a)−F (x)] dx =

∫ [∫ x+a

x

dF (y)

]

dx =

∫ (∫ y

y−a

dx

)

dF (y) =

∫

a dF (y) = a.

The proof is analogous for a < 0 . 2

Theorem 1.6 Let X be a nonnegative random variable with the distribution function F
and with a finite expectation. Then

EX =

∫ ∞

0

[1 − F (x)] dx.

Proof. We have
∫ ∞

0

[1 − F (x)] dx =

∫ ∞

0

[∫ ∞

x

dF (y)

]

dx =

∫ ∞

0

[∫ y

0

dx

]

dF (y) =

∫ ∞

0

y dF (y)

= EX. 2

Theorem 1.7 Let X be a random variable with distribution function F and with a finite
expectation. Then

EX =

∫ ∞

0

[1 − F (x)] dx −
∫ 0

−∞

F (x) dx.

Proof. It was proved that
∫ ∞

0

[1 − F (x)] dx =

∫ ∞

0

y dF (y).

Further we have
∫ 0

−∞

F (x) dx =

∫ 0

−∞

[∫ x

−∞

dF (y)

]

dx =

∫ 0

−∞

[∫ 0

y

dx

]

dF (y)

=

∫ 0

−∞

(−y) dF (y) = −
∫ 0

−∞

y dF (y).

Thus

EX =

∫ ∞

−∞

y dF (y) =

∫ 0

−∞

y dF (y) +

∫ ∞

0

y dF (y)

= −
∫ 0

−∞

F (x) dx +

∫ ∞

0

[1 − F (x)] dx. 2
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Theorem 1.8 Let X be a nonnegative random variable with the distribution function F .
Let EX2 < ∞. Then

EX2 = 2

∫ ∞

0

x[1 − F (x)] dx.

Proof. We have

2

∫ ∞

0

x[1 − F (x)] dx = 2

∫ ∞

0

x

[∫ ∞

x

dF (y)

]

dx = 2

∫ ∞

0

[∫ y

0

x dx

]

dF (y)

=

∫ ∞

0

y2 dF (y) = EX2. 2

1.3 Quantile function

If a distribution function is given it is often necessary to find its inverse function F−1(u).
It is simple when F (x) is increasing and continuous. In the general case so called quantile
function F−1 is defined by the formula

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

Values of the function F−1(u) are called quantiles . E.g. α-quantile is the value F−1(α).
An important application of the quantile function is its role in construction of different

distributions. It will be demonstrated in theorem 1.11.
The density of the rectangular distribution R(0, 1) was introduced in section 1.2. Its

distribution function is

R(u) =







0 for u ≤ 0,
u for 0 < u ≤ 1,
1 for 1 < u.

(1.7)

The following theorem will be used in some proofs of forthcoming theorems.

Theorem 1.9 Let a random variable X have the distribution function F . Then the
relation P{F (X) ≤ F (x)} = F (x) holds for every real x.

Proof. We have

{F (X) ≤ F (x)} = [{F (X) ≤ F (x)} ∩ {X ≤ x}] ∪ [{F (X) ≤ F (x)} ∩ {X > x}].

Since

{X ≤ x} ⊂ {F (X) ≤ F (x)}, {X > x} ∩ {F (X) < F (x)} = ∅,
we get

{F (X) ≤ F (x)} = {X ≤ x} ∪ [{X > x} ∩ {F (X) = F (x)}]. (1.8)

Notice that

P[{X > x} ∩ {F (X) = F (x)}] = 0,

since in this case X must be in an interval where F is constant. If we calculate probabil-
ities of the left and right hand side of the formula (1.8), we get the assertion. 2
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Theorem 1.10 Let X have a continuous distribution function F . Then the random
variable U = F (X) has the distribution R(0, 1).

Proof. We prove that P(U ≤ u) = R(u), where the function R(u) is defined in (1.7).
If u < 0 or 1 ≤ u, the assertion is obvious. Let 0 < u < 1. Since F is continuous,
for a given u there exists such an x that F (x) = u. Using theorem 1.9 we obtain
P(U ≤ u) = P{F (X) ≤ F (x)} = u. 2

If we assume in theorem 1.10 that F is increasing then the proof without using theorem
1.9 would follow from

P(U ≤ u) = P[F (X) ≤ u] = P[X ≤ F−1(u)] = F [F−1(u)] = u.

Theorem 1.10 says that the rectangular distribution can be obtained using transfor-
mation U = F (X) from any other distribution with continuous distribution function.

Theorem 1.11 Let U ∼ R(0, 1) and let F be a distribution function. Then the random
variable X = F−1(U) has the distribution function F .

Proof. Let u ∈ (0, 1) and let x be a number such that 0 < F (x) < 1. First we show thet
the inequality F (x) ≥ u is fulfilled if and only if x ≥ F−1(u). Assume that

x ≥ F−1(u) = inf{y : F (y) ≥ u}.

Since F is nondecreasing and continuous from the right the set {y : F (y) ≥ u} is an
interval containing its left point. Thus we must have F (x) ≥ u. Now assume that
F (x) ≥ u. But then x ≥ inf{y : F (y) ≥ u} = F−1(u). Together we have P{F−1(U) ≤
x} = P{U ≤ F (x)} = F (x), which we wanted to prove. 2

If in theorem 1.11 we add the assumption that F is continuous and increasing, the
assertion would simply follow from the fact that

P(X ≤ x) = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x).

The variables with the distribution R(0, 1) can be easily generated by computers.
Thus theorem 1.11 describes a procedure how to obtain variables with an arbitrary given
distribution function F . In most cases the calculation if the quantile function is compli-
cated and so to generate large number of such variables can be time consuming. Often
instead of direct application of theorem 1.11 special procedures are used.

Let us remark that theorem 1.9 and proofs of the theorems 1.10 and 1.11 follow the
paper Angus (1994).

At the end of this chapter we introduce a definition of median which belongs to the
distribution with the distribution function F . Median µ̃ is a number which satisfies

F (µ̃−) ≤ 1

2
, F (µ̃) ≥ 1

2
.

The symbol F (µ̃−) denotes the limit from the left hand side. The median always exists but
it is not defined uniquely. Similarly the number µ̃p (called p-th percentile) for 0 < p < 1
is defined by

F (µ̃−
p ) ≤ p, F (µ̃p) ≥ p.
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Theorem 1.12 Let a distribution with the distribution function F have expectation µ
and a finite standard deviation σ. Then we have for (an arbitrary) median µ̃

|µ − µ̃| ≤ σ

and for (an arbitrary) percentile µ̃p we have

|µ − µ̃p| ≤ σ max

(√
1 − p

p
,

√
p

1 − p

)

.

Proof. See O’Cinneide (1990). 2



Chapter 2

Random vectors

2.1 Introduction

Let random variables X1, . . . , Xn be defined on the same probability space (Ω,A, P). Then
X = (X1, . . . , Xn)′ is called random vector . If the random variables Xij (i = 1, . . . , n; j =
1, . . . , m) are defined on the same probability space, then X = (Xij) is random matrix .
The expectation of the random vector is the vector EX = (EX1, . . . , EXn)′; similarly we
define expectation of the random matrix by EX = (EXij). The function

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

is called distribution function of the random vector X . Sometimes it is called simultaneous
distribution function of the random variables X1, . . . , Xn. If there exists a function f such
that

F (x1, . . . , xn) =

∫ x1

−∞

· · ·
∫ xn

−∞

f(u1, . . . , un) du1 . . .dun, (2.1)

then we say that the vector X has continuous distribution and that f is its simultaneous
density . In view of (2.1) we have

f(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 . . . ∂xn
almost everywhere. (2.2)

If g(x1, . . . , xn) is borel measurable function, then it can be proved that

Eg(X1, . . . , Xn) =

∫

· · ·
∫

g(x1, . . . , xn) dF (x1, . . . , xn). (2.3)

If only some of the variables X1, . . . , Xn are investigated then their distribution func-
tion is called marginal and eventual corresponding density is also marginal .

If there exists the simultaneous density then all the marginal densities also exist; the
reversed assertion does not hold.

To illustrate the situation, we shall deal for a while only with two random variables
X1 and X2. Their simultaneous density is F (x1, x2) = P(X1 ≤ x1, X2 ≤ x2). It is obvious
that the marginal distribution function F1(x1) = P(X1 ≤ x1) of the random variable X1

satisfies
F1(x1) = F (x1,∞),

19
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where

F (x1,∞) = lim
x2→∞

F (x1, x2).

If X1, X2 have the simultaneous density f(x1, x2), then using (2.1) we have

F (x1,∞) =

∫ x1

−∞

∫ ∞

−∞

f(u1, u2) du1 du2.

In view of (2.2) we have that the density f1(x1) of the variable X1 is

f1(x1) =
dF1(x1)

dx1
=

dF (x1,∞)

dx1
=

∫ ∞

−∞

f(x1, u2) du2.

Analogous formulas can be easily derived also for larger number of random variables.
The result is formulated in the sentence that the marginal density can be obtained from
the simultaneous density integrating superfluous variables.

2.2 Variance matrix

Let the variables X1, . . . , Xn have finite second moments. Covariance cov(Xi, Xj) of
random variables Xi, Xj is

cov(Xi, Xj) = E(Xi − EXi)(Xj − EXj).

Equivalently, we obtain

cov(Xi, Xj) = EXiXj − EXi EXj .

This last expression is suitable for practical calculations. We can see that cov(Xi, Xi) =
varXi. Denote

Fij(xi, xj) = P(Xi ≤ xi, Xj ≤ xj)

the distribution function of the vector (Xi, Xj). Let Fi(x) = P(Xi ≤ x) for i = 1, . . . , n
be the marginal distribution functions of the individual components of the vector X. It
follows from (2.3) that

cov(Xi, Xj) =

∫∫ [

xi −
∫

x dFi(x)

] [

xj −
∫

x dFj(x)

]

dFij(xi, xj)

=

∫∫

xixj dFij(xi, xj) −
[∫

x dFi(x)

] [∫

x dFj(x)

]

.

If a two-dimensional vector (Xi, Xj) has a continuous distribution with the density
fij(xi, xj)then

∫∫

xixj dFij(xi, xj) =

∫∫

xixjfij(xi, xj) dxi dxj .

Instead of cov(Xi, Xj) it is written σXiXj
or shortly σij . We know already that σii = σ2

i

is the variance of the variable Xi. If we write cov(Xi, Xj) as the elements of the matrix,
we get the variance matrix V = (σij). The matrix V is often written as var X.
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Theorem 2.1 The variance matrix can be written in the form

V = E(X − EX)(X − EX)′ (2.4)

and in the form

V = EXX ′ − (EX)(EX)′.

Proof. The first formula can be proved componentwise. The second formula follows from
the first one by an easy derivation. 2

Theorem 2.2 Let a be an m× 1 vector and B an m×n matrix. Define Y = a + BX.
If EX exists then EY = a + BEX. If X has components with finite second moments,
then

var Y = BV B′. (2.5)

Proof. The first assertion can be proved componentwise. The second one follows from
(2.4). 2

It follows from definition as well as from theorem 2.2 that the variance matrix is
symmetric.

Theorem 2.3 Variance matrix is positive semidefinite.

Proof. Choose an arbitrary vector c = (c1, . . . , cn)′. Since the variance of any random
variable is nonnegative also the variance of c′X is nonnegative. Using formula (2.5) we
obtain

0 ≤ var c′X = c′V c. 2

Let Y = (Y1, . . . , Ym)′ and Z = (Z1, . . . , Zn)′ be random vectors with finite second
moments. Then the covariance matrix of the vectors Y and Z is the matrix

cov(Y , Z) = (cov(Yi, Zj)).

It is easy to check that

cov(Y , Z) = E(Y − EY )(Z − EZ)′

and that

cov(Y , Z) = EY Z ′ − (EY )(EZ)′.

From the definition it follows that

cov(Z, Y ) = [cov(Y , Z)]′.

Notice that the variance matrix is a special case of the covariance matrix, since

cov(X, X) = var X.

The covariance matrices are used in the following theorem.
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Theorem 2.4 Let random vectors X = (X1, . . . , Xn)′ and Y = (Y1, . . . , Yn)
′ have finite

second moments. Then

var(X + Y ) = var X + cov(X, Y ) + cov(Y , X) + var Y .

Proof. The assertion follows from formula (2.4). 2

Theorem 2.5 Let Y = (Y1, . . . , Ym)′ and Z = (Z1, . . . , Zn)
′ be random vectors with

finite second moments. If a is an r× 1 vector, c an s× 1 vector, B an r×m matrix and
D an s × n matrix, then

cov(a + BY , c + DZ) = B cov(Y , Z) D′.

Proof. The result follows from the formula for covariance. 2

2.3 Independence

Let us return to the model for random events which was introduced in section 2.1. We
say that two events A1 ∈ A, A2 ∈ A are independent , if

P(A1 ∩ A2) = P(A1)P (A2).

This is a mathematical definition of the notion independence which is used in everyday
language. If P(A2) > 0 then we define the conditional probability of the event A1 given
A2 as

P(A1|A2) =
P(A1 ∩ A2)

P(A2)
. (2.6)

Consider a random vector X = (X1, . . . , Xn)
′. Let F (x1, . . . , xn) be its simultaneous

distribution function
Let X = (X1, . . . , Xn)′ be a random vector, F (x1, . . . , xn) its simultaneous distribu-

tion function and Fi(xi) marginal distribution of Xi, i = 1, . . . , n. We say that X1, . . . , Xn

are independent random variables, if we have for all real x1, . . . , xn

F (x1, x2, . . . , xn) = F1(x1)F2(x2) . . . Fn(xn). (2.7)

Theorem 2.6 Let a random vector X have simultaneous density f(x1, . . . , xn). Denote
fi(xi) the marginal density of the variable Xi, i = 1, . . . , n. Then variables X1, . . . , Xn

are independent if and only if

f(x1, . . . , xn) = f1(x1) . . . fn(xn) almost everywhere.

Proof. The assertion follows from definition (2.7) and from the formula (2.2). 2

The independence of random vectors is defined similarly as the independence of ran-
dom variables. We say that Y and Z are independent random vectors, if their simultane-
ous distribution function is equal to the product of the distribution function of vector Y

and the distribution function of vector Z. If the simultaneous distribution of the vector
(Y ′, Z ′)′ is continuous then the vectors Y and Z are independent if and only if their
simultaneous density is equal to the product of marginal densities of the vectors Y a Z.
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Theorem 2.7 Let X1, . . . , Xn be independent random variables with finite first moments.
Then

E(X1 . . .Xn) = (EX1) . . . (EXn).

Proof. Let F be the simultaneous distribution function of the vector X = (X1, . . . , Xn)
′

and Fi the distribution function of the random variable Xi, i = 1, . . . , n. It follows from
(2.3), (2.7) and from Fubini theorem that

E(X1 . . .Xn) =

∫

· · ·
∫

x1 . . . xn dF (x1, . . . , xn)

=

∫

· · ·
∫

x1 . . . xn dF1(x1) . . . dFn(xn)

=

[∫

x1 dF1(x1)

]

. . .

[∫

xn dFn(xn)

]

= (EX1) . . . (EXn). 2

A statistician must frequently decide if two random variables are independent or not.
Their simultaneous distribution function is usually not known. Some procedures are
based on the following assertion.

Theorem 2.8 Let X and Y be independent random variables with finite second moments.
Then we have cov(X, Y ) = 0.

Proof. If X and Y are independent, then the variables X − EX and Y − EY are also
independent. From the definition of covariance and from theorem 2.7 we obtain

cov(X, Y ) = E(X − EX)(Y − EY ) = E(X − EX)E(Y − EY ) = 0. 2

The covariance itself as a measure of independence is not used but after some nor-
malization we get correlation coefficient . We shall consider it in section 2.6.

If cov(X, Y ) = 0, then we say that X and Y are uncorrelated variables. Unfortunately,
examples show that uncorrelated variables may not be necessarily independent.

2.4 Conditional density

The main idea will be demonstrated on a random vector X = (Y, Z)′ with two compo-
nents. Let X have the density p(y, z). Denote q(z) =

∫
p(y, z) dy the marginal density

of the variable Z. First we define the conditional distribution function of the variable Y
given Z = z, which we denote F (y | z) = P(Y ≤ y |Z = z). We cannot use formula (2.6),
because P(Z = z) = 0 since Z has a continuous distribution. Choose points z1, z2 in
such a way that z1 < z < z2 and assume that P(z1 < Z < z2) > 0 for such points z1, z2.
Using(2.6) we get

P(Y ≤ y | z1 < Z < z2) =
P(Y ≤ y, z1 < Z < z2)

P(z1 < Z < z2)

=

∫ y

−∞

∫ z2

z1
p(u, v) dv du

∫ z2

z1
q(v) dv

.
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If p is a smooth function then according to the mean value theorem for every u there
exists a point zu ∈ (z1, z2) such that

∫ z2

z1

p(u, v) dv = (z2 − z1)p(u, zu).

If q is a smooth function, then analogously there exists a point z∗ ∈ (z1, z2) such that
∫ z2

z1

q(v) dv = (z2 − z1)q(z
∗).

Thus

P(Y ≤ y | z1 < Z < z2) =

∫ y

−∞
p(u, zu) du

q(z∗)
.

If z1 → z−, z2 → z+, then also zu → z, z∗ → z and because of assumed smoothness of
functions p and q we will have p(u, zu) → p(u, z), q(z∗) → q(z). If we may change limit
and integral, we obtain

lim
z1→z−

z2→z+

P(Y ≤ y | z1 < Z < z2) =

∫ y

−∞

p(u, z) du

q(z)
.

It is natural to define the conditional distribution function F (y | z) as the limit of the
probability P(Y ≤ y | z1 < Z < z2) when z1 → z−, z2 → z+. Thus we obtained

F (y | z) =

∫ y

−∞

p(u, z)

q(z)
du.

Now we can introduce the conditional density as the derivative of the conditional distri-
bution function analogously as in formula (1.4), which describes connection between the
common distribution function and the common density. The result is that the conditional
density r of the variable Y given Z = z is

r(y | z) =
p(y, z)

q(z)
. (2.8)

In our derivation it was necessary to use many mathematical assumptions. However,
it can be proved (see Anděl 2007), that conditional density is always given by formula
(2.8), if q(z) 6= 0. In the case q(z) = 0 we define r(y | z) = 0.

2.5 Approximation of random variables

Consider a random variable Y and a random vector X = (X1, . . . , Xn)
′. Assume that

Y and X have finite second moments. It happens that it is necessary to predict the
variable Y using the known vector X . We can have several reasons for it. Sometimes
the measurement of Y is very difficult, hardly accessible or expensive. In other cases we
obtain information about Y after many years whereas the vector X is known immediately.

We restrict ourselves to find an approximation of the variable Y using a linear function
Ŷ = α + β1X1 + · · ·+ βnXn. Our problem is to find the coefficients α, β1, . . . , βn so that
the difference between Y and Ŷ is as small as possible. The criterion is E(Y − Ŷ )2.
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Theorem 2.9 Let V = var X be a regular matrix. Then

E(Y − Ŷ )2 ≥ varY − cov(Y, X)V −1cov(X, Y )

and left hand side is equal to right hand side if and only if

β = V −1cov(X, Y ), α = EY − β′EX . (2.9)

Proof. If a random variable Z has a finite second moment, it fulfills EZ2 = varZ +(EZ)2.
Thus EZ2 ≥ var Z and we have equality if and only if EZ = 0. Define Z = Y − Ŷ =
Y − α − β′X. Then

E(Y − Ŷ )2 ≥ var(Y − α − β′X).

The equality holds if and only if E(Y − α − β′X) = 0, i. e. in the case

α = EY − β′EX.

We know that the variance does not depend on the shift, and so

var(Y − α − β′X) = var(Y − β′X).

Using theorems 2.4 and 2.5 we get

var(Y − β′X) = var Y − β′cov(X, Y ) − cov(Y, X)β + β′V β

= [β − V −1cov(X, Y )]′V [β − V −1cov(X, Y )]

+ varY − cov(Y, X)V −1cov(X, Y ).

Since V is a variance matrix, it is positively semidefinite according to theorem 2.3.
Moreover, now we assume that V is regular. Thus V is positively definite and

[β − V −1cov(X, Y )]′V [β − V −1cov(X, Y )] ≥ 0.

The equality holds if and only if

β − V −1cov(X, Y ) = 0.

The assertion is proved. 2

The expression

σ2
Y.X = varY − cov(Y, X)V −1cov(X, Y )

is called residual variance. In view of (2.9) it also holds

σ2
Y.X = var Y − β′V β. (2.10)

If we apply the formula for determinant of the matrix divided into the blocks we obtain
another formula

σ2
Y.X =

|var(Y, X1, . . . , Xn)|
|V | .
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2.6 Correlation coefficient

Let X and Y be random variables with finite second moments. We denote σ2
X = var X,

σ2
Y = varY , σXY = cov(X, Y ). If σ2

X > 0 and σ2
Y > 0, then we define correlation

coefficient

ρ =
σXY

√

σ2
Xσ2

Y

. (2.11)

Instead of ρ one writes ρXY to indicate the variables for which the coefficient is calculated.
It follows from theorem 2.8 that ρ = 0 when the variables X and Y are independent. It
can be easily verified that

ρXX = 1. (2.12)

Theorem 2.10 Let a, b, c, d be such numbers that bd 6= 0. If bd > 0, then ρa+bX,c+dY =
ρXY ; if bd < 0, then ρa+bX,c+dY = −ρXY .

Proof. The assertion follows from theorem (2.11). 2

Theorem 2.11 We have −1 ≤ ρ ≤ 1. If b > 0 then the equality ρ = 1 holds if and only
if Y = a + bX with probability 1. Similarly, if b < 0 then ρ = −1 holds if and only if
Y = a + bX with probability 1.

Proof. From Schwarz inequality we get

|E(X − EX)(Y − EY )|2 ≤ E(X − EX)2E(Y − EY )2.

It implies that −1 ≤ ρ ≤ 1. The equality is reached either in the case that X − EX = 0
with probability 1, or in the case that Y − EY = b(X − EX) with probability 1. The
first case cannot be realized since the variable X would have vanishing variance and the
correlation coefficient would not be defined. From the same reason in the second case the
value b = 0 must be excluded. If b > 0, then theorem 2.11 gives ρ = 1; if b < 0, then
ρ = −1. 2

The correlation matrix is introduced similarly as the variance and covariance matrices.
Consider a random vector X = (X1, . . . , Xn)

′ with finite second moments and positive
variances. Then the correlation matrix of the vector X is the matrix P = (ρij) of type
n × n, where ρij = ρXi,Xj

. It follows from (2.12) that the matrix P has ones on the
diagonal and is symmetric.

Let Y = (Y1, . . . , Ym)′ and Z = (Z1, . . . , Zn)
′ be random vectors with finite sec-

ond moments and positive variances. Then the correlation matrix of these vectors is
cor(Y , Z) = (ρYiZj

) and has the type m × n.

2.7 Coefficient of multiple correlation

Classical correlation coefficient ρ measures dependence between two random variables.
Very often it is necessary to describe dependence between a random variable Y and a
random vector X = (X1, . . . , Xn)

′. Let V = varX be a regular matrix. According
theorem 2.9 the variable Ŷ = α + β′X is the best linear approximation. Here α a β are
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introduced in formula (2.9). The coefficient of multiple correlation ρY,X is defined as the

usual correlation coefficient between the variables Y and Ŷ . The definition is

ρY,X = ρY,α+β′X.

In the case β = 0 we define ρY,X = 0.

Theorem 2.12 Coefficient of multiple correlation is given by the formula

ρ2
Y,X =

β′V β

σ2
Y

. (2.13)

Proof. If β = 0, the assertion is valid. Let β 6= 0. According to the definition we have

ρ2
Y,X =

[cov(Y, α + β′X)]2

σ2
Y var(α + β′X)

.

It follows from (2.9) that cov(X, Y ) = V β, and thus

cov(Y, X) = β′V . (2.14)

This gives
cov(Y, α + β′X) = cov(Y, β′X) = cov(Y, X)β = β′V β (2.15)

and similarly
var(α + β′X) = β′V β. (2.16)

The assertion is proved. 2

Theorem 2.13 Coefficient of multiple correlation satisfies 0 ≤ ρY,X ≤ 1.

Proof. In the case β = 0 the assertion is valid. Otherwise ρY,X is equal to the correlation

coefficient between Y a Ŷ , which is smaller or equal 1 according to theorem 2.11. For
β 6= 0 from (2.15) and (2.16) we get

ρY,α+β′X =
cov(Y, α + β′X)
√

σ2
Y var(α + β′X)

=
β′V β

√

σ2
Y β′V β

.

This expression is positive since V is the positive definite matrix. 2

Theorem 2.14 Coefficient of multiple correlation satisfies ρY,X and residual variance
σ2

Y.X satisfy the relation

ρ2
Y,X = 1 − σ2

Y.X

σ2
Y

. (2.17)

Proof. Assertion follows from formulas (2.10) a (2.13). 2

Formula (2.17) can be also written in the form

σ2
Y.X = σ2

Y (1 − ρ2
Y,X).

Here we can see that for increasing value of the coefficient of multiple correlation the
residual variance σ2

Y.X decreases.
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Theorem 2.15 Coefficient of multiple correlation ρY,X is the largest one from all corre-
lation coefficients between Y and an arbitrary linear function of the vector X, which is
not constant.

Proof. The assertion is obvious if β = 0; in this case ρY,X = 0 and also ρY,a+b′X = 0 for
an arbitrary vector b 6= 0. In the case b = 0 the correlation coefficient is not defined.
So assume that β 6= 0. We prove that then ρ2

Y,a+b′X
≤ ρ2

Y,α+β′X
for an arbitrary vector

b 6= 0. Since numbers a and α have no influence on the correlation coefficients it suffices
to prove the inequality ρ2

Y,b′X
≤ ρ2

Y,β′X
. We have

ρ2
Y,b′X =

[cov(Y, b′X)]2

σ2
Y var b′X

=
[cov(Y, X)b]2

σ2
Y b′V b

.

From (2.14) we have

[cov(Y, X)b]2 = (β′V b)2.

Matrix V is positive definite. Thus there exists a matrix V 1/2, which is symmetric,
positive definite and which fulfills V 1/2V 1/2 = V . Using Schwarz inequality we get

(β′V b)2 = (β′V 1/2V 1/2b)2 = [(V 1/2β)′(V 1/2b)]2

=≤ (V 1/2β)′(V 1/2β) · (V 1/2b)′(V 1/2b) = (β′V β)(b′V b).

Thus

ρ2
Y,b′X ≤ (β′V β)(b′V b)

σ2
Y b′V b

=
β′V β

σ2
Y

= ρ2
Y,X.

The last equality is ensured by formula (2.13). 2

Theorem 2.15 guarantees that the coefficient ρY,X is never smaller than the absolute
value of any correlation coefficient ρY,Xi

, i = 1, . . . , n. This result is sometimes used for
checking the calculations.

Theorem 2.16 We have

ρ2
Y,X = cor(Y, X) P−1cor(X, Y ), (2.18)

where P = cor X.

Proof. The assertion follows from formula (2.13). For details see Anděl (2007). 2

Very often we have the case when the vector X has two components. To simplify
notation we write X0 = Y . Then ρij, i, j = 0, 1, 2 is the correlation coefficient between
Xi and Xj and instead of ρY,X we write ρ0.1,2. Inserting into (2.18) one gets

ρ2
0.1,2 =

ρ2
01 + ρ2

02 − 2ρ01ρ02ρ12

1 − ρ2
12

. (2.19)

The coefficient ρ0.1,2 measures the total dependence of the variable Y on the complete
vector (X1, X2)

′. This dependence can be very large even when the dependence of Y on
every component X1, X2 is quite small. We demonstrate it on an example.
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Example 2.17 Let ρ01 = 0 and ρ02 6= 0. Then (2.19) gives

ρ2
0.1,2 =

ρ2
02

1 − ρ2
12

.

Theorem 2.13 ensures that the fraction ρ2
02/(1−ρ2

12) is never larger than 1. But the number
ρ2

0.1,2 can be arbitrary close to one if ρ2
12 is sufficiently large. The explanation can be the

following one. Let Y and X1 be independent variables. Define X2 = Y − X1. Denote
varY = σ2

0, varX1 = σ2
1. An easy calculation gives ρ01 = 0, ρ02 = (σ2

0 + σ2
1)

−1/2σ0,
ρ12 = −(σ2

0 + σ2
1)

−1/2σ1, ρ2
0.1,2 = 1. Choosing σ0 sufficiently small and σ1 sufficiently

large, the correlation coefficient ρ02 will have arbitrary small value. The variable Y is
not correlated with X1, its correlation with X2 is very small, but both the variables
simultaneously define it uniquely since Y = X1 + X2. ♦

2.8 Coefficient of partial correlation

Coefficient of partial correlation measures dependence of two random variables. The
dependence may not be causal, it can arise under the influence of other confounding
factors. Consider two random variables Y and Z and a random vector X = (X1, . . . , Xn)′.
Assume that X may have influence on both Y and Z. We want to ask how large would be
dependence between Y and Z without influence of X. One possibility how to investigate
it is to create such situation that the vector X remains constant. In most cases it is not
possible and so it is necessary to find a mathematical solution.

We know from theorem 2.9 that the best linear approximation of the variable Y is
Ŷ = α+β′X, where α and β are introduced in (2.9). From this reason we can interprete
Y − Ŷ as such a part of variable Y which is cleared from influence of the vector X.
Similarly, let Ẑ = γ + δ′X be the best linear approximation of variable Z based on X.
It follows from (2.9) that

δ = V −1cov(X , Z), γ = EZ − δ′EX. (2.20)

The part of variable Z which is not explained by the vector X can be interpreted as
Z − Ẑ. From this reason the dependence between Y a Z after elimination of influence
of vector X is measured by the correlation coefficient between Y − Ŷ and Z − Ẑ. It is
called partial correlation coefficient between Y and Z given X . It is denoted by ρY,Z.X.

Theorem 2.18 Let random variables Y, Z, X1, . . . , Xn have finite second moments and
the regular variance matrix. Denote P = cor X. Then it holds

ρY,Z.X =
ρY Z − cor(Y, X) P−1cor(X, Z)

√

[1 − cor(Y, X) P−1cor(X, Y )][1 − cor(Z, X) P−1cor(X, Z)]
.

Proof. Theorem follows from the formula for the correlation coefficient between Y −α−
β′X and Z − γ − δ′X. Using (2.9) and (2.20) we obtain the result. 2

For the coefficient of partial correlation we have no such inequalities like in case of the
correlation of multiple correlation. From this reason ρY,Z.X may be sometimes smaller
and sometimes greater than ρY Z .
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Let n = 1, so that the vector X has only one component. Then we get from theorem
2.18 that

ρY,Z.X =
ρY Z − ρXY ρXZ

√

(1 − ρ2
XY )(1 − ρ2

XZ)
.

Example 2.19 In England investigated how the harvest of hay (variable Y ) depends
on temperature (variable Z, which is equal to the sum of temperaturs larger than 42 ◦F
.
= 5,6 ◦C in individual days of the considered spring season). It was found that ρY Z =
−0.40. The negative correlation does not correspond our experience that the gras grows
faster if the weather is warmer. Then the calculation included precipitation (variable
X) and the other correlation coefficients were calculated. The result was ρXY = 0.80,
ρXZ = −0.56. If it rains, more gras grows, but it is colder. The result is ρY,Z.X = 0.10.
The details can be found in Hooker (1907) and in Yule, Kendall (1950). 2

2.9 Multinomial distribution

Assume that in an experiment one of the events A1, . . . , Ak can be realized. Let the events
be disjoint and one of them must be realized. We denote their probabilities pi = P(Ai),
i = 1, . . . , k. Our assumptions imply that p1 + · · ·+pk = 1. Moreover, let all probabilities
pi be positive.

Consider the case that the experiments are n-times independently repeated. Let Xi

be number of realizations of the event Ai in such series of experiments. Then we have

P(X1 = x1, . . . , Xk = xk) =
n!

x1! . . . xk!
px1

1 . . . pxk

k (2.21)

for nonnegative integers x1, . . . , xk the sum of which equals to n. In any other case this
probability is zero. The distribution defined by formula (2.21) is called multinomial .

In the special case k = 2 we can the event A1 call the success and the event A2 failure.
Then (2.21) will be the binomial distribution. However, this situation can arise also for
general k, if we introduce events A = A1 and B = A2 ∪ · · · ∪ Ak. Thus the marginal
distribution of the random variable X1 is Bi(n, p1) and similarly Xi ∼ Bi(n, pi) also for
other values i.

Theorem 2.20 In multinomial distribution we have

EXi = npi, var Xi = npi(1 − pi) for i = 1, . . . , k (2.22)

and
cov(Xi, Xj) = −npipj for i 6= j. (2.23)

Proof. Formula (2.22) follows from Xi ∼ Bi(n, pi). We are going to prove (2.23). We
introduce random variables ξhi in the following way. Define ξhi = 1 if in the h-th experi-
ment the event Ai appeared and ξhi = 0 in other cases. The experiments are independent
and so

cov(ξhi, ξmj) = 0 for h 6= m. (2.24)

We can see that
ξhiξhj = 0 for i 6= j, (2.25)
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since in the h-th experiment the events Ai and Aj could not appear simultaneously. An
easy calculation gives Eξhi = pi. Since

Xi =

n∑

h=1

ξhi, (2.26)

using (2.26), (2.24) and (2.25) for i 6= j we get

cov(Xi, Xj) = cov

(
n∑

h=1

ξhi,
n∑

m=1

ξmj

)

=
n∑

h=1

n∑

m=1

cov(ξhi, ξmj)

=
n∑

h=1

cov(ξhi, ξhj) =
n∑

h=1

(Eξhiξhj − EξhiEξhj)

= −
n∑

h=1

pipj = −npipj. 2

A matrix A is called idempotent if it is a square matrix and if A2 = A holds.

Theorem 2.21 Denote

u = (
√

p1, . . . ,
√

pk)
′ , Q = I − uu′, D = Diag{√np1, . . . ,

√
npk }.

Then the matrix Q is idempotent and its rank is k−1. Variance matrix V of the random
vector X = (X1, . . . , Xk)

′ with multinomial distribution is V = DQD.

Proof. It can be easily checked that the matrix Q is idempotent. The rank of the
matrix Q is equal to its trace and it is k − 1. Elements of the matrix V were calculated
in Theorem 2.20, and thus the relation V = DQD can be easily verified. 2

Define Y = D−1X. We can see that

Y =









X1√
np1
...

Xk√
npk









, EY =






√
np1
...√
npk






and an easy calculation gives

varY = D−1V D−1 = D−1DQDD−1 = Q.

Define χ2 = (Y − EY )′(Y − EY ). This expression can be written in the form

χ2 =

n∑

i=1

(Yi − EYi)
2 =

n∑

i=1

(
Xi√
npi

−√
npi

)2

=

n∑

i=1

(Xi − npi)
2

npi
.
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Chapter 3

Transformations

3.1 Transformations of random variables

Let X be a random variable and t a measurable function. If Y = t(X), then we say that
the variable Y is the transformation of the variable X. Our task is to derive statistical
characteristics of the variable Y from the known characteristics of the variable X. We
met two important cases already in section 1.3 (see theorems 1.10 and 1.11). Now, we
are going to investigate general cases.

Theorem 3.1 Let X have a continuous distribution function F . Let F ′(x) = f(x) exist
everywhere with exception maximally finite number of points. Let t be a monotonous
function that has everywhere a nonvanishing derivative. Let τ be the inverse function
to t. Then the random variable Y = t(X) has the density

g(y) = f [τ(y)]|τ ′(y)|.

Proof. Assume first that t is increasing. Then the distribution function G of the random
variable Y is equal to

G(y) = P(Y ≤ y) = P[t(X) ≤ y] = P[X ≤ τ(y)] = F [τ(y)].

The assumptions of theorem ensure that G is continuous and differentiable everywhere
except maximally in finite many points. From this reason the density g(y) of the variable
Y is equal to

g(y) = G′(y) = f [τ(y)]τ ′(y).

Since t is increasing, τ is also increasing and τ ′(y) = |τ ′(y)|. If t is decreasing, the proof
is similar. 2

The proof of theorem 3.1 was very simple. In many cases we can derive distribution
of Y = t(X), even if the mapping t is not monotonous.

Example 3.2 Let X ∼ N(0, 1). As introduced in section 1.2, the density of X is denoted
ϕ and its distribution function Φ. Define Y = X2. Let G denote the distribution function
of variable Y . It is clear that G(y) = 0 if y ≤ 0. In the case y > 0 we get

G(y) = P(Y < y) = P(X2 < y) = P(−√
y < X <

√
y) = Φ(

√
y) − Φ(−√

y).

33
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Since Φ(−x) = 1 − Φ(x), we have together

G(y) = 2Φ(
√

y) − 1.

It implies that the density g of the variable Y vanishes on the interval (−∞, 0]. If y > 0
then

g(y) = G′(y) =
1√
y
ϕ(

√
y) =

1√
2πy

e−y/2. ♦

The distribution of the random variable Y with the density g is called chi-square
distribution with one degree of freedom and it is denoted χ2

1. The expectation of this
distribution is µ = EY = EX2 = 1, the variance is σ2 = var Y = EY 2 − (EY )2 =
EX4 − (EX2)2 = 3 − 12 = 2. ♦

3.2 Transformations of random vectors

Theorem 3.3 Assume that the random vector X = (X1, . . . , Xn)′ has the density f(x),
where x = (x1, . . . , xn)′. Let t be a regular one-to-one mapping from Rn onto Rn. Denote
τ the inverse mapping to t. Then the random vector Y = t(X) has the density

g(y) = f [τ(y)]|Dτ (y)|,

where

Dτ (y) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂τ1

∂y1

· · · ∂τ1

∂yn

. . . . . . . . . . . . . .

∂τn

∂y1

· · · ∂τn

∂yn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is the jacobi determinant of the mapping τ .

Proof. Let B ∈ Bn be an arbitrary borel set. Substitution theorem in multiple integrals
gives

P(Y ∈ B) = P[t(X) ∈ B] = P[X ∈ τ(B)]

=

∫

τ(B)

f(x) dx =

∫

B

f [τ(y)]|Dτ (y)| dy =

∫

B

g(y) dy. (3.1)

It suffices to choose
B = (−∞, x1] × · · · × (−∞, xn],

so that P(Y ∈ B) is the value of the distribution function of the random vector Y in
point x. Formula (3.1) makes sure that g is the density corresponding to this distribution
function. 2

Let X1, . . . , Xn be independent random variables with distribution N(0, 1). Define
X = (X1, . . . , Xn)′. Then EX = 0, varX = I. We say that X ∼ N(0, I). The density
of the vector X is

f(x) =
n∏

i=1

1√
2π

exp

{

−1

2
x2

i

}

=
1

(2π)n/2
exp

{

−1

2
x′x

}

.
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Let µ ∈ Rn and let V be a positive definite matrix. Denote B = V 1/2 and introduce
the vector Y = µ + BX. Obviously EY = µ, varY = BIB′ = V . The inverse
transformation is X = B−1Y − B−1µ and its jacobian is det B−1. The simultaneous
density of the vector Y is

g(y) =
1

(2π)n/2
exp

{

−1

2
[B−1(y − µ)]′[B−1(y − µ)]

}

| det B−1|.

Since | det B−1| = |V |−1/2, we get

g(y) =
1

(2π)n/2|V |1/2
exp

{

−1

2
(y − µ)′(B−1)′B−1(y − µ)

}

.

In view of (B−1)′B−1 = V −1, we have

g(y) =
1

(2π)n/2|V |1/2
exp

{

−1

2
(y − µ)′V −1(y − µ)

}

. (3.2)

We say that Y ∼ N(µ, V ). The density of the vector Y is given by formula (3.2).
Because the matrix V is regular, the distribution N(µ, V ) is called regular normal dis-
tribution.

Let a ∈ Rn and let C be a n × n regular matix. Define Z = a + CY . It is clear
that EZ = a + Cµ and var Z = CV C ′. Theorem about transformation gives that the
density of the vector Z is

h(z) =
1

(2π)n/2|CV C ′|1/2
exp

{

−1

2
(z − a − Cµ)′(CV C ′)−1(z − a − Cµ)

}

.

We see that Z ∼ N(a + Cµ, CV C ′).
We inform without proof that this result is true also in the case when a is a vector

with m components and C is a m×n matrix. If the rank of the matrix CV C ′ is smaller
than m, the vector Y = a + CX has the singular normal distribution.

We divide X into two blocks so that X = (Y ′, Z ′)′, where Y contains first k compo-
nents of the vector X and Z remaining n − k components. The matrix V and vector µ

are divided analogously. We have

µ =

(
ν

τ

)

, V =

(
V 11 V 12

V 21 V 22

)

,

where ν has k components, τ has n − k components, V 11 is k × k matrix and V 22 is a
(n − k) × (n − k) matrix.

It can be proved that Y ∼ N(ν, V 11) and that Z ∼ N(τ , V 22). All the marginal dis-
tributions in multidimensional normal distribution are also normal. Marginal distribution
of the variable Xi is N(µi, σ

2
i ), where σ2

i = σii.

If V 12 = 0, then the vectors Y and Z are uncorrelated. Since V 21 = V ′
12 = 0, the

density of the vector X can be written in the form of the product of vectors Y and Z.
This proves that under assumption of normal distribution of the vector X uncorrelated
vectors Y and Z are independent.
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Frequently we deal with the case n = 2, k = 1. Then X = (X1, X2)
′. Variance matrix

V has the form

V =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

,

where ρ is the correlation coefficient of the variables X1 and X2. If σ2
1 > 0, σ2

2 > 0, and
ρ ∈ (−1, 1), then inserting into (3.2) we get the density of the two-dimensional normal
distribution

f(x1, x2) =
1

2πσ1σ2

√

1 − ρ2

× exp

{

− 1

2(1 − ρ2)

[
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

]}

.

Since the marginal density of the variable X2 is

q(x2) =
1√

2π σ2

exp

[

−(x2 − µ2)
2

2σ2
2

]

,

according to the section 2.4 we get the conditioned density of the variable X1 given
X2 = x2 as

r(x1|x2) = f(x1, x2)/q(x2).

We can see that r(x1|x2) is the density of the distribution

N

[

µ1 + ρ
σ1

σ2
(x2 − µ2), σ

2
1(1 − ρ2)

]

. ♦

Theorems 3.1 and 3.3 have rather restrictive assumptions. We have made them to
simplify the proofs and they can be removed.

Theorem 3.4 Assume that the random vector X = (X1, . . . , Xn)′ has the density f(x),
where x = (x1, . . . , xn)′. Let t be a mapping from Rn into Rn, which is regular and
one-to-one on such disjoint open sets G1, G2, . . . , that for G = ∪Gi we have

∫

G

f(x) dx = 1. (3.3)

Let τj be the inverse mapping to t : Gj → t(Gj). Then the random vector Y = t(X) has
the density

g(y) =

∞∑

j=1

gj(y),

where

gj(y) =

{
f [τj(y)]|Dτj

(y)| for y ∈ t(Gj),

0 for y /∈ t(Gj).
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3.3 Functions of random variables

3.3.1 Method of calculation

Consider a random vector X = (X1, . . . , Xn)′ which has density f(x). We must determine
the density of a function T1 = t1(X1, . . . , Xn). Usually, the calculation is made in two
steps.

(i) We look for a mapping T = t(X) such that T = (T1, . . . , Tn)′ and such that the
assumptions of theorem 3.3 or theorem 3.4 are fulfilled. The first component of the
vector T is the same as the function t1(X1, . . . , Xn), the distribution of which we
are looking for. From this we determine the simultaneous density g(t1, . . . , tn) of
the vector T .

(ii) Marginal density g1 of the variable T1 can be calculated using formula

g1(t1) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

g(t1, . . . , tn) dt2 . . .dtn

(see section 2.1).

In practical calculations the choice of the mapping t in the first step is very important.
If the procedure is not suitable, it may be difficult to calculate g or integral which defines
g1.

3.3.2 Sum of variables

Theorem 3.5 (convolution theorem) Let X1 and X2 be independent random vari-
ables. Assume that X1 has the density f1 and X2 has the density f2. Then the random
variable Y = X1 + X2 has the density

h(y) =

∫

f1(z)f2(y − z) dz. (3.4)

Proof. Introduce the vector X = (X1, X2)
′. It follows from theorem 2.6 that the variables

X1, X2 have the simultaneous density f(x1, x2) = f1(x1)f2(x2). Define

T =

(
X1 + X2

X1

)

=

(
Y
Z

)

.

The inverse mapping is X1 = Z, X2 = Y − Z. Absolute value of jacobian is 1 and thus
the simultaneous density g(y, z) of the vector T is g(y, z) = f1(z)f2(y − z). Marginal
density of Y is h(y) =

∫
g(y, z) dz. The formula 3.4) is proved. 2

The formula

h(y) =

∫

f1(y − z)f2(z) dz

can be proved analogously. This result also follows from the fact that X1+X2 = X2+X1.
We say that the density h is the convolution of densities f1 and f2.
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Let X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) be independent random variables with normal

distribution. We prove that X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2). If σ2
1 = 0 or σ2

2 = 0, the
assertion is clear. If σ2

1 > 0, σ2
2 > 0, then the assertion follows from theorem 3.5.

Let X1, . . . , Xn be independent random variables with normal distribution N(0, 1).
We define Y = X2

1 + · · · + X2
n. The density of the variable Y will be denoted fn(y). It

was already proved that

f1(y) =
1√
2πy

e−y/2 for y > 0.

We prove that

fn(y) =
1

2n/2Γ(n/2)
y

n
2
−1e−y/2 for y > 0. (3.5)

The formula is valid if n = 1. For n > 1 it will be proved by complete induction. Assume
that it is valid for all n ≤ k. Convolution theorem gives

fk+1(y) =

∫

fk(z)f1(y − z) dz.

After some calculations we obtain formula 3.5), where n = k + 1.
Function fn(y) is the density of chi-squared distribution with n degrees of freedom,

which is denoted as χ2
n. We already know that EX2

i = 1, varX2
i = 2 for all i. Thus

µ = EY = n, σ2 = var Y = 2n. The expectation of χ2
n distribution is equal to the number

of degrees of freedom, variance is twice so much.
Notice that fn(y) is density for all real n > 0, not only for integers.

Theorem 3.6 Let X1 and X2 be independent random variables such that X1 ∼ χ2
m,

X2 ∼ χ2
n. Then X1 + X2 ∼ χ2

m+n.

Proof. Using convolution theorem the density of Y = X1 + X2 is

h(y) =

∫

fm(z)fn(y − z) dz.

After some calculations we get h(y) = fm+n(y). 2

Analyzing χ2 distribution we introduce a few theorems which are not connected di-
rectly with convolution.

Theorem 3.7 Let the random vector X = (X1, . . . , Xn)′ have the n-dimensional normal
distribution N(µ, V ) with the density (3.2). Then the random variable

Y = (X − µ)′V −1(X − µ)

has the χ2
n distribution.

Proof. Introduce the vector Z = V −1/2(X−µ). Then it can be proved that Z ∼ N(0, I)
and the density of Z is

g(z) =
1

(2π)n/2
e−z′z/2 =

n∏

i=1

[
1√
2π

exp

{

−1

2
z2

i

}]

.
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Theorem 2.6 gives that the components Z1, . . . , Zn are independent random variables and
each of them has N(0, 1) distribution. Since

Z ′Z = Z2
1 + · · ·+ Z2

n ∼ χ2
n,

we also have

Y = (X − µ)′V −1(X − µ) = Z ′Z ∼ χ2
n. 2

Theorem 3.8 Let X ∼ N(0, V ), where V is an idempotent matrix of rank r ≥ 1. Then
X ′X ∼ χ2

r.

Proof. Every symmetric matrix V can be written in the form V = UDU ′, where
UU ′ = I is the unit matrix and D is a diagonal matrix having eigenvalues of the matrix
V on the diagonal.

First we show that the eigenvalues of an idempotent matrix are only zeroes and ones.
Indeed, λ is an eigenvalue of the matrix V if and only if there exists a vector x 6= 0 such
that V x = λx. We multiply this equality by V from the left and we apply the fact that
V is idempotent. This gives V 2x = λV x, so that V x = λ2x. Thus λx = λ2x. Since
x 6= 0,we must have λ = 0 or λ = 1.

We can see that h(V ) = r and that U is regular. Thus D has rank r. Since D is
diagonal and there are only 0 and 1 on the diagonal, without loss of generality we can
assume that D = Diag{1, . . . , 1, 0, . . . , 0}; number of 1 is r.

Define Y = U ′X . We know that Y ∼ N(0, U ′V U). But U ′V U = U ′UDU ′U = D.
Matrix D is diagonal, and so all the components of the vector Y are uncorrelated. The
vector Y has normal distribution and so its components are independent. Vector Y has
vanishing expectation; r of its components have unit variance, other components have
vanishing variances. Thus n−r components of the vector Y are zeros almost surely. The
form of D ensures that these zeros are the last variables Yr+1, . . . , Yn. Finally, we have

X ′X = X ′UU ′X = Y ′Y = Y 2
1 + · · · + Y 2

r ∼ χ2
r . 2

Theorem 3.9 Let X ∼ N(0, I) and let A be a symmetric idempotent matrix of rank
r ≥ 1. Then X ′AX ∼ χ2

r.

Proof. We write A in the form A = UDU ′, where U fulfills the condition UU ′ =
U ′U = I and D = Diag{1, . . . , 1, 0, . . . , 0} with r ones on the diagonal. We define
Y = (Y1, . . . , Yn)′ = U ′X, so that Y ∼ N(0, I). Then we have

X ′AX = X ′UDU ′X = Y ′DY = Y 2
1 + · · ·+ Y 2

r .

Since Y1, . . . , Yr are independent N(0, 1) variables, the theorem is proved. 2
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3.3.3 Quotient of random variables

Theorem 3.10 Let X and Z be independent random variables such that X ∼ N(0, 1)
and Z ∼ χ2

k. Then the random variable

T =
X

√

Z/k

has Student t distribution with k degrees of freedom, which is denoted tk and has the
density

hk(t) =
Γ
(

k+1
2

)

Γ
(

k
2

)√
πk

(

1 +
t2

k

)−(k+1)/2

.

Proof. Since X a Z are independent variables, their simultaneous density g(x, z) is equal
to product of their marginal densities

g(x, z) =
1√
2π

e−x2/2 1

2k/2Γ(k/2)
z

k
2
−1e−z/2 for z > 0.

We use the transform

T =
X

√

Z/k
, U = Z.

The inverse transformation is X = T
√

U/k, Z = U , and absolute value of jacobian is
√

u/k. Then the simultaneous density of the variables T and U is

p(t, u) =
1√

2πk 2k/2Γ(k/2)
u(k−1)/2 exp

{

−u

2

(

1 +
t2

k

)}

.

From here we obtain the marginal density T using the formula hk(t) =
∫

p(t, u) du. 2

In the case k = 1 we obtain h1(t) = 1/[π(1 + t2)]. It is the density of Cauchy
distribution C(0, 1). If we use Stirling formula for Γ function, then we get limk→∞ hk(t) =
ϕ(t). Densities of the Student distribution converge to the density of N(0, 1). If k = 1,
then ET does not exist, for k > 1 we have ET = 0. Similarly, variance exists for k > 2;
then varT = k/(k − 2).

Let X and Z be independent random variables such that X ∼ N(δ, 1) and Z ∼ χ2
k.

Then the random variable T = X√
Z/k

has Student non-central t distribution with k degrees

of freedom with non-centrality parameter δ. This distribution is denoted as tk,δ.

Theorem 3.11 Let X and Y be independent random variables such that X ∼ χ2
m, Y ∼

χ2
n. Then the random variable

Z =
X/m

Y/n

has Fisher-Snedecor F distribution with m and n degrees of freedom, which is denoted as
Fm,n and the density of which is

fm,n(z) =
Γ
(

m+n
2

)

Γ
(

m
2

)
Γ
(

n
2

)

(m

n

)m/2

z
m
2
−1
(

1 +
m

n
z
)−(m+n)/2

for z > 0.
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Proof. The simultaneous density of the variables X and Y is

p(x, y) =
1

2(m+n)/2Γ(m/2)Γ(n/2)
x

m
2
−1y

n
2
−1e−(x+y)/2

for x > 0, y > 0. We make the transform

Z =
X/m

Y/n
, U = Y.

The inverse transform is X = mZU/n, Y = U and absolute value of its jacobian is
mu/n. Inserting for x a y into p(x, y) and multiplying mu/n we get simultaneous density
g(z, y) of the variables Z and Y . Integrating with respect to y we get marginal density
of variable Z, which is introduced in theorem. 2

Moments of Fm,n distribution are

EZ =
n

n − 2
for n > 2,

varZ =
2n2(m + n − 2)

m(n − 2)2(n − 4)
for n > 4.

For n ≤ 2 the expectation is not finite and for n ≤ 4 the second moment is not finite.

3.4 Transformation stabilizing variance

Assume that a random variable X has a distribution which depends on a parameter θ.
The parameter is chosen in such a way that EX = θ. In many cases the variance of
variable X also depends on θ and we can write var X = σ2(θ). Usually, σ(θ) is a smooth
function of θ. We can ask the question if it is possible to find such a non-trivial function
g that the random variable Y = g(X) has the variance independent of θ. We excluded
constant functions g which would lead to variables with vanishing variance. Generally,
this problem has no solution. However, some approximations are useful. Taylor formula
gives

g(X)
.
= g(θ) + (X − θ)g′(θ),

so that
Eg(X)

.
= g(θ), var g(X)

.
= [g′(θ)]2σ2(θ). (3.6)

The expression [g′(θ)]2σ2(θ) will not depend on θ, if we ensure

g′(θ)σ(θ) = c,

where c is a constant. From this condition we have the solution

g(θ) = c

∫
dθ

σ(θ)
. (3.7)

The constant c is chosen so that the function g calculated from (3.7) has a nice form. We
get var g(X)

.
= c2.

It was shown that the function g calculated from (3.7) stabilizes variance and var g(X)
depends on θ only a little, but at the same time the distribution of the random variable
Y = g(X) is nearly normal.

We apply this method to some special cases.
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Example 3.12 Let the random variable X have Poisson distribution with parameter
λ > 0. It means that

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

We write shortly X ∼ Po(λ). Since it holds

EX = λ, varX = λ,

instead of parameter θ we have the parameter λ and σ2(λ) = λ. From (3.7) we get

g(λ) = c

∫
dλ√

λ
= 2c

√
λ.

Usually, we choose c = 1
2
, and we deal with the function g(λ) =

√
λ. It is the well-known

square-root transformation. In view of (3.6) we have

E
√

X
.
=

√
λ, var

√
X

.
=

1

4
. ♦

Example 3.13 Let ξ have the binomial distribution Bi(n, p), so that ξ can be only
0, 1, . . . , n and the corresponding probabilities are

P(ξ = k) =

(
n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n.

It is assumed that p ∈ (0, 1) and that n is a natural number. The variable ξ can represent
number of successes in n independent experiments when in every experiment probability
of success is p. A simple calculation gives

Eξ = np, var ξ = np(1 − p).

The parameter p is estimated using the variable X = ξ/n. Thus we have

EX = p, var X =
p(1 − p)

n
.

Instead of θ we have in our case p a σ2(p) = p(1 − p)/n. According (3.7) we get

g(p) = c
√

n

∫
dp

√

p(1 − p)
= 2c

√
n arcsin

√
p.

Usually, one chooses c = 1/(2
√

n), so that finally

g(p) = arcsin
√

p.

From (3.6) we calculate

E arcsin
√

X
.
= arcsin

√
p, var arcsin

√
X

.
=

1

4n
. ♦
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Example 3.14 Sample correlation coefficient r calculated from a sample of size n from
two-dimensional normal distribution having theoretical correlation coefficient ρ ∈ (−1, 1),
fulfills

Er
.
= ρ, var r

.
=

(1 − ρ2)2

n
.

Since σ(ρ)
.
= n−1/2(1 − ρ2), we have

g(ρ)
.
= c

√
n

∫
dρ

1 − ρ2
=

1

2
c
√

n ln
1 + ρ

1 − ρ
.

If c = 1/
√

n then

g(ρ) =
1

2
ln

1 + ρ

1 − ρ
,

or g(ρ) = arctgh ρ. If we define

Z =
1

2
ln

1 + r

1 − r
,

then we get Fisher z-transformation. Using (3.6) we have

EZ
.
=

1

2
ln

1 + ρ

1 − ρ
, varZ

.
=

1

n
.

More detailed calculation gives

EZ
.
=

1

2
ln

1 + ρ

1 − ρ
+

ρ

2(n − 1)
, var Z

.
=

1

n − 3
.

In practical computations the approximations

EZ
.
=

1

2
ln

1 + ρ

1 − ρ
, var Z

.
=

1

n − 3
.

are used. See Winterbottom (1979). ♦

Example 3.15 Let X ∼ χ2
n. If we write θ instead of n then EX = θ, varX = 2θ and

g(θ) = c

∫
dθ√
2θ

= c
√

2θ.

Usually, c = 1 is chosen. Then g(θ) =
√

2θ, Y =
√

2X and EY
.
=

√
2n, varY

.
= 1.

R. A. Fisher recommended to use transformation Y =
√

2X −
√

2n − 1, because
its distribution tends to the normal distribution N(0, 1) rather quickly. Today, Wilson-
Hilferty transformation is used, i.e.

U = 3

√
n

2

(

3

√

X

n
+

2

9n
− 1

)

,

and its distribution converges to N(0, 1) even quicker. (See Kendall, Stuart 1969 I, Rao
1978, Wilson, Hilferty 1931.) ♦

Normalization transformations for other types of distributions are given in Konishi
(1981).
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Chapter 4

Random sample

4.1 Simple random sample

A series of independent identically distributed random variables X1, . . . , Xn is called a
simple random sample. Number n is size of the sample. Introduce variables

X̄ =
1

n

n∑

i=1

Xi, S2 =
1

n − 1

n∑

i=1

(Xi − X̄)2.

The variable X̄ is sample mean. Variable S2 is defined only for n ≥ 2.

Theorem 4.1 Let X1, . . . , Xn be the random sample from the distribution with expecta-
tion µ and a finite variance σ2. Then it holds

EX̄ = µ, var X̄ =
σ2

n
, ES2 = σ2.

Proof. First, we calculate

EX̄ =
1

n

n∑

i=1

EXi =
1

n
nµ = µ.

Using theorems 2.4 and 2.8 we get

var(X1 + · · · + Xn) = varX1 + · · ·+ varXn = nσ2.

Thus var X̄ = n−2nσ2 = σ2/n. Further

n∑

i=1

(Xi − X̄)2 =

n∑

i=1

[(Xi − µ) − (X̄ − µ)]2 =

n∑

i=1

(Xi − µ)2 − n(X̄ − µ)2,

so that

E

n∑

i=1

(Xi − X̄)2 =

n∑

i=1

E(Xi − µ)2 − nE(X̄ − µ)2 = nσ2 − σ2 = (n − 1)σ2.

This gives the last assertion. 2

45
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Because EX̄ = µ we say that X̄ is unbiased estimator of the parameter µ. Similarly,
S2 is an unbiased estimator of the parameter σ2, since ES2 = σ2. In the general case we
have the following definition. Let (X1, . . . , Xn)′ be a random vector, the distribution of
which depends on a parameter θ. Let g(x1, . . . , xn) be a borel measurable function which
does not depend on θ. We say that T = g(X1, . . . , Xn) is an estimator of the parameter
θ. If ET = θ holds for every θ then the estimator T is unbiased.

In the multidimensional case the simple random sample is a series X1, . . . , Xn of
independent identically distributed random vectors. This sample is characterized by
means of

X̄ =
1

n

n∑

i=1

X i, S =
1

n − 1

n∑

i=1

(X i − X̄)(X i − X̄)′.

Theorem 4.2 Let X1, . . . , Xn be a sample from distribution with expectation µ and a
variance matrix V . Then we have

EX̄ = µ, var X̄ =
1

n
V , ES = V .

Proof is similar as in Theorem 4.1. 2

4.2 Ordered random sample

Let X1, . . . , Xn be a random sample from a distribution having the distribution function
F . Random variables X1, . . . , Xn will be ordered and the smallest will be denoted X(1),
the second smallest X(2), and finally the largest X(n). We have

X(1) ≤ X(2) ≤ · · · ≤ X(n).

The variables X(1), . . . , X(n) are called ordered random sample.

Theorem 4.3 Let r ∈ {1, 2, . . . , n}. Then the distribution function Gr of the random
variable X(r) is

Gr(x) =
n∑

i=r

(
n

i

)

F i(x)[1 − F (x)]n−i. (4.1)

Proof. Probability that there will be i variables among X1, . . . , Xn such that their values
are smaller or equal x, is (

n

i

)

F i(x)[1 − F (x)]n−i,

because the number of such variables has the binomial distribution. The variable X(r)

will be smaller than x if among X1, . . . , Xn either r, or r + 1, etc. or n variables smaller
than x will be found. These cases are disjoint and so the resulting probability is equal to
sum of their probabilities. 2

Formulas for distribution functions of the smallest and the largest member of ordered
random sample follow from formula (4.1) as special cases. The results are

G1(x) = 1 − [1 − F (x)]n, Gn(x) = F n(x).
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Both the formulas can be also derived directly without using theorem 4.3.
If n is large, formula (4.1) contains many members. Calculations containing Gr(x)

may be rather complex. If the distribution function F has a density f , then also the
density gr exists and its formula is quite simple.

Theorem 4.4 Let F be distribution function of a continuous distribution with the density
f . Then the density gr of the variable X(r) also exists and for n ≥ 2 we have

gr(x) = n

(
n − 1

r − 1

)

f(x)F r−1(x)[1 − F (x)]n−r. (4.2)

Proof. We start with formula gr(x) = G′
r(x) and insert (4.1). Then all members disappear

except for one which is equal to (4.2). 2

Especially,

g1(x) = nf(x)[1 − F (x)]n−1, gn(x) = nf(x)F n−1(x).

It is possible to derive simultaneous distribution function and simultaneous density
of several members of ordered random sample. Here we restrict to two members.

Theorem 4.5 Let F be the distribution function of the continuous distribution with the
density f . If n ≥ 2 and if 1 ≤ r < s ≤ n, then the simultaneous density gr,s of the
variables X(r), X(s) exists and equals to

gr,s(x, y)=
n!

(r − 1)! (s − r − 1)! (n − s)!

× f(x)f(y)F r−1(x)[F (y) − F (x)]s−r−1[1 − F (y)]n−s,

if x < y. In the case x ≥ y we have gr,s(x, y) = 0.

Proof. The proof is similar to that of theorem 4.4. 2

Theorem is often used for r = 1, s = n. Then the simultaneous density of variables
X = X(1) and Y = X(n) is

g1n(x, y) = n(n − 1)f(x)f(y)[F (y)− F (x)]n−2.

An important characteristic is the range R = Y −X. We derive a formula for the density h
and for the distribution function H of the variable R. We start with the density g1n(x, y).
Consider the transform R = Y −X, T = X. The inverse transform is X = T , Y = R+T
and the corresponding jacobian is

∣
∣
∣
∣
∣
∣
∣
∣

∂x

∂r

∂x

∂t

∂y

∂r

∂y

∂t

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

0 1
1 1

∣
∣
∣
∣
= −1.

Thus the simultaneous density of the variables R and T is

s(r, t) = n(n − 1)f(t)f(r + t)[F (r + t) − F (t)]n−2,
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marginal density of R is

h(r) =

∫ ∞

−∞

n(n − 1)f(t)f(r + t)[F (r + t) − F (t)]n−2 dt, r > 0,

and the distribution function of the variable R is

H(y) =

∫ y

0

h(r) dr = n

∫ ∞

−∞

f(t)

{∫ y

0

(n − 1)f(r + t)[F (r + t) − F (t)]n−2 dr

}

dt

for y > 0. Because

∂

∂r
[F (r + t) − F (t)]n−1 = (n − 1)f(r + t)[F (r + t) − F (t)]n−2,

we obtain

H(y) = n

∫ ∞

−∞

f(t)
{
[F (r + t) − F (t)]n−1

}y

0
dt = n

∫ ∞

−∞

f(t)[F (y + t) − F (t)]n−1 dt.

It can be derived that the simultaneous distribution function G1,n of the variables
X(1) and X(n) is

G1,n(x, y) = F n(y) − [F (y) − F (x)]n for x < y.

In connection with random sample we introduce rank of the random variable. If the
random variable Xi is in the random sample jth (i.e., if Xi = X(j)), then the rank Ri

of this variable equals to j. Value Ri equals the number of variables in the random
sample which are smaller or equal Xi. This procedure is applied when the distribution
is continuous where all values X1(ω), . . . , Xn(ω) are different with probability one (no
ties). If several values are identical then every variable from this group usually obtains
arithmetical mean from the corresponding ranks.

4.3 Random sample from the normal distribution

Consider problems investigated in section 4.1. If we specify distribution which generates
the sample, we can specify some assertions and some other derive.

Theorem 4.6 Let X1, . . . , Xn be the sample from the distribution N(µ, σ2), where σ2 > 0.
Then the following asertions hold:

(a) X̄ ∼ N

(

µ,
σ2

n

)

.

(b) If n ≥ 2, then (n − 1)S2/σ2 ∼ χ2
n−1.

(c) If n ≥ 2, then X̄ and S2 are independent.
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Proof. (a) We know that X1 + · · ·+ Xn ∼ N(nµ, nσ2). Then X̄ = n−1(X1 + · · ·+ Xn) ∼
N(µ, σ2/n).

(b) Since

S2 =
1

n − 1

∑

(Xi − X̄)2 =
1

n − 1

∑

[(Xi − µ) − (X̄ − µ)]2,

we can consider variables Xi − µ instead of original Xi. The equality ensures that S2 is
not changed when Xi is substituted by Xi − µ. Vector b1 = (n−1/2, . . . , n−1/2)′ has the
unit length. Thus there exist vectors b2, . . . , bn such that the matrix B′ = (b1, . . . , bn)
is orthonormal. Make the transform Y = BX. Obviously, the first component of the
vector Y is Y1 =

√
nX̄. Since B is orthonormal, we see that B′B = I. We have

X = B′Y and

(n − 1)S2 =
∑

X2
i − nX̄2 = X ′X − nX̄2 = Y ′BB′Y − nX̄2

= Y ′Y − nX̄2 = Y 2
1 + Y 2

2 + · · ·+ Y 2
n − Y 2

1 = Y 2
2 + · · · + Y 2

n .

The simultaneous density of variables X1, . . . , Xn is equal to the product of their den-
sities. We compare this product with the formula (3.2). Under our simplifying as-
sumption EXi = 0 we can see that the random vector X = (X1, . . . , Xn)′ has distribu-
tion N(0, σ2I). Then Y has distribution N(0, Bσ2IB′), which is distribution N(0, σ2I).
Variables Y1, . . . , Yn are independent and each of them has distribution N(0, σ2). Thus
Yi/σ ∼ N(0, 1) and we have

(n − 1)S2/σ2 = (Y2/σ)2 + · · · + (Yn/σ)2 ∼ χ2
n−1.

(c) It follows from (b) that the variables Y1, . . . , Yn are independent. Thus the variables
Y1 =

√
nX̄ and Y 2

2 +· · ·+Y 2
n = (n−1)S2 are independent. If we add to all variables Xi the

original expectation µ, then X̄ changes µ and S2 remains the same. Their independence
remains. 2
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Chapter 5

Estimating theory

5.1 Statistics and unbiased estimators

Let the random vector X = (X1, . . . , Xn)
′ have the density f(x, θ) with respect to a

σ-finite measure µ, and θ = (θ1, . . . , θm)′ is an unknown parameter. Using vector X the
best estimator of the parameter θ should be found. It is only known that θ is an element
of a parametric space Ω ⊂ Rm. If the problem is to find point estimator , it means to find
a measurable mapping g : (Rn,Bn) → (Rm,Bm) such that the random vector T = g(X)
is the best approximation of the value θ. In the case of interval estimator we wish to
find interval or another appropriate set which covers θ with sufficiently large probability.
In this chapter we deal with point estimators.

Usually, we create a new random vector S = [S1(X), . . . , Sk(X)]′. This new vector
S is called statistics . We emphasize that statistics is not a function of the parameter θ.
We choose functions Si(x) such that the vector S has lower dimension than X and no
information about θ is lost. If we intend to take statistics S as estimator of θ, we must
have k = m.

We say that the estimator T of the parameter θ is unbiased if ET = θ holds for every
θ ∈ Ω. If we have ET = θ + b(θ), where the function b is not identically vanishing on
the set Ω the estimator T is called biased . Vector b(θ) is called bias of T at θ.

Instead of ET we should write EθT to indicate that the expectation is calculated when
the parameter has value θ. However, we shall mostly use ET .

A requirement on estimator is its unbiasedness. However, it can happen that there
exists another estimator which is biased but better from another point of view.

5.2 Examples

Example 5.1 Let X1, . . . , Xn be a sample from N(µ, σ2), where n ≥ 2 and σ > 0.
Assume that none of parameters µ a σ2 is known and we should estimate σ2. Denote

Y =

n∑

i=1

(Xi − X̄)2.

The variable S2 = 1
n−1

Y has been used as estimator of σ2 and we justified it by the
property that S2 is unbiased estimator for σ2 (theorem 4.1). Another estimator for σ2
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could be the sample variance M2 defined as

M2 =
1

n
Y.

We show that

E(M2 − σ2)2 < E(S2 − σ2)2,

i.e., that M2 has smaller mean square error than S2. Theorem 4.6 b) on p. 48 gives that
Y/σ2 ∼ χ2

n−1. It implies

EY = σ2(n − 1), var Y = 2σ4(n − 1), EY 2 = var Y + (EY )2 = σ4(n2 − 1).

Inserting for M2 and S2 we get

E(M2 − σ2)2 =EM2
2 − 2σ2EM2 + σ4 =

1

n2
EY 2 − 2σ2

n
EY + σ4

=
2n − 1

n2
σ4,

E(S2 − σ2)2 = var S2 =
1

(n − 1)2
varY =

2

n − 1
σ4.

Since for every positive integer n we have

2n − 1

n2
<

2

n − 1
,

the mean square error of the variable M2 is smaller than that of S2.
It is interesting that the coefficient 1

n
by Y is not optimal in sense of mean square

error. Look for a number k such that the expression E(kY − σ2)2 is minimal. Since

E(kY − σ2)2 = k2EY 2 − 2kσ2EY + σ4 = σ4[k2(n2 − 1) − 2k(n − 1) + 1]

=σ4

[

(n2 − 1)

(

k − 1

n + 1

)2

+
2

n + 1

]

,

it is clear that k = 1
n+1

gives the minimum and the minimum is 2
n+1

σ4.
This example is special case of more general situation (see Williams 2001, p. 191).

Let T be such an unbiased estimator of the parameter θ that 0 6= ET 2 < ∞ for every
θ ∈ Ω. Then E(aT − θ)2 is minimal in the case

a =
θ2

ET 2
.

In our case we had θ = σ2, T = S2. It happens that a does not depend on θ. This was
also in our special case. ♦

Example 5.2 Let random variable X have geometric distribution Ge(p), where p ∈ (0, 1)
is an unknown parameter. Define q = 1 − p. Random variable X is number of failures
in sample from Bernoulli distribution before the first success. We have P(X = k) = qkp,
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k = 0, 1, . . . . Let us look for an unbiased estimator for p. If T (X) is such estimator, it
must satisfy

ET (X) =
∞∑

k=0

T (k)qkp = p, p ∈ (0, 1).

From here we get
∞∑

k=0

T (k)qk = 1, q ∈ (0, 1),

and the estimator satisfies T (0) = 1 and T (k) = 0 for k ≥ 1. This is a poor estimator
because the number of failures before the first success is taken only as information if the
success was already in the first experiment or not. ♦
Example 5.3 Let a random variable X have Poisson distribution Po(λ). Let λ > 0 be
an unknown parameter. We look for an unbiased estimator for e−2λ. If T (X) is such an
estimator, we must have ET (X) = e−2λ. It means that

∞∑

x=0

T (x)
e−λλx

x!
= e−2λ,

and so
∞∑

x=0

T (x)
λx

x!
= e−λ.

Finally, we obtain
∞∑

x=0

T (x)
λx

x!
=

∞∑

x=0

(−1)x λx

x!
.

This equality must hold for all λ > 0 and so coefficients by λx must be the same. It gives
T (x) = (−1)x. This estimator is not good. It can be negative although it is estimator
of a non-negative function. Further, small change of variable X causes large change of
estimator.

There are also other modifications of this example. Williams (2001) on p. 188 intro-
duces that Lehmann is the author of the following result. Let

P(X = k) =
λk

k!

1

eλ − 1
, k = 1, 2, 3, . . .

(it is truncated Poisson distribution). We look for an unbiased estimator T of the para-
metric function 1 − e−λ based on X. Since T must be an unbiased estimator, we must
have

1

eλ − 1

∞∑

k=1

T (k)
λk

k!
= 1 − e−λ,

i.e.
∞∑

k=1

T (k)
λk

k!
= 2

∞∑

n=1

λ2n

(2n)!
.

It implies that

T =

{
0, when X is an odd number,
2, when X is an even number.

Since 1 − e−λ ∈ (0, 1), the estimator T is not acceptable. ♦
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Example 5.4 Let X ∼ Bi(n, p), i.e.,

P(X = x) =

(
n

x

)

px(1 − p)n−x, n ≥ 1, 0 < p < 1, x = 0, 1, . . . , n.

We show that there exists no unbiased estimator for the parametric function 1
p
. Assume

that there exists a function T , that ET (X) = 1
p

for every p ∈ (0, 1). Then

n∑

x=0

T (x)

(
n

x

)

px(1 − p)n−x =
1

p
, 0 < p < 1.

The left hand side is a polynomial in p having degree maximally n, and it cannot be the
same as the function 1

p
on the interval (0, 1). ♦

Remark 5.5 Let X1, X2, . . . be independent random variables with Bernoulli distri-
bution with probability of success p ∈ (0, 1). Then X = X1 + · · · + Xn ∼ Bi(n, p).
Example 5.4 does not imply, that for the parametric function 1

p
is not possible to find an

unbiased estimator.
Let ξ be the number of failures in the sample from the Bernoulli distribution before

the first success. Then ξ has geometric distribution Ge(p), i.e., P(ξ = k) = p(1 − p)k,
k = 0, 1, 2, . . . . It is well known that Eξ = 1−p

p
= 1

p
− 1. Thus ξ + 1 is an unbiased

estimator for 1
p
. ♦

Let us remark that in examples 5.2 — 5.4 the sample sizes were only 1. In the
remark 5.5 the sample had not a fixed size.

5.3 Consistent estimators

5.3.1 Definition

Let θ be an univariate parameter. Assume that X1, X2, . . . is a sample from a distribution
which depends on θ. Let us have an estimator Tn = gn(X1, . . . , Xn) defined for all
nonnegative integers. We say that the estimator Tn is consistent , if Tn → θ in probability
for n → ∞.

Theorem 5.6 Let ET 2
n < ∞ for every nonnegative integer n. If ETn → θ and var Tn → 0,

then Tn is a consistent estimator of the parameter θ.

Proof. For every ε > 0 we have

P(|Tn − θ| > ε) =

∫

|Tn−θ|>ε

dP ≤
∫

|Tn−θ|>ε

ε−2(Tn − θ)2 dP

≤ ε−2

∫

[(Tn − ETn) + (ETn − θ)]2 dP

= ε−2

[∫

(Tn − ETn)2 dP

+2(ETn − θ)

∫

(Tn − ETn) dP + (ETn − θ)2

]

= ε−2[varTn + (ETn − θ)2] → 0. 2
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5.3.2 Example

Example 5.7 Let X1, . . . , Xn be a sample from the rectangular distribution R(0, θ),
where θ > 0 is an unknown parameter. Let X(n) = max(X1, . . . , Xn). We show that
X(n) is a biased consistent estimator of the parameter θ. Since

P(X(n) < x) =
xn

θn
, 0 < x < θ,

the density of the variable X(n) is

p(x) =
nxn−1

θn
, 0 < x < θ.

This implies

EX(n) =
n

θn

∫ θ

0

xn dx =
nθ

n + 1
, EX2

(n) =
n

θn

∫ θ

0

xn+1 dx =
nθ2

n + 2
,

and thus

var X(n) = EX2
(n) − [EX(n)]

2 =
nθ2

(n + 1)2(n + 2)
.

Using theorem 5.6 we have that X(n) is a consistent estimator for θ. However, in this case
it is not difficult to modify X(n) to obtain from X(n) an unbiased consistent estimator. If
we define T = n+1

n
X(n), then

ET = θ, varT =
θ2

n(n + 2)
. ♦
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Chapter 6

Empirical estimators

6.1 Empirical distribution function

We have the numbers x1, . . . , xn. We order them in such a way that x(1) ≤ · · · ≤ x(n).
Empirical distribution function (ecdf — empirical cumulative distribution function) is
defined by the formula

Fn(x) =
1

n

n∑

i=1

χ(−∞,x](xi),

where

χA(x) =

{
1 for x ∈ A,
0 for x /∈ A

is characteristic function of the set A. It means that Fn(x) = 0 for x < x(1). If all the
values x1, . . . , xn are different, then at each of them the function Fn(x) has a jump 1/n. If
the value xi is in collection x1, . . . , xn together k-times, then Fn(x) has at point xi jump
k/n. For all values x ≥ x(n) we have Fn(x) = 1.

6.2 Sample quantiles

Consider numbers x1, . . . , xn. The sample quantiles (sometimes called empirical quan-
tiles) could be defined as values of quantile function belonging to the empirical distribu-
tion function Fn(x). This definition is introduced in the book Venables, Ripley (2002) on
p. 108. People who use program R have a little different definition. We explain it using
publication Verzani (2002).

Sample median is the point in the data that splits it into half. For example, data

10, 17, 18, 25, 28

have sample median 18, since two values are larger and two are less. In case of data

10, 17, 18, 25, 28, 28 (6.1)

median could be any number between 18 and 25, for concreteness it is taken as the average
21,5.

The p quantile (also known as the 100p% - percentile) is the point in the data where
100p% is less and 100(1 − p)% is larger. If there are n data points, then the p quantile
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occurs at the position 1 + (n − 1)p with weighted averaging if this is between integers.
For example the .25 quantile of the numbers 10, 17, 18, 25, 28, 28 occurs at the position
1 + (6 − 1)(.25) = 2.25. That is 1/4 of the way between the second and third number
which in this example is 17.25.

Program R has 9 types of sample quantiles . The type 7 is default. Details can be
found in Hyndman, Fan (1996) and in help to function quantile.

Quantile corresponding to p = 0.5 is median Q(0.5), for p = 0.25 we get lower quartile
(or the first quartile) Q(0.25) and for p = 0.75 we get upper quartile (or third quartile)
Q(0.75). The difference Q(0.75) − Q(0.25) is interquartile range.

6.3 Sample correlation coefficient

Let (X1, Y1)
′, . . . , (Xn, Yn)

′ be a sample from a two-dimensional distribution. Denote

X̄ =
1

n

n∑

i=1

Xi, Ȳ =
1

n

n∑

i=1

Yi, SXY =
1

n − 1

n∑

i=1

(Xi − X̄)(Yi − Ȳ ),

S2
X =

1

n − 1

n∑

i=1

(Xi − X̄)2, S2
Y =

1

n − 1

n∑

i=1

(Yi − Ȳ )2.

If
EXi = µX , EYi = µY , varXi = σ2

X , varYi = σ2
Y , cov(Xi, Yi) = σXY ,

then according theorem 4.1 we have

EX̄ = µX , EȲ = µY , ES2
X = σ2

X , ES2
Y = σ2

Y

and similarly can be proved that

ESXY = σXY .

Correlation coefficient ρ was defined in section 2.6 defined as

ρ =
σXY

√

σ2
Xσ2

Y

.

It is natural to define the sample correlation coefficient r using an analogous formula
in which unknown variances and unknown covariance are substituted by their unbiased
estimators. If S2

X > 0, S2
Y > 0, define

r =
SXY

√

S2
XS2

Y

.

If S2
X = 0 or S2

Y = 0, the sample correlation coefficient is not defined. An elementary
arrangement gives

r =

∑
XiYi − nX̄Ȳ

√
(∑

X2
i − nX̄2

) (∑
Y 2

i − nȲ 2
) . (6.2)

Schwarz inequality implies −1 ≤ r ≤ 1.
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Theorem 6.1 Let (X1, Y1)
′, . . . , (Xn, Yn)

′ be a sample from a two-dimensional normal
distribution with positive variances and the correlation coefficient ρ ∈ (−1, 1). Then r
has the density

fn(r) =
2n−3

(n − 3)! π
(1 − ρ2)(n−1)/2(1 − r2)(n−4)/2

∞∑

k=0

Γ2

(
n + k − 1

2

)
(2ρr)k

k!
(6.3)

for −1 < r < 1.

Proof. See Cramér (1946). 2

Theorem 6.2 Let assumptions of theorem 6.1 hold and let ρ = 0. Then the random
variable

T =
r√

1 − r2

√
n − 2 (6.4)

has the distribution tn−2.

Proof. The Γ function satisfies

Γ(2p) =
22p−1

√
π

Γ(p)Γ

(

p +
1

2

)

, p > 0.

We apply this formula to (n − 3)! = Γ(n − 2) = Γ
(
2n−2

2

)
. For ρ = 0 we can write the

density (6.3) in the form

fn(r) =

Γ

(
n − 1

2

)

Γ

(
n − 2

2

)√
π

(1 − r2)(n−4)/2, −1 < r < 1. (6.5)

We use the transform (6.4) and obtain the density of tn−2 distribution, which was derived
in theorem 3.10 2

Theorem 6.2 shows how to test the hypothesis H0 : ρ = 0 against alternative H1 : ρ 6=
0. First, the sample correlation coefficient r and the variable T are calculated using (6.4)
and in the case |T | ≥ tn−2(α) hypothesis H0 is rejected on the level α. The assumption
that the sample (X1, Y1)

′, . . . , (Xn, Yn)′ is from the normal distribution is very important.
Test that correlation coefficient ρ is zero is identical with the test β1 = 0 in the regression
model Yi = β0 + β1xi + ei.

Test that coefficient ρ is zero is very frequent. From this reason critical values for r
were tabulated using theorem 6.2. Since in this procedure critical values of t are used,
critical value rn(α) is defined as the number for which under H0

P[|r| ≥ rn(α)] = α

holds. This corresponds to the two-sided test. One-sided tests one obtains using elemen-
tary modification. However, a computer gives directly p-value of the test.

Let us remark that for a sample from the normal distribution in the case ρ = 0 for
n ≥ 3 one obtains

Er = 0, var r =
1

n − 1
.
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In the case ρ ∈ (−1, 1) can be proved that

Er = ρ + O(n−1) var r =
(1 − ρ2)2

n
+ o(n−1)

(see Cramér 1946). If the remaining members are ignored, the transformation stabilizing
variance can be derived. We dealt with this problem in section 3.4 (see example 3.14 on
p. 43). It was derived that the variable Z calculated by means of Fisher z-transformation

Z =
1

2
ln

1 + r

1 − r

has the distribution with the moments

EZ
.
=

1

2
ln

1 + ρ

1 − ρ
, var Z

.
=

1

n − 3
,

and this distribution with n → ∞ fast converges to the normal distribution. This can be
demonstrated on the following fact. We know that the normal distribution has skewness
α3 = 0 and kurtosis α4 = 3. Calculations show that Z has skewness and kurtosis given
by formulas

α3
.
=

ρ6

(n − 1)3
, α4

.
= 3 +

2

n − 1
+

4 + 2ρ2 − 3ρ4

(n − 1)2
.

If we want to test the hypothesis H0 : ρ = ρ0, where ρ0 ∈ (−1, 1) is a given number
against alternative H1 : ρ 6= ρ0, we calculate first

Z =
1

2
ln

1 + r

1 − r
, ζ0 =

1

2
ln

1 + ρ0

1 − ρ0

.

If H0 holds then the random variable

U =
√

n − 3(Z − ζ0)

has approximately normal distribution N(0, 1). Thus H0 will be rejected in the case when

|U | ≥ u
(α

2

)

.

Using z-transformation an approximate confidence interval for ρ can be constructed.
If ρ is the actual value of the correlation coefficient, then

P

[√
n − 3

∣
∣
∣
∣
Z − 1

2
ln

1 + ρ

1 − ρ

∣
∣
∣
∣
< u

(α

2

)]

.
= 1 − α.

One gets from this formula that the confidence interval is

(
D − 1

D + 1
,

H − 1

H + 1

)

,

where

D = exp

{

2Z − 2u
(

α
2

)

√
n − 3

}

, H = exp

{

2Z +
2u
(

α
2

)

√
n − 3

}

.
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Table 6.1: Concentration of milk acid

ξi 40 64 34 15 57 45
ηi 33 46 23 12 56 40

Example 6.3 Concentration of the milk acid in the blood of mothers (values ξi) and
their newborn children (values ηi) was measured. The results are introduced in tab. 6.1.

Calculation gives r = 0.935. Critical value is equal to r6(0,05) = 0.811 4. Since
|r| ≥ r6(0.05), we reject the hypothesis that the concentration of milk acid in blood of
mothers and their newborns are uncorrelated values.

Fisher z-transformation gives Z = 1.695. If we want to test H0 : ρ = 0, we have
ρ0 = 0, ζ0 = 0, U = 2.937. Since |U | ≥ u(0.025) = 1.96, we reject H0 also using this test.

For the construction of confidence interval for ρ with confidence coefficient 0.95 we
get D = 3.088, H = 285.439. From this we calculate that the confidence interval is
(0.511, 0.993). ♦

6.4 Sample coefficient of multiple correlation

Let the vectors (
Y1

X1

)

, . . . ,

(
Yn

Xn

)

(6.6)

be a sample from (p + 1)-dimensional distribution. Remember that the random vectors
X1, . . . , Xn are p-dimensional. The sample correlation coefficient between i-th a j-th
components X1, . . . , Xn will be denoted rij . Let r0i be a sample correlation coefficient
between Y -th variables and i-th components of vectors X1, . . . , Xn.

Introduce sample correlation matrices

RXX = (rij)
p
i,j=1 RY X = (r0i)

p
i=1, RXY = R′

Y X.

The diagonal of the matrix RXX contains units and the matrix is symmetric. We shall
assume that it is also regular. This holds under very general conditions, see Anděl (1978).

If we substitute in (2.18) unknown theoretical correlation matrices by their sample
versions, we can define sample coefficient of multiple correlation rY,X = r0.1,2,...,k as non-
negative number satisfying

r2
Y,X = RY XR−1

XXRXY .

If p = 2, we obtain

r2
0.1,2 =

r2
01 + r2

02 − 2r01r02r12

1 − r2
12

.

Theorem 6.4 If random vectors (6.6) are the sample from the regular normal distribu-
tion, if n > p + 1, and if ρY,X = 0, then the random variable

Z =
n − p − 1

p

r2
Y X

1 − r2
Y X

has Fp,n−p−1 distribution.
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Proof. See Anděl (1978). 2

Theorem 6.4 is an instruction how to test the hypothesis H0, that the variable Y
does not depend on vector X. If we are sure that the assumption concerning normality is
fulfilled, we calculate Z. In the case Z ≥ Fp,n−p−1(α) we reject H0. The value r2

Y,X is called
sample coefficient of determination. Further the adjusted coefficient of determination

R2
adj = 1 − n − 1

n − p − 1
(1 − r2

Y X)

is introduced. Although authors of statistical software prefer adjusted coefficient of de-
termination, the use of R2

adj may be dangerous. For example, in the case r2
Y X < p/(n−1)

we get R2
adj < 0. But R2

adj is an estimator of theoretical coefficient of determination ρ2
Y X,

which is nonnegative.

Example 6.5 In year 1957 statisticians investigated expenses Yi for food and drinks in
households in dependence on number of people in the household xi and on net earnings
zi. The data concerning 7 randomly chosen households are given in Tab. 6.2.

Table 6.2: Expenses for food and drinks

Yi 4 3 4 1 6 4 5
xi 4 2 4 1 5 3 4
zi 10 8 12 3 15 12 13

The coefficient of multiple correlation which describes dependence of expenses on
number of people and earnings is 0.983. This is statistically significant value, its p-value
is 0.001179. ♦

6.5 Sample coefficient of partial correlation

Assume that 



Y1

X1

Z1



 , . . . ,





Yn

Xn

Zn



 (6.7)

is a random sample from a (p + 2)-dimensional distribution. Vectors X i have again p
components. Let rp+1,i be sample correlation coefficient between Z-variables and i-th
components of vectors X1, . . . , Xn. Denote

RZX = (rp+1,i)
p
i=1, RXZ = R′

ZX.

In view of theorem 2.18 on p. 29 define sample coefficient of partial correlation rY,Z.X by
the formula

rY,Z.X =
rY Z − RY XR−1

XXRXZ
√
(
1 − RY XR−1

XXRXY

) (
1 − RZXR−1

XXRXZ

) ,

if the denominator is not zero.
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If p = 1, then we have

rY,Z.X =
rY Z − rY XrZX

√

(1 − r2
Y X) (1 − r2

ZX)
.

Theorem 6.6 Let random vectors (6.7) be a sample from regular normal distribution.
If ρY,Z.X = 0 and if n > p + 2 then the random variable

T =
rY,Z.X

√

1 − r2
Y,Z.X

√

n − p − 2 (6.8)

has tn−p−2 distribution.

Proof. See Anděl (1978). 2

Theorem 6.6 is used for testing hypothesis H0 : ρY,Z.X = 0. From formula (6.8) we
calculate T and in the case |T | ≥ tn−p−2(α) we reject H0. The variable rY,Z.X can be also
directly compared with the critical value for the common correlation coefficient, only n
must be substituted by the number n − p. It means that H0 is rejected in the case

|rY,Z.X| ≥ rn−p(α).

Example 6.7 We use again data from example 6.5 on p. 62. First, we calculate the
matrix of the partial correlation coefficients.[,1℄ [,2℄ [,3℄[1,℄ 1.0000000 0.517452512 0.831167731[2,℄ 0.5174525 1.000000000 0.008143009[3,℄ 0.8311677 0.008143009 1.000000000

Sample coefficients of partial correlation are rY,X.Z = 0.517 and rY,Z.X = 0.831. The
corresponding two-sided critical value is 0.8114. We can see that there exists statistically
significant dependence between expenses for food and drinks and for earning even if the
influence of the number of the family is eliminated. However, on the basis of given data
we cannot reject the hypothesis that expenses for food and drinks do not depend on
number of people living in the household if the influence of earning is eliminated. But
the sample size was very small, we used it only for illustrations. ♦
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Chapter 7

Interval estimators

Consider a random vector X = (X1, . . . , Xn)′ such that its distribution depends on the
parameter θ. We say that the random variable S is pivotal (for θ), if S is function only
of X and θ and the distribution of S does not depend on θ.

If the distribution of the vector X depends on the parameter (θ, δ), then S is pivotal
for θ, if S is a function only of X and θ and in the same time the distribution of S does
not depend on (θ, δ). In this case δ is called the nuisance parameter .

Pivotal statistics can be used for constructing confidence intervals and confidence sets.
Assume first that θ = θ is a univariate parameter and S = S(X, θ) pivotal statistics. If
α ∈ (0, 1) is given then we find such numbers qL, qU , that it holds

P {qL ≤ S(X, θ) ≤ qU} = 1 − α.

The inequality qL ≤ S(X, θ) ≤ qU will be transformed into form

L(X , qL, qU) ≤ θ ≤ U(X , qL, qU),

which presents the confidence interval for θ with confidence coefficient 1 − α. If the
parameter θ is multidimensional, then the inequality qL ≤ S(X, θ) ≤ qU is transformed
to the form θ ∈ Z(X, qL, qU), which gives the confidence set Z.

Example 7.1 Let X1, . . . , Xn (n ≥ 2) be a sample from N(µ, σ2), where σ > 0. If the
parameter σ is known, then

S = (X̄ − µ)/(σ/
√

n )

is pivotal statistics for µ. Variable S has distribution N(0, 1). Denote u = uα/2 the critical
value of the distribution N(0, 1). Then

P

{

−u ≤ X̄ − µ

σ/
√

n
≤ u

}

= 1 − α.

This implies

P

{

X̄ − uσ√
n
≤ µ ≤ X̄ +

uσ√
n

}

= 1 − α,

and thus [

X̄ − uσ√
n

, X̄ +
uσ√

n

]
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is confidence interval for µ with confidence coefficient 1 − α. The length of this interval
is ∆ = 2uσ/

√
n. From equation 2uσ/

√
n = δ we get n = 4u2σ2/δ2.

If neither parameter µ nor parameter σ are known, then T = (X̄ − µ)/(S/
√

n ) is the
pivotal statistics for µ, and now σ is nuisance parameter. We know, that T ∼ tn−1, so
that distribution of T depends neither on µ, nor on σ. In this case we have

P

{

−tn−1(α) ≤ X̄ − µ

S/
√

n
≤ tn−1(α)

}

= 1 − α.

Similarly we get that [

X̄ − tn−1(α)S√
n

, X̄ +
tn−1(α)S√

n

]

is confidence interval for µ with confidence coefficient 1 − α. ♦



Chapter 8

Testing hypotheses

Let the distribution of the random vector X = (X1, . . . , Xn)′ depend on an unknown
parameter θ = (θ1, . . . , θk)

′. It is known in advance that the parameter belongs to the
parametric space Ω, which is a subset of Rk. This symbol Ω has nothing to do with the
space Ω, which was introduced as the space of elementary events.

A detailed analysis can lead to hypothesis that θ belongs to a subset ω of the space
Ω. We are not sure with this assertion and so we call the assertion θ ∈ ω null hypothesis .
Briefly it is denoted by H0 : θ ∈ ω. The other possibility is alternative hypothesis
H1 : θ /∈ ω. Equivalently one can write H1 : θ ∈ Ω \ω. If the set ω has just one element,
we say that the hypothesis H0 is simple. If the set Ω \ ω has one element, we say that
the hypothesis H1 is simple.

The test of hypothesis H0 on the basis of vector X is usually made in the following
way. A suitable set W ∈ Bn is found such that is called critical set . If the event {X ∈ W}
is realized, then we reject H0. Otherwise we do not reject H0. In this decision one of the
following cases is realized.

(i) H0 is valid and the test do not reject it. The decision is correct.

(ii) H0 is not valid and the test rejects it. The decision is correct.

(iii) H0 is valid and the test rejects it. We say that it is error of the first kind .

(iv) H0 is not valid and the test does not reject it. We say that it is error of the second
kind .

Assume that we test H0 : θ = θ0 against alternative H1 : θ = θ1. Let the test have
critical set W . Then β(θ1) = P(X ∈ W |θ1) is called power of the test .

We show connection between testing hypotheses and confidence intervals. Let θ be
univariate parameter and S = S(X, θ) pivotal statistics. Let

W = {S(X, θ0) ≤ c1, S(X, θ0) ≥ c2}, c1 < c2,

be critical set for testing hypothesis H0 : θ = θ0, such that

P{S(X, θ0) ≤ c1|θ0} = α1, P{S(X, θ0) ≥ c2|θ0} = α2, α1 + α2 = α.

Since S is pivotal, we have

P{S(X, θ0) ≤ c1} = α1, P{S(X, θ0) ≥ c2} = α2.
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Assume that inequality c1 < S(X, θ) < c2 is equivalent to inequality w1 < θ < w2, where
w1 = w1(X), w2 = w2(X). Then

1 − α = P{c1 < S(X, θ) < c2} = P{w1 < θ < w2}.

Interval (w1, w2) is confidence interval for θ with confidence coefficient 1 − α and it is
complement to the critical set for testing H0.

Statistical thinking is based on the following principle, which is applied in practical
life. If an event has in the experiment only very small probability,we behave as if this event
cannot come. The size of this probability denoted by α depends on consequences which
the event would have. In practical situations one chooses α = 0,05 and we shall do this
in our text. Hypothesis H0 is chosen so that the error of the first kind is more important
than error of the second kind. If we do not want to accept the error of the first kind, we
must define critical set W so that the probability of error of the first kind would not be
larger than α. The best choice of the critical test W is such that under this condition the
probability of the second kind is minimal. Number supθ∈ω P(X ∈ W ) is called level of
the test . In some cases the best critical set can be found using Neyman-Pearson lemma.

Lemma 8.1 (Neyman-Pearson) Let ω = {θ0}, Ω \ ω = {θ1}, so that both hypotheses
H0 and H1 are simple. Let X have density p0 when H0 is valid and density p1 under H1.
Let for a given probability α ∈ (0, 1) there exists a number c such that for the set

W0 = {x : p1(x) ≥ c p0(x)} (8.1)

we have ∫

W0

p0(x) dx = α.

Then for an arbitrary set W ∈ Bn which fulfills condition
∫

W

p0(x) dx = α

it holds ∫

W0

p1(x) dx ≥
∫

W

p1(x) dx.

Proof. We have
∫

W0

p1(x) dx−
∫

W

p1(x) dx =

∫

W0\W

p1(x) dx −
∫

W\W0

p1(x) dx

≥
∫

W0\W

c p0(x) dx −
∫

W\W0

c p0(x) dx

=

∫

W0

c p0(x) dx −
∫

W

c p0(x) dx = cα − cα = 0. 2

It follows from the lemma that from all critical sets ensuring probability of the first
kind equal to α it is W0 which has the smallest probability of the second kind.

Thus W0 is the best critical set . The set (8.1) can be explained as follows. If for the
given x the number p1(x) is substantially larger than number p0(x), then we conclude
that the parameter is θ1.
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On the other side, if p0(x) is considerably larger than p1(x), we decide that the
parameter is θ0. It is also problem of estimating parameters and the lemma 8.1 shows
that the reasonable procedure can be based on comparison of densities with given value
x. This leads to the maximum likelihood method .

The critical set is often defined so that a test statistics S = S(X) is larger (or smaller)
than a calculated value. In such case it is often used p-value. It is the probability of
obtaining a value as numerically large as or larger than the observed statistics.
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Chapter 9

One-sample problem

9.1 Descriptive statistics

9.1.1 Graphs

Boxplot or more descriptively box-and-whiskers plot is a graphical summary of a distri-
bution. The box in the middle indicates hinges, nearly quartiles, and median. The lines
(whiskers) show the largest and the smallest observation that falls within a distance of
1.5 times the box size from the nearest hinge. If any observations fall farther away, the
additional points are considered extreme values and are shown separately.

If the data are not too many, we can show them on the left (or right) hand side of the
graph. In this way we obtain rugplot .

In the case of many data a picture of histogram is useful. Also other graphs are used,
for example stripchart .

9.2 One-sample Kolmogorov-Smirnov test

In this section we deal with one-sample Kolmogorov-Smirnov test . Let X1, . . . , Xn be a
sample from a distribution with continuous distribution function.

Introduce random variables

ξi(x) =

{
1, if Xi ≤ x,
0, if Xi > x

for i = 1, . . . , n. Define

Fn(x) =
1

n

n∑

i=1

ξi(x). (9.1)

Function Fn(x) je empirical distribution function. Given a sample, it is the same as the
empirical distribution function which was introduced in section 6.1 on p. 57. We prove
that with growing n the function Fn(x) approaches to the true distribution function F (x).

Theorem 9.1 Pro every real x we have

Fn(x) → F (x) almost surely for n → ∞.
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Proof. For every fixed x the variables ξi(x) are independent and identically distributed.
They satisfy

P[ξi(x) = 1] = F (x), Eξi(x) = F (x).

Since Fn(x) is defined by the formula (9.1), the assertion follows from Kolmogorov theo-
rem. 2

It is possible to prove a stronger assertion.

Theorem 9.2 (Glivenko-Cantelli) Denote Dm = supx |Fm(x)− F (x)|. Then it holds

P
(

lim
m→∞

Dm = 0
)

= 1.

Proof. See Gnedenko (1954). 2

We want to test hypothesis H0 that this distribution function is F . Let Fn be empirical
distribution function corresponding to the sample X1, . . . , Xn. Define

Dn = sup
x

|Fn(x) − F (x)|. (9.2)

With respect to theorems 9.1 and 9.2 large values of the variable Dn will give evidence
against the hypothesis H0. If n is small, special tables of critical values are used. If n is
larger, the limit formula is applied, namely that

lim
n→∞

P(
√

n Dn < λ) = K(λ),

where

K(λ) = 1 − 2
∞∑

k=1

(−1)k+1 exp(−2k2λ2). (9.3)

For large n critical values Dn(α) for random variable Dn are approximated by means
of

Dn(α)
.
=

√

1

2n
ln

2

α
(9.4)

(see Likeš, Laga 1978). It means that H0 is rejected when Dn ≥ Dn(α).
Notice that calculation of variable Dn can be restricted to those values of x, in which

Fn has a jump. In these points it is necessary to take into account not only the difference
Fn(x) − F (x), but also the limit from the right.

It is necessary to emphasize that the hypothesis H0 must determine the distribution
function F completely including all parameters.

Kolmogorov-Smirnov test can be used for testing the hypothesis that the random
sample X1, . . . , Xn is from rectangular distribution R(0, 1). This is suitable for testing
generators of random numbers. The test cannot be used for testing hypothesis that the
sample is from the normal distribution. This hypothesis does not specify parameters µ
a σ2. In the case that we estimate the parameters from the sample and the function
F take distribution function of the normal distribution with estimated parameters, the
distribution of the test statistics Dn would be considerably changed. From this reason
the critical values were determined using simulations. For the normal distribution see
Lilliefors (1967) and Iman (1982), for the exponential distribution see Lilliefors (1969)
and Iman (1982). The generalization to samples from discrete distributions is introduced
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in papers Conover (1972) and Mantel (1974). Test of hypothesis that the sample is from
the Poisson distribution is described in Campbell, Oprian (1979). Kolmogorov-Smirnov
test was generalized to censored samples (see Barr, Davison 1973).

Example 9.3 We simulated the sample with size 20 from the rectangular distribution
R(0, 1).0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46 0.96 0.45 0.680.57 0.10 0.90 0.25 0.04 0.33 0.95
The one-sample Kolmogorov-Smirnov test gives the resultsD = 0.183, p-value = 0.4604alternative hypothesis: two-sided
Since the p-value is larger than 0.05, the hypothesis about sample from the rectangular
distribution is not rejected. See Fig. 9.1 ♦.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.1: Kolmogorov-Smirnov one-sample test

9.3 One-sample t test

Let X1, . . . , Xn be a random sample from z N(µ, σ2), where σ2 > 0 and n ≥ 2. Assume
that no parameter µ and σ2 is known. We shall investigate a test of H0 : µ = µ0 against
H1 : µ 6= µ0.

Theorem 9.4 If the true expectation of the normal distribution is µ, then the random
variable

T =
X̄ − µ

S

√
n

has tn−1 distribution.
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Proof. It follows from Theorem 4.6 on p. 48 that

X =
X̄ − µ

σ

√
n ∼ N(0, 1), Z =

(n − 1)S2

σ2
∼ χ2

n−1

and that X a Z are independent. We use theorem 40 which says that

X
/√

Z/(n − 1) ∼ tn−1.

We easily get X
/√

Z/(n − 1) = T . 2

Critical value tk(α) of Student t distribution with k degrees of freedom is defined so
that probability of its exceeding by the random variable with distribution tk is α/2. It
means that in the case T ∼ tk is

P{|T | ≥ tk(α)} = α.

This is the difference from definition of most other distributions.
Let us return to the problem formulated at the beginning of this section. If H0 holds,

then using theorem 9.4 and definition of critical values of t distribution we have

P

[ |X̄ − µ0|
S

√
n ≥ tn−1(α)

]

= α. (9.5)

Practical procedure for testing H0 against H1 is the following:

(i) Calculate value T0 =
X̄ − µ0

S

√
n.

(ii) If |T0| ≥ tn−1(α), reject H0. Otherwise do not reject H0.

Formula (9.5) ensures that the level of the test is α.
If we consider the complementary event then from formula (9.5) we get

1 − α = P

[

X̄ − S√
n

tn−1(α) < µ < X̄ +
S√
n

tn−1(α)

]

.

Thus the interval X̄ ∓n−1/2Stn−1(α) is the confidence interval for µ for unknown σ2 with
confidence coefficient 1 − α.

One-sided tests and one-sided confidence intervals can be derived similarly as for the
normal distribution with known variance. The results differ so that instead of σ2 we have
S2 and instead of value u(α) we have t(2α).

Example 9.5 An automaton fills boxes with a washing powder. Each box should contain
1 kg of the powder. Five boxes were randomly taken and their contain exactly weighted.
The following departures (in dkg) were found:

−3 2 − 2 0 − 1.

It should be detected if there is systematic departure from the considered value.
We consider our data as random sample from z N(µ, σ2), If there is no systematic

departure, the hypothesis H0 : µ = 0 holds. If there is a departure, the hypothesis
H1 : µ 6= 0 will hold. We have

n = 5, X̄ = −0.8, S2 = 3.7, T0 = −0.9300.

Since |T0| < t4(0.05) = 2.776, the hypothesis H0 cannot be rejected. Two-sided confidence
interval for the parameter µ with the confidence coefficient 0,95 is (-3.19, 1.59). Notice
that it contains value µ0 = 0. ♦
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9.4 Variance

Consider the random sample X1, . . . , Xn from N(µ, σ2), where n > 1 and no parameter
µ and σ2 > 0 is known. We shall deal with the test H0 : σ2 = σ2

0 against H1 : σ2 >
σ2

0. Let χ2
f(α) be critical value of distribution χ2

f . It is the number which the random
variable with distribution χ2

f exceeds with probability α. Test is based on the variable
S2 =

∑n
i=1(Xi − X̄)2/(n − 1), which is unbiased estimator of the parameter σ2 and its

distribution does not depend on µ. We choose critical set S2 ≥ k. If H0 is true and we
want

α = P(S2 ≥ k) = P

{
(n − 1)S2

σ2
0

≥ (n − 1)k

σ2
0

}

,

we must have
(n − 1)k/σ2

0 = χ2
n−1(α),

so that
k = σ2

0χ
2
n−1(α)/(n − 1).

If the true variance is σ2, we obtain

P

{
(n − 1)S2

χ2
n−1(α)

< σ2

}

= 1 − α.

Thus
(
(n − 1)S2/χ2

n−1(α),∞
)

is the right-hand side confidence interval for σ2.
If we want to test H0 : σ2 = σ2

0 against H1 : σ2 6= σ2
0, we reject H0 in the case that

either S2 ≤ k1, or S2 ≥ k2. The statisticians usually choose k1 and k2 so that

P(S2 ≤ k1) =
α

2
, P(S2 ≥ k2) =

α

2
.

This will be satisfied when

k1 =
σ2

0χ
2
n−1

(
1 − α

2

)

n − 1
, k2 =

σ2
0χ

2
n−1

(
α
2

)

n − 1
.

If the true variance is σ2, then

P

{

(n − 1)S2

χ2
n−1

(
α
2

) < σ2 <
(n − 1)S2

χ2
n−1

(
1 − α

2

)

}

= 1 − α.

It implies that (

(n − 1)S2

χ2
n−1

(
α
2

) ,
(n − 1)S2

χ2
n−1

(
1 − α

2

)

)

is the two-sided confidence interval for σ2 with confidence coefficient 1 − α.
The two-sided confidence interval satisfying condition P(S2 ≤ k1) = P(S2 ≥ k2) =

α
2

is not optimal in the sense that its length is not shortest possible. If the density
of the corresponding random variable is unimodal and smooth, the optimal confidence
interval may be calculated using theorem 9.6 (see Farnsworth 2004). There are two
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complementary problems. First, we would find the interval of the given length which has
maximal probability. In the second problem we want to find the shortest interval which
has the given probability. It is clear that the solution of the second problem leads to the
solution of the first one.

Theorem 9.6 Let the random variable X have absolutely continuous distribution func-
tion F and the differentiable density f . Let w > 0 be the given number. Consider all
couples (x, x + w) such that f ′(x) > 0, f ′(x + w) < 0. If f(x) = f(x + w) holds, then the
interval [x, x + w] has locally maximal probability among all intervals of length w.

Proof. Define

A(x) = P(X ≤ x + w) − P(x ≤ x) = F (x + w) − F (x).

When w is fixed, A(x) depends only on x. We have A′(x) = f(x + w)− f(x), so that the
condition A′(x) = 0 gives f(x + w) = f(x). Since A′′(x) = f ′(x + w) − f ′(x) < 0, local
maximum of A(x) is at point x for which f(x + w) = f(x). 2.

In many cases we have f(x) = 0 for x < 0, f(x) increasing on (0, x0) and decreasing
on (x0,∞). Then A(x) has exactly one local maximum which is also global maximum.

9.5 Sign test

Let X1, . . . , Xn be a sample from a continuous distribution with median x̃. It means that

P(Xi < x̃) = P(Xi > x̃) =
1

2
, i = 1, . . . , n.

We test the hypothesis H0 : x̃ = x0, where x0 is a given number. We start with the
two-sided test where the alternative hypothesis is H1 : x̃ 6= x0. We form the differences
X1 − x0, . . . , Xn − x0. If some differences are zeros then they are dropped. Number
of positive differences will be denoted as Y . If H0 holds, Y has binomial distribution
Bi(n, 1

2
). Hypothesis H0 will be rejected, if Y is nearly zero, or nearly n. In such cases

tables of critical values k1 a k2 can be used. They satisfy

P(Y ≤ k1) ≤
α

2
, P(Y ≥ k2) ≤

α

2
. (9.6)

Here k1 is the largest and k2 the smallest number for which (9.6) is valid. Because the
distribution Bi(n, 1

2
)is symmetric, we have k2 = n − k1.

Hypothesis H0 will be rejected in the cases when Y ≤ k1 or Y ≥ k2. The level of test
is maximally α. Usually, it is considerable smaller than α.

Introduce random variables ξ1, . . . , ξn so that ξi = 0 in case Xi − x0 ≤ 0 and ξi = 1
in the case Xi − x0 > 0. Thus Y = ξ1 + · · · + ξn. Since Eξi = 1

2
, var ξi = 1

4
, central limit

theorem ensures that the variable
(
Y − n

2

)/√
n has asymptotically distribution N(0, 1

4
).

Thus the variable

U =
2Y − n√

n
(9.7)

has asymptotically distribution N(0, 1). The hypothesis H0 will be rejected when |U | ≥
u(α

2
). The level of this test tends to α. The procedure is used if n ≥ 20. Practically, H0

is rejected when U2 ≥ χ2
1(α).
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The sign test is used specially in the case when the distribution of random variables
Xi is considerably skew. However, the power of this test as rather small. Since this test
has considerably large probability of the error of the second kind, it is recommended to
have in the disposal larger number of observations n.

If from the technical reasons some differences Xi − x0 are zeros then these values are
left out and number n is correspondingly decreased.

The sign test can be one-sided. Multidimensional sign test is introduced in Bennet
(1962).

Example 9.7 Ten persons should independently estimate time one minute. The follow-
ing results (in seconds) were registered:

53, 48, 45, 55, 63, 51, 66, 56, 50, 58.

We have x̃ = 60, n = 10, number of differences with positive sign is Y = 2. For n = 10
and α = 0,05 we have k1 = 1, k2 = 9. Since Y ∈ (k1, k2), the sign test does not reject
hypothesis H0. It can be calculated that in this case the actual level of the test is not
0,05, but only 0,02. But the test which would use values k1 = 2, k2 = 8, would have level
0,11.

♦

9.6 One-sample Wilcoxon test

Let X1, . . . , Xn be random sample from a continuous distribution with the density f ,
which is symmetric around the point a. Then we have f(a + x) = f(a − x). Then
obviously a must be median x̃. If there exists finite expectation of this distribution then
for each i it must hold EXi = a. Finiteness of the expectation is not assumed, however.
The one-sample Wilcoxon test is designed to testing hypothesis H0 : x̃ = x0 against the
alternative hypothesis H1 : x̃ 6= x0.

Assume that no variable Xi is equal to x0. Define Yi = Xi − x0. The variables Yi

order into non-decreasing sequence with respect to their absolute value

|Y |(1) ≤ |Y |(2) ≤ · · · ≤ |Y |(n).

Let R+
i be the rank of variable |Yi|. Define

S+ =
∑

Yi≥0

R+
i , S− =

∑

Yi<0

R+
i .

It holds S+ + S− = n(n + 1)/2. If the number min(S+, S−) is smaller or equal to critical
value wn(α), we reject H0.

Our assumptions imply that Y1, . . . , Yn are independent identically distributed random
variables and their distribution is symmetric around zero.

Theorem 9.8 Vectors (sign Y1, . . . , sign Yn)
′ and (|Y |(1), . . . , |Y |(n))

′ are independent.
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Proof. Since the variables Yi are independent, vectors (sign Yi, |Yi|)′ are also independent.
From continuity and symmetry of distribution it follows that

P(sign Yi = 1) = P(sign Yi = −1) =
1

2
.

For an arbitrary y > 0 we have

P(sign Yi = 1, |Yi| < y)= P(0 < Yi < y) =
1

2
P(−y < Yi < y)

=
1

2
P(|Yi| < y) = P(sign Yi = 1) P(|Yi| < y).

Thus the variables sign Yi and |Yi| are for every i independent. The result is that the
vectors (sign Y1, . . . , sign Yn)′ and (|Y1|, . . . , |Yn|)′ are independent. Since the vector
(|Y |(1), . . . , |Y |(n))

′ is a function of the vector (|Y1|, . . . , |Yn|)′, the proof is finished. 2

Theorem 9.9 Let S =
n∑

i=1

R+
i sign Yi. Then

S+ =
1

2
S +

n(n + 1)

4
.

Proof. We have S+ − S− = S, S+ + S− = n(n + 1)/2. From here S+ can be easily
calculated. 2

Theorem 9.10 If H0 holds, then

ES+ =
1

4
n(n + 1), varS+ =

1

24
n(n + 1)(2n + 1).

Proof. First we notice that E sign Yi = 0 for every i. From theorem 9.8 we get that
E(R+

i sign Yi) = (ER+
i )(E sign Yi), and thus

E(R+
i sign Yi) = 0. (9.8)

From here

ES =
n∑

i=1

E(R+
i sign Yi) = 0.

In view of (9.8) we have

var(R+
i sign Yi) =E(R+

i sign Yi)
2 = E(R+

i )2E(sign Yi)
2 = E(R+

i )2

=12 1

n
+ 22 1

n
+ · · · + n2 1

n
=

1

6
(n + 1)(2n + 1).

Similarly can be proved that

cov(R+
i sign Yi, R

+
j sign Yj) = 0 for i 6= j.

Now, we apply theorem 2.4 on p. 22. 2
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It can be proved (see Hájek, Šidák 1967), that S+ has asymptotically normal distri-
bution. The hypothesis H0 can be tested by means of statistics

U =
S+ − ES+

√
var S+

,

where ES+ and var S+ are introduced in theorem 9.10. If |U | ≥ u(α
2
), hypothesis H0 is

rejected on the level, which is approaching to α as n → ∞.
It is necessary to emphasize that one of the assumptions of the on-sample Wilcoxon

test is the symmetry of the density f around the median. Hypothesis H0 can be correctly
rejected also in the case when the median is equal to x0, but the density f is strongly
non-symmetric.

If some of the variables Xi is equal to x0, usually this observation is left out.

Example 9.11 We show the analysis of the data introduced in example 9.7. We remem-
ber that estimates of time of one minute (in seconds) were

53, 48, 45, 55, 63, 51, 66, 56, 50, 58.

If the median of this distribution is x0 = 60 seconds, we would obtain variables Yi =
Xi − 60. They are equal to

−7, −12, −15, −5, 3, −9, 6, −4, −10, −2.

We order the variables in a non-decreasing series with respect to their absolute values.
We get

−2, 3, −4, −5, 6, −7, −9, −10, −12, −15.

The order of the number 3 is 2, the order of 6 has the order 5. Thus S+ = 2 + 5 = 7.
We get S− = 10× 11/2−S+ = 48. Critical value is w10(0,05) = 8. Since min (S+, S−) =
7 ≤ w10(0,05) = 8, we reject the hypothesis that in human population half persons the
length of one minute undervalues and half overvalues. The asymptotic procedure would
give

ES+ = 27,5, varS+ = 96,25, U = −2,09.

Since |U | ≥ u(0.025) = 1.96, hypothesis H0 would be rejected also by this procedure.
♦

9.7 Hodges-Lehmann estimator

Let X1, . . . , Xn be random variables and X(1) ≤ · · · ≤ X(n) the ordered random sample.
Define

X̃ =







X(k+1), if n = 2k + 1,

[X(k) + X(k+1)]/2, if n = 2k.

Then X̃ is called median of random variables X1, . . . , Xn. We use denotation X̃ =
median(X1, . . . , Xn).

Let X1, X2 be independent random variables with identical distribution function F ,
which has median x̃. Consider the variable Y = (X1+X2)/2 and denote G the distribution
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function of the variable Y . Then ỹ is pseudomedian of the distribution, which has the
distribution function F . Notice that pseudomedian was introduced in the paper Høyland
(1965).

Distribution of the random variable X is symmetric about the point µ, if we have for
all real x

P(X ≥ µ + x) = P(X ≤ µ − x).

The distribution is called symmetric, if there exists such µ that this distribution is sym-
metric about µ.

Theorem 9.12 If the distribution defined by the distribution function F is symmetric
and if there exist median and pseudomedian uniquely, then median and pseudomedian
are the same. If the distribution that corresponds to the distribution function F is not
symmetric then generally x̃ 6= ỹ.

Proof. Assume without loss of generality that the distribution given by the distribution
function F is symmetric about zero. A necessary and sufficient condition for it is that
its characteristic function is real. Because characteristic function of the sum X1 + X2 is
the product of characteristic functions of individual summands, the distribution of the
sum X1 +X2 is symmetric about zero. If median and pseudomedian are defined uniquely,
each of them must be zero.

Let X1 and X2 be independent identically distributed random variables with expo-
nential distribution with the parameter λ = 2, which has density f and the distribution
function F given by formulas

f(x) =
1

2
e−x/2, F (x) = 1 − e−x/2, x > 0.

Median of this distribution x̃ is the root of the equation F (x) = 1/2. We get x̃ = 2 ln 2 =
1.386294.

Now, we take into account that f is the density of the distribution χ2
2. Consequently,

the variable Z = X1 + X2 has distribution χ2
4 with density g(z) = 1

4
ze−z/2 for z > 0. Let

Y = Z/2. Then Y has density h(y) = ye−y for y > 0 and the distribution function

H(y) = 1 − (1 + y)e−y, y > 0.

Median ỹ of the distribution with the distribution function H one gets by solving equation
H(y) = 1/2. The result is ỹ = 1.67835. Median of the distribution Ex(2) is not the same
as pseudomedian of this distribution. 2

Let us return to the original formulation of the test. We defined Yi = Xi − x0, and
the unknown median of the distribution Xi is a. If it holds x0 = a, from theorem 9.10 we
would have ES+ = n(n + 1)/4. It suggest to take as estimator of parameter a such value
x0 = â,for which we should have S+ = n(n + 1)/4. The solution is to choose

â = medin

{
Xi + Xj

2
, i ≤ j

}

.

Each of n(n + 1)/2 means (Xi + Xj)/2 is called Walsh mean (Walsh 1949). The variable
â is called Hodges-Lehmann estimator (it belongs to the class of estimators introduced
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in paper Hodges, Lehmann 1963). Based on principles leading to Hodges-Lehmann es-
timator it is possible to construct nonparametric confidence interval for pseudomedian
(see Hollander, Wolfe 1973, p. 35). We remark, that the Hodges-Lehmann estimator and
nonparametric confidence interval can be constructed also in the case of two samples in
connection with two-sample Wilcoxon test (see Hollander, Wolfe 1973, p. 75).

Example 9.13 We continue with the example 9.11. The calculations are made by pro-
gram r.

p-value = 0.03711,

95 percent confidence interval: 50.0 59.5

sample estimates: (pseudo)median

54

Hodges-Lehmann estimator for pseudomedian is 54, the confidence interval for pseudo-
median with confidence level 0.95 is (50.0, 59.5). ♦



82 CHAPTER 9. ONE-SAMPLE PROBLEM



Chapter 10

Discrete one-sample problem

10.1 Confidence intervals and tests for p

10.1.1 Tests in binomial distribution

Assume that X ∼ Bi(n, p). We describe a test H0 : p = p0 against H1 : p 6= p0, where p0

is given value from interval (0, 1). The sign test was a special case of this problem with
p0 = 1

2
.

If n is a small number, we calculate for the given α the largest integer k1 such that

S1(k1) =

k1∑

i=0

(
n

i

)

pi
0(1 − p0)

n−i ≤ α

2

and the smallest integer k2 such, that

S2(k2) =
n∑

i=k2

(
n

i

)

pi
0(1 − p0)

n−i ≤ α

2
.

Hypothesis H0 will be rejected on the level maximally α, if X ≤ k1 or X ≥ k2.
A direct calculation of sums S1(k1) and S2(k2) can be mathematically very difficult.

A better procedure is to use the relation

s∑

i=0

(
n

i

)

pi(1 − p)n−i = F ∗
2(n−s),2(s+1)

[
(s + 1)(1 − p)

p(n − s)

]

, (10.1)

which is valid for s = 0, 1, . . . , n − 1; here F ∗
m,n(x) is distribution function of the Fisher-

Snedecor distribution. See Ling (1992), Peizer, Pratt (1968) and Pratt (1968).
This method is equivalent to the following procedure. Denote

D =
X

X + (n − X + 1)F2(n−X+1),2X

(α

2

) ,

H =
(X + 1)F2(X+1),2(n−X)

(α

2

)

n − X + (X + 1)F2(X+1),2(n−X)

(α

2

) ,

83
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where Fm,n(β) denotes the critical value of the Fm,n distribution on the level β. If 0 <
X < n, then (D, H) is confidence interval for parameter p with the confidence coefficient
1 − α. In the case p0 /∈ (D, H), we reject the hypothesis H0. Here (D, 1) is right-hand
side confidence interval for parameter p with confidence coefficient 1 − α

2
(when X = n)

and (0, H) is left-hand side confidence interval for p with confidence coefficient 1− α
2

(also
when X = 0).

Example 10.1 Simonoff (2003) on p. 66 introduces that among the 13 patients, that
had Lymski borelioza, to a given diagnostic test 8 reacted. Estimated sensitivity of the
test is 8/13=61.5 %. ♦

10.1.2 Wald confidence interval

Let X ∼ Bi(n, p). Let uα be critical value of the distribution N(0, 1) on level α. If
value X = x (x 6= 0, x 6= n), is observed, then the maximum-likelihood estimator of the
parameter p is p̂ = x/n.

Denote q = 1 − p, q̂ = 1 − p̂,

ξ =
p̂ − p
√

pq/n
, Z =

p̂ − p
√

p̂q̂/n
.

Then p̂
P−→ p, q̂

P−→ q, ξ
d−→ N(0, 1). Since

Z =

p̂−p√
pq/n
√

p̂q̂
pq

,

from Cramér-Slucky theorem it follows that Z
d−→ N(0, 1). From this reason an approx-

imate confidence interval for p with confidence coefficient 1 − α is equal

p̂ ± uα/2

√

p̂(1 − p̂)/n. (10.2)

It is so called Wald confidence interval or standard confidence interval .
It is not recommended to use the Wald interval when n is small. The problem is that

the confidence coefficient can substantially differ from its nominal value and in many
cases is rather small.

10.1.3 Wilson confidence interval

Because of above mentioned problems the statisticians looked for other methods for con-
structing confidence interval. Since

P

(∣
∣
∣
∣
∣

p̂ − p
√

p(1 − p)/n

∣
∣
∣
∣
∣
≤ uα/2

)

≈ 1 − α,

we have
P
(
|p̂ − p|2 ≤ u2

α/2p(1 − p)/n
)
≈ 1 − α.
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The roots of the equation
|p̂ − p|2 = u2

α/2p(1 − p)/n

determine new confidence interval. Define shortly u = uα/2. Then we get the equation

(n + u2)p2 − (2np̂ + u2)p + np̂2 = 0

with roots

p12 =
2np̂ + u2 ±

√

(2np̂ + u2)2 − 4(n + u2)np̂2

2(n + u2)

= p̂
n

n + u2
+

1

2

u2

n + u2
±
√

p̂(1 − p̂)

n

n2u2

(n + u2)2
+

1

4

u4

(n + u2)2
.

We derived Wilson confidence interval (also called score interval or also q-interval).
Denote the center of the Wilson interval by symbol c. Since c is the weighted mean of
the values p̂ and 1

2
, we get |1

2
− c| < |1

2
− p̂|.

10.2 Confidence intervals for parameter λ

10.2.1 Standard confidence interval

Let X1, . . . , Xn be a sample from Po(λ). Maximum likelihood estimator of the parameter
λ is λ̂ = X̄. It is known that

EX̄ = λ, var X̄ = λ/n, Z =
X̄ − λ
√

λ/n

d−→ N(0, 1).

Since X̄
P−→ λ, we obtain

X̄ − λ
√

X̄/n

d−→ N(0, 1).

From here it follows that the interval with endpoints

X̄ ± uα/2

√

X̄/n (10.3)

is confidence interval for λ with asymptotic confidence coefficient 1 − α. It is called
standard confidence interval .

10.2.2 Score confidence interval

If the true value of the parameter is λ, then it follows from the asymptotic normality of
the variable Z that

P

(

|X̄ − λ|
√

λ/n
≤ uα/2

)

→ 1 − α.

Write u = uα/2. Then the endpoints of the score confidence interval are roots of the
equation

|X̄ − λ|
√

λ/n
= u.
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We write this equation in the form X̄2 − 2X̄λ + λ2 = uλ/n and we get the solution

λ12 =
1

2



2X̄ +
u2

n
±
√
(

2X̄ +
u2

n

)2

− 4X̄2



 = X̄ +
u2

2n
± u√

n

√

X̄ +
u2

4n
. (10.4)

10.2.3 Clopper-Pearson confidence interval

The sums of probabilities in the Poisson distribution can be calculated using the distri-
bution function of the χ2 distribution. Remember that the density of χ2

n distribution
is

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2, x > 0. (10.5)

Integrating by parts it can be shown that

m∑

k=0

λk

k!
e−λ =

∫ ∞

2λ

f2m+2(x) dx.

Assume that X ∼ Po(λ). Then the Clopper-Pearson confidence interval for λ based
on X is (λd, λu), where the limits λd and λu are given by the conditions

P(X ≥ x|λ = λd) = α/2, P(X ≤ x|λ = λu) = α/2,

and λd = 0 for x = 0. Let χ2
ν(α) be upper α percentile of χ2

ν distribution (critical value
of the χ2

ν distribution on the level α). Then the solution is

λd =

{

0, for x = 0,
1
2n

χ2
2x

(
1 − α

2

)
, for x 6= 0,

λu =
1

2n
χ2

2x+2

(α

2

)

.

In the case that X1, . . . , Xn is the sample from Po(λ), we define X =
∑n

i=1 Xi. Thus we
have X ∼ Po(nλ). The limit λu on the basis X is given by the condition

α

2
= P(X ≤ x|λ = λu) = P(χ2

2x+2 ≥ 2nλu).

This gives 2nλu = χ2
2x+2 (α/2), it means λu = 1

2n
χ2

2x+2 (α/2).

10.3 Tests χ2 when parameters are known

Let random vector X have the multinomial distribution. In view of (2.26) on p. 31
we can apply the central limit theorem. Define Y = D−1X. The vector Y has also
asymptotically normal distribution because it arises by linear transformation from X.
Using results derived in section 2.9 on p. 30 we have EY = (

√
np1, . . . ,

√
npk )′, varY = Q.

Applying theorem 3.8 on p. 39, we can see that (Y − EY )′(Y − EY ) has asymptotically
χ2

k−1 distribution, because the rank of the the matrix Q is k−1. Variable (Y −EY )′(Y −
EY ) is denoted as χ2 and it equals to

χ2 =
k∑

i=1

(Xi − npi)
2

npi

. (10.6)
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Variables Xi are called empirical frequencies and npi are theoretical frequencies. In some
cases the value χ2 is calculated from (10.6) because it is important to know summands on
the right hand side. The complete value χ2 can be calculated from the modified formula
(10.6)

χ2 =
1

n

k∑

i=1

X2
i

pi
− n. (10.7)

Using variable χ2 defined in (10.6) and introduced in (10.7) we can test the hypothesis
that the true values of probabilities of a multinomial distribution are equal to numbers
p1, . . . , pk. If we get χ2 ≥ χ2

k−1(α), we reject the hypothesis H0. This Pearson χ2 test can
be applied for testing regularity of dice, (where the probability should be 1/6 for each
possibility), for checking generators of random numbers and in many other cases.

It is necessary to emphasize that the test χ2 is asymptotic and so it can be recom-
mended only if the sample size n is sufficiently large. Modern computers enable to find
the critical value using simulations.

Example 10.2 In the book Yule, Kendall (1950) are introduced results of 4096 throws
with 12 dices. For each throw it was recorded how many six’s were obtained. The results
are introduced in table 10.1.

Table 10.1: Results of 4096 throws with 12 dices

Number of 6

0 1 2 3 4 5 6 7 and more Total

ni 447 1145 1181 796 380 115 24 8 4096
pi 0.112 0.269 0.296 0.197 0.089 0.028 0.007 0.001 1.000
npi 459 1103 1213 809 364 116 27 5 4096

Probability of a 6 is 1/6 and results are independent, number of 6 is random variable

with binomial distribution Bi

(

12,
1

6

)

. Thus

pi =

(
12

i

)(
1

6

)i(
5

6

)12−i

, i = 0, 1, . . . , 12.

Using (10.6) or (10.7) we get χ2 = 5.484. Since this result is less than critical value
χ2

7(0.05) = 14.07, we cannot reject the hypothesis that the dices are regular. ♦

10.4 Tests χ2 when parameters are not known

It happens frequently that the probabilities p1, . . . , pk depend on an unknown parameter
a = (a1, . . . , am)′. We can write p1 = p1(a), . . . , pk = pk(a). Pro each a we must have

p1(a) + · · ·+ pk(a) = 1.

If the functions pi(a) are sufficiently smooth then we obtain from here

∂p1(a)

∂aj
+ · · ·+ ∂pk(a)

∂aj
= 0, j = 1, . . . , m. (10.8)
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This relation is used for derivation of other formulas. Instead of (10.7) we have now

χ2(a) =
1

n

k∑

i=1

X2
i

pi(a)
− n. (10.9)

For estimating a similar procedure can be used as it was least squares method in the case
of linear model. Let a∗ be the value of the parameter a, which minimizes (10.9). Then
a∗ is called estimator of the parameter a using method of minimal χ2. We get it solving
the system of equation

∂χ2(a)

∂aj
= −1

n

k∑

i=1

X2
i

p2
i (a)

∂pi(a)

∂aj
= 0, j = 1, . . . , m. (10.10)

Usually, it is difficult to solve this system and so another procedure was looked for.
Instead of (10.9) we can differentiate relation

χ2(a) =
k∑

i=1

[Xi − npi(a)]2

npi(a)
. (10.11)

This leads to

−1

2

∂χ2(a)

∂aj
=

k∑

i=1

(
Xi − npi(a)

pi(a)
+

[Xi − npi(a)]2

2np2
i (a)

)
∂pi(a)

∂aj
= 0 (10.12)

for j = 1, . . . , m. It is the same as the system (10.10). It can be shown that with growing
n the influence of the second member on the right hand side of formula (10.12) has less
influence. If we leave it out, we come to a new system of equations

k∑

i=1

Xi − npi(a)

pi(a)

∂pi(a)

∂aj
= 0, j = 1, . . . , m.

Using the relation (10.8), we have finally the system

k∑

i=1

Xi

pi(a)

∂pi(a)

∂aj

= 0, j = 1, . . . , m. (10.13)

The solution of the system (10.13) denote â. It is called estimator of parameter a by
modified method of minimum χ2.

System (10.13) is related to problem of estimating parameter a by maximum likeli-
hood method. Likelihood function of multinomial distribution is

f(a) =
n!

X1! . . .Xk!
[p1(a)]X1 . . . [pk(a)]Xk .

Thus the logarithmic likelihood function is

L(a) = ln f(a) = ln
n!

X1! . . .Xk!
+

k∑

i=1

Xi ln pi(a).
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Likelihood equations are

∂L(a)

∂aj

= 0 for j = 1, . . . , m.

Estimator of the parameter a using maximum likelihood method is solution of the system
of equations

k∑

i=1

Xi

pi(a)

∂pi(a)

∂aj
= 0 for j = 1, . . . , m, (10.14)

which is the same as the system of equations (10.13) for estimator a by modified method
of minimum χ2.

Theorem 10.3 Let m < k − 1 and assume that for all points a from nondegenerated
finite closed interval A z Rm hold:

(1) p1(a) + · · · + pk(a) = 1.

(2) There exists such c > 0, that pi(a) > c2 for i = 1, . . . , k.

(3) Every function pi(a) has continuous derivatives

∂pi(a)

∂aj
and

∂2pi(a)

∂aj∂as
for j, s = 1, . . . , m.

(4) Matrix

(
∂pi(a)

∂aj

)

, which is of type k × m, has rank m.

Let a0 be inner point of A. Denote p0
i = pi(a

0). Let X = (X1, . . . , Xk)
′ have multinomial

distribution with parameters n, p0
1, . . . , p

0
k. Then in the case n → ∞ there exist such

sequences of positive numbers εn → 0 and δn → 0, that the system (10.13) has with
probability at least 1− εn one root ân such that |ân −a0| < δn. If we insert this root into
(10.14) [or equivalently to (10.13)], the variable χ2(ân) for n → ∞ has asymptotically
χ2

k−m−1 distribution.

Proof. See Anděl (1978) or Cramér (1946). 2

Let us remark that assumption (4) excludes to introduce superfluous parameters ai

into model. Analogous theorem can be proved also for other kind of estimators, see
Rao 1978. But there exist nice estimators of the parameter a which do not satisfy
assumptions of theorem 10.3. Typically χ2 test is used as test for distribution and as the
test of independence in contingency tables. We shall introduce these methods. Also here
it is necessary to have theoretical frequencies npi(â) sufficiently large.

10.5 Test of independence

Let the random vector X = (Y, Z)′ have discrete distribution, variable Y takes values
1, . . . , r and variable Z values 1, . . . , c. We shall write

pij = P(Y = i, Z = j), pi. =
∑

j

pij , p.j =
∑

i

pij .
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Assume that we have sample of size n from this distribution. Let nij be number of
the cases when the pair (i, j) appeared in the sample. Random variables nij then have
simultaneous multinomial distribution with parameter n and with probabilities pij. There
is a difference in comparison with section 10.4, namely that probabilities pij as well as
empirical frequencies nij are written as matrices instead of vectors. Matrix (nij) is called
contingency table. Further we write

ni. =
∑

j

nij , n.j =
∑

i

nij .

Clearly it holds

n =
∑

i

ni. =
∑

j

n.j =
∑

i

∑

j

nij .

Numbers pi. and p.j are called marginal probabilities and values ni. and n.j are marginal
frequencies. Matrix of probabilities (pij) and the contingency table (nij) are introduced
in tab. 10.2.

Table 10.2: Matrix of probabilities and contingency table

Matrix of probabilities Contingency table

Z Z
Y 1 · · · c Σ Y 1 · · · c Σ
1 p11 · · · p1c p1. 1 n11 · · · n1c n1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r pr1 · · · prc pr. r nr1 · · · nrc nr.

Σ p.1 · · · p.c 1 Σ n.1 · · · n.c n

In practical situations the contingency table arises in the following way. We follow
two characteristics. They can be discrete and have only a few values (man - woman,
blood group 0 - A - B - AB) or we prepare only some categories. In many cases we give
numbers 1, 2, . . . only as marks, but they are not exact values.

The most frequent problem solved in contingency tables is testing hypothesis that the
variables Y and Z are independent. Before derivation of the test independence, we prove
an auxiliary assertion.

Theorem 10.4 Variables Y and Z are independent if and only if for all pairs (i, j) the
relation pij = pi.p.j holds.

Proof. It is known that Y and Z are independent if and only if P(Y ∈ A, Z ∈ B) =
P(Y ∈ A)P(Z ∈ B) for arbitrary sets A ⊂ {1, . . . , r}, B ⊂ {1, . . . , c}. If we choose
A = {i}, B = {j}, then it follows that in the case of independence Y and Z we must
have pij = pi.p.j. Choose A = {1, 2}, B = {1, 2, 3}. The general case is similar. We have

P(Y ∈ A, Z ∈ B)=

2∑

i=1

3∑

j=1

pij =

2∑

i=1

3∑

j=1

pi.p.j

=

(
2∑

i=1

pi.

)(
3∑

j=1

p.j

)

= P(Y ∈ A)P (Z ∈ B). 2
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Thus the hypothesis of independence H0 can be written in the form

H0 : pij = pi.p.j, i = 1, . . . , r; j = 1, . . . , c.

It means that probabilities pij of multinomial distribution are functions of smaller number
of unknown parameters, namely of marginal probabilities pi. a p.j. But the marginal
probabilities are not independent, since

∑

i

pi. =
∑

j

p.j = 1.

If we wish to fulfil condition (4) from theorem 10.3, then we cannot include probabilities
pr. and p.c among unknown parameters, because they can be calculated from other prob-
abilities. Thus we have m = r − 1 + c − 1 = r + c − 2 unknown parameters. However,
we consider only situations where all marginal probabilities are positive. Otherwise we
would skip some rows or some columns.

Unknown parameters p1., . . . , pr−1,. and p.1, . . . , p.,c−1 can be calculated from the sys-
tem (10.13). Instead of Xi we have here variables nij . We obtain

c∑

j=1

(
nij

pi.

− nrj

pr.

)

= 0, i = 1, . . . , r − 1 (10.15)

and
r∑

i=1

(
nij

p.j
− nic

p.c

)

= 0, j = 1, . . . , c − 1, (10.16)

since we have for h = 1, . . . , r − 1 that

∂pi.p.j

∂ph.
=







p.j for i = h,

−p.j for i = r,

0 in other cases.

Similar result can be obtained for partial derivatives with respect to p.l. Formula (10.15)
holds also for i = r and (10.16) holds also for j = c. Instead of (10.15) we can write

ni.

pi.
− nr.

pr.
= 0, i = 1, . . . , r. (10.17)

From here we get

ni. =
nr.

pr.
pi., i = 1, . . . , r.

Summing over i we have n = nr./pr., so that estimator for pr. is p̂r. = nr./n. Finally,
inserting into (10.17) we have estimators

p̂i. =
ni.

n
, i = 1, . . . , r.

Similarly can be solved (10.16) and the result is

p̂.j =
n.j

n
, j = 1, . . . , c.
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Theorem 10.3 ensures that the variable

χ2 =
r∑

i=1

c∑

j=1

(

nij −
ni.n.j

n

)2

ni.n.j

n

(10.18)

has asymptotically distribution χ2, and its number of degrees of freedom is

rc − (r + c − 2) − 1 = (r − 1)(c − 1).

If we get χ2 ≥ χ2
(r−1)(c−1)(α), we rejct the hypothesis H0 that the variables Y and Z are

independent. Of course, the theoretical frequencies ni.n.j/n must be sufficiently large.

Example 10.5 U 6800 mu byla zjiovna barva o a barva vlas (viz Yule, Kendall 1950).
Vsledky jsou uvedeny v tab. 10.3.

Table 10.3: Colour of eyes and hair

Color of hair
Colour of eyes Fair Chestnut Black Red-haired Total

Blue 1 768 807 189 47 2 811
Green 946 1 387 746 53 3 132
Brown 115 438 288 16 857

Total 2 829 2 632 1 223 116 6 800

We obtained χ2 = 1073.508, df = 6, p-value < 2.2e − 16.
Because of small p-value we reject the hypothesis that color of eyes and color of hair

in men population are independent variables.
♦

10.6 2 × 2 tables

10.6.1 Test χ2

Test of independence in contingency table 2× 2 can be based on formula (10.18). In the
case r = c = 2 we get

χ2 =

2∑

i=1

2∑

j=1

(

nij −
ni.n.j

n

)2

ni.n.j

n

=
1

n

2∑

i=1

2∑

j=1

(nnij − ni.n.j)
2

ni.n.j
.

For every pair (i, j) we have

(nnij − ni.n.j)
2 = (n11n22 − n12n21)

2,

and thus

χ2 =
(n11n22 − n12n21)

2

n

2∑

i=1

2∑

j=1

1

ni.n.j
=

(n11n22 − n12n21)
2

n

n2

n1.n2.n.1n.2

= n
(n11n22 − n12n21)

2

n1.n2.n.1n.2
. (10.19)
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If hypothesis of independence is valid, then the statistic χ2 has asymptotically χ2
1 distri-

bution.

10.6.2 Odds ratio

Another approach to 2 × 2 tables can be motivated in the following example. Assume
that a man has a disease. He checks up that this disease had 18 men. Some of them were
cured, some not. Some are alive, some not. Data are in tab. 10.4.

Table 10.4: Data on sick men

Alive Dead Total

Cured 5 6 11
Not cured 3 4 7

Total 8 10 18

The man can think as follows. If he cures, his chance to alive can be estimated 5:6.
If he does not cure, then the chance to alive is 3:4. Using division we find the better
possibility: the expression

5 : 6

3 : 4
=

5 × 4

6 × 3
=

20

18

is larger than 1, and so it will be better to cure. Such expression is generally

b =
n11n22

n12n21

and we call it odds ratio. Since nij/n is estimator of probability pij , b is estimator of C .

β =
p11p22

p12p21
.

Theorem 10.6 In 2 × 2 table the equality β = 1 holds if and only if pij = pi.p.j for all
couples (i, j), i 6= j.

Proof. If pij = pi.p.j, i 6= j for all couples (i, j), then we get immediately that β = 1.
Now, assume that β = 1 holds. If we denote p11/p12 = λ, then from β = 1 it follows

that also p21/p22 = λ. From here

p11 = λp12, p21 = λp22.

The corresponding table of probabilities can be written as tab. 10.5.

Table 10.5: Table of probabilities

λp12 p12 (λ + 1)p12

λp22 p22 (λ + 1)p22

(λ + 1)p.2
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Since (λ + 1)p.2 = 1, we get that λ + 1 = 1/p.2. Because (λ + 1)p12 = p1., we see
that p12 = p1.p.2. Similarly from the relation (λ + 1)p22 = p2. it follows that p22 = p2.p.2.
Finally we get

p11 = p1. − p12 = p1. − p1.p.2 = p1.(1 − p.2) = p1.p.1,

p21 = p2. − p22 = p2. − p2.p.2 = p2.(1 − p.2) = p2.p.1. 2

The dependence of variables will be larger if β is far from 1. However, do not forget
that 0 ≤ β ≤ ∞. It was proved (see Edwards 1963), that every reasonable measure of
dependence in 2× 2 table must be function of parameter β, in the sample the function b.

Values β are not symmetric around point 1. From this reason the characteristics
logarithmic interaction d and theoretic logarithmic interaction δ were proposed, which
are defined as

d = ln b, δ = ln β.

It was proved (see Goodman 1964), that variable

D =
d − δ

√
1

n11
+

1

n12
+

1

n21
+

1

n22

has asymptotically distribution N(0, 1). If we want to test hypothesis independence H0

using this method, we insert δ = 0 and H0 is rejected in the case that |D| ≥ u
(

α
2

)
. It

is important that using D it is possible to test H0 also against one-sided alternatives.
Again, the test is asymptotic and should be used when the frequencies are sufficiently
large.

Let us return to the parameter β. It can be expressed in the form

β =
p11p22

p12p21
=

p11(1 − p1. − p.1 + p11)

(p1. − p11)(p.1 − p11)
.

Probability p11 is function of β, p1., p.1. The same holds also for other probabilities pij.
Conditional distribution of frequencies nij for given marginal frequencies depends only
on β. Then it suffices to know only the frequency n11 since other frequencies nij are
determined. Conditional probability P(n11 = t) depends only on n1., n.1, n, β. Fisher
(1935) derived, that this probability is given by non-central hypergeometric distribution

P(n11 = t|n1., n.1, n, β) =

(
n1.

t

)(
n − n1.

n.1 − t

)

βt

∑

u

(
n1.

u

)(
n − n1.

n.1 − u

)

βu

. (10.20)

Using formula (10.20) it is possible to obtain conditional confidence interval for β (see
Agresti 2002, p. 99). The value β̂, which maximizes probability (10.20), is called condi-
tional maximum likelihood estimator of the parameter β. The estimator

b = (n11n22)/(n12n21)

mentioned above is unconditional maximum likelihood estimator of the parameter β, since
it is based on maximum likelihood estimators of probabilities pij of this multinomial
distribution.
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Example 10.7 In England it was investigated if the weight of criminals and their intel-
lect are independent variables. Data (see Yule, Kendall 1950) are presented in tab. 10.6.

We test the hypothesis H0 : δ = 0 against H1 : δ 6= 0. For δ = 0 we get D = −3,03.
Since |D| ≥ u(0,025) = 1,96, we reject the hypothesis H0.

Table 10.6: Data on criminals

Intellect Weight
to 150 lb over 150 lb Total

Normal 272 124 396
Lowered 82 15 97

Total 354 139 493

We compare this result with the classical Pearson test. We get χ2 = 9,67, p-value
= 0.002. Since p-value is smaller than 0.05, hypothesis of independence would be rejected
also by this test. Notice that D2 = 9,18 is not very different from the value χ2 = 9,67.
♦

The application of the odds-ratio can also sometimes give paradoxical results. Con-
sider again the example presented at the beginning of this section. Let us imagine that
a woman is ill. She would have for disposal data on 23 ill women (see tab. 10.7).

Table 10.7: Data on sick women

Alive Dead Total

Cured 6 3 9
Not cured 9 5 14

Total 15 8 23

Table 10.8: Data on sick people

Alive Dead Total

Cured 11 9 20
Not cured 12 9 21

Total 23 18 41

This woman calculates odds ratio b = (6 : 3)/(9 : 5) = 30/27. Since b > 1, for her it
would be better to cure.

If the data are collapsed, we obtain tab. 10.8.

In the collapsed table we have b = 99/108 < 1. This leads to the surprising conclusion
that for men and women it is better to cure but for people not to cure. This is Simpson
paradox .
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10.6.3 Fisher’s factorial test

If the frequencies are small and it is not appropriate to use in the 2 × 2 the limiting
distribution χ2

1 , in such a case is applied the following method. Probability that given n
frequencies n11, n12, n21, n22, will be realized is

P (n11, n12, n21, n22) =
n!

n11! n12! n21! n22!
pn11

11 pn12

12 pn21

21 pn22

22 .

Assume that the hypothesis independence H0 : pij = pi.p.j is true. Denote

Q = pn1.

1. pn2.

2. pn.1

.1 pn.2

.2 .

Then under H0 we get

P (n11, n12, n21, n22) =
n!

n11! n12! n21! n22!
Q. (10.21)

Probability that a table with marginal frequencies n1., n2., n.1, n.2 arizes, is equal to

R =

min(n1.,n.1)∑

i=max(0,n.1−n2.)

P (i, n1. − i, n.1 − i, i + n2. − n.1).

Inserting from (10.21) we obtain

R = Q
n!

n1.! n2.!

min(n1.,n.1)∑

i=max(0,n.1−n2.)

(
n1.

i

)(
n2.

n.1 − i

)

.

But for arbitrary nonnegative integers r, s and k fulfilling condition r + s ≥ k comparing
coefficients by tk in the formula

(1 + t)r(1 + t)s = (1 + t)r+s

we get Vandermond convolutory formula

min(r,k)
∑

i=max(0,k−s)

(
r

i

)(
s

k − i

)

=

(
r + s

k

)

.

This gives

R = Q
(n!)2

n1.! n2.! n.1! n.2!
.

Conditional probability P , that in given table with marginal frequencies n1., n2., n.1, n.2

a table with frequencies n11, n12, n21, n22 arises, is equal

P =
P (n11, n12, n21, n22)

R
.

P =
n1.! n2.! n.1! n.2!

n! n11! n12! n21! n22!
. (10.22)



10.6. 2 × 2 TABLES 97

Sometimes P is introduced in an equivalent form

P =

(
n1.

n11

)(
n2.

n21

)

(
n

n.1

) .

An advantage of the conditional probability P is that it does not contain any unknown
parameters and so we have no problem in estimating them.

The testing procedure depends on the problem if we want to test hypothesis H0 against
one-sided or two-sided alternative. Let d be the logarithmic interaction of he given table.
If we test H0 against the alternative H1 : δ < 0 (where δ is the theoretical logarithmic
interaction), probabilities P are summed for the tables which have the same marginal
frequencies as the original table and their logarithmic interactions are smaller or equal
number d. If this sum is smaller or equal α, H0 is rejected.

When testing H0 against H1 : δ > 0 we add probabilities P of the tables with the
same marginal frequencies as the original table, the logarithmic interactions having larger
or equal d. If the sum of probabilities smaller or equal α, H0 is rejected. The two-sided
test can be done analogously.

This test was derived by R. A. Fisher. Since calculation of probabilities is based on
formula (10.22), the test is called Fisher’s factorial test. The actual level of the test is
usually less than α. Sometimes it is called Fisher’s exact test.

Example 10.8 Some 24 randomly chosen students were asked if they have good or bad
results in maths and if the study music. Denote M+ good and M− bad result in math
and denote H+ (and H−) the case when the student studies (or not studies) music. The
results are in tab. 10.9.

Table 10.9: Mathematics and music

H+ H− Celkem

M+ 6 4 10
M− 1 13 14

Total 7 17 24

We should test the hypothesis that the results in math and study of music are inde-
pendent.

We find all tables with the same marginal frequencies as the starting table (see
tab. 10.10). Then we calculate their logarithmic interactions d and Fisher’s probabil-
ities P .

You can see that the sum of all probabilities P is really 1. We do two-sided test and so
we sum the probabilities P , which correspond to tables with absolute value of logarithmic
interaction larger or equal to the number 2.97. We get the number

0.009 916 + 0.008 495 + 0.000 347 = 0.018 758.

The sum 0.018 758 is not larger than α = 0.05, and so we reject the hypothesis about
independence. We emphasize that this does not prove the causality.

♦
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Table 10.10: Set of contingency tables with the same marginal frequencies as tab. 10.9

0 10 1 9 2 8 3 7
7 7 6 8 5 9 4 10

d = −∞ d = −1.91 d = −0.80 d = 0.07
P = 0.009 916 P = 0.086 766 P = 0.260 297 P = 0.347 063

4 6 5 5 6 4 7 3
3 11 2 12 1 13 0 14

d = 0.89 d = 1.79 d = 2.97 d = ∞
P = 0.220 858 P = 0.066 258 P = 0.008 495 P = 0.000 347



Chapter 11

Paired problem

11.1 Paired t test

Consider the random sample (Y1, Z1)
′,. . . ,(Yn, Zn)

′ from a twodimensional distribution
with vector of mean values (µ1, µ2)

′. We want to test the hypothesis H0 : µ1 − µ2 = ∆
against alternative H1 : µ1−µ2 6= ∆, where ∆ is given number (mostly zero). Define Xi =
Yi − Zi, i = 1, . . . , n. Variables X1, . . . , Xn are independent and identically distributed.
Assume that Xi ∼ N(µ, σ2). Obviously µ = µ1 − µ2. Now, we have to test H ′

0 : µ = ∆
against H ′

1 : µ 6= ∆ and the problem is changed to the one sample t test, which is in this
case called paired t test .

The hypothesis H ′
0, and also the hypothesis H0, will be rejected at level α,if |X̄ −

∆|√n/S ≥ tn−1(α), where S is calculated from z X1, . . . , Xn. The most frequent case
is the situation when {(Yi, Zi)

′} is the sample from a two-dimensional normal normal
distribution. This assumption ensures that the paired t test can be used. The paired
t test is used usually in situations when we have on each from n objects measured two
variables and individual objects are considered as independent but not the measurements
on the same object.

Confidence interval for ∆ can be derived from the fact that

P{|X̄ − ∆|√n/S ≤ tn−1(α)} = 1 − α.

Thus confidence interval for ∆ has endpoints

X̄ ∓ 1√
n

Stn−1(α).

Example 11.1 It should be decided if two front tyres go down equally fast. Six new
cars were chosen and after some time it were measured how much two front tyres went
down.

Differences in go down can be considered as independent random variables with dis-
tribution N(µ, σ2). If both tyres go down equally fast, the hypothesis H0 : µ = 0
is valid. We have n = 6, ∆ = 0, X̄ = 0,0833, S2 = 0,0377, T = 1,0518. Since
1,0518 < t5(0,05) = 2,571, we cannot reject the hypothesis that both front tyre go down
equally fast. ♦

99
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Table 11.1: Tyres go down

Number of car 1 2 3 4 5 6

right tyre : 1.8 1.0 2.2 0.9 1.5 1.6
left tyre : 1.5 1.1 2.0 1.1 1.4 1.4

Difference 0.3 −0.1 0.2 −0.2 0.1 0.2

11.2 Paired sign test

Let (Y1, Z1)
′,. . . ,(Yn, Zn)

′ be a random sample from a two-dimensional distribution. De-
fine Xi = Yi −Zi, i = 1, . . . , n. Assume that the variables Xi have a continuous distribu-
tion with a unique median x̃. We should test the hypothesis H0, that x̃ = x0, where x0

is a given number. Thus the problem is transformed to one-dimensional sigh test. The
procedure is called paired sign test .

11.3 Paired Wilcoxon test

Consider a random sample (Y1, Z1)
′,. . . ,(Yn, Zn)′ from a two-dimensional distribution.

Denote Xi = Yi − Zi, i = 1, . . . , n. Assume that the variables Xi have a continuous
distribution with a density which is symmetric around the point a and positive in its
neighbourhood. Then a is a median of this distribution. We want to test the hypothesis
H0, that a = x0, where x0 is a given number. The problem is transformed to one-sample
Wilcoxon test. This procedure is called one-sample Wilcoxon test.

11.4 Spearman correlation coefficient

We have seen that the analysis of sample correlation coefficient has the assumption that
the sample is from the normal distribution. However, it happens quite often that this
assumption is not valid. And sometimes in the random sample (X1, Y1)

′, . . . , (Xn, Yn)
′ the

values of the mentioned random variables it is not possible to determine, only their order
is in our disposal. But if the order X-values and Y -values are very similar it indicates
some dependence between Xi a Yi.

Assume that (X1, Y1)
′, . . . , (Xn, Yn)′ is the sample from a continuous two-dimensional

distribution. Let R1, . . . , Rn be orders of variables X1, . . . , Xn and Q1, . . . , Qn orders of
variables Y1, . . . , Yn. It is quite usual to order couples (X1, Y1)

′, . . . , (Xn, Yn)′ in advance
such that Ri = i, i = 1, . . . , n.

Spearman correlation coefficient rS is defined as sample correlation coefficient calcu-
lated from (R1, Q1)

′, . . . , (Rn, Qn)′, it means

rS =

∑
RiQi − nR̄Q̄

√

(
∑

R2
i − nR̄2)(

∑
Q2

i − nQ̄2)
.

Theorem 11.2 We have

rS = 1 − 6

n(n2 − 1)

n∑

i=1

(Ri − Qi)
2. (11.1)
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Proof. We have

rS =

∑
RiQi − nR̄Q̄

√
(∑

R2
i − nR̄2

) (∑
Q2

i − nQ̄2
) , (11.2)

where

R̄ =
1

n

n∑

i=1

Ri =
1

n

n∑

i=1

i =
n + 1

2
, Q̄ = R̄,

n∑

i=1

R2
i =

n∑

i=1

Q2
i =

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
,

∑

RiQi =
1

2

(∑

R2
i +

∑

Q2
i

)

− 1

2

∑

(Ri − Qi)
2

=
n(n + 1)(2n + 1)

6
− 1

2

∑

(Ri − Qi)
2.

These results we insert into (11.1) and after some simplification we get formula (11.2).
2

Critical values are denoted by rS(α). If |rS| ≥ rS(α), we reject hypothesis of inde-
pendence Yi and Xi. For n > 30 we use asymptotic normality of the coefficient rS. We
calculate

r∗S(α) =
u
(

α
2

)

√
n − 1

. (11.3)

Hypothesis of independence is rejected in the case that |rS| ≥ r∗S(α). One-sided tests can
be derived similarly.

If (X1, Y1)
′, . . . , (Xn, Yn)

′ is the sample from the regular two-dimensional normal dis-
tribution with correlation coefficient ρ, then it can be proved (see van der Waerden 1957),
that

ErS =
6

π

n − 2

n + 1
arcsin

ρ

2
+

6

π(n + 1)
arcsin ρ.

With growing n the second member on the right-hand side tends to zero and the sample
correlation coefficient r tends almost surely to ρ. We get an approximation

r
.
= 2 sin

(π

6
rS

)

.

If in our data from which rS is calculated, there are many agreements, it is recom-
mended to use corrected Spearman correlation coeficient (see Kendall 1962 and Sachs
1974). It is defined by the formula

rS,korig = 1 − 6
∑

(Ri − Qi)
2

n3 − n − Tx′ − Ty′

,

where

Tx′ =
1

2

∑

(t3x′ − tx′), Ty′ =
1

2

∑

(t3y′ − ty′).

Here symbol tx′ denotes number of equally large X-values. (If we have among X- values
a few groups with the same number of observations, then tx′ are sizes of the groups.
Symbol tx′ is defined analogously.)
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Chapter 12

Discrete paired problem

12.1 McNemar test

In some cases we want to apply another test than the test of independence or the test
of homogeneity. Sometimes we have a set of n randomly chosen statistical units and
presence and absence of a characteristic is investigated. Then an intervention in every
unit is executed and repeatedly it is investigated if the characteristic is present or not.
The aim of the investigation is to find if the intervention changed probability of the
occurrence of the characteristic.

Denote 1 presence and 0 absence of the characteristic. In this case it is necessary
to have data in the form of tab. 12.1. We assume that these data are sample from a
multinomial distribution with parameter n and with probabilities introduced in tab. 12.2.

Table 12.1: Frequencies for the McNemar test

Before After intervention
intervention 1 0 Total

1 n11 n12 n1.

0 n21 n22 n2.

Total n.1 n.2 n

Table 12.2: Probabilities for McNemar test

Before After intervention
intervention 1 0 Total

1 p11 p12 p1.

0 p21 p22 p2.

Total p.1 p.2 1

We want to test H0 : p1. = p.1. By chance H0 is equivalent to hypothesis of symmetry
H ′

0 : p12 = p21. In this case all probabilities in tab. 12.2 are determined by two unknown
parameters p11 and p12. If H ′

0 holds then p21 = p12 and p22 = 1 − p11 − 2p12.

103
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From formula (10.13) we get

n11

p11
− n22

p22
=0,

n12

p12
+

n21

p21
− 2

n22

p22
=0.

It implies

n11 =
n22

p22

p11, (12.1)

n12 + n21 =2
n22

p22
p12. (12.2)

We include a trivial equality

n22 =
n22

p22
p22

and then we add all relations. This gives

n =
n22

p22

,

so that an estimator for p22 is p̂22 = n22/n. Inserting in (12.1) and (12.2) we obtain

p̂11 =
n11

n
, p̂12 =

n12 + n21

2n
, p̂21 = p̂12.

The variable

χ2 =

2∑

i=1

(nii − np̂ii)
2

np̂ii
+

(n12 − np̂12)
2

np̂12
+

(n21 − np̂21)
2

np̂21

is equal to

χ2 =
(n12 − n21)

2

n12 + n21

(12.3)

and has asymptotically χ2
1 distribution. Hypothesis H0 is rejected, when χ2 ≥ χ2

1(α). In
textbooks it is introduced that this asymptotic result is applicable for n12 +n21 ≥ 8. The
test was published in McNemar (1947).

When frequencies are small then we use the result that under H0 the conditional
distribution of frequencies n12 is binomial Bi

(
n12 + n21,

1
2

)
. A detailed derivation can be

found in the book Anděl (2007), for example. Define N = n12 + n21. Hypothesis H0 is
rejected, if n12 ≤ k1 or n12 ≥ k2, where k1 and k2 are corresponding critical values. This
test is two-sided. Using its variant based on the binomial distribution it is easy to apply
the McNemar test also against its one-sided alternatives.

Example 12.1 It was investigated if application of a medicament has as a side effect
change of speed of shrinkage of blood. Randomly was determined 100 patients. Each of
them was determined if his shrinkage of blood is slow or fast. Then the patients obtained
the mentioned medicament and after adequate time the speed of shrinkage of blood was
determined again. The results are in tab. 12.3.
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Table 12.3: Shrinkage of blood

Before After application
application Slow Fast Total

Slow 24 28 52
Fast 12 36 48

Total 36 64 100

Using (12.3) we get χ2 = 6,4. This value is larger than χ2
1(0,05) = 3,84. Thus we

reject the hypothesis that the application of medicament has no influence on speed of
shrinkage of blood.

For N = 28 + 12 = 40 and α = 0.05 critical values are k1 = 13, k2 = 27. Since
n12 = 28 ≥ k2, we reject the hypothesis that the application of medicament has no
influence on speed of shrinkage of blood, too.

The calculation using the program R can be following one.

slow.aft <- c(24,12)

quick.aft <- c(28,36)

tbl <- cbind(pomala.aft,rychla.aft)

rownames(tbl) <- c("pomala.pred","rychla.pred")

names(dimnames(tbl)) <- c("reakce.pred","reakce.po")

mcnemar.test(tbl, correct=F)M
Nemar's Chi-squared testdata: tbl M
Nemar's 
hi-squared = 6.4, df = 1, p-value = 0.01141
♦

12.2 Stuart test

Consider a square contingency table with dimension c × c. The data should be used for
testing hypothesis of homogeneity of marginal probabilities

H0 : p1. = p.1, . . . pc. = p.c.

We describe the Stuart test , which is direct generalization of the McNemar test. Introduce
the following notation:

di = ni. − n.i for i = 1, . . . , c, d = (d1, . . . , dc−1)
′.

Let V = (Vij)i,j=1,...,c−1 be the matrix of dimension (c−1)×(c−1), the elements of which
are

Vii =ni. + n.i − 2nii,

Vij =−(nij + nji) for i 6= j.

Theorem 12.2 (Stuart) If the hypothesis H0 is valid, then the variable Q = d′V −1d

has asymptotically χ2
c−1 distribution.
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Proof. See Stuart (1955) or Anděl (2007). 2

It is easy to check that for c = 2 the variable Q is the same as the variable χ2 which is
introduced in formula (12.3). If c = 3 the variable Q can be calculated using the formula

Q =
N23d

2
1 + N13d

2
2 + N12d

2
3

2(N12N23 + N12N13 + N13N23)
, (12.4)

where

Nij =
nij + nji

2
.

A similar but more complicated explicit formula was derived also for c = 4 (see Krauth
1985).



Chapter 13

Two-sample problem

13.1 Descriptive statistics

The description of data and their graphical representation will be illustrated on data
called energy available in library ISwR. The data are in form data.frame with 22 rows
and 2 columns. It is a description of energy expenditure in the groups of lean and obese
women. The first column called expend is numerical vector giving expenditure of energy
in MJ during 24 hours. The second column is called stature and it is factor with levels
lean a obese. (See Dalgaard 2002.)

library(ISwR)

data(energy)

attach(energy)

expend.lean <- expend[stature=="lean"]

expend.obese <- expend[stature=="obese"]

expend.lean[1℄ 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58[13℄ 8.11
expend.obese[1℄ 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

For each group we prepare histogram. The histograms are placed in such a way that
they can be compared (see fig. 13.1).

opar <- par(mfrow=c(2,1))

hist(expend.lean, breaks=10, xlim=c(5,13), ylim=c(0,4), col="white")

hist(expend.obese, breaks=10, xlim=c(5,13), ylim=c(0,4), col="grey90")

par(opar)

Data can be also represented by boxplots (see fig. 13.2) and using figure called
stripchart (see fig. 13.3). Figures were created using program

boxplot(expend ~ stature, boxwex=0.2, las=1)

stripchart(expend ~ stature, method="jitter", jitter=0.03, vertical=T,

las=1)

In the case of stripcharts the method called jitter was used to show also data which
are identical or very nearly the same.

107
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Figure 13.1: Histograms

13.2 Two-sample Kolmogorov-Smirnov test

Let X1, . . . , Xm be a random sample from a distribution with continuous distribution
function F and let Y1, . . . , Yn be an independent random sample with a continuous dis-
tribution function G. Consider a test of hypothesis H0 : F = G against H1 : F 6= G.
Let Fm be the empirical distribution function of the first sample and Gn of the second
sample. Theorems 9.1 and 9.2 imply, that the functions Fm and Gn with increasing m
and n converge to distribution functions F and G. Define

Dm,n = sup
x

|Fm(x) − Gn(x)|.

If H0 is true then the Glivenko-Cantelli theorem gives that Dm,n → 0 almost surely when
m → ∞, n → ∞. An exact result is described in the following theorem.

Theorem 13.1 (Smirnov) Let M = mn/(m + n). Define

K(λ) = 1 − 2

∞∑

k=1

(−1)k+1 exp(−2k2λ2). (13.1)

Then for every λ we have

lim
m,n→∞

P(
√

M Dm,n < λ) = K(λ).
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Figure 13.2: Boxplots

Proof. See Smirnov (1944). Modern proof can be found in the book Hájek, Šidák (1967).
Function K(λ) was introduced in the formula (9.3) on p. 72. 2

Distribution of the variable Dm,n for finite values m, n is introduced in the book
Hájek, Šidák (1967). Function K(λ) can be approximated by some members from the
beginning of the series 1 − 2e−2λ2

(see Likeš, Laga 1978). Then

P

(

Dm,n <
λ√
M

)

.
= 1 − 2e−2λ2

.

The expression on the right hand side equals to 1−α for λ = λα =
√

1
2
ln 2

α
. The critical

value is approximately

D∗
m,n(α) =

λα√
M

=

√

1

2M
ln

2

α
.

Practical use of the Kolmogorov-Smirnov test is the following one. From samples
X1, . . . , Xm and Y1, . . . , Yn empirical distribution functions Fm and Gn and the variable
Dm,n are calculated. If the numbers m and n are small, the variable Dm,n is compared with
exact critical values Dm,n(α). If the numbers m and n are not very small, theorem 13.1
can be applied. Define λ0 =

√
M Dm,n and calculate K(λ0). If we get K(λ0) ≥ 1 − α,

we reject H0 on the level which tends to α when the sizes of the samples go to infinity.
The critical value for the variable Dm,n is approximated by D∗

m,n(α). Hypothesis H0 is
rejected when Dm,n ≥ D∗

m,n(α).
The Kolmogorov-Smirnov test was generalized to the case of comparing three and

more samples in the paper Kiefer (1959). Critical values were tabulated in Wolf, Naus
(1973). See also Domaǹski (1990).

Example 13.2 Two methods of fertilization were compared. Eight fields were fertilized
using the new method and five by old method. The crop of wheat on hectares in tons
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Figure 13.3: Stripcharts

Table 13.1: Yield of wheat in tons on hectare

Xi 5.7 5.5 4.3 5.9 5.2 5.6 5.8 5.1
Yi 5.0 4.5 4.2 5.4 4.4

are labeled Xi for new method and Yi for the old method. The data are presented in
tab. 13.1. We should find out if the method of fertilization has influence on the yield of
wheat.

First, we construct graph of the both distribution functions (see fig. 13.4).

new <- c(5.7,5.5,4.3,5.9,5.2,5.6,5.8,5.1)

old <- c(5.0,4.5,4.2,5.4,4.4)

plot.ecdf(new, verticals=T, las=1, xlab="", ylab="", pch="", main="")

plot.ecdf(old, verticals=T, add=T, pch="", lty=2)

The full line shows ecdf of yields concerning the new method of fertilization and the
dashed line concerns the old one.

In our example we have D8,5 = 0.675. Critical value on the level 5 per cent is 0.75.
(By the way, the approximate critical value is D∗

8,5(0.05) = 0.774.) Since D8,5 < 0.75,
Kolmogorov-Smirnov test does not reject the hypothesis that both samples are from
populations with the same distribution functions.

Both samples have small sizes. Application of theorem 13.1 is recommended for
m + n > 35. If we use the approximation, we get λ0 = 1.184, K(λ0) = 0.879. Since
K(λ0) < 0,95, we cannot reject the hypothesis.

Using the program R the calculations can be done in the following way.

ks.test(new,old)Two-sample Kolmogorov-Smirnov testdata: new and old D = 0.675, p-value = 0.07925 alternativehypothesis: two.sided
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Figure 13.4: Two-sample Kolmogorov-Smirnov test

♦

13.3 Two-sample t test

Let X1, . . . , Xm be a sample from N(µ1, σ
2) and let Y1, . . . , Yn be a sample from N(µ2, σ

2).
Assume that m ≥ 2, n ≥ 2, σ2 > 0, and that both samples are mutually independent.
Denote

X̄ =
1

m

m∑

i=1

Xi, Ȳ =
1

n

n∑

i=1

Yi,

S2
X =

1

m − 1

m∑

i=1

(Xi − X̄)2, S2
Y =

1

n − 1

n∑

i=1

(Yi − Ȳ )2.

Under these assumptions the following theorem holds.

Theorem 13.3 Random variable

T =
X̄ − Ȳ − (µ1 − µ2)

√

(m − 1)S2
X + (n − 1)S2

Y

√

mn(m + n − 2)

m + n
(13.2)

has distribution tm+n−2.

Proof. Theorems 4.6 (b) on p. 48 and 3.6 on p. 38 give that

Z = [(m − 1)S2
X + (n − 1)S2

Y ]/σ2 ∼ χ2
m+n−2.

Similarly as in theorem 4.6 (c) can be proved that the variables X̄ − Ȳ and (m− 1)S2
X +

(n − 1)S2
Y are independent. We get

X̄ − Ȳ ∼ N

(

µ1 − µ2,
σ2

m
+

σ2

n

)

.
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In the same time we have

U =
X̄ − Ȳ − (µ1 − µ2)

√

σ2

m
+

σ2

n

∼ N(0, 1).

Theorem 3.10 ensures that the variable U
/√

Z/(m + n − 2) has distribution tm+n−2.

However, U
/√

Z/(m + n − 2) = T . 2

Two-sample t-test is the test of hypothesis H0 : µ1−µ2 = δ, where δ is a given number
(very often it is δ = 0). If it is a test against alternative H1 : µ1 − µ2 6= δ, the procedure
is following one. First, we calculate T from formula (13.2) where we insert µ1 − µ2 = δ.
If |T | ≥ tm+n−2(α), we reject the hypothesis H0 on the level α. The one-sided tests are
analogous.

Among assumptions of two-sample t test we have that both samples come from normal
populations with the same variance. The violation of these assumptions does not influence
the result of the test too much. Yet in the case of substantial non-normality we prefer
some non-parametric tests (very often it is two-sample Wilcoxon test, see section 13.6).
Assumption that the variances are equal can be checked by help of the F test (see section
13.5). If it is known that the variances are different the Welch test is applied (see section
13.4).

Example 13.4 Eleven piglings were randomly divided into two groups. The first group
contained 6 piglings and they were fed by diet A. In the second group were 5 piglings
on diet B. Average daily increments after 6 months are given in tab. 13.2. It should be
established if both diets are equally effective.

Table 13.2: Average daily increments in dkg

Diet A 62 54 55 60 53 58
Diet B 52 56 49 50 51

Data are plotted in fig. 13.5 and we apply two-sample t test.

da<-c(62,54,55,60,53,58) # data

db<-c(52,56,49,50,51)

boxplot(da, db, names=c("da", "db"), boxwex=0.3, las=1) # graph

t.test(da,db,var.equal=T) # testTwo Sample t-testdata: da and dbt = 2.7712, df = 9, p-value = 0.02171alternative hypothesis: true differen
e in means is not equal to 095 per
ent 
onfiden
e interval:0.9919634 9.8080366sample estimates:mean of x mean of y57.0 51.6
Since p-value is smaller than 0.05, we reject hypothesis that both diets are equally effec-
tive. ♦
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Figure 13.5: Boxplots for diet a and b

13.4 Two-sample Welch test

Let X1, . . . , Xn1
be a sample from N(µ1, σ

2
1) and Y1, . . . , Yn2

an independent sample from
N(µ2, σ

2
2). Assume that σ1 > 0, σ2 > 0, n1 ≥ 2, n2 ≥ 2. Define f1 = n1 − 1, f2 = n2 − 1,

X̄ =
1

n1

n1∑

i=1

Xi, Ȳ =
1

n2

n2∑

i=1

Yi, S2
1 =

1

f1

n1∑

i=1

(Xi−X̄)2, S2
2 =

1

f2

n2∑

i=1

(Yi− Ȳ )2.

Welch test (see Welch 1938) was derived for testing the hypothesis H0 : µ1 = µ2 against
one-sided or two-sided alternative. If variances σ2

1 and σ2
2 were known, we would use the

test statistic

ξ =
X̄ − Ȳ

√

σ2
1

n1

+
σ2

2

n2

, (13.3)

which has distribution N(0, 1) under H0. If the variances σ2
1 and σ2

2 are not known, it is
natural to substitute them by their estimators S2

1 a S2
2 . Thus we will investigate the test

statistic

t =
X̄ − Ȳ

√

S2
1

n1
+

S2
2

n2

. (13.4)

The statistics can be written in the form

t =

X̄ − Ȳ
√

σ2
1

n1
+

σ2
2

n2

√

σ2
1

n1

+
σ2

2

n2

√
√
√
√
√

f1S
2
1

σ2
1

︸ ︷︷ ︸

η1

σ2
1

n1f1
+

f2S
2
2

σ2
2

︸ ︷︷ ︸

η2

σ2
2

n2f2

.
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Define

η1 =
f1S

2
1

σ2
1

, η2 =
f2S

2
2

σ2
2

.

We know that

η1 =∼ χ2
f1

, η2 =∼ χ2
f2

.

Inserting from (13.3) we get

t =
ξ

√
√
√
√
√
√
√
√
√

σ2
1

n1f1

σ2
1

n1
+

σ2
2

n2
︸ ︷︷ ︸

a

η1 +

σ2
2

n2f2

σ2
1

n1
+

σ2
2

n2
︸ ︷︷ ︸

b

η2

.

Let

a =

σ2
1

n1f1

σ2
1

n1

+
σ2

2

n2

, b =

σ2
2

n2f2

σ2
1

n1

+
σ2

2

n2

, w = aη1 + bη2.

Then

t =
ξ√
w

.

To calculate exact distribution of the variable t would be difficult. Welch suggested the
following approximation of the distribution of the variable w:

L(w)
.
= L(gZ),

where g is an appropriate constant and Z is a random variable having distribution χ2
f .

The number of degrees f must be determined. The constants g and f can be calculated
using moment method from conditions

Eaη1 + Ebη2 = EgZ,

var aη1 + var bη2 = var gZ.

Thus we obtain system of equations

af1 + bf2 = gf,

2(a2f1 + b2f2) = 2g2f.

The solution is

g =
a2f1 + b2f2

af1 + bf2
, f =

(af1 + bf2)
2

a2f1 + b2f2
.

In the frame of the used approximation we have

w

g
∼ χ2

f .
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Thus
ξ

√
w

g
· 1

f

∼ tf .

A simple derivation gives
gf = af1 + bf2 = 1.

It implies
ξ√
w

∼ tf ,

where

f =
(af1 + bf2)

2

a2f1 + b2f2

=
1

a2f1 + b2f2

=

(
σ2

1

n1
+

σ2
2

n2

)2

σ4
1

n2
1f1

+
σ4

2

n2
2f2

.

In this formula the unknown parameters σ2
1 a σ2

2 are substituted by estimators S2
1 a S2

2 .
Instead of f the degrees of freedom are taken as

f ∗ =

(
S2

1

n1
+

S2
2

n2

)2

S4
1

n2
1f1

+
S4

2

n2
2f2

and the approximation t ∼ tf∗ is used.
It can be derived that

min{f1, f2} ≤ f ∗ ≤ f1 + f2.

Example 13.5 We use data from example 13.4. We get

da<-c(62,54,55,60,53,58) db<-c(52,56,49,50,51) t.test(da,db)Wel
h Two Sample t-testdata: da and db t = 2.8487, df = 8.947, p-value = 0.01924alternative hypothesis: true differen
e in means is not equal to 095 per
ent 
onfiden
e interval:1.107981 9.692019sample estimates: mean of x mean of y57.0 51.6
Since the p-value is smaller than 0.05, we reject the hypothesis that the true difference
in means is equal to 0. ♦

13.5 Test of equality of variances

Theorem 13.6 Let X1, . . . , Xn be a sample from N(µ1, σ
2
1) and Y1, . . . , Ym a sample

from N(µ2, σ
2
2). Let these two samples be independent. Assume that n ≥ 2, m ≥ 2,

σ2
1 > 0, σ2

2 > 0. Let X̄, S2
X and Ȳ , S2

Y be characteristics of the samples. If the equality
σ2

1 = σ2
2 holds, then Z = S2

X/S2
Y ∼ Fn−1,m−1.
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Proof. The assertion follows from theorem 3.11 on p. 40. 2

We shall test hypothesis H0 : σ2
1 = σ2

2 against H1 : σ2
1 6= σ2

2. We reject H0 if
S2

X/S2
Y ≤ k1, or S2

X/S2
Y ≥ k2. The constants k1 and k2 are chosen so that under H0

P(S2
X/S2

Y ≤ k1) = α/2, P(S2
X/S2

Y ≥ k2) = α/2. (13.5)

Then the probability of error of the first kind is α. Theorem 13.6 gives that (13.5) holds
in the case

k1 = Fn−1,m−1

(

1 − α

2

)

=
1

Fm−1,n−1

(
α
2

) , k2 = Fn−1,m−1

(α

2

)

, (13.6)

where Fu,v(α) is the critical value of F distribution. It is recommended to introduce such
denotation that S2

X ≥ S2
Y . Then it suffices to see if the inequality S2

X/S2
Y ≥ Fn−1,m−1

(
α
2

)

holds, and it is not needed to calculate the inverse of critical values.
If the variances are σ2

1 and σ2
2 and (13.6) holds, then

P

{
S2

X

S2
Y

1

k2
≤ σ2

1

σ2
2

≤ S2
X

S2
Y

1

k1

}

= 1 − α.

Then (

S2
X

S2
Y

1

Fn−1,m−1

(
α
2

) ,
S2

X

S2
Y

Fm−1,n−1

(α

2

)
)

is two-sided confidence interval for the ratio σ2
1/σ

2
2 with confidence coefficient 1 − α.

Since F -test is sensitive to assumption about equality of variances, the Levene test is
often used instead (see section 15.6, p. 143).

Example 13.7 Consider again data introduced in example 13.4. We have

da<-c(62,54,55,60,53,58)

db<-c(52,56,49,50,51)

var.test(da,db)F test to 
ompare two varian
esdata: da and dbF = 1.7534, num df = 5, denom df = 4, p-value = 0.6063alternative hypothesis: true ratio of varian
es is not equal to 195 per
ent 
onfiden
e interval:0.1872423 12.9541010sample estimates: ratio of varian
es1.753425
Since p-value is larger than 0.05, the hypothesis that the true ratio of variances is equal
to 1 is not rejected. Now, we show Levene test.

prirust <- c(da, db)

dieta <- factor(c(rep("A",6), rep("B",5)))

library(car)

leveneTest(prirust, dieta)Levene's Test for Homogeneity of Varian
e (
enter = median)Df F value Pr(>F)group 1 1.3439 0.27629
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Since p-value 0.2762 is larger than 0.05, Levene test also does not reject hypothesis
that true ratio of variances is equal to 1.

Let us remark that in the case of data prepared like in this example the classical
two-sample t-test will be calculated using

t.test(prirust ~ dieta, var.equal=T)

and Welch two-sample t-test using

t.test(prirust ~ dieta).

♦

13.6 Two-sample Wilcoxon test

Let X1, . . . , Xm be a random sample from a continuous distribution with a distribution
function F and Y1, . . . , Yn an independent random sample with a distribution function
G.

We want to test the hypothesis H0 : F = G against the alternative H1 : F 6= G. All
m + n variables X1, . . . , Xm, Y1, . . . , Yn form a pooled sample. Let T1 be sum of ranks
X1, . . . , Xm and T2 sum of ranks Y1, . . . , Yn. It is clear that

T1 + T2 =
1

2
(m + n)(m + n + 1).

First we investigate general properties of tests of this type. Let N = m + n and let Ri

be the rank of the ith variable. Finally, let a(i) be a function defined for i = 1, . . . , N .
The variable

S =

N∑

i=1

ci a(Ri)

is called simple linear rank statistic.
The numbers c1, . . . , cN are regression constants and a(i) are scores. Define

ā=
1

N

N∑

i=1

a(i), c̄=
1

N

N∑

i=1

ci,

σ2
a =

1

N

N∑

i=1

[a(i) − ā]2, σ2
c =

1

N

N∑

i=1

(ci − c̄)2.

Theorem 13.8 If H0 holds, then

ES = Nāc̄, varS =
N2

N − 1
σ2

aσ
2
c .

Proof. If H0 holds, then Ri is a random variable which is equal to every value 1, . . . , N
with probability 1/N . Thus

Ea(Ri) =
N∑

t=1

a(t)
1

N
= ā, (13.7)
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so that

ES =
N∑

i=1

ci Ea(Ri) =
N∑

i=1

ciā = Nāc̄.

If i 6= j, then under H0 we have

P(Ri = s, Rj = t) =
1

N(N − 1)
for 1 ≤ s 6= t ≤ N.

Using (13.7) we get

var a(Ri) = E[a(Ri) − Ea(Ri)]
2 = E[a(Ri) − ā]2 =

1

N

N∑

t=1

[a(t) − ā]2 = σ2
a

and then for i 6= j

cov[a(Ri), a(Rj)] =E[a(Ri) − ā][a(Rj) − ā]

=
1

N(N − 1)

∑∑

s 6=t

[a(s) − ā][a(t) − ā]

=
1

N(N − 1)

{
∑

s

∑

t

[a(s) − ā][a(t) − ā] −
∑

s

[a(s) − ā]2

}

=− 1

N(N − 1)

∑

s

[a(s) − ā]2 = − 1

N − 1
σ2

a.

This implies that

var S =
∑

i

c2
i var a(Ri) +

∑∑

i6=j

cicj cov[a(Ri), a(Rj)]

= σ2
a

(
∑

i

c2
i −

1

N − 1

∑∑

i6=j

cicj

)

= σ2
a

(
∑

i

c2
i −

1

N − 1

∑

i

∑

j

cicj +
1

N − 1

∑

i

c2
i

)

=
σ2

a

N − 1

[

N
∑

i

c2
i −

(∑

ci

)2
]

=
N

N − 1
σ2

a

∑

i

(ci − c̄)2

=
N2

N − 1
σ2

aσ
2
c . 2

Theorem 13.9 If H0 holds, then

ET1 =
1

2
m(m + n + 1), var T1 =

1

12
mn(m + n + 1).

Proof. Variable T1 is special case of S, if we insert a(i) = i and

ci =

{
1 pro i = 1, . . . , m,
0 pro i = m + 1, . . . , m + n.
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Define again N = m + n. We have

ā =
1

N

N∑

i=1

i =
N + 1

2
, σ2

a =
1

N

N∑

i=1

i2 − ā2 =
1

12
(N + 1)(N − 1),

c̄ =
m

N
, σ2

c =
1

N

N∑

i=1

c2
i − c̄2 =

mn

N2
.

It follows from theorem 13.8 that

ET1 = Nāc̄ =
m(m + n + 1)

2
, varT1 =

N2

N − 1
σ2

aσ
2
c =

mn(m + n + 1)

12
. 2

Instead of T1 the variable U1 = mn + 1
2
m(m + 1) − T1 is used. The test based on

U1 is called Mann-Whitney test . Let U2 = mn + 1
2
n(n + 1) − T2. Then U1 + U2 = mn.

The statistic U1 gives number of cases when Xi < Yj. Similarly, U2 gives number of
cases when Xi > Yj holds. If min(U1, U2) is less or equal to the critical value then the
hypothesis H0 is rejected. The samples are denoted so that m ≥ n. If m and n are large,
the following procedure is used. It follows from theorem 13.9 that

EU1 =
1

2
mn, var U1 =

1

12
mn(m + n + 1). (13.8)

Since U2 = mn − U1, we have EU2 = EU1, var U2 = varU1. It is proved that for m → ∞
and n → ∞ the variable U1 (as well as the variable T1) has asymptotically normal
distribution. We obtain

U =
U1 − EU1√

varU1

, (13.9)

where EU1 and var U1 are given in (13.8). If |U | ≥ u(α
2
), H0 is rejected on the level which

tends to α. The test based on (13.9) can be used for m > 10, n > 10.
If some variables are equal, we have ties . Then such a variable gets corresponding

average rank. If the number of ties is large, instead of U introduced in formula (13.9) the
variable

z =
U1 − mn

2
√

mn
S(S−1)

(
S3−S

12
−∑r

i=1
t3i −ti

12

) ,

is used, where S = m + n, r is number of ties and ti is multiplicity of the i-th tie.
Although the Wilcoxon test is formulated as a test against a general alternative, it

is sensitive especially to a shift H ′
1 : G(x) = F (x − ∆), ∆ 6= 0. For other alternatives,

Kolmogorov-Smirnov test described in section 13.2 on p. 108 is recommended.

Example 13.10 We shall analyze data introduced in example 13.2, p. 109. The numbers
are ordered. The values Xi are underlined and their rank is introduced (see tab. 13.3).

Thus
T1 = 70, U1 = 6, T2 = 21, U2 = 34.

Critical value is 6. Since min(U1, U2) = 6 ≤ 6, we reject the hypothesis. The asymptotic
procedure calculated in (13.9) gives U = −2.049. We have |U | ≥ u(0.025) = 1.96, and
so we would reject the hypothesis, that both diets are equally effective, also by this
procedure.

Program R gives
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Table 13.3: Yields of wheat and their ranks

Yields 4.2 4.3 4.4 4.5 5.0 5.1 5.2 5.4 5.5 5.6 5.7 5.8 5.9

Ranks 2 6 7 9 10 11 12 13

new <- c(5.7,5.5,4.3,5.9,5.2,5.6,5.8,5.1)

old <- c(5.0,4.5,4.2,5.4,4.4)

wilcox.test(new, old, alternative = "two.sided", exact=T, correct=F)Wil
oxon rank sum testdata: new and oldW = 34, p-value = 0.04507alternative hypothesis: true mu is not equal to 0
The hypothesis is also rejected. ♦



Chapter 14

Discrete two-sample problem

14.1 Testing homogeneity of two binomial distribu-

tions

Let p1 be probability that the event A occurs in an experiment. Assume that in m
independent experiments the event A occurred X times. Then the experiment is repeated
under different conditions so that the event A occurs with probability p2. Assume that
in those n additional experiments the event A occurred Y times. Using these data we
wont to test hypothesis H0 : p1 = p2 against alternative H1 : p1 6= p2. The hypothesis
H0 is called hypothesis of homogeneity of two binomial distributions, since X ∼ Bi(m, p1)
and Y ∼ Bi(n, p2).

This is one of the oldest statistical problems which occurs frequently till now.
Denote x = X/m, y = Y/n. We shall assume that x(1 − x) + y(1 − y) 6= 0. Central

limit theorem gives that for large values m and n the approximation

x ∼ N

[

p1,
p1(1 − p1)

m

]

, y ∼ N

[

p2,
p2(1 − p2)

n

]

can be used. Since x a y are independent variables, in the frame of this approximation
we have result

x − y − (p1 − p2)
√

p1(1 − p1)

m
+

p2(1 − p2)

n

∼ N(0, 1).

If H0 holds, then we insert in numerator simply p1−p2 = 0. However, in denominator the
unknown values p1 and p2 remain. They can be substituted by their estimators. It can
be proved that the limiting distribution remains the same, namely N(0, 1). Two kinds of
estimators of the parameters p1 and p2 can be used. Thus we have two variants of the
test of homogeneity.

In the first case we use x as estimator of the parameter p1 and y as estimator of p2.
The strong law of large numbers ensures that x → p1 and y → p2 almost surely. To test
the hypothesis H0 we calculate variable

Ua =
x − y

√

x(1 − x)

m
+

y(1 − y)

n

. (14.1)

121



122 CHAPTER 14. DISCRETE TWO-SAMPLE PROBLEM

If |Ua| ≥ u(α
2
), we reject H0. The tests of H0 against one-sided alternatives are similar.

In the second case we use the fact that under H0 we have p1 = p2. This value can be
estimated by

z =
X + Y

m + n
=

mx + ny

m + n
.

Thus we calculate

Ub =
x − y

√

z(1 − z)

(
1

m
+

1

n

) . (14.2)

If |Ub| ≥ u(α
2
), we reject H0. Similar procedure could be used for one-sided alternatives.

Some information about properties of Ua and Ub is contained in the following assertion
published in the paper Eberhardt, Fliegner (1977).

Theorem 14.1 If m = n, then |Ub| ≤ |Ua| and the equality holds if and only if x = y.

Proof. Function f(x) = x(1 − x) is concave for x ∈ [0, 1]. Thus for all γ ∈ [0, 1] and for
all numbers a, b ∈ [0, 1] it holds

f [γa + (1 − γ)b] ≥ γf(a) + (1 − γ)f(b).

Choose γ = 1
2
, a = x, b = y. Then we get

1

2
(x + y)

[

1 − 1

2
(x + y)

]

≥ 1

2
x(1 − x) +

1

2
y(1 − y). (14.3)

For m = n we have z = (x + y)/2. Numerator of the fraction (14.1) has under the root

2

m

[
1

2
x(1 − x) +

1

2
y(1 − y)

]

and denominator of the fraction (14.2) has under the root

2

m

[
x + y

2

(

1 − x + y

2

)]

.

Inequality (14.3) gives that |Ub| ≤ |Ua|. The equality in (14.3) holds if and only if x = y.
2

We remark that for m 6= n there is no simple relation between Ua and Ub.
Seemingly for m = n it would be better to use the test which is based on Ua, since

it is more powerful. However, if the size of the sample is small, the probability of the
error of the first kind is larger than α. For example, for α = 0.05 and m = n = 20 the
probability of the error of the first kind is 0.081 and for m = 20, n = 40 even 0.085.

Data can be written in the form of a contingency table (see tab. 14.1). If we use in
this table the denotation of frequencies by nij introduced in section 10.5, we get

U2
b =

(
n11

n1.
− n21

n2.

)2

n.1

n

n.2

n

n

n1.n2.

=
n(n11n22 − n12n21)

2

n1.n2.n.1n.2
.
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Table 14.1: Table of successes and failures

Successes Failures Total

1. experiment X m − X m
2. experiment Y n − Y n

Total X + Y m + n − X − Y m + n

The result is the formula for the variable χ2 in 2 × 2 contingency table (see formula
(10.19)). We can say that frequently used statistic is Ub, whereas Ua is rare.

Comparison of probabilities p1 and p2 in small samples can be found in the papers
Santer, Snell (1980), Gart, Nam (1990), D’Agostino et al. (1988).

Example 14.2 It is not recommended to change quickly hot and cold meals because
then the teeth have temperature shock. In an experiment 50 teeth were plunged into
boiled and cold water. Other 50 teeth were in boiled water without temperature shocks.
Finally, all teeth were crushed. From 50 teeth with temperature shocks 21 teeth were
broken. From 50 teeth without shocks were only 11 broken. It should be tested if the
temperature shocks influence mechanical resistance of teeth. (Osborn 1979).

We have m = n = 50, X = 21, Y = 11, x = 0,42, y = 0,22, z = 0,32. This gives

Ua = 2,195, Ub = 2,144.

If we test the hypothesis of homogeneity against two-sided alternative, we would com-
pare the calculated results with the critical value u(0.025) = 1.96. The result would be
statistically significant. It means that the effect of temperature shocks is statistically
proved.

However, our example leads to the test against one-sided alternative. Shocks cannot
fasten the teeth. Thus the test statistics should be compared with the critical value
u(0.05) = 1.645. The results larger than this critical values are significant. In the
introduced example the hypothesis H0 must be rejected.

In program R we get

zlomene.zuby <- c(21,11)

zuby.celkem <- c(50,50)

prop.test(zlomene.zuby, zuby.celkem)2-sample test for equality of proportions with 
ontinuity 
orre
tiondata: zlomene.zuby out of zuby.
elkem X-squared = 3.7224, df = 1, p-value = 0.05369alternative hypothesis: two.sided 95 per
ent
onfiden
e interval:0.001395761 0.398604239sample estimates: prop 1 prop 20.42 0.22
Since we used the continuity correction, the result is not significant. If we do not use the
correction, we would have

prop.test(zlomene.zuby, zuby.celkem, correct = F)2-sample test for equality of proportions without 
ontinuity 
orre
tion
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elkem X-squared = 4.5956, df = 1, p-value = 0.03205alternative hypothesis: two.sided 95 per
ent
onfiden
e interval:0.02139576 0.37860424sample estimates: prop 1 prop 20.42 0.22
It gives significant result. One-sided test is

prop.test(zlomene.zuby, zuby.celkem, correct = F,

alternative="greater")

which gives significant resultX-squared = 4.5956, df = 1, p-value = 0.01603
♦

14.2 Confidence interval for difference of probabili-

ties

Let X ∼ Bi(m, p1) and Y ∼ Bi(n, p2) be independent random variables. The problem is
to find confidence interval for ∆ = p1 − p2. A review of 11 methods described in papers
for a construction of this interval can be found in Newcombe (1998). Here we introduce
only three of them.

Denote p̂1 = X/m, p̂2 = Y/n, ∆̂ = p̂1 − p̂2, qi = 1 − pi, q̂i = 1 − p̂i (i = 1, 2). Let uα

be the critical value of the distribution N(0, 1) on the level α. Then p̂1q̂1/m + p̂2q̂2/n is
estimator of var∆. Since the random variable

T = (∆̂ − ∆)
/√

p̂1q̂1/m + p̂2q̂2/n

has asymptotically distribution N(0, 1), Wald confidence interval is

∆̂ ∓ uα/2

√

p̂1q̂1/m + p̂2q̂2/n.

Denote u = uα/2. Let (li, ui) be the Wilson confidence interval for pi. As we know,
endpoints of this interval are roots of quadratic equation

(p̂i − pi)
2 = u2pi(1 − pi)/ni.

Then Newcomb confidence interval is

(

∆̂ − u

√

l1(1 − l1)

m
+

u2(1 − u2)

n
, ∆̂ + u

√

u1(1 − u1)

m
+

l2(1 − l2)

n

)

.

Confidence interval based on score test is obtained by inverting test

p̂1 − p̂2 − ∆

σ̂
= uα,
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where

σ̂2 =
p̂1(1 − p̂1)

m
+

(p̂1 − ∆)(1 − p̂1 + ∆)

n
,

and p̂1 is maximum likelihood estimator of the probability p1 under the condition p̂1−p̂2 =
∆. Explicit solution is not known, numerical methods can be used.

The following conclusions follow from numerical studies (see Brown, Li 2003):

• If the sizes m and n are small, then the Wald confidence interval has confidence
coefficient smaller than its nominal value. However, its length is short.

• Score and Newcomb intervals behave similarly and have good properties.

• If min(m, n) ≥ 50, then all confidence intervals give good results.

Thus Brown, Li (2003) apart from the test suggested in their paper and called re-
centred recommend to use score and Newcomb intervals. Because there exists explicit
formula for the Newcomb interval, its use can be especially recommended.

14.3 Confidence interval for ratio of probabilities

Let X ∼ Bi(n1, p1) and Y ∼ Bi(n2, p2). Assume that X and Y are independent variables.
Denote

θ =
p1

p2
, q1 = 1 − p1, q2 = 1 − p2, x =

X

n1
, y =

Y

n2
.

It is known that

Ex = p1, Ey = p2, varx =
p1q1

n1

, var y =
p2q2

n2

.

Introduce function g(u, v) = u/v. The value g(x, y) = x/y can be expressed using Taylor
expansion around the point (p1, p2). If we neglect the remaining term we have

g(x, y) = g(p1, p2) +
1

p2

(x − p1) −
p1

p2
2

(y − p2).

In the frame of this approximation we have

E
x

y
=

p1

p2

,

E
x2

y2
=

p2
1

p2
2

+
1

p2
2

p1q1

n1
+

p2
1

p4
2

p2q2

n2
,

var
x

y
= E

x2

y2
−
(

E
x

y

)2

=
p2

1

p2
2

(
q1

p1n1
+

q2

p2n2

)

.

It can be proved that for n1 → ∞, n2 → ∞ the ratio x/y has asymptotically normal
distribution and

U∗ =

x

y
− p1

p2

p1

p2

√
q1

p1n1
+

q2

p2n2
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has asymptotically N(0, 1) distribution. An exact proof of this assertion can be performed
using delta method. In the denominator p1 is approximated using x, then p2 using y, q1

using 1 − x and q2 using 1 − y. Then

U =

x

y
− θ

x

y

√
1 − x

xn1
+

1 − y

yn2

has asymptotically N(0, 1) distribution, so that the event
∣
∣
∣
∣

x

y
− θ

∣
∣
∣
∣

x

y

√
1 − x

xn1

+
1 − y

yn2

≤ uα/2

has asymptotically probability 1 − α. This implies that

x

y

(

1 ± uα/2

√
1 − x

xn1

+
1 − y

yn2

)

are endpoints of the confidence interval for θ = p1/p2 with confidence coefficient which is
asymptotically equal to 1−α. A detailed derivation of this confidence interval and some
other intervals can be found in the paper Noether (1957).

14.4 Test of hypothesis λ1/λ2 = r

Let X1 and X2 be independent random variables such that X1 ∼ Po(λ1), X2 ∼ Po(λ2).
Denote γ = λ1/λ2. Consider a test of hypothesis H0 : γ = r against several alternatives.

We have λ1 = γλ2. Since X1 + X2 ∼ Po(λ1 + λ2) = Po(γλ2 + λ2), we obtain

P(X1 = x1, X2 = x2|X1 + X2 = x1 + x2) =

(γλ2)
x1

x1!
e−γλ2

λx2

2

x2!
e−γ2

(γλ2 + λ2)
x1+x2

(x1 + x2)!
e−(γλ2+λ2)

=

(
x1 + x2

x1

)(
γ

γ + 1

)x1
(

1 − γ

γ + 1

)x2

.

Conditional distribution is binomial. When testing H0 against the alternative H1 :
γ > r, then H0 will be rejected in the case

x1+x2∑

i=x1

(
x1 + x2

i

)(
r

r + 1

)i(

1 − r

r + 1

)x1+x2−i

≤ α. (14.4)

Similarly, when testing H0 against H ′
1 : γ < r we reject H0 in the case that

x1∑

i=0

(
x1 + x2

i

)(
r

r + 1

)i(

1 − r

r + 1

)x1+x2−i

≤ α. (14.5)



14.4. TEST OF HYPOTHESIS λ1/λ2 = R 127

Test H0 against H∗
1 : γ 6= r is usually carried out so that it is found out if at least one

of inequalities (14.4) and (14.5) holds when α is substituted by the number α/2. There
exist also other variants of the two-sided test.

Example 14.3 We introduce an example which is presented in the book Hátle, Likeš
(1972), p. 334. It is known that the number of failures of an equipment during 100
hours of operation is a random variable with Poisson distribution. Equipment A had 8
failures and equipment B 5 failures. If A ∼ Po(λ1) and B ∼ Po(λ2) and failures occur
independently, we want to test H0 : λ = 1 against H1 : λ > 1. This can be done using
program

library(stats)

poisson.test(c(8,5), r=1, alternative="greater")Comparison of Poisson ratesdata: 
(8, 5)time base: 1
ount1 = 8, expe
ted 
ount1 = 6.5, p-value = 0.2905alternative hypothesis: true rate ratio is greater than 195 per
ent 
onfiden
e interval:0.5499053 Infsample estimates: rate ratio1.6
Right hand side confidence interval for λ is (0.5499,∞), p-value is 0.2905. Hypothesis

H0 : λ = 1 is not rejected.
Another program can be based on function poisson.exact in library exactci. One-

sided tests in both cases give the same result, but the function poisson.exact in two-
sided test presents three different variants. ♦
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Chapter 15

Problem of k samples

15.1 Linear model

This section is an introduction and it serves as theoretical background for methods of
analysis of variance described later in this chapter. The results will be also used in the
chapter devoted to regression analysis.

Let Y = (Y1, . . . , Yn)′ be a random vector and Xn×k a matrix of given numbers.
Assume that Y follows linear model

Y = Xβ + e, (15.1)

where β = (β1, . . . , βk)
′ is a vector of unknown parameters and e = (e1, . . . , en)

′ is a
vector of random variables satisfying conditions

Ee = 0, var e = σ2I.

The parameter σ2 > 0 is also not known. However, the vector Y is observable. It can
be characterized as vector of errors. Under the term “errors” they are understood errors
which follow from inaccuracies when the vector Y is measured, sometimes the errors
include deviations from the exact linear dependence Y = Xβ. The vector e is not
observable. The assumption Ee = 0 reflect the fact that observations of vector Y do
not include systematic errors. The relation vare = σ2I says that the measurements of
different components of the vector Y are made with equal precision, and the errors of
measurements of different components of the vector Y are uncorrelated.

For simplicity we assume in this section that the rank of the matrix X is k and that
n > k. Linear model (15.1) which fulfills these additional assumptions is called regression
model .

It follows from our assumptions that EY = Xβ, var Y = σ2I. Vector β is estimated
using least squares method , i.e. from the condition that the expression

S(β) = (Y − Xβ)′(Y − Xβ)

is minimal. This estimator is denoted by b = (b1, . . . , bk)
′.

It is known that for every matrix A it holds h(A) = h(A A′) = h(A′A), where h(A)
denotes the rank of he matrix A. Since h(X) = k and the matrix X ′X is of type k × k,
we conclude that the matrix X ′X is regular.

129



130 CHAPTER 15. PROBLEM OF K SAMPLES

Theorem 15.1 It holds b = (X ′X)−1X ′Y .

Proof. First, we verify that the vector b introduced in assertion of the theorem fulfills
the condition X ′(Y − Xb) = 0. Then we write S(β) in the form

S(β) = [(Y − Xb) + (Xb − Xβ)]′[(Y − Xb) + (Xb − Xβ)].

Using the condition X ′(Y − Xb) = 0 we get

S(β) = (Y − Xb)′(Y − Xb) + (b − β)′X ′X(b − β).

It follows from the assumption h(X) = k that the matrix X ′X is positive definite. Thus

(b − β)′X ′X(b − β) ≥ 0

and equality holds if and only if β = b. 2

The vector b can be calculated from the system of normal equations X ′Xb = X ′Y .
The expression

R = (Y − Xb)′(Y − Xb)

is called residual sum of squares and it plays an important role in statistical tests. Quite
often instead of R the denotation Se is used. We shall also write Ŷ = Xb.

Theorem 15.2 The estimator b satisfies Eb = β, var b = σ2(X ′X)−1.

Proof. We have

Eb= (X ′X)−1X ′EY = (X ′X)−1X ′Xβ = β,

var b= (X ′X)−1X ′σ2IX(X ′X)−1 = σ2(X ′X)−1. 2

Theorem 15.3 It holds

R = Y ′[I − X(X ′X)−1X ′]Y , R = Y ′Y − b′X ′Y .

Proof. Denote M = I − X(X ′X)−1X ′. We can write

Y − Xb = Y − X(X ′X)−1X ′Y = MY .

The matrix M is symmetric and idempotent, so that M 2 = M . Thus

R = (Y − Xb)′(Y − Xb) = Y ′M ′MY = Y ′MY .

The first formula is proved. The second formula follows from the first one. 2

Further we shall use the following auxiliary theorem.

Theorem 15.4 Let the random vector Z = (Z1, . . . , Zn)′ have finite second moments
and let EZ = µ, var Z = V . Then for arbitrary matrix An×n we have E Z ′AZ =
TrAV + µ′Aµ.

Proof. Since var Z = E(Z − µ)(Z − µ)′ = EZZ ′ − µµ′, we obtain

EZ ′AZ = E TrAZZ ′ = TrAE ZZ ′ = TrA(V + µµ′) = Tr AV + µ′Aµ. 2
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Theorem 15.5 Denote s2 = R/(n − k). Then Es2 = σ2.

Proof. We use theorems 15.3 and 15.4. Since EY = Xβ and MX = 0, we obtain

ER = EY ′MY = TrMσ2I + β′X ′MXβ = σ2TrM = (n − k)σ2. 2

Variable s2 is called residual variance. We proved that s2 is unbiased estimator of the
parameter σ2.

Now, we shall also assume that the vector e is normally distributed. This implies
immediately that Y ∼ N(Xβ, σ2I).

Theorem 15.6 Under assumption of normal distribution we have

(a) b ∼ N[β, σ2(X ′X)−1],

(b)
R

σ2
∼ χ2

n−k,

(c) b and R are independent.

Proof. Assertion (a) follows from theorem 15.1 because linear transformation of normally
distributed vector is again a vector with normal distribution.

Now, we prove (b). It is known that rank of an idempotent matrix is equal to its trace.
The trace of matrix A will be denoted by Tr A. For arbitrary matrices K a L, such that
their product is a square matrix we have Tr KL = TrLK. Define ξ = (Y −Xb)/σ. We
insert for b and obtain ξ = σ−1MY , where M = I − X(X ′X)X ′. Thus ξ ∼ N(0, M).
Matrix M is idempotent and its rank equals to

h(M )= Tr [I − X(X ′X)−1X ′] = Tr I − Tr X(X ′X)−1X ′

= n − Tr (X ′X)−1X ′X = n − k.

Since R/σ2 = ξ′ξ, property (b) follows from theorem 3.8 on p. 39.
Finally, we calculate

cov(b, ξ) = cov[(X ′X)−1X ′Y , σ−1MY ] = (X ′X)−1X ′σ2Iσ−1M = 0.

Vectors b and ξ are uncorrelated. Since

(
b

ξ

)

=

[
(X ′X)−1X ′

σ−1M

]

Y ,

they have simultaneous normal distribution. Thus b and σ2ξ′ξ = R are also independent.
2

Theorem 15.7 Let vij be (i, j)-th element of the matrix (X ′X)−1. Then for every i =
1, . . . , k the random variable

Ti =
bi − βi√

s2vii

has the distribution tn−k.
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Proof. It follows from theorem 15.6 (a) that bi ∼ N(βi, σ
2vii). Define

Ui =
bi − βi

σ
√

vii

.

We can see that Ui ∼ N(0, 1). Theorem 15.6 (b) gives that the variable Z = (n−k)s2/σ2

has distribution χ2
n−k. Finally, assertion (c) from theorem 15.6 ensures independence Ui

and Z. We know from theorem 3.10 that

Ti =
Ui

√

Z/(n − k)
∼ tn−k. 2

Theorem 15.8 Let c = (c1, . . . , ck)
′ 6= 0 be a given vector. Then Ec′b = c′β and

T =
c′b − c′β

√

s2c′(X ′X)−1c
∼ tn−k.

Proof. The unbiasednes of the estimator c′b is obvious. From theorem 15.2 we obtain

var c′b = σ2c′(X ′X)−1c.

Thus

U =
c′b − c′β

√

σ2c′(X ′X)−1c
∼ N(0, 1).

Since U depends only on b, it does not depend on Z = (n − k)s2/σ2. It is easy to see
that

T =
U

√

Z/(n − k)
.

Theorem 3.10 ensures that T ∼ tn−k. 2

Let us remark that theorem 15.7 is special case of theorem 15.8. It suffices to choose
vector c in such a way that its i-th component equals to 1 and the remaining components
are all 0.

Vector u = Y − Ŷ is called vector of residuals. It is easy to check that

u = MY , Eu = 0, var u = σ2M .

Let mij be elements of the matrix M and hij elements of the matrix H = X(X ′X)−1X ′.
We see that the matrix vare is diagonal with equal elements on the diagonal, the matrix
varu has not this property. From this reason normed residuals

vt =
ut

s
√

mtt
=

ut

s
√

1 − htt

are used. The observation Yi is influential if its small change leads to rather large change
of vector Ŷ . The influential observations can be detected by diagonal elements hii of the
matrix H . The elements hii are called leverages, i.e. influences . It can be proved that
∑

hii = k, hii ≥ 1/n for every i. If hii > 2k/n then such observation is influential. The
influence of individual observations is measured using Cook statistics

Di =
(b − b(i))

′X ′X(b − b(i))

ks2
,

where b(i) is estimator of the vector β when the i-th observation is excluded.
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15.2 Weighted average

In some cases it is necessary to apply the least squares method, although the observations
have not the same variances. A model for such situation we investigate in this section.

Theorem 15.9 Let Y1, . . . , Yn be independent random variables. Assume that EYi = β,
varYi = σ2

i > 0, where β is an unknown parameter and σ2
1, . . . , σ

2
n are known numbers.

Then the estimator b of the parameter β by the least squares method is

b =

n∑

j=1

σ−2
j Yj

n∑

i=1

σ−2
i

(15.2)

and it holds

Eb = β, var b =

(
n∑

i=1

σ−2
i

)−1

.

Proof. Variables Yi correspond to the model

Yi = β + ei, i = 1, . . . , n, (15.3)

where ei are independent variables with moments Eei = 0, var ei = σ2
i . Variables ei have

not equal variances so that it is not possible to use results derived in section 15.1. If we
multiply (15.3) by expression σ−1

i , we get

Zi = σ−1
i β + e∗i , i = 1, . . . , n, (15.4)

where Zi = σ−1
i Yi and e∗i = σ−1

i ei. Now, the variables e∗i are not only independent with
vanishing expectations, but they have the same variances var e∗i = 1. Thus we can write
(15.4) in the form Z = Xβ + e∗, where

Z = (Z1, . . . , Zn)′, X = (σ−1
1 , . . . , σ−1

n )′, e∗ = (e∗1, . . . , e
∗
n)′.

From theorem 15.1 we get for arbitrary β least squares estimator

b = (X ′X)−1X ′Z =

n∑

j=1

σ−2
j Yj

n∑

i=1

σ−2
i

.

Unbiasednes of the estimator b and the formula for var b follow from theorem 15.2. 2

It can be proved that b is the best linear unbiased estimator —- BLUE — of the
parameter β.

Theorem 15.10 Let the variables Yi fulfil assumptions of theorem 15.9 and, moreover,
have normal distribution. Then the estimator b is also normally distributed and the
random variable

Q =
n∑

i=1

(Yi − b)2

σ2
i

has χ2
n−1 distribution.



134 CHAPTER 15. PROBLEM OF K SAMPLES

Proof. It is obvious that b has normal distribution, since b in view of (15.2) is a linear
function of normally distributed vector Y . Further we get

Q =
∑

i

σ−2
i Y 2

i −
(
∑

i

σ−2
i

)−1
∑

j

σ−2
j Yj

∑

k

σ−2
k Yk (15.5)

=
∑

i

Z2
i −

(
∑

i

σ−2
i

)−1
∑

j

σ−1
j Zj

∑

k

σ−1
k Zk,

where Zi = σ−1
i Yi. We can see that Q = Z ′AZ, with

A = I −
(
∑

i

σ−2
i

)−1





σ−1
1
...

σ−1
n






(
σ−1

1 , . . . , σ−1
n

)
.

Matrix A is idempotent and its rank (which is equal to its trace) equals to n − 1. Ex-
pectation of the vector Z is

EZ =
(
σ−1

1 , . . . , σ−1
n

)′
β.

Vector Z − EZ has distribution N(0, I). It can be checked that

Q = Z ′AZ = (Z − EZ)′A(Z − EZ).

Theorem 3.9 implies that Q ∼ χ2
n−1. 2

Theorem 15.10 can be used for testing hypothesis H0, that all variables in model
(15.3) have equal expectation. If H0 does not hold, then Q is large. Thus H0 is rejected
when Q ≥ χ2

n−1(α).

15.3 Extrapolation in linear model

Assume that the model (15.1) holds. We expect that a new observation Y0 will be realized,
which will correspond to a new row of the matrix X, say x′

0 = (x01, . . . , x0k). The new
variable Y0 follows the model Y0 = x′

0β+e0, where e0 is a random variable with vanishing
mean and with variance σ2, which is independent of the vector of errors e. We want to
estimate the variable Y0, i.e. to calculate its extrapolation. We intend to calculate a
point estimator and an interval estimator. Obviously, Ŷ0 = x′

0b can serve as the point
estimator. The interval estimator will be calculated under assumption of normality. Thus
let Y be normal and e0 ∼ N(0, σ2). Then Y0 ∼ N(x′

0β, σ2). We are interested in the
difference

Ŷ0 − Y0 = x′
0b − x′

0β − e0 = x′
0(b − β) − e0.

Calculate its expectation and variance. We have

E(Ŷ0 − Y0) = E[x′
0(b − β) − e0] = 0,

var(Ŷ0 − Y0) = var[x′
0(b − β) − e0] = var x′

0(b − β) − 2cov[x′
0(b − β), e0] + var e0.
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Since b and e0 are independent, we have cov[x′
0(b − β), e0] = 0. This gives

var(Ŷ0 − Y0) = x′
0(var b)x0 + σ2 = σ2x′

0(X
′X)−1x0 + σ2.

Denote

ξ =
Ŷ0 − Y0

σ
√

x′
0(X

′X)−1x0 + 1
, η =

(n − k)s2

σ2
.

It was proved that ξ ∼ N(0, 1), η ∼ χ2
n−k and that ξ and η are independent. Thus

T =
ξ

√

η/(n − k)
∼ tn−k.

This can be written in the form

T =
Ŷ0 − Y0

s
√

x′
0(X

′X)−1x0 + 1

and it follows from formula P{|T | ≤ tn−k(α)} = 1 − α that

P{Ŷ0 − tn−k(α)s
√

x′
0(X

′X)−1x0 + 1 ≤ Y0 (15.6)

≤ Ŷ0 + tn−k(α)s
√

x′
0(X

′X)−1x0 + 1} = 1 − α.

Thus we derived confidence interval for Y0 with confidence coefficient 1 − α.

15.4 Submodel of the linear model

We say that the linear model

Y = Uγ + e (15.7)

is submodel of the model (15.1), if the columns of the matrix Un×l are linear combinations
of the columns of the matrix X and in the same time h(U) = l < k. Also here we shall
deal only with such matrices U , which have full column rank. It happens quite often
that the submodel (15.7) arises from the model (15.1) by the omitting some columns
of the matrix X . It corresponds to the procedure where we define the corresponding
components of the parameter β as zero. We show generally that linear bindings among
the components of the vector β always lead to the submodel (15.7).

Theorem 15.11 Let the components of the vector β fulfil the condition Gβ = 0, where
h(Gt×k) = t < k. Define l = k − t. Then there exists such a matrix Ql×k of rank l and
such a matrix Un×l of rank l, that the columns of the matrix U are linear combinations
of the columns of the matrix X and it holds Xβ = Uγ, where γ = Qβ.

Proof. Since h(Gt×k) = t, there exists such a matrix Ql×k that the matrix

A =

(
Q

G

)
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is regular. We shall write the matrix XA−1 in the form XA−1 = (U , T ), where U is of
type n × l and T is of type n × t. We have

Xβ = XA−1Aβ = XA−1

(
Qβ

Gβ

)

= (U , T )

(
Qβ

0

)

= UQβ = Uγ. 2

It is important to realize that if the submodel (15.7) holds, then the model (15.1)
holds, too. The estimator of the vector γ using the least squares method is

g = (U ′U)−1U ′Y

and the residual variance R1 in case of the submodel (15.7) is

R1 = (Y − Ug)′(Y − Ug) = Y ′[I − U(U ′U)−1U ′]Y .

At the same time it holds R1 ≥ R, since R is the minimum of the function S(β) without
any restriction on the vector β, whereas R1 is minimum of the function S(β) under some
subsidiary conditions (e.g. under condition Hβ = 0). Test of the hypothesis that the
vector β fufills the subsidiary conditions, is the test of hypothesis that the model (15.1)
can be reduced to the submodel (15.7). The test is based on the following theorem.

Theorem 15.12 If the submodel (15.7) holds (i.e. when the vector β is tied by t = k− l
linearly independent relations) then the random variable

F =
(n − k)(R1 − R)

tR

has Ft,n−k distribution.

Proof. Again, denote M = I − X(X ′X)−1X ′ and ξ = σ−1MY . In the proof of
theorem 15.6 (c) it was derived that σ2ξ′ξ = R, and it follows from theorem 15.6 (b) that
ξ′ξ ∼ χ2

n−k.

Denote B = X(X ′X)−1X ′ − U (U ′U)−1U ′. Then R1 − R = Y ′BY . Let η =
σ−1BY . Since the columns of the matrix U are linear combinations of the columns of
matrix X, there exists a matrix Kk×l such that U = XK. Matrix B is symmetric and
idempotent. If (15.7) holds, we have η ∼ N(0, B). The rank of the matrix B is equal to
its trace k− l = t. The trace can be derived similarly as in the proof of theorem 15.6 (b).
Theorem 3.8 on p. 39 implies that η′η ∼ χ2

t . We have

cov(ξ, η) = cov(σ−1MY , σ−1BY ) = σ−2Mσ2IB = MB = 0.

Thus the vectors ξ and η are uncorrelated. Because thy are normally distributed, they
are independent. Then the variables η′η a ξ′ξ are also independent. Using theorem 3.11
on p. 40 we obtain

η′η/t

ξ′ξ/(n − k)
∼ Ft,n−k. 2
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15.5 One-way analysis of variance

The problem is similar as in the case of two-sample t test, but now it is more complicated
because we have more samples. Assume that

Y11, . . . , Y1n1
is the sample from N(µ1, σ

2)

etc. and

YI1, . . . , YInI
is the sample from N(µI , σ

2).

Let the samples be independent. Such a model is called one-way analysis of variance.
We want to test hypothesis H0 : µ1 = · · · = µI against the alternative H1, that some of
the means µ1, . . . , µI are different. Let us remark that if H0 is rejected it is necessary
to find all pairs µi, µj, which caused this rejection, i.e. for which it can be statistically
proved that µi 6= µj.

Seemingly it could be done so that all two-sample t tests are calculated. However,
the number of such tests is I(I − 1)/2. If each of them has the level α, the level of
the complete test would be substantially larger than α. The level of each test could be
smaller, say 2α/[I(I − 1)], which would ensure that the overall level would not be larger
than α. The power of such test would nod be large enough and its real level would be
considerably smaller than α. Thus another procedure is chosen. We form one vector Y

from all variables Yij so that first we give all members of the first sample, then of the
second and finally the last. Let

n = n1 + · · ·+ nI .

Our assumptions lead to the model

Y = Xβ + e, (15.8)

where

X =



















1 0 . . . 0
. . . . . . . . . . . .
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1
. . . . . . . . . . . .
0 0 . . . 1



















}

}







n1

n2

nI

, β =






µ1
...

µI




 . (15.9)

The vector e has n components and it holds e ∼ N(0, σ2I). Denote

Yi. = Yi1 + · · ·+ Yini
, yi. =

Yi.

ni
for i = 1, . . . , I

and

Y.. = Y1. + · · ·+ YI. =
∑∑

Yij, Ȳ = y.. =
Y..

n
.
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Since
X ′X = Diag{n1, . . . , nI}, X ′Y = (Y1., . . . , YI.)

′,

we have
b = (X ′X)−1X ′Y = (y1., . . . , yI.)

′.

Theorem 15.3 gives that the residual sum of squares is

R = Y ′Y − b′X ′Y =
∑

i

∑

j

Y 2
ij −

∑

i

yi.Yi. =
∑

i

∑

j

Y 2
ij −

∑

i

Y 2
i.

ni
.

If H0 holds, we have the submodel

Y = Uγ + e,

where Un×1 = (1, . . . , 1)′ and γ is of type 1 × 1. This time U ′U = n, U ′Y = Y.., and
the estimator g of the parameter γ using method of least squares is

g = (U ′U)−1U ′Y = y.. .

Residual sum of squares is

R1 = Y ′Y − g′U ′Y =
∑

i

∑

j

Y 2
ij − y..Y.. =

∑

i

∑

j

Y 2
ij −

Y 2
..

n
.

Thus

R1 − R =
∑

i

Y 2
i.

ni
− Y 2

..

n
.

The rank of the matrix X is I, the rank of the matrix U is 1. If H0 holds, we get from
theorem 15.12, that

FA =
(n − I)(R1 − R)

(I − 1)R
∼ FI−1,n−I .

In practical calculations the total sum of squares is calculated first

ST =
∑

i

∑

j

Y 2
ij −

Y 2
..

n
.

Then the sum of squares R1 − R is calculated. It is

SA =
∑

i

Y 2
i.

ni
− Y 2

..

n
.

Residual sum of squares is usually denoted Se instead of R and it is calculated from the
formula

Se = ST − SA.

The variable s2 = Se/(n − I) is residual variance.
The results are written in the table of analysis of variance (see tab. 15.1). Sum of

squares is denoted SS, degrees of freedom are df and the ratio (mean square) is MS.
In the case that FA ≥ FI−1,n−I(α) we reject the hypothesis H0. Then it is necessary

to decide which pairs of indices satisfy µi 6= µj. Since yi. is an estimator of µi, the table
of differences yi. − yj. is calculated (see tab. 15.2).

Here we introduce only Tukey method of multiple comparisons, since it is one of the
most sensitive.



15.5. ONE-WAY ANALYSIS OF VARIANCE 139

Table 15.1: One-way analysis of variance

Source Sum Degrees of MS Test
squares freedom statistic

SS df MS =
SS

df
F =

MS

s2

Groups SA fA = I − 1 SA/fA FA

Residual Se fe = n − I s2 = Se/fe −
Total ST fT = n − 1 − −

Table 15.2: Differences of means

j

i 2 3 . . . I

1 y1. − y2. y1. − y3. · · · y1. − yI.

2 y2. − y3. · · · y2. − yI.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I − 1 yI−1,. − yI.

Lemma 15.13 Let X1, . . . , Xm be random sample from the distribution N(µ, σ2), where
σ > 0. Denote R = maxXi−min Xi the range. Let s2 be an independent estimator for σ2

with ν degrees of freedom; it means that νs2/σ2 ∼ χ2
ν and that s2 and X = (X1, . . . , Xm)′

are independent. Denote Q = R/s random variable called studentized range. Then the
distribution of the random variable Q, which is denoted by symbol qm,ν , does not depend
on µ and σ.

Proof. It holds

Q =
max(Xi − µ)/σ − min(Xi − µ)/σ

s/σ
. (15.10)

Variables (Xi − µ)/σ (i = 1, . . . , m) are independent with distribution N(0, 1). Thus
the distribution of the expression in the numerator of formula (15.10) does not depend
on µ and σ. The distribution of the variable s/σ does not depend on µ and σ, too.
Since numerator and denominator of the formula (15.10) are independent variables, the
distribution of the variable Q does not depend on µ and σ. 2

We will not derive the density of the variable Q here. The critical value qm,ν(α) is
defined as the number satisfying P{Q > qm,ν(α)} = α.

Theorem 15.14 (Tukey) Let X1, . . . , Xm be independent random variables and let
Xi ∼ N(µi, b

2σ2), i = 1, . . . , m, where b is a known positive constant. Let s2 be inde-
pendent estimator for σ2 with ν degrees of freedom; it means that νs2/σ2 ∼ χ2

ν and that
s2 and X are independent. Then probability that

Xi − Xj − bsqm,ν(α) ≤ µi − µj ≤ Xi − Xj + bsqm,ν(α)

holds for all pairs (i, j) simultaneously, equals to 1 − α.



140 CHAPTER 15. PROBLEM OF K SAMPLES

Proof. Denote Zi = Xi−µi. Variables Zi are independent and each of them has distribu-
tion N(0, b2σ2). Vector (Z1, . . . , Zm)′ does not depend on s2. It is clear that b2s2 is inde-
pendent estimator for the variance b2σ2 with ν degrees of freedom, since νb2s2/b2σ2 ∼ χ2

ν .
It follows from lemma 15.13 that

P

{
max Zi − min Zi

bs
≤ qm,ν(α)

}

= 1 − α.

This is equivalent to the formula

P{|Zi − Zj | ≤ bsqm,ν(α) for all pairs (i, j)} = 1 − α.

Inserting for Zi and Zj we get the assertion of the theorem. 2

Tukey theorem is used in connection with testing hypothesis H0 : µ1 = · · · = µm. If
H0 holds, then all intervals [Xi − Xj − bsqm,ν(α), Xi −Xj + bsqm,ν(α)] overlap zero with
probability 1 − α. If some of them does not cover zero, i.e. if

|Xi0 − Xj0| > bsqm,ν(α) (15.11)

holds for a pair (or for some pairs) (i0, j0), then it leads to the conclusion that we have
µi0 6= µj0. This procedure has an advantage that probability of the error of the first kind
equals α and the rejection of H0 shows directly to the pair or pairs responsible for this
rejection.

Tukey method can be applied in the one-way analysis of variance if y1., . . . , yI. have
equal variances. It comes in the case that n1 = · · · = nI . If this condition is satisfied,
we say, that the model is balanced . In such a case we denote size of each sample by
P (i.e., P = n1 = · · · = nI). Then yi. ∼ N(µi, σ

2/P ). In theorem 15.14 we have
b2 = 1/P . According to theorem 15.11 the equality of expectations of i-th and j-th
sample is rejected, if

|yi. − yj.| >
s√
P

qI,n−I(α).

Tukey method can be modified to the case of unbalanced classification. It was proved
(see Hayter 1984), that

P

{

|yi. − yj.| < sqI,n−I(α)

√

1

2

(
1

ni
+

1

nj

)

for all i, j

}

≥ 1 − α.

If we get

|yi. − yj.| > sqI,n−I(α)

√

1

2

(
1

ni
+

1

nj

)

,

then we reject the hypothesis about equality µi = µj. This modification in programs is
called Tukey HSD. The abbreviation HSD means honest significant difference.

In tab. 15.2 to each difference which is statistically significant on the level 0.05, a star
as the upper index is added. If significance is on level 0.01, two stars are added and for
significance on level 0.001 three stars. This holds also for other tests.

At the beginning of this section we introduced the model of one-way analysis of
variance in the form (15.8) and (15.9). Writing it in components we get

Yij = µi + eij, i = 1, . . . , I, j = 1, . . . , ni.
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This form simplifies the derivation of the procedure, since the matrix X in (15.9) has full
rank. However, usually this model is applied in the form

Yij = µ + αi + eij .

New matrix X, which now corresponds to parameters µ, α1, . . . , αI , is of type n× (I +1),
but it has rank I. Null hypothesis was µ1 = · · · = µI , but now it has the form α1 =
0, . . . , αI = 0. Both models are equivalent and lead to the same formulas. Only the
methods of derivations are different.

Example 15.15 Four sorts of potatoes, namely A, B, C, and D, were cultivated. Each
sort was cultivated on 7 fields of equal area. The yields in ton/hectare are introduced in
tab. 15.3.

Table 15.3: Yields of potatoes in t/ha

Sort Yield Average

A 19.3 18.0 21.6 22.4 20.9 20.1 24.0 20.9
B 23.1 26.5 25.2 25.0 24.3 21.4 26.7 24.6
C 23.7 20.8 19.8 24.1 22.2 22.6 22.9 22.3
D 17.2 16.6 16.9 17.7 21.3 15.2 19.0 17.7

The results of analysis of variance are in tab. 15.4.

Table 15.4: Analysis of variance

Source Sum Degrees of Ratio Test
of squares freedom statistic

SS df MS =
SS

df
F =

MS

s2

Sorts 174.9125 3 58.3042 17.0148∗

Residual 82.2400 24 3.4267 −
Total 257.1525 27 − −

Since FA = 17.0148 ≥ F3,24(0.05) = 3.01, we reject the hypothesis that the sorts do
not influence the yield of potatoes. The differences among means are compared with the
critical value

√
3.4267 q4,24(0.05)

√

1

2

(
1

7
+

1

7

)

= 2.73.

We prepare table of differences of means (tab. 15.5).
Then the means are ordered and with the continuous line are underlined the groups

of means the members of which are not significantly different. We get tab. 15.6
We can see that the yield of the sort D differs from the yield of all other sorts. Further

it is proved that the yields of the sorts A and B are different. On the other side it was
not proved that the yields of the sorts A and C and sorts C and B are different.

Program R gives
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Table 15.5: Differences of means

B C D

A −3.7∗ −1.4 3.2∗

B 2.3 6.9∗

C 4.6∗

Table 15.6: Sorted means

D A C B
17.7 20.9 22.3 24.6

vynos <- c(19.3, 18.0, 21.6, 22.4, 20.9, 20.1, 24.0,

23.1, 26.5, 25.2, 25.0, 24.3, 21.4, 26.7,

23.7, 20.8, 19.8, 24.1, 22.2, 22.6, 22.9,

17.2, 16.6, 16.9, 17.7, 21.3, 15.2, 19.0)

odruda <- factor(c(rep("A",7), rep("B",7), rep("C",7), rep("D",7)))

tapply(vynos, odruda, mean) # calculation of averagesA B C D20.9 24.6 22.3 17.7
bram.aov <- aov(vynos ~ odruda) # analysis of variance

summary(bram.aov)Df Sum Sq Mean Sq F value Pr(>F)odruda 3 174.91 58.304 17.015 3.872e-06 ***Residuals 24 82.24 3.427---Signif. 
odes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(tk <- TukeyHSD(bram.aov))Tukey multiple 
omparisons of means95% family-wise 
onfiden
e levelFit: aov(formula = vynos ~ odruda) $odrudadiff lwr upr p adjB-A 3.7 0.9704439 6.4295561 0.0052375C-A 1.4 -1.3295561 4.1295561 0.5026381D-A -3.2 -5.9295561 -0.4704439 0.0173519C-B -2.3 -5.0295561 0.4295561 0.1204298D-B -6.9 -9.6295561 -4.1704439 0.0000019D-C -4.6 -7.3295561 -1.8704439 0.0005518
plot(tk) # figure for Tukey method

bartlett.test(vynos, odruda)Bartlett test of homogeneity of varian
esdata: vynos and odrudaBartlett's K-squared = 0.4537, df = 3, p-value = 0.9289
library(car)

leveneTest(vynos, odruda)Levene's Test for Homogeneity of Varian
e (
enter = median)
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leveneTest(vynos, odruda, center=mean)Levene's Test for Homogeneity of Varian
e (
enter = mean)Df F value Pr(>F)group 3 0.126 0.943824
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Figure 15.1: Tukey method

When applying Tukey method we look which interval does not contain zero. It cor-
responds to the significant difference. This is easy using the graph (see fig. 15.1). Also
Bartlett test and Levene test were performed. These tests will be explained in the next
section. ♦

15.6 Tests of homogeneity of variances

One of assumptions which we used in derivation of formulas for one-way analysis of
variance was that variances of all I normal distributions are the same. If we admit that
Yi1, . . . , Yini

is the sample from the distribution N(µi, σ
2
i ) for i = 1, . . . , I, the problem

arises how to test the hypothesis

H0 : σ2
1 = · · · = σ2

I

against alternative H1, that H0 does not hold.

Several tests of the hypothesis H0 has been derived. First, we describe Bartlett test .
The denotation will be the same as in sec. 15.3.
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Define

s2
i =

1

ni − 1

(
ni∑

j=1

Y 2
ij − niy

2
i.

)

,

s2 =
1

n − I

I∑

i=1

(ni − 1)s2
i ,

C = 1 +
1

3(I − 1)

(
I∑

i=1

1

ni − 1
− 1

n − I

)

,

B =
1

C

[

(n − I) ln s2 −
I∑

i=1

(ni − 1) ln s2
i

]

.

We have s2 = Se/fe, where Se and fe are introduced in tab. 15.1. If H0 holds,
then the random variable B has approximately χ2

I−1 distribution. Thus H0 is rejected in
the case that B ≥ χ2

I−1(α). However, this result can be used only in the case that the
sizes n1, . . . , nI are sufficiently large. In textbooks is usually introduce that it must hold
ni > 6 for all i = 1, . . . , I. Glaser (1976)published exact critical values. In the case I = 2
Bartlett test can be used as the test for homogeneity of two variances instead common F
test. Manoukian a kol. (1986) published exact critical values for this case. Some other
results about Bartlett test can be found in paper Nagarsenker (1984).

Unfortunately, Bartlett test is sensitive to violation of the assumption of normality
(Box 1953, Box, Andersen 1955). The robust tests were suggested instead of it, see
Layard 1973, Brown, Forsythe 1974.

Probably most often the Levene test (Levene 1960) is used for testing homogeneity of
variances. The I groups of random variables introduced in rows of tab. 15.7 is created.

Table 15.7: Levene test

|Y11 − y1.|,. . . ,|Y1n1
− y1.|

. . . . . . . . . . . . . . . . . . . . . . . .
|YI1 − yI.|,. . . ,|YInI

− yI.|

Analysis of variance or Kruskal-Wallis test are applied to the variables in tab. 15.7.
Nowadays in tab. 15.7 instead of means the medians are subtracted. Levene test can be
found in the library car as the function leveneTest.

If we get a significant result, we reject the hypothesis about homogeneity of vari-
ances. This test is only approximate, since the assumptions of analysis of variance or
its nonparametric variant are not fulfilled. The variables Yi1 − yi., . . . , Yini

− yi. are not
independent and their absolute values have not a normal distribution. In spite of this
Levene test is one of the best. It is shown in the paper Conover et al. (1981).

Example 15.16 We use data from example 15.15. We get

s2
1 = 3,9933, s2

2 = 3,5200, s2
3 = 2,3600, s2

4 = 3,8333,
s2 = 3,4266, C = 1,0694, B = 0,4537.

Since B < χ2
3(0,05) = 7,81, Bartlett test does not reject hypothesis of homogeneity of

variances in the fourth partial samples.
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Levene test based on Kruskal-Wallis test gives test statistic Q = 0.426 with three
degrees of freedom, which asymptotically corresponds to the level p = 0.935. Levene
test based on analysis of variance when medians are subtracted gives F statistic 0.121
and the level of the test is p = 0.947. When the averages are subtracted, then we get
F = 0.126 and p-value 0.9438. None of the tests leads to the rejection of the hypothesis
about homogeneity of variances. ♦

15.7 Analysis when variances are not equal

Let Yi1, . . . , Yini
be a sample from N(µi, σ

2
i ), i = 1, . . . , I. Assume that the samples are

independent. Let ni ≥ 2, σ2
i > 0. Denote

yi =
1

ni

ni∑

j=1

Yij, fi = ni − 1, s2
i =

1

fi

ni∑

j=1

(Yij − yi)
2, λi =

1

ni

.

We know that yi ∼ N(µi, λiσ
2
i ). We shall test the hypothesis H0 : µ1 = · · · = µI . The

common (but unknown) value of parameters µ1, . . . , µI will be denoted µ. We use the
results derived in section about weighted mean (see sec. 15.2 on p. 133). If H0 holds,
then NNLO µ̂ of the parameter µ equals to

µ̂ =
1

∑

i
1

λiσ2
i

∑

j

1

λjσ2
j

yj

and it holds

Z∗ =
∑

i

1

λiσ2
i

(yi − µ̂)2 ∼ χ2
I−1.

Usually, the variances σ2
1 , . . . , σ

2
I are not known. Thus we substitute σ2

i by unbiased
estimator s2

i . Define

wi =
1

λis2
i

, ŷ =
1

∑

i wi

∑

j

wjyj, Z =
∑

i

wi(yi − ŷ)2.

Then Z can be used as the test statistic for testing H0. James (1951) approximated the
critical value of the variable Z by

h(w) = χ2
I−1(α)



1 +
3χ2

I−1(α) + I + 1

2(I2 − 1)

∑

i

1

fi

(

1 − wi
∑

j wj

)2


 .

Thus it holds (approximately)

P{Z > h(w)} = α.

Welch (1951) denoted

f̂1 = I − 1, f̂2 =




3

I2 − 1

∑

i

1

fi

(

1 − wi
∑

j wj

)2




−1
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and proposed to use

v2 =
(I − 1)−1

∑

i wi(yi − ŷ)2

1 + 2(I − 2)(I2 − 1)−1
∑

i
1
fi

(

1 − wi∑

j wj

)2

as the test statistic. He proved that when H0 holds then the variable v2 has approximately
distribution Ff̂1,f̂2

. His method is used in program R in function oneway.test.

Example 15.17 We use data introduced in example 15.15. We get

oneway.test(vynos ~ odruda)One-way analysis of means (not assuming equal varian
es)data: vynos and odrudaF = 14.5298, num df = 3.000, denom df = 13.256, p-value = 0.0001764
It means that the difference is significant. ♦

15.8 Kruskal-Wallis test

Kruskal-Wallis test is a nonparametric analogue of one-way analysis of variance and it is
a generalization of two-sample Wilcoxon test. It is used mainly in the situations when
the samples are from very non-normal populations.

Let Yi1, . . . , Yini
be a sample from a distribution with a continuous distribution func-

tion Fi, i = 1, . . . , I. Let all the samples be independent. We are going to test the
hypothesis

H0 : F1(x) = · · · = FI(x) for all x

against the alternative H1, that H0 does not hold. All variables Yij together form the
pooled sample with size n = n1 + · · ·+nI . They are ordered into increasing sequence and
the rank Rij of each variable Yij in the pooled sample is determined. This rank can be
written in tab. 15.8.

Table 15.8: Kruskal-Wallis test

Sample Rank of variables in pooled Sum
random sample of ranks

1 R11 R12 . . . R1n1
T1

2 R21 R22 . . . R2n2
T2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I RI1 RI2 . . . RInI

TI

Proposed test statistic is

Q∗ =
I∑

i=1

1

ni

(Ti − ETi)
2.
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Since

ERij =
1

N

N∑

k=1

k =
N + 1

2
,

we have

ETi = E

ni∑

j=1

Rij = ni
N + 1

2
.

From this formula we obtain

Q∗ =
I∑

i=1

1

ni

T 2
i − 1

4
N(N + 1)2.

Define σ2
a = 1

12
(N + 1)(N − 1). Instead of Q∗ the test statistic

Q =
N − 1

Nσ2
a

Q∗ =
12

n(n + 1)

I∑

i=1

T 2
i

ni
− 3(n + 1)

is often used. It can be proved that EQ = I − 1.
Instead of Q the symbol H is written and one speaks about H test . If data contain

more than 25 % ties, we should calculate corrected statistic

Qkorig =
Q

1 − (n3 − n)−1
∑

(t3i − ti)
,

where t1, t2, . . . are numbers of ties in groups with the same value.
It can be proved (see Hájek, Šidák 1967), that under H0 the hypothesis Q has asymp-

totically χ2 distribution, when all ni tend to infinity. Since EQ = I − 1, we will have
asymptotically χ2 distribution with I − 1 degrees of freedom. Thus we reject hypothesis
H0 when Q ≥ χ2

I−1(α).
Kruskal-Wallis test is sensitive especially in the cases when the distribution functions

differs by shift. If we reject H0, it is worth to decide which pairs of samples significantly
differ. In analysis of variance Tukey method was used. Kruskal-Wallis test can be sup-
plemented as follows (see Miller 1966). Denote ti = Ti/ni, i = 1, . . . , I. Let hI−1(α) be
critical value of Kruskal-Wallis test on level α. If the sizes of samples are small, hI−1(α)
can be found in special tables and in greater sizes the approximation hI−1(α)

.
= χ2

I−1(α)
can be used. We decide that the distribution functions of the i-th and the j-th sample
significantly differ if it holds

|ti − tj | >

√

1

12

(
1

ni

+
1

nj

)

n(n + 1) hI−1(α). (15.12)

Probability that at least two of I(I − 1)/2 distribution functions Fi, Fj will be declared
that they are significantly different, although H0 holds, is not greater than α.

If the sizes of all samples are the same, say n1 = · · · = nI = m, then procedures of
multiple comparisons can be based on Tukey idea which was applied in one-way analysis
of variance (see Neményi 1963 and Miller 1966). For small values m and I are critical
values for |Ti − Tj | tabulated. If m and I are large, we use the following method. Let
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qI,∞(α) be critical value of the range of I independent random variables with distribution
defined as follows. If ξ1, . . . , ξI is the sample from N(0, 1), we denote R = ξ(I) − ξ(1) its
range. Then qI,∞(α) is defined by the condition

P[R ≥ qI,∞(α)] = α.

We declare that Fi and Fj significantly differ if

|ti − tj | > qI,∞(α)

√

1

12
I(Im + 1). (15.13)

If possible, we prefer Neményi method, since it is more sensitive.
Other tests, which can be used instead of Kruskal-Wallis test, are described in the

paper Bhapkar, Deshpande (1968).
It is necessary to point out that assigning ranks is monotonous transformation, but

nonlinear. The nonlinearity may lead to paradoxal results, as it is shown in the next
example (see Haunsperger, Saari 1991).

Example 15.18 Two workshops are in a factory, in each of them 6 identical machines.
However, 2 are from producer A, 2 from B and 2 from C. The production is described in
tab. 15.9 – 15.11.

Table 15.9: Workshop No. 1

Producer Productivity of machines Rank Sum of ranks

A 5.89 5.98 3 5 8
B 5.81 5.90 2 4 6
C 5.80 5.99 1 6 7

Table 15.10: Workshop No. 2

Producer Productivity of machines Rank Sum of ranks

A 5.69 5.74 3 5 8
B 5.63 5.71 2 4 6
C 5.62 6.00 1 6 7

Table 15.11: Factory

Producer Productivity of machines Rank Sum of ranks

A 5.89 5.98 5.69 5.74 8 10 3 5 26
B 5.81 5.90 5.63 5.71 7 9 2 4 22
C 5.80 5.99 5.62 6.00 6 11 1 12 30

V workshop 1 the arrangement is A ≻ C ≻ B. Also in the workshop 2 we have
A ≻ C ≻ B. In the factory we have C ≻ A ≻ B, which is completely different. ♦
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Table 15.12: Ranks of the yields of potatoes

Sort Ranks

A 8 6 15 17 12 10 22
B 20 27 26 25 24 14 28
C 21 11 9 23 16 18 19
D 4 2 3 5 13 1 7

Some paradoxes are described in papers Haunsperger (1992) and Saari (1989).

Example 15.19 We use data from example 15.15, p. 141. The numbers given in tab. 15.3
will be ordered and their ranks assigned. We get tab. 15.12.

We have ni = 7 for i = 1, 2, 3, 4 and further we get

T1 = 90, T2 = 164, T3 = 117, T4 = 35, Q = 18.369.

Since Q ≥ χ2
3(0.05) = 7.81, we reject the hypothesis that the samples arise from the dis-

tributions with identical distribution function. Now, we calculate multiple comparisons.
We get

t1 = 12,857, t2 = 23.429, t3 = 16.714, t4 = 5.

Critical value is 12.3. In our case the samples have the same size and thus we can calculate
also critical value using (15.13). The result is 11.3. We use this second critical value,
because it is smaller. The differences ti− tj are introduced in tab. 15.13. The significance
is denoted by a star.

Table 15.13: Values ti − tj

j

i 2 3 4

1 −10.57 −3.86 7.86
2 6.72 18.43∗

3 11.71∗

The sorts are arranged according ti and we underline by unbroken line the groups
which do not differ significantly. We obtain tab. 15.14.

Table 15.14: Sorted means

D A C B

It is proved that D is significantly different from C and also from B. These results are
weaker than those obtained from the analysis of variance in example 15.15.

Using program R we get

kruskal.test(vynos ~ odruda)Kruskal-Wallis rank sum testdata: vynos by odrudaKruskal-Wallis 
hi-squared = 18.3695, df = 3, p-value = 0.000369
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We obtained significant result. ♦



Chapter 16

Discrete problem of k samples

16.1 Testing homogeneity by method χ2

Test of homogeneity of two binomial distributions was described in sec. 14.1. It was proved
that it corresponds to the test of homogeneity in 2 × 2 table. For test of homogeneity of
r binomial distributions we can use χ2 test for r × 2 table.

Theorem 16.1 Let c = 2. Then

χ2 =
n2

n.1n.2

r∑

i=1

ni.

(
ni1

ni.
− n.1

n

)2

. (16.1)

Proof. We use formula (10.18) for calculating χ2 in contingency tables. We insert ni2 =
ni. − ni1, n.2 = n − n.1, and we obtain

χ2 =
r∑

i=1






(

ni1 −
ni.n.1

n

)2

ni.n.1

n

+

(

ni2 −
ni.n.2

n

)2

ni.n.2

n






=
1

n

r∑

i=1

[
(nni1 − ni.n.1)

2

ni.n.1

+
(nni2 − ni.n.2)

2

ni.n.2

]

.

Since

nni2 − ni.n.2 = n(ni. − ni1) − ni.n.2 = −nni1 + (n.1 + n.2)ni. − ni.n.2 = −nni1 + ni.n.1,

we get

χ2 =
1

n

r∑

i=1

(nni1 − ni.n.1)
2

[
1

ni.n.1
+

1

ni.n.2

]

=
1

n

r∑

i=1

(nni1 − ni.n.1)
2n.2 + n.1

ni.n.1n.2

=
r∑

i=1

(nni1 − ni.n.1)
2

ni.n.1n.2

=
n2

n.1n.2

r∑

i=1

ni.

(
ni1

ni.
− n.1

n

)2

. 2
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Theorem 16.2 Let c = 2. Then

χ2 =
n2

n.1n.2

r∑

i=1

n2
i1

ni.

− n
n.1

n.2

. (16.2)

Proof. From formula (16.1) we obtain

χ2 =
n2

n.1n.2

r∑

i=1

ni.

(
ni1

ni.

− n.1

n

)2

=
n2

n.1n.2

(
r∑

i=1

n2
i1

ni.

− 2
n.1

n

r∑

i=1

ni1 +
n2

.1

n2

r∑

i=1

ni.

)

=
n2

n.1n.2

r∑

i=1

n2
i1

ni.
− n

n.1

n.2
. 2

Formula (16.1) can be used for calculating χ2 also in the case that we are interested
in testing independence in table 2 × c. Formulas for test of independence and test for
homogeneity are identical.

16.2 Test based on weighted average

Now, we shall consider the problem of testing homogeneity from other aspect. Let X1 ∼
Bi(n1, p1), . . . , Xk ∼ Bi(nk, pk) and let the variables X1, . . . , Xk be independent. We
intend to test hypothesis of homogeneity H0 : p1 = · · · = pk. Denote xi = Xi/ni and
N = n1 + · · ·+nk. We know that Exi = pi, var xi = pi(1− pi)/ni. Assume that H0 holds.
The common value of all probabilities pi will be denoted by p, so that p = p1 = · · · = pk.
Theorem 15.9 gives that

p̂ =
1

N

∑

i

nixi

is estimator for parameter p (see formula (15.2).

The central limit theorem gives that xi has asymptotically distribution N

[

p,
p(1 − p)

ni

]

if hypothesis of homogeneity holds. From theorem 15.10 we get that

Q =
1

p(1 − p)

∑

i

ni(xi − p̂)2

has asymptotically χ2
k−1 distribution. However, we do not know the parameter p. Thus

we use the estimator p̂ instead and we use Q̃ instead of Q, where

Q̃ =
1

p̂(1 − p̂)

∑

i

ni(xi − p̂)2. (16.3)

It can be proved that the asymptotic distribution of the variable Q̃ remains the same as
the asymptotic distribution of variable Q, namely χ2

k−1. We reject H0 when Q̃ ≥ χ2
k−1(α).

Since the test is asymptotical, for all i it must hold nip̂ > 5. Formula (16.3) can be a
little simplified.
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Theorem 16.3 Let c = 2. Then

Q̃ =
1

p̂(1 − p̂)

k∑

i=1

nix
2
i − N

p̂

1 − p̂
. (16.4)

This formula is called Brandt-Snedecor formula.

Proof. First, we write (16.3) in the form

Q̃ =
1

p̂(1 − p̂)

(
k∑

i=1

nix
2
i − 2p̂

k∑

i=1

nixi + p̂2
k∑

i=1

ni.

)

Since
∑

nixi = np̂, the formula (16.4) follows. 2

16.3 Remark on tests

Theorem 16.4 If k = 2, then the test based on statistic Q̃ is identical with two-sided
test which is based on Ub defined in formula (14.2).

Proof. Since χ2
1(α) =

[
u
(

α
2

)]2
, test based on Ub rejects homogeneity of two binomial

distributions when U2
b ≥ χ2

1(α). If we compare denotation used in (14.2) and in our
theorem, we can see that

x = x1, y = x2, z = p̂, m = n1, n = n2.

According to (16.3) and to (14.2) we have

Q̃ =
1

z(1 − z)
[m(x − z)2 + n(y − z)2].

Since

z =
mx + ny

m + n
,

we obtain

Q̃ =
1

z(1 − z)

(x − y)2

1

m
+

1

n

= U2
b . 2

Similarly, for arbitrary k ≥ 2 it holds Q̃ = χ2, where χ2 is defined in formula (16.2)
and Q̃ in (16.4).

Theorem 16.5 Let c = 2. Then

Q̃ =
n2

n.1n.2

k∑

i=1

n2
i1

ni.
− n

n.1

n.2
. (16.5)

Proof. We have p̂ = n.1

n
, 1 − p̂ = n.2

n
. We insert into (16.4) and obtain assertion of

theorem. 2
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16.4 Example

Example 16.6 The Faculty of Mathematics and Physics organizes camp for students
who enrolled into the first year of study. The camp is in Albeř in district Jindřich̊uv
Hradec. The students are divided into groups with respect to the branch of their study.
It is Mathematics (M), Physics (F), Computer Science (I), and Teaching (U). Since 2004
the students write the same test from Mathematics. The test consists of 12 problems.
Each correctly solved problem brings 1 point. The student having 9 or more points is
successful. The unsuccessful solvers are recommended to attend a special introductory
course in Praha. The results of the test in year 2010 are introduced in tab. 16.1.

Table 16.1: Results of test from Maths in 2010

Branch
Year M F I U

2010 Successful 104 55 52 7
Unsuccessful 54 42 70 10

We will deal with the problem if in year 2010 were significant differences among the
branches. Using program R we obtain

usp10 <- c(104, 55, 52, 7)

neu10 <- c(54, 42, 70, 10)

tbl10 <- rbind(usp10,neu10)

colnames(tbl10) <- c("M","F","I","U")

(tbl10.am <- addmargins(tbl10))M F I U Sumusp10 104 55 52 7 218neu10 54 42 70 10 176Sum 158 97 122 17 394
clk10 <- usp10+neu10

prop.test(usp10,clk10)data: usp10 out of 
lk10X-squared = 16.4601, df = 3, p-value = 0.0009125alternative hypothesis: two.sided sample estimates:prop 1 prop 2 prop 3 prop 40.6582278 0.5670103 0.4262295 0.4117647
The difference in year 2010 is statistically significant. However, in other years the differ-
ence was not significant.

In case of significant result the statistician must decide which pairs are significantly
different. This can be done using the following program.

pairwise.prop.test(usp10, clk10)Pairwise 
omparisons using Pairwise 
omparison of proportionsdata: usp10 out of 
lk101 2 32 0.554 - -



16.4. EXAMPLE 1553 0.001 0.265 -4 0.328 0.714 1.000P value adjustment method: holm
The result is represented by the matrix of adjusted p-values, calculated by Holm

method (see Holm 1979). It is one of the methods of multiple comparisons. We can see
that there exists only one adjusted p-value, which is smaller than 0.05, namely 0.001. It
corresponds to the comparison of the students of mathematics and informatics. These
two groups are significantly different. No other differences were significantly different.
♦
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Chapter 17

Calculation of power of test

17.1 One-sample test

Let X1, . . . , Xn be a random sample from the distribution N(µ, σ2), where σ2 > 0. At
the beginning we assume that the variance σ2 is known. Test of H0 : µ = µ0 against
H1 : µ > µ0 has critical set

X̄ − µ0

σ

√
n ≥ u(α).

If the true expectation is µ, then the power of test (probability of rejection H0) is

β(µ) = P

{
X̄ − µ0

σ

√
n ≥ u(α)

∣
∣
∣
∣
µ

}

= P

{
X̄ − µ

σ

√
n ≥ u(α) +

µ0 − µ

σ

√
n

∣
∣
∣
∣
µ

}

.

Denote ∆ = (µ − µ0)/σ. If we want that for the given ∆ the test has power β, we
must have

P

{
X̄ − µ

σ

√
n ≥ u(α) +

µ0 − µ

σ

√
n

∣
∣
∣
∣
µ

}

= β. (17.1)

Consider size n of the sample which ensures that for the given ∆ the power of test
β(µ) will be equal to the given probability β. From (17.1) we have the condition

u(α) + ∆
√

n = u(β),

so that

n =
[u(β) − u(α)]2

∆2
.

We solved the right-hand side test. The results for left-hand side test and for the two-sided
test can be derived analogously. For details see Hátle, Likeš (1972), p. 287.

If the variance σ2 is not known, then the test of H0 : µ = µ0 against H1 : µ > µ0 has
critical set

T ′ =
X̄ − µ0

S

√
n ≥ tn−1(α).

If the mean value is µ, then the random variable (X̄ − µ0)
√

n/σ has distribution N(δ, 1),
where δ = (µ − µ0)

√
n/σ. Thus T ′ has non-central t distribution tn−1,δ. The power is

β(µ) = P[T ′ ≥ tn−1(2α)] = 1 − Fn−1,δ[tn−1(2α)],
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where Fn−1,δ is distribution function of tn−1,δ. The size n of sample ensuring that for
a given µ > µ0 the power of test is β can be obtained by solving equation β(µ) = β.
Similar procedure can be used for left-hand side and for two-sided test.

Example 17.1 We analyze data introduced in example 9.5, p. 74. We calculate power
of two-sided test H0 : µ = 0 against alternative H1 : µ = 1. This number 1 is denoted
delta. First, the data are odch <- c(-3,2,-2,0,-1). Then we use sd(odch) and have
standard deviation 1.923538. The unknown standard deviation σ will be taken as 2.
Further we have

power.t.test(n=5, delta=1, sd=2, type="one.sample")One-sample t test power 
al
ulationn = 5delta = 1sd = 2sig.level = 0.05power = 0.1384528alternative = two.sided
In this function we have sig.level = 0.05. The power of the test is only 0.14. If

we want to have the power of test 0.9, the sample size is obtained as follows.

power.t.test(power=0.9, delta=1, sd=2, type="one.sample")One-sample t test power 
al
ulationn = 43.99552delta = 1sd = 2sig.level = 0.05power = 0.9alternative = two.sided
The size of the sample would be n = 44. ♦

17.2 Paired t-test

It is only a variant of one-sample t-test and so we show only an example.

Example 17.2 We use data introduced in example 11.1, p. 99. We shall calculate power
of test for the case that the difference of means is delta=0.3. We have

ppneu <- c(1.8,1.0,2.2,0.9,1.5,1.6)

lpneu <- c(1.5,1.1,2.0,1.1,1.4,1.4)

rozdil <- ppneu-lpneu

sd(rozdil)0.194079
The unknown standard deviation σ is replaced by the number 0.2. We obtain
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power.t.test(n=6, delta=0.3, sd=0.2, type="paired")Paired t test power 
al
ulationn = 6delta = 0.3sd = 0.2sig.level = 0.05power = 0.8325291alternative = two.sidedNOTE: n is number of *pairs*, sd is std.dev. of *differen
es* within pairs
In this case the power of test is 0.83, which is rather large. ♦

17.3 Two-sample t-test

We show only a practical application of the test.

Example 17.3 Consider data from example 13.4, p. 112. The program can be applied
only in the case that the sizes of both samples are equal. Assume that when the difference
of means is 5, the power should be 0.9. We obtain

da<-c(62,54,55,60,53,58)

db<-c(52,56,49,50,51)

sd(da) [1℄3.577709
sd(db)[1℄ 2.701851

Standard deviation of the first sample is 3.6, of the second 2.7. The unknown standard
deviation σ will be taken as 3. We calculate

power.t.test(power=0.9, sd=3, delta=5)Two-sample t test power 
al
ulationn = 8.649245delta = 5sd = 3sig.level = 0.05power = 0.9alternative = two.sidedNOTE: n is number in *ea
h* group
The required power of test would be reached in the case that the sample size in each

group would be n = 9. ♦
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17.4 Analysis of variance

Using function power.anova.test it is possible to calculate power of test in one-way
analysis of variance when the classification is balanced , Function power.anova.test has
arguments

• groups Number of groups

• n Number of observations (per group)

• between.var Between group variance

• within.var Within group variance

• sig.level Significance level (Type I error probability)

• power Power of test (1 minus Type II error probability)

Example 17.4 We calculate power of test for data in example 15.15, p. 141. Value of
within.var can be estimated by residual variance 3.43, value of between.var can be
estimated by variance of class averages as follows.

x <- c(20.9, 24.6, 22.3, 17.7) # class averages

var(x)8.329167
Now, we calculate the power of the test:

power.anova.test(groups=4, n=7, between.var=8.33,

within.var=3.43)Balan
ed one-way analysis of varian
e power 
al
ulationgroups = 4n = 7between.var = 8.33within.var = 3.43sig.level = 0.05power = 0.9999658
In this case the power is very high, which corresponds to small p-value from exam-

ple 15.15. ♦

17.5 Test for homogeneity of two binomial distribu-

tions

It happens quite often that we have two binomial distributions and we want to test
if probability of success is the same for both distributions. Let X1 ∼ Bi(n1, p1) and
X2 ∼ Bi(n2, p2) be two independent random variables. If we have their realizations, we
are interested in the power of test of hypothesis H0 : p1 = p2 against the alternative that
the true probabilities p1 and p2 are different. If we prepare the samples, we are interested
in sample sizes which ensure that the power of test will be β. In the case n1 = n2 = n
we can use the function power.prop.test. We have
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power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05, power=NULL,

alternative=c("twosided","one.sided"), strict=FALSE)

If one of the parameters n, p1, p2, power, is unknown, then the function sig.level the
parameter calculates. We introduce some examples.

Example 17.5 We restrict ourselves to the usual situation sig.level=0.05. If n=50,
p1=0.5, p2=0.6, then we get

power.prop.test(n = 50, p1 = .5, p2 = .6)Two-sample 
omparison of proportions power 
al
ulationn = 50p1 = 0.5p2 = 0.6sig.level = 0.05power = 0.1685815alternative = two.sidedNOTE: n is number in *ea
h* group
The power of the test is only 0.1685815. If we want power β = 0.9, then the calculation

power.prop.test(p1 = .5, p2 = .6, power = .9)Two-sample 
omparison of proportions power 
al
ulationn = 518.0372p1 = 0.5p2 = 0.6sig.level = 0.05power = 0.9alternative = two.sidedNOTE: n is number in *ea
h* group
gives that we must have at least 518 variables in each group.

♦
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Chapter 18

Linear regression models

18.1 Introduction

Linear regression models were described in section 15.1 on p. 129. In this chapter we
introduce some special cases. At the beginning we shall assume that e1, . . . , en are inde-
pendent random variables with distribution N(0, σ2).

18.2 Basic regression models

18.2.1 Line with zero intercept

Consider the model
Yi = βxi + ei, i = 1, . . . , n.

If we write this model in the form (15.1), then we can see that the vector β has only one
component β and it holds X = (x1, . . . , xn)′. It follows from theorem 15.1 on p. 130 that
the estimator of the parameter β is

b =

∑
xiYi

∑
x2

i

.

Using the second formula in theorem 15.3 on p. 130 we have

s2 =
R

n − 1
=

∑
Y 2

i − b
∑

xiYi

n − 1
.

Usually, we test the hypothesis H0 : β = 0. We use theorem 15.7 on p. 131. If H0 holds,
then the variable

T =
b

s

√∑

x2
i

has the distribution tn−1. If |T | ≥ tn−1(α), we reject H0.

Example 18.1 Bend Yi (in mm×10−2) of plastic material was measured in dependence
on pressure xi (in kp/cm2 ). The results are introduced in tab. 18.1, see fig. 18.1.

It is known that in this range of values xi the bend is linearly dependent on pressure.
This linear function has zero intercept. We obtain

b = 7.857, s2 = 4.7143, T = 69.041.
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Table 18.1: Bend of material in dependence on pressure

Pressure xi 2 4 6 8 10 12
Bend Yi 14 35 48 61 80 93

The value of T exceeds the critical value t5(0.05) = 2.571, and so we reject hypothesis
H0. The calculation is as follows.

tlak <- 2*1:6

pruhyb <- c(14, 35, 48, 61, 80, 93)

g <- lm(pruhyb ~ tlak -1)

summary(g)Call:lm(formula = pruhyb ~ tlak - 1)Residuals:1 2 3 4 5 6-1.7143 3.5714 0.8571 -1.8571 1.4286 -1.2857Coeffi
ients:Estimate Std. Error t value Pr(>|t|)tlak 7.8571 0.1138 69.04 1.21e-08 ***---Signif. 
odes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1Residual standard error: 2.171 on 5 degrees of freedomMultiple R-squared: 0.999, Adjusted R-squared: 0.9987F-statisti
: 4767 on 1 and 5 DF, p-value: 1.207e-08
confint(g)2.5 % 97.5 %tlak 7.564601 8.149685
plot(pruhyb ~ tlak, las=1, xlab="pressure", ylab="bend")

abline(g)

♦

18.2.2 Regression line

Consider the model

Yi = β0 + β1xi + ei, i = 1, . . . , n. (18.1)

We have β = (β0, β1)
′ and

X =





1 x1

. . . . .
1 xn



 , X ′X =

(
n

∑
xi∑

xi

∑
x2

i

)

, X ′Y =

( ∑
Yi∑

xiYi

)

.

Denote

Ȳ =
1

n

∑

Yi, x̄ =
1

n

∑

xi.
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Figure 18.1: Bend of material in dependence on pressure

We obtain estimators

b1 =

∑
xiYi − nx̄Ȳ
∑

x2
i − nx̄2

, b0 = Ȳ − b1x̄, s2 =

∑
Y 2

i − b0

∑
Yi − b1

∑
xiYi

n − 2
.

We show an interpretation of b1. Assume that xi 6= x̄ holds for all i. Then

b1 =

∑

i

(xi − x̄)(Yi − Ȳ )

∑

j

(xj − x̄)2
=
∑

i

(xi − x̄)2

∑

j

(xj − x̄)2

Yi − Ȳ

xi − x̄
=
∑

i

wi tg αi,

where weight wi is

wi =
(xi − x̄)2

∑

j

(xj − x̄)2

and αi is the angle between horizontal line and the line joining points (xi, Yi) and (x̄, Ȳ ).
Sum of the weights wi is one. Thus the regression line is weighted average of all lines
which go through points (xi, Yi) and their center of gravity (x̄, Ȳ ).

For testing H0 : β1 = 0 calculate

T1 =
b1

s

√∑

x2
i − nx̄2.

If |T1| ≥ tn−2(α), then H0 will be rejected.
Let c = (1, x)′, where x is a given number. We verify that

c′(X ′X)−1c =
1

n
+

(x − x̄)2

∑
x2

i − nx̄2
.

Theorem 15.8 on p. 132 implies that the interval with endpoints

b0 + b1x ∓ tn−2(α)s

√

1

n
+

(x − x̄)2

∑
x2

i − nx̄2
(18.2)
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with probability 1 − α covers the value β0 + β1x (and so it is confidence interval for
β0 +β1x with confidence coefficient 1−α). Formula (18.2) defines a hyperbola and thus a
confidence band. The band ensures that a value β0 +β1x will be covered with probability
1−α but not the line y = β0 +β1x. Such a confidence band can be also derived. Instead
of tn−2(α) number

√

2F2,n−2(α) must be used.
Now, we calculate prediction interval and prediction confidence band . Assume that a

new observation Y0 corresponds to the row x′
0 = (1, x0). We get

x′
0(X

′X)−1x0 + 1 =
1

n
+

(x0 − x̄)2

∑
x2

i − nx̄2
+ 1.

Formula (15.6) on p. 135 defines interval with endpoints

b0 + b1x0 ∓ tn−k(α)s

√

1 +
1

n
+

(x0 − x̄)2

∑
x2

i − nx̄2
.

It is confidence interval for Y0 with confidence coefficient 1 − α. If x varies continuously,
we get prediction confidence band .

Example 18.2 (Continuation of example 6.3, p. 61.) Concentration of the milk acid in
the blood of mothers (values xi) and their newborn children (values Yi) was measured.
The results are introduced in tab. 6.1 and in tab. 18.2. We assume that the concentration
of the milk acid in blood of new born children depends linearly on the concentration in
blood of mother.

Table 18.2: Concentration of milk acid

xi 40 64 34 15 57 45

Yi 33 46 23 12 56 40

We insert data and calculate basic characteristics.

matky <- c(40,64,34,15,57,45)

deti <- c(33,46,23,12,56,40)

g <- lm(deti ~ matky)

summary(g)Call:lm(formula = deti ~ matky)Residuals:1 2 3 4 5 60.1358 -7.3677 -4.7384 0.4936 8.6125 2.8642Coeffi
ients:Estimate Std. Error t value Pr(>|t|)(Inter
ept) -1.3082 7.3615 -0.178 0.86759matky 0.8543 0.1623 5.265 0.00623 **---
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odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1Residual standard error: 6.312 on 4 degrees of freedomMultiple R-Squared: 0.8739, Adjusted R-squared: 0.8424F-statisti
: 27.72 on 1 and 4 DF, p-value: 0.006232
confint(g) 2.5 % 97.5 %(Inter
ept) -21.7469727 19.130521matky 0.4038278 1.304795

The results are presented graphically in fig. 18.2.

pred.frame <- data.frame(matky=seq(15, 65, by=0.5))

pred.matky <- pred.frame$matky

pp <- predict(g, int="p", newdata=pred.frame)

pc <- predict(g, int="c", newdata=pred.frame)

plot(matky, deti, xlim=c(15,65), xlab="mothers",

ylab="children", ylim=range(0,70,deti, pp, na.rm=T), pch=16, las=1)

abline(g)

matlines(pred.matky, pc, lty=c(1,2,2), col="black")

matlines(pred.matky, pp, lty=c(1,3,3), col="black")
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Figure 18.2: Concentration of milk acid

We have got b0 = −1.3082, b1 = 0.8543. Estimator b1 is significant, its p-value
is 0.00623. Confidence bands are presented in fig. 18.2. Confidence interval for β1 is
(0.40, 1.30). ♦

Asymptotic properties of estimators can be derived without assumption of normal-
ity. It suffices to assume that e1, . . . , en are random independent variables with zero
expectation and equal variance σ2 > 0.
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Theorem 18.3 Let exist numbers c0, c1 such that for n → ∞ it holds

1

n

n∑

i=1

xi → c0,
1

n

n∑

i=1

x2
i → c1,

and c1 − c2
0 > 0. Then b0 and b1 are consistent estimators of parameters β0 and β1. If

additionally E(Yi − EYi)
4 ≤ D holds for some D > 0, then s2 is consistent estimator of

parameter σ2.

Proof see Dupač, Hušková (1999), p. 141. 2

Theorem 18.4 Assume that the assumptions of theorem 18.3 are fulfilled. Moreover,
assume that

lim sup
n→∞

1

n

n∑

i=1

|xi|3 < ∞.

Then each of variables
b0 − β0√

var b0

,
b1 − β1√

var b1

has asymptotically distribution N(0, 1).

Proof see Dupač, Hušková (1999), str. 143. 2

18.2.3 Quadratic regression

Under this name we understand the model

Yi = β0 + β1xi + β2x
2
i + ei, i = 1, . . . , n. (18.3)

Here we have

X =





1 x1 x2
1

. . . . . . . . .
1 xn x2

n



, X ′X =





n
∑

xi

∑
x2

i∑
xi

∑
x2

i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i



, X ′Y =





∑
Yi∑

xiYi∑
x2

i Yi



 .

Estimator b = (b0, b1, b2)
′ of vector β = (β0, β1, β2)

′ can be obtained by solving system of
equations

X ′Xb = X ′Y .

Then we obtain

s2 =
1

n − 3

(∑

Y 2
i − b0

∑

Yi − b1

∑

xiYi − b2

∑

x2
i Yi

)

.

Denote

(X ′X)−1 =





v00 v01 v02

v10 v11 v12

v20 v21 v22



 .

Very often we test the hypothesis H0 : β2 = 0. This is a test if the dependence Yi on xi

is linear. If H0 holds then it follows from theorem 15.7 that

T2 =
b2√
s2v22

∼ tn−3.
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In case |T2| ≥ tn−3(α) the hypothesis H0 is rejected.
Consider test of hypothesis H ′

0 : β1 = β2 = 0. If H ′
0 holds, then Yi does not depend on

xi. Alternative hypothesis is that Yi depends on xi either linearly or quadratically. For
testing H ′

0 we use theorem 15.12. We know that residual sum of squares is R = (n−3)s2.
Here k = 3 (matrix X has three columns and rank 3). If H ′

0 holds, we have submodel

Yi = β0 + ei.

Least squares estimator of the parameter β0 is Ȳ , so that

R1 =
∑

(Yi − Ȳ )2 =
∑

Y 2
i − nȲ 2.

We have two independent linear bindings (β1 = 0, β2 = 0), so that k − l = t = 2. Thus

F =
(R1 − R)/2

R/(n − 3)
∼ F2,n−3.

If F ≥ F2,n−3(α), we reject H ′
0.

Example 18.5 In tab. 18.3 we have measurements of density of water ρ in dependence
on temperature. Temperature is introduced in degrees of Celsius, density in kg/dm3. See
fig. 18.3.

Table 18.3: Density of water

t ρ t ρ t ρ

0 1,000 40 0,993 80 0,973
10 1,000 50 0,987 90 0,964
20 0,997 60 0,983 100 0,958
30 0,996 70 0,978

We calculate

teplota <- 10*0:10

hustota <- c(1, 1, 0.997, 0.996, 0.993, 0.987,

0.983, 0.978, 0.973, 0.964, 0.958)

g <- lm(hustota ~ teplota + I(teplota^2))summary(g)Call:lm(formula = hustota ~ teplota + I(teplota^2))Residuals:Min 1Q Median 3Q Max-1.114e-03 -5.753e-04 -6.853e-05 6.727e-04 1.052e-03Coeffi
ients: Estimate Std. Error t value Pr(>|t|)(Inter
ept) 1.000e+00 6.870e-04 1456.302 < 2e-16 ***teplota -6.312e-05 3.196e-05 -1.975 0.0837 .I(teplota^2) -3.660e-06 3.078e-07 -11.888 2.3e-06 ***
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Figure 18.3: Density of water in dependence on temperature---Signif. 
odes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1Residual standard error: 0.0009017 on 8 degrees of freedomMultiple R-squared: 0.997, Adjusted R-squared: 0.9962F-statisti
: 1316 on 2 and 8 DF, p-value: 8.428e-11
Program for figure is

pred.frame <- data.frame(teplota=seq(0, 100, by=5))

pred.hustota <- predict(g, newdata=pred.frame)

new <- pred.frame$teplota

plot(teplota, hustota, ylim=range(hustota, pred.hustota), las=1)

matlines(new, pred.hustota)

Since F is significant, we proved that density of water depends on its temperature. The
coefficient by quadratic component is significant, we reject hypothesis that the dependence
is linear. ♦
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18.2.4 Two independent variables

Consider the model

Yi = β0 + β1xi + β2zi + ei, i = 1, . . . , n,

so that

X =





1 x1 z1

. . . . . . . . .
1 xn zn



 ,

X ′X =





n
∑

xi

∑
zi∑

xi

∑
x2

i

∑
xizi∑

zi

∑
xizi

∑
z2

i



 , X ′Y =





∑
Yi∑

xiYi∑
ziYi



 .

Estimator b = (b0, b1, b2)
′ of vector β = (β0, β1, β2)

′ can be calculated from the system of
normal equation

X ′Xb = X ′Y .

Using formulas

R =
∑

Y 2
i − b0

∑

Yi − b1

∑

xiYi − b2

∑

ziYi, s2 =
R

n − 3

we obtain residual sum of squares R and residual variance s2. Elements of the matrix
(X ′X)−1 will be again denoted vij , i, j = 0, 1, 2. If we want to test H0 : β2 = 0, we
calculate

T2 =
b2√
s2v22

.

In the case that |T2| ≥ tn−3(α) we reject H0 and it is proved that Yi depends on zi.
Similarly, for testing H ′

0 : β1 = 0 calculate

T1 =
b1√
s2v11

and H ′
0 will be rejected, when |T1| ≥ tn−3(α). If H ′

0 is rejected, the dependence Yi on xi

is proved.
Consider testing hypothesis H∗

0 : β1 = β2 = 0. We start with calculation

R1 =
∑

Y 2
i − nȲ 2.

General theory gives that the variable

F =
(R1 − R)/2

R/(n − 3)

has distribution F2,n−3 when H∗
0 holds. If F ≥ F2,n−3(α), we reject H∗

0 . This will prove
that Yi depends either on xi or on zi or on both xi and zi.

Example 18.6 (Continuation of example 6.3, p. 61.)
Remember that in year 1957 statisticians investigated expenses Yi for food and drinks

in households in dependence on number Xi of people in the household and on net earnings
Zi. The data concerning 7 randomly chosen households are given in Tab. 6.2. Assume that
the dependence of expenses on remaining two variables is linear and calculate regression
analysis. The program is
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vyd <- c(4,3,4,1,6,4,5)

velik <- c(4,2,4,1,5,3,4)

prijem <- c(10,8,12,3,15,12,13)

potr <- data.frame(vyd,velik,prijem)

g <- lm(vyd ~ velik + prijem)

summary(g)Call:lm(formula = vyd ~ velik + prijem)Residuals:1 2 3 4 5 6 70.029903 0.252419 -0.536500 -0.003518 0.285840 -0.208443 0.180299Coeffi
ients:Estimate Std. Error t value Pr(>|t|)(Inter
ept) -0.17414 0.40812 -0.427 0.6916velik 0.32806 0.27125 1.209 0.2931prijem 0.28320 0.09473 2.990 0.0404 *---Signif. 
odes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1Residual standard error: 0.3571 on 4 degrees of freedomMultiple R-squared: 0.9657, Adjusted R-squared: 0.9485F-statisti
: 56.25 on 2 and 4 DF, p-value: 0.001179
Statistic F is significant. Expenses for food depend on number of people in the house-

hold and on income. However, influence of number of people is not significant. The
number of data is very small.

♦
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[5] Angus J. E. (1994): The probability integral transform and related results. SIAM
Review 36, 652–654.

[6] Barr D. R., Davison T. (1973): A Kolmogorov–Smirnov test for censored samples.
Technometrics 15, 739–757.

[7] Bennet B. M. (1962): On multivariate sign tests. J. Roy. Statist. Soc. 24, 159–161.

[8] Campbell D. B., Oprian C. A. (1979): On the Kolmogorov–Smirnov test for the
Poisson distribution with unknown mean. Biom. J. 21, 17–24.

[9] Conover W. J. (1972): A Kolmogorov goodness-of-fit test for discontinuous distri-
butions. J. Amer. Statist. Assoc. 67, 591–596.

[10] Cramér H. (1946): Mathematical Methods of Statistics. Princeton Univ. Press,
Princeton.

[11] Edwards A. W. F. (1963): The measure of association in a 2 × 2 table. J. Roy.
Statist. Soc. A 126, 109–114.

[12] Farnsworth D. L. (2004): The most compact subdomain of a continuous probability
distribution. Teaching Statistics 26, 81*–83.

[13] Fisher R. A. (1935): The logic of inductive inference. J. Roy. Statist. Soc. 98, 39–82.

[14] Gnedenko B. V. (1954): Kurs teorii verojatnostej. 2. vyd., Gos. izd., Moskva.

[15] Goodman L. A. (1964): Simultaneous confidence limits for cross-product ratios in
contingency tables. J. Roy. Statist. Soc. B 26, 86–102.

[16] Haberman S. J. (1974): The Analysis of Frequency Data. Univ. of Chicago Press,
Chicago.
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Dupač V., 168

Eberhardt K. R., 122
Edwards A. W. F., 94

Fan Y, 58
Farnsworth D. L., 75
Fisher R. A., 43, 94
Fliegner M. A., 122
Forsythe A. B., 144

Gart J. J., 123
Glaser R. E., 144
Gnedenko B. V., 72
Goodman L. A., 94
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