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1 Introduction and motivation

1.1 Operations Research/Management Science and Mathe-
matical Programming

Goal: improve/stabilize/set of a system. You can reach the goal in the following
steps:

• Problem understanding

• Problem description – probabilistic, statistical and econometric models

• Optimization – mathematical programming (formulation and solution)

• Verification – backtesting, stresstesting

• Implementation (Decision Support System)

• Decisions

1.2 Marketing – Optimization of advertising campaigns

• Goal – maximization of the effectiveness of a advertising campaign given its
costs or vice versa

• Data – “peoplemeters”, public opinion poll, historical advertising campaigns

• Target group – (potential) customers (age, region, education level ...)

• Effectiveness criteria

– GRP (TRP) – rating(s)

– Effective frequency – relative number of persons in the target group hit
k-times by the campaign

• Nonlinear (nonconvex) or integer programming

1.3 Logistic – Vehicle routing problems

• Goal – maximize filling rate of the ships (operation planning), fleet composi-
tion, i.e. capacity and number of ships (strategic planning)

• Rich Vehicle Routing Problem

– time windows

– heterogeneous fleet

– several depots and inter-depot trips

– several trips during the planning horizon

– non-Euclidean distances (fjords)

• Integer programming :-(, constructive heuristics and tabu search
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Figure 1: A boat trip around Norway fjords

Literature: M.B., K. Haugen, J. Novotný, A. Olstad (2017).
Related problems with increasing complexity:

• Traveling Salesman Problem

• Uncapacitated Vehicle Routing Problem (VRP)

• Capacitated VRP

• VRP with Time Windows

• ...

Approach to problem solution:

1. Mathematical formulation

2. Solving using GAMS based on historical data

3. Heuristic(s) implementation

4. Implementation to a Decision Support System

1.4 Scheduling – Reparations of oil platforms

• Goal – send the right workers to the oil platforms taking into account uncer-
tainty (bad weather – helicopter(s) cannot fly – jobs are delayed)

• Scheduling – jobs = reparations, machines = workers (highly educated, skilled
and costly)
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Figure 2: Fixed interval schedule (assignment of 6 jobs to 2 machines) and corre-
sponding network flow
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• Integer and stochastic programming

Literature: M. Branda, J. Novotný, A. Olstad (2016), M. Branda, S. Hájek (2017)

1.5 Insurance – Pricing in nonlife insurance

• Goal – optimization of prices in MTPL/CASCO insurance taking into account
riskiness of contracts and competitiveness of the prices on the market

• Risk – compound distribution of random losses over 1y (Data-mining & GLM)

• Nonlinear stochastic optimization (probabilistic or expectation constraints)

• See Table 1

Literature and detailed information: M.B. (2012, 2014)

1.6 Power industry – Bidding, power plant operations

Energy markets

• Goal – profit maximization and risk minimization

• Day-ahead bidding from wind (power) farm

• Nonlinear stochastic programming

Power plant operations
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Table 1: Multiplicative tariff of rates: final price can be obtained by multiplying the
coefficients

GLM SP model (ind.) SP model (col.)

TG up to 1000 ccm 3 805 9 318 5 305
TG 1000–1349 ccm 4 104 9 979 5 563
TG 1350–1849 ccm 4 918 11 704 6 296
TG 1850–2499 ccm 5 748 13 380 7 125
TG over 2500 ccm 7 792 17 453 9 169

Region Capital city 1.61 1.41 1.41
Region Large towns 1.16 1.18 1.19
Region Small towns 1.00 1.00 1.00
Region Others 1.00 1.00 1.00

Age 18–30y 1.28 1.26 1.27
Age 31–65y 1.06 1.11 1.11
Age over 66y 1.00 1.00 1.00

DL less that 5y NO 1.00 1.00 1.00
DL more that 5y YES 1.19 1.13 1.12

• Goal – profit maximization and risk minimization

• Coal power plants – demand seasonality, ...

• Stochastic linear programming (multistage/multiperiod)

1.7 Environment – Inverse modelling in atmosphere

• Goal – identification of the source and the amount released into the atmosphere

• Standard approach – dynamic Bayesian models

• New approach – Sparse optimization – Nonlinear/quadratic integer program-
ming (weighted least squares with nonnegativity and sparsity constraints)

• Applications: nuclear power plants accidents, volcano accidents, nuclear tests,
emission of pollutants ...

• Project homepage: http://stradi.utia.cas.cz/

Literature and detailed information: L. Adam, M.B. (2016).
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2 Introduction to optimization

Repeat

• Cones

• Farkas theorem

• Convexity of sets and functions

• Symmetric Local Optimality Conditions (SLPO)

3 Convex sets and functions

Repeat the rules for estimating convexity of functions and sets: intersection of convex
sets, function composition, level sets of convex functions, nonnegative combinations
of convex function, first end second order derivatives, Hessian matrix, epigraph ...

For a function f : Rn → R∗, we define its epigraph

epi(f) =
{

(x, ν) ∈ Rn+1 : f(x) ≤ ν
}

Example 3.1. Prove the equivalence between the possible definitions of convex func-
tions f : Rn → R∗:

1. epi(f) is a convex set

2. Dom(f) is a convex set and for all x, y ∈ Dom(f) and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Example 3.2. Decide if the following sets are convex:

M1 =
{

(x, y) ∈ R2
+ : ye−x − x ≥ 1

}
, (1)

M2 =
{

(x, y) ∈ R2 : x ≥ 2 + y2
}
, (2)

M3 =
{

(x, y) ∈ R2 : x2 + y log y4 ≤ 139, y ≥ 2
}
, (3)

M4 =
{

(x, y) ∈ R2 : log x+ y2 ≥ 1, x ≥ 1, y ≥ 0
}
, (4)

M5 =
{

(x, y) ∈ R2 : (x3 + ey) log(x3 + ey) ≤ 49, x ≥ 0, y ≥ 0
}
, (5)

M6 =
{

(x, y) ∈ R2 : x log x+ xy ≥ 0, x ≥ 1
}
, (6)

M7 =
{

(x, y) ∈ R2 : 1− xy ≤ 0, x ≥ 0
}
, (7)

M8 =

{
(x, y, z) ∈ R3 :

1

2
(x2 + y2 + z2) + yz ≤ 1, x ≥ 0, y ≥ 0

}
, (8)

M9 =
{

(x, y, z) ∈ R2 : 3x− 2y + z = 1
}
. (9)

Solution: M2 is an epigraph of function f(y) = 2+y2, which is obviously convex.

Example 3.3. Establish conditions under which the following sets are convex:

M10 =
{
x ∈ Rn : α ≤ aTx ≤ β

}
, for some a ∈ Rn, α, β ∈ R, (10)

M11 =
{
x ∈ Rn :

∥∥x− x0∥∥ ≤ ‖x− y‖ , ∀y ∈ S} , for some S ⊆ Rn, (11)

M12 =
{
x ∈ Rn : xTy ≤ 1, ∀y ∈ S

}
, for some S ⊆ Rn. (12)

Example 3.4. Verify if the following functions are convex:

f1(x, y) = x2y2 +
x

y
, x > 0, y > 0, (13)

f2(x, y) = xy, (14)

f3(x, y) = log(ex + ey)− log x, x > 0, (15)

f4(x, y) = exp{x2 + e−y}, x > 0, y > 0, (16)

f5(x, y) = − log(x+ y), x > 0, y > 0, (17)

f6(x, y) =
√
ex + e−y, (18)

f7(x, y) = x3 + 2y2 + 3x, (19)

f8(x, y) = − log(cx+ dy), c, d ∈ R, (20)

f9(x, y) =
x2

y
, y > 0, (21)

f10(x, y) = xy log xy, x > 0, y > 0, (22)

f11(x, y) = |x+ y|, (23)

f12(x) = sup
y∈Dom(f)

{xTy − f(y)} = f ∗(x), f : Rn → R, (24)

f13(x) = ‖Ax− b‖22 , (25)

Solution: Consider f6(x, y) =
√
ex + e−y. The first order partial derivatives are

equal to

∂f6
∂x

(x, y) =
ex

2
√
ex + e−y

,

∂f6
∂y

(x, y) =
−e−y

2
√
ex + e−y

,
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and the second order derivatives are

∂2f6
∂x2

(x, y) =
e2x + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y2

(x, y) =
e−2y + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y∂x

(x, y) =
∂2f6
∂x∂y

(x, y) =
ex−y

4(ex + e−y)
3
2

To verify that the Hessian matrix is positive definite, it is sufficient to look on the
numerators, because the common denominator 4(ex + e−y)

3
2 is always positive. Ob-

viously e2x + 2ex−y is positive, thus it remains to verify that

(e2x + 2ex−y)(e−2y + 2ex−y)− (ex−y)2 > 0.

Example 3.5. Let f(x, y) be a convex function and C is a convex set. Then

g(x) = inf
y∈C

f(x, y). (26)

is convex.

Example 3.6. (Vector composition) Let gi : Rn → R, i = 1, . . . , k and h : Rk → R
be convex functions. Moreover let h be nondecreasing in each argument. Then

f(x) = h
(
g1(x), . . . , gk(x)

)
. (27)

is convex.
Apply to

f(x) = log

(
k∑
i=1

egi(x)

)
,

where gi are convex.
Hint: the first part can be verified using the definition of convexity, in the sec-
ond part compute the Hessian matrix H(x) and use the Cauchy-Schwarz inequality
(aTa)(bT b) ≥ (aT b)2 to verify that vTH(x)v ≥ 0 for all v ∈ Rk.

Solution: Consider the function

h(z) = log

(
k∑
i=1

ezi

)
.

Obviously it is nondecreasing in each argument. We can show that it is also convex.
We compute its second order partial derivatives

∂2h

∂z2j
(z) =

ezj(
∑k

i=1 e
zi)− ezjezj

(
∑k

i=1 e
zi)2

, j = 1, . . . , k,

∂2h

∂zj∂zl
(z) =

−ezjezl

(
∑k

i=1 e
zi)2

, j 6= l.
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If we use the notation y = (ez1 , . . . , ezk)T and I = (1, . . . , 1)T ∈ Rk, we can write the
Hessian matrix in the form

Hh(y) =
1

(ITy)2
(
diag(y)(ITy)− yyT

)
,

where ITy =
∑k

i=1 yi =
∑k

i=1 e
zi and diag(y) denotes the diagonal matrix with ele-

ments y. We would like to verify that vTHh(y)v ≥ 0 for arbitrary v ∈ Rk. We can
compute

vTHh(y)v =
(
∑k

i=1 yiv
2
i )(
∑k

i=1 yi)− (
∑k

i=1 yivi)
2

(
∑k

i=1 yi)
2

.

By setting ai =
√
yivi and bi =

√
yi and using the Cauchy-Schwarz inequality in the

form (aTa)(bT b)− (aT b)2 ≥ 0, we can obtain that the numerator is nonnegative, i.e.
vTHh(y)v ≥ 0.

Example 3.7. Verify that the geometric mean is concave:

f(x) =

(
n∏
i=1

xi

)1/n

, x ∈ (0,∞)n. (28)

Hint: compute the Hessian matrix and use the Cauchy-Schwarz inequality (aTa)(bT b) ≥
(aT b)2.

4 Separating hyperplane theorems

Remind: theorem about projection of a point to a convex set (obtuse angle), separa-
tion of a point and a convex set, proper and strict separability.

Using the theorem about the separation of a point and a convex set, prove the
following lemma about the existence of a supporting hyperplane.

Lemma 4.1. Let ∅ 6= K ⊂ Rn be a convex set and x ∈ ∂K. Then, there is γ ∈ Rn,
γ 6= 0 such that

inf{〈γ, y〉 : y ∈ K} ≥ 〈γ, x〉 .

Hint: separate a sequence xn /∈ K which converge to the point x on the boundary,
show the convergence of separating hyperplanes characterized by γn 6= 0.

Example 4.2. Find a separating or supporting hyperplane for the following sets and
points:

x1 = (−1,−1) K1 = {(x, y); x ≥ 0, y ≥ 0},
x2 = (3, 1) K2 = {(x, y); x2 + y2 < 10},
x3 = (3, 0, 0) K3 = {(x, y, z); x2 + y2 + z2 ≤ 9},
x4 = (0, 2, 0) K4 = {(x, y, z); x+ y + z ≤ 1}.

Hint: Use pictures and realize that γ is the normal vector of the separating/supporting
hyperplane. For x1, K1 we can use γ = (1, 1), then

min
(x,y)∈K

x+ y = 0 > −1− 1 = −2.

Note that other choices are also possible, in particular (γ1, γ2) 6= 0 with γ1, γ2 ≥ 0.
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Example 4.3. Let K ⊆ Rn, K 6= ∅. Show that K is a closed convex set if and only
if it is an intersection of all closed half-spaces which contain K.

Hint: Show that if y /∈ K, then it is not contained in the intersection using the
theorem about separation of a point and a convex set.

Example 4.4. Provide a description of the circle in R2 and ball in R3 as a intersec-
tion of supporting halfspaces.

Prove the following theorem which gives a sufficient condition for proper separa-
bility of two convex sets.

Theorem 4.5. Let A,B ⊂ Rn be non-empty convex sets. If rint(A) ∩ rint(B) = ∅,
then A and B can be properly separated.

Hint: Separate set K = A−B and point 0. First, show that 0 /∈ rintK.

Example 4.6. Verify whether the following pairs of (convex ?) sets are properly or
strictly separable or not. If they are separable, suggest a possible value of γ.

A1 = {(x, y); y ≥ |x|}, B1 = {(x, y); 2y + x ≤ 0},
A2 = {(x, y); xy ≥ 1, x > 0}, B2 = {(x, y; x ≤ 0, y ≤ 0},
A3 = {(x, z); x+ y + z ≤ 1}, B3 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 3},
A4 = {(x, y, z); 0 ≤ x, y, z ≤ 1}, B4 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 3}.

Hint: Use pictures. Sets A1, B2 are properly separable using γ1 = (1, 2):

min
(x,y)∈A1

x+ 2y = 0 ≥ 0 = max
(x,y)∈B1

x+ 2y.

Example 4.7. Discuss the proof of the Farkas theorem.

Hint: Use an alternative formulation of the FT.

5 Subdifferentiability and subgradient

From Introduction to optimization (or similar course), you should remember the
following property which holds for any differentiable convex function f : X → R:

∀x, y ∈ X f(y)− f(x) ≥ 〈∇f(x), y − x〉 .

This property can be generalized by the notation of subdifferentiability. Any subgra-
dient a ∈ Rn of function f at x ∈ X fulfills

f(y)− f(x) ≥ 〈a, y − x〉 ∀y ∈ X.

Set of all subgradients at x is called subdifferential of f at x and denoted by ∂f(x).
Optimality condition

0 ∈ ∂f(x∗)

is necessary and sufficient for x∗ ∈ X being a global minimum.
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Example 5.1. Consider (do not necessiraly prove, rather think about) the following
properties of subgradient:

1. a is subgradient of f at x if and only if (a,−1) supports epi(f) at (x, f(x)).

2. if f is convex, then ∂f(x) 6= ∅ for all x ∈ rint domf .

3. if f is convex and differentiable, then ∂f(x) = {∇f(x)}.

4. if ∂f(x) = {g} (is singleton), then g = ∇f(x).

5. ∂f(x) is a closed convex set.

Hint: 1. Apply the definition of the supporting hyperplane to an epigraph, i.e.
use γ = (a,−1):

max
(y,z)∈epi(f)

aTy − z ≤ aTx− f(x).

Now, realize that (y, f(y)) ∈ epi(f) and f(y) is the smallest value of z leading to

∀y ∈ dom(f) aTy − f(y) ≤ aTx− f(x).

Finally, it is sufficient to reorganize the formula to get the definition of subgradient

∀y ∈ dom(f) f(y)− f(x) ≥ aTy − aTx.

Example 5.2. Derive the subdifferential for the following functions:

f1(x) = |x|
f2(x) = x2 if x ≤ −1,

−x if x ∈ [−1, 0],
x2 if x ≥ 0,

f3(x, y) = |x+ y|

Hint: Use pictures and the definition.

Lemma 5.3. Let f1, . . . , fk be convex functions and let

f(x) = f1(x) + · · ·+ fk(x).

Then
∂f1(x) + · · ·+ ∂fk(x) ⊆ ∂f(x).

Hint: Use the definition.
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6 Generalizations of convex functions

6.1 Quasiconvex functions

Definition 6.1. We say that a function f : Rn → R is quasiconvex, if all its level
sets are convex.

Example 6.2. Find several examples of functions which are quasiconvex, but they
are not convex. Try to find an example of function which is not continous on the
interior of its domain (thus it cannot be convex).

Example 6.3. Show that the following property is equivalent to the definition of
quasiconvexity

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for all x, y and λ ∈ [0, 1].

Example 6.4. Verify that the following functions are quasiconvex on given sets:

f(x, y) = xy for (x, y) ∈ R+ × R−,

f(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Hint: Use the definition.

Lemma 6.5. Continuous function f : R→ R is quasiconvex if and only if one of the
following conditions holds

• f is nondecreasing,

• f is nonincreasing,

• there is a c ∈ R such that f is nonincreasing on (−∞, c] and nondecreasing on
[c,∞).

Hint: Realize that the level sets are intervals.

Example 6.6. Let f be differentiable. Show that f is quasiconvex if and only if it
holds

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0.

Example 6.7. Let f be a differentiable quasiconvex function. Show that the condition

∇f(x) = 0

implies that x is a local minimum of f .

Hint: Consider the previous lemma.
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Example 6.8. Let f1, f2 be quasiconvex functions, g be a nondecreasing function and
t ≥ 0 be a scalar. Prove that the following operations preserve quasiconvexity

• tf1,

• max{f1, f2},

• g ◦ f1.

Example 6.9. Let f1, f2 be quasiconvex functions. Find counterexamples that the
following operations DO NOT preserve quasiconvexity:

• f1 + f2,

• f1f2.

Example 6.10. Verify that the following functions are quasiconvex on given sets:

f1(x, y) =
1

xy
on R2

++,

f2(x, y) =
x

y
on R2

++,

f3(x, y) =
x2

y
on R× R++,

f4(x, y) =
√
|x+ y| on R2.

Hint: 1-3. Use the definition. 4. Use the above rules.

Example 6.11. Let S be a nonempty convex subset of Rn, g : S → R+ be convex
and h : S → (0,∞) be concave. Show that the function defined by

f(x) =
g(x)

h(x)

is quasiconvex on S.

Hint: Use the definition based on the level sets.

Definition 6.12. We say that a function f : Rn → R is strictly quasiconvex if

f(λx+ (1− λ)y) < max{f(x), f(y)}

for all x, y with f(x) 6= f(y) and λ ∈ (0, 1).

Lemma 6.13. Let f be strictly quasiconvex and S be a convex set. Then any local
minimum x of minx∈S f(x) is also a global minimum.
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6.2 Pseudoconvex functions

Definition 6.14. Consider S ⊂ Rn a nonempty open set. We say that differentiable
function f : S → R is pseudoconvex if it holds

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x)

for all x, y ∈ S.

Example 6.15. Find a pseudoconvex function which is not convex.

Hint: Consider increasing functions.

Example 6.16. Use the definition to show that the following fractional linear func-
tion is pseudoconvex:

f(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Hint: Use the definition.

Example 6.17. Consider function f as defined in Example 6.11. Moreover, let S be
open and g, h be differentiable on S. Show that f is pseudoconvex.

Example 6.18. Let f be a differentiable function. Show that if f is convex, then it
is also pseudoconvex.

Hint: Use the first order characterization of the differentiable convex functions.

Example 6.19. Let f be a differentiable function. Show that if f is pseudoconvex,
than it is also quasiconvex.

Hint: Use the alternative definition of quasiconvex functions based on the maxi-
mum.

Example 6.20. Show that if ∇f(x) = 0 for a pseudoconvex f , then x is a global
minimum of f .

Hint: Use the definition.

Example 6.21. The following table summarizes relations between the stationary
points and minima of a differentiable function f :

f general: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f quasiconvex: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f strictly quasiconvex: x global min. ⇐⇒ x local min. =⇒ ∇f(x) = 0
f pseudoconvex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0
f convex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0.
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7 Optimality conditions

7.1 Optimality conditions based on directions

Example 7.1. Consider the global optimization problem

min 2x21 − x1x2 + x22 − 3x1 + e2x1+x2 .

Find a descent direction at point (0,0).

Hint: Compute the gradient.

Example 7.2. Verify the optimality conditions at point (2, 4) for problem

min (x1 − 4)2 + (x2 − 6)2

s.t. x21 ≤ x2,

x2 ≤ 4.

Consider the same point for the problem with the second inequality constraint in the
form

x2 ≤ 5.

Hint: Use the basic optimality conditions derived for a convex objective function
and a convex set of feasible solutions.

Example 7.3. Consider open ∅ 6= S ⊆ Rn, f : S → R, and define set of improving
directions of f at x ∈ S

Ff (x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : f(x+ λs) < f(x)}.

For differentiable f , define its approximation

Ff,0(x) = {s ∈ Rn : 〈∇f(x), s〉 < 0}.

Show that it holds
Ff,0(x) ⊆ Ff (x).

Moreover, if f is pseudoconvex at x with respect to a neighborhood of x, then

Ff,0(x) = Ff (x).

If f is convex, then

Ff (x) = {α(y − x) : α > 0, f(y) < f(x), y ∈ S}.

Hint: Use the scalarization function.

Example 7.4. Consider the global optimization problem

min 2x21 − 3x1x
2
2 + x42.

Derive the set of improving directions at (0,0).
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Example 7.5. Consider open ∅ 6= S ⊆ Rn, functions gi : S → R, and the set of
feasible solutions

M = {x ∈ S : gi(x) ≤ 0, i = 1, . . . ,m}.
Define the set of feasible directions of M at x

DM(x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : x+ λs ∈M}.

If M is a convex set, then

DM(x) = {α(y − x) : α > 0, y ∈M, y 6= x}.

For differentiable gi define

Gg,0(x) = {s ∈ Rn : 〈∇gi(x), s〉 < 0, i ∈ Ig(x)},
G′g,0(x) = {s ∈ Rn : s 6= 0, 〈∇gi(x), s〉 ≤ 0, i ∈ Ig(x)}.

In general, it holds
Gg,0(x) ⊆ DM(x) ⊆ G′g,0(x).

Hint: Use the scalarization function.

Example 7.6. Discuss the above defined sets of directions for the sets

M1 = {(x, y) : −(x− 2)2 ≥ y − 2, −(y − 2)2 ≥ x− 2},
M2 = {(x, y) : (x− 2)2 ≥ y − 2, (y − 2)2 ≥ x− 2},

at point (2,2).

Hint: Use pictures to decide which of the approximations are tight.

Example 7.7. Discuss the above defined sets of directions for a polyhedral set

M = {x ∈ Rn : Ax ≤ b}.

Example 7.8. Discuss the above defined sets of directions for the problem

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0,

at point (2,1). Apply the Farkas theorem to the conditions on directions.

Example 7.9. Discuss the above defined sets of directions for the problem

min (x1 − 3)2 + (x2 − 3)2

s.t. x21 + x22 = 4,

at point (
√

2,
√

2). Then consider the set of improving directions for equality con-
straints hj(x) = 0, where hj : S → R

Hh,0(x) = {s ∈ Rn : 〈∇hj(x), s〉 = 0}.
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7.2 Karush–Kuhn–Tucker optimality conditions

7.2.1 A few pieces of the theory

Consider a nonlinear programming problem with inequality and equality con-
straints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l,

(29)

where f, gi, hj : Rn → R are differentiable functions. We denote by M the set of
feasible solutions.

Define the Lagrange function by

L(x, u, v) = f(x) +
m∑
i=1

uigi(x) +
l∑

j=1

vjhj(x), ui ≥ 0. (30)

The Karush–Kuhn–Tucker optimality conditions are then

∇xL(x, u, v) = 0,

uigi(x) = 0, ui ≥ 0, i = 1, . . . ,m.
(31)

Any point (x, u, v) which fulfills the above conditions is called a KKT point. The
KKT point is feasible if x ∈M .

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions
are necessary for local optimality of a point. Basic CQ conditions are:

• Slater CQ: ∃x̃ ∈ M such that gi(x̃) < 0 for all i and the gradients ∇xhj(x̃),
j = 1, . . . , l are linearly independent.

• Linear independence CQ at x̂ ∈M : all gradients

∇xgi(x̂), i ∈ Ig(x̂), ∇xhj(x̂), j = 1, . . . , l

are linearly independent.

These conditions are quite strong and are sufficient for weaker CQ conditions, e.g.
the Kuhn–Tucker condition (Mangasarian–Fromovitz CQ, Abadie CQ, ...).

Consider the set of active (inequality) constraints and its partitioning

Ig(x) = {i : gi(x) = 0},
I0g (x) = {i : gi(x) = 0, ui = 0},
I+g (x) = {i : gi(x) = 0, ui > 0},

(32)

i.e.
Ig(x) = I0g (x) ∪ I+g (x).
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We say that the second-order sufficient condition (SOSC) is fulfilled at a feasible
KKT point (x, u, v) if for all 0 6= z ∈ Rn such that

zT∇xgi(x) = 0, i ∈ I+g (x),

zT∇xgi(x) ≤ 0, i ∈ I0g (x),

zT∇xhj(x) = 0, j = 1, . . . , l,

(33)

it holds

zT ∇2
xxL(x, u, v) z > 0. (34)

Then x is a strict local minimum of the nonlinear programming problem (29).

To summarize, we are going to practice the following relations:

1. Feasible KKT point and convex problem → global optimality at x.

2. Feasible KKT point and SOSC → (strict) local optimality at x.

3. Local optimality at x and a constraint qualification (CQ) condition → ∃(u, v)
such that (x, u, v) is a KKT point.

7.2.2 Karush–Kuhn–Tucker optimality conditions

Example 7.10. Consider the nonlinear programming problems from examples 7.2,
7.8. Compute the Lagrange multipliers at given points.

Example 7.11. Consider the problem

min 2ex1−1 + (x2 − x1)2 + x23
s.t. x1x2x3 ≤ 1,

x1 + x3 ≥ c,

x ≥ 0.

For which values of c does x̄ = (1, 1, 1) fulfill the KKT conditions? Is it a global
solution?

Example 7.12. Consider the problem

min
x1 + 3x2 + 3

2x1 + x2 + 6

s.t. 2x1 + x2 ≤ 12,

− x1 + 2x2 ≤ 4,

x1, x2 ≥ 0.

Verify that the KKT conditions are fulfilled for all points on the line between (0,0)
and (6,0). Are the KKT conditions sufficient for global optimality?
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Example 7.13. Consider the problem

min −
n∑
i=1

log(αi + xi)

s.t.
n∑
i=1

xi = 1

xi ≥ 0,

where αi > 0 are parameters. Using the KKT conditions find the solutions.

Example 7.14. Let n ≥ 2. Consider the problem

min x1

s.t.
n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1.

Show that (
0,

1

n− 1
, . . . ,

1

n− 1

)
is an optimal solution.

Solution: First, realize that the considered point is feasible. Write the Lagrange
function

L(x1, . . . , xn, u, v) = x1 + u

(
n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
+ v

(
n∑
i=1

xi − 1

)
,

where u ≥ 0 and v ∈ R. The KKT conditions (optimality and complementarity) are

∂L

∂x1
= 1 + 2u

(
x1 −

1

n

)
+ v = 0,

∂L

∂xi
= 2u

(
x1 −

1

n

)
+ v = 0, i 6= 1,

u

(
n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
= 0.

(35)

Realize that the inequality constraint is active at the considered point, i.e.(
0− 1

n

)2

+
n∑
i=2

(
1

n− 1
− 1

n

)2

=
1

n(n− 1)
.

To obtain the values of Lagrange multipliers, we solve the optimality conditions

1− 2u

n
+ v = 0,

2u

(
1

n− 1
− 1

n

)
+ v = 0, (∀i 6= 1).

(36)
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By solving this linear system for u and v, we obtain the values

u =
n− 1

2
≥ 0,

v =
−1

n
∈ R.

(37)

Thus, we have obtained a KKT point

(x, u, v) =

(
0,

1

n− 1
, . . . ,

1

n− 1
,
n− 1

2
,
−1

n

)
,

Since the objective function is convex (linear), the inequality constraint is convex and
the equality constraint is linear, the considered point is a global solution (minimum)
of the problem.

Example 7.15. Using the KKT conditions find the closest point to (0,0) in the set
defined by

M = {x ∈ R2 : x1 + x2 ≥ 4, 2x1 + x2 ≥ 5}.

Can several points (solutions) exist?

Hint: Formulate a nonlinear programming problem.

Example 7.16. Consider the problem

min
n∑
j=1

cj
xj

s.t.
n∑
j=1

ajxj = b,

xj ≥ ε,

where aj, b, cj, ε > 0 are parameters. Using the KKT conditions find an optimal
solution.

Example 7.17. Consider the problem

min x

s.t. (x− 1)2 + (y − 1)2 ≤ 1

(x− 1)2 + (y + 1)2 ≤ 1.

The optimal solution is obviously the only feasible point (1, 0). Why are not the KKT
conditions fulfilled?

Hint: Discuss the Constraint Qualification conditions.
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Example 7.18. Consider the problem

min − x1
s.t. − (1− x1)3 + x2 ≤ 0,

x2 ≥ 0.

Use the picture to show that (1, 0) is the global optimal solution. Why are not the
KKT conditions fulfilled?

Hint: Discuss the Constraint Qualification conditions.

Example 7.19. Write the KKT conditions for a linear programming problem.

Example 7.20. Verify that the point (x, y) = (4
5
, 8
5
) is a local/global solution of the

problem
min x2 + y2,

s.t. x2 + y2 ≤ 5,

x+ 2y = 4,

x, y ≥ 0.

Example 7.21. Derive the least square estimate for coefficients in the linear regres-
sion model under linear constraints, i.e. solve the problem

min
β
‖Y −Xβ‖2 ,

s.t. Aβ = b.

7.2.3 Second Order Sufficient Condition (SOSC)

When the problem is not convex, then the solutions of the KKT conditions need not
to correspond to global optima. The Second Order Sufficient Condition (SOSC) can
be used to verify if the KKT point (its x part) is at least a local minimum.

Example 7.22. Consider the problem

min x2 − y2

s.t. x− y = 1

x, y ≥ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2, v) = x2 − y2 − u1x− u2y + v(x− y − 1), u1, u2 ≥ 0.
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Derive the KKT conditions

∂L

∂x
= 2x− u1 + v = 0,

∂L

∂y
= −2y − u2 − v = 0,

− u1x = 0,

− u2y = 0.

(38)

Solving this conditions together with feasibility leads to one feasible KKT point

(x, y, u1, u2, v) = (1, 0, 0, 2,−2).

Since the problem is non-convex, we can apply SOSC (33), (34). We have Ig(1, 0) =
I+g (1, 0) = {2} and I0g (1, 0) = ∅, so the conditions on 0 6= z ∈ R2 are:

z1 − z2 = 0,

−z2 = 0.

Since no z 6= 0 exists, the SOSC is fulfilled. (It is not necessary to compute ∇2
xxL.)

Example 7.23. Consider the problem

min − x
s.t. x2 + y2 ≤ 1

(x− 1)3 − y ≤ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Example 7.24. Consider the problem

min − (x− 2)2 − (y − 3)2

s.t. 3x+ 2y ≥ 6,

− x+ y ≤ 3,

x ≤ 2.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.
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