. .
Experimental design (NMST436)

@ Repetition: linear model, ANOVA, multiple comparisons.
Navrhy experimenti / Experimental design (NMST436) @ Block designs, nested designs, repeated measurements.
o Factorial experiments, response surface methodology.
o Computer experiments.
Z. Hlavka @ Regression experiments.
Univerzita Karlova (v Praze) Basic references:

Matematicko-fyzikalni fakulta
Katedra pravdépodobnosti a matematické statistiky
www.karlin.mff.cuni.cz/ hlavka

Milliken, Johnson (2009) Analysis of Messy Data I: Designed Experiments, 2nd
ed, CRC Press.

Milliken, Johnson (1989) Analysis of Messy Data Il: Nonreplicated Experiments,
Chapman&Hall/CRC.

Like¥ (1968) Navrhovani priimyslovych experimentd, SNTL.
Wu & Hamada (2011) Experiments: planning, analysis, and optimization, Wiley.

Pazman a kol. (1986) RieSené situdcie z navrhovania experimentov, Alfa.
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Further references: Week 1
Bailey (2008) Design of Comparative Experiments, Cambridge University Press.

Cochran, Cox (1957) Experimental designs, Wiley.

Scheffé (1959) The analysis of variance, Wiley.

Pazman (1986) Foundations of optimum experimental design, D. Reidel.

Myers, Montgomery (2002) Response surface methodology, Wiley. Assumed prior knowledge:
Neter, Kutner, Nachtsheim, Wasserman (1996) Applied linear statistical models, )
Irwin. o linear model,

factors (contrasts),

@ analysis of variance (ANOVA),
o ANOVA tables (Type I, 11, I11),
°

random effects and mixed models.

Pinheiro, Bates (2000) Mixed-effects models in S and S-PLUS, Springer.
Fang, Wang (1993) Number-theoretic methods in statistics, CRC Press.

Further usable literature:

Yandell (1997) Practical data analysis for designed experiments, CRC Press.
Robinson (2000) Practical strategies for experimenting, Wiley.

Cox, Reid (2002) The theory of the design of experiments, CRC Press.

Christensen (2011) Plane answers to complex questions: the theory of linear
models, Springer.
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Gentle introduction Introduction Gentle introduction Introduction

Experimental design

Tukey, J. W. (1954). Unsolved Problems of Experimental Statistics.

Journal of the American Statistical Association, 49(268), 706-731. ) ) )
o Experimental design x data analysis.

The four hypergeneral principles, which may seem harmless until we come @ Bias x randomization?

to their consequences, run as follows: e Statistician’s participation on designing the experiment (statistician is

often consulted only after the data set has been collected).

(A) Different ends require different means and different logical structures. . . . .
@ Sample size calculations (in practice often ex post).

(B) In each area, statistical method must and does evolve, mainly by

‘ ] i ‘ ) @ Experimental design has to account for financial limitations, law
adding both immediate ends and considerations.

requirements, and natural laws.
(C) While techniques are important in experimental statistics, knowing

when to use them and why to use them are more important. Experimental design needs a lot of practice (assuming that one is capable

(D) In the long run, it does not pay a statistician to fool either himself or to think about the problems).
his clients.
Aim of the lecture: basic experimental designs (including “standard
terminology”) and its analysis (linear regression, mixed models, GLMs).
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Gentle introduction Introduction Gentle introduction Introduction

The lecture
Example:

Wu & Hamada (2009), p. 57:

Laser-assisted manufacturing of a thermoplastic composite, the response is
interply bond strength of the composite as measure by a short-beam-sher
test (Mazumdar & Hoa, 1995).

Prior knowledge: linear model with full rank, estimable parameter, analysis
of variance model (interactions), ANOVA table (type I, Il, Ill), contrasts,
multiple comparisons (Bonferroni, Tukey).

Questions: Laser Power
@ Do we have to revisit the linear model and analysis of variance? 40 W 50 W 60 W
o N g ¢ - 25.66 29.15 35.73
@ Exercise in K47 Notebooks? Time of the lecture? 28.00 35 09 39 56
20.65 29.79 35.66
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Gentle introduction Sample size calculations

Two-sample t-test

The simplest and most effective approach is to use experimental designs
allowing application of two-sample t-test.

Such designs are often using randomization (i.e., the random assignment
of treatment (o%et¥eni) to individuals).

The power of the two-sample t-test is a function of number of
observations, the variance and the true difference of expected values.
Using a realistic (expert) estimate of the variance, we can easily calculated
approximate power of the test against “reasonable” alternatives.

Example: power.t.test()

Z. Hldvka (CU Prague) NMST436 9 /349

s e S
Two-sample t-test (Welch approximation)

Without the assumption of homoskedasticity, the obvious test statistic is

X-Y
T=-2_°

S% Sy

nx Ty

Unfortunately, this test statistic does not have t-distribution. Welch
(1938) used moment method in order to approximate the null distribution

S2 S2
of 72X + TI by x2, where

. (0% /nx + 0% /ny)?
0% /(% (nx — 1)) + 0% /(i (ny — 1))’

Therefore, tr is usable as an approximation of the distribution of T.

Question: Sample size calculations for Welch test?
Z. Hldvka (CU Prague) NMST436 11 / 349

Gentle introduction Sample size calculations

Two-sample t-test vs. Wilcoxon (Mann-Whitney) test

“...in most practical cases the two-sample t-test is so robust that it can be
recommended in nearly all applications.” (Rasch et al, 1987)

References:

Rasch, Teuscher, Guiard, How robust are tests for two independent
samples?, Journal of Statistical Planning and Inference, Volume 137, Issue
8, Pages 2706-2720.
http://www.sciencedirect.com/science/article/pii/S0378375807000225

Heeren T, D'Agostino R. Robustness of the two independent samples t-test
when applied to ordinal scaled data. Stat Med. 1987 Jan—Feb;6(1):79-90.
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Gentle introduction Sample size calculations

ANOVA: sample size calculations

See NKNW, Chapter 26:

@ power for a chosen noncentrality parameter,
@ power for a chosen interesting difference between factor levels,
@ length of confidence intervals for parameters of interest,

o finding the best treatment.
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Gentle introduction Sample size calculations Gentle introduction Sample size calculations

ANOVA: linear combinations with unequal variance ANOVA: Satterthwaite's approximation

It may happen that we reject the hypothesis of homoskedasticity. In that
case, we can approximate the distribution of the estimator of the linear
combination Y ¢jpu;.

A ) — 11 2 2/,
Obviously 7 docifii — . cipi B (O cifti = Yo cipi) /)22 cro; /ni

ZciﬁiNN(ZciMi,ZC,?U;z/ni> \/W - \/ZC,?&,?/”i/\/ZC?U?/”i

If n;'s are too small, we can rewrite Z as a ratio of two independent
random variables:

and S e — S e The distribution of the numerator is N(0,1) and the distribution of Z can
> 5 ~ N(0,1). be approximated by t,-distribution (since we can approximate
2. cioi/ni (vx)numerator by x2-distribution—the only problem is the choice of the
For large values of n; (at least for ¢; > 0), we can use the asymptotic number of degrees of freedom v).

normality of the statistic:

ity isti (5 o /m):
YActof/m (ni-1)}°
the first two moments. Plugging in 52, we obtain Satterthwaite's # (and

Satterthwaite suggested v = guaranteeing the equality of

7_ Yo Gifli — > Cipti 2 N 0.1),

Z c.26'.2/n- . . . . . .

iZi the distribution of Z is approximated by t;-distribution.)
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Types of studies Designed experiments

Designed experiments:

Yandell (1997, p. 35-36) comments of the most common types of studies: _ _ _ _
@ randomize over extraneous factors while controlling assignment to

pure observational studies may lead to seriously biased results, groups,

sample surveys monitor small samples of the population of interest, @ require careful attention to a protocol established before the

. . — . . experiment is run.
designed experiments, where the scientist controls the study by either (i) P

randomizing subjects to study groups or by (ii) selecting

Yandell (1997, p. 36
subjects at random from the populations of interest (e.g., [Yandell ( p- 36)]

male vs. female). In the following, we describe basic designs that were developed mainly in
agriculture and industry. Biostatistical experiments will be treated in
NMST532: Design and Analysis of Medical Studies.
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Sl el
Publication bias and reproducibility

[Begley, loannidis (2015) Reproducibility in science: Improving the
standard for basic and preclinical research, Circ Res. 116, 116-126]

.. .inability to replicate the majority of findings presented in high-profile
journals. The estimated for irreproduciblity based on these empirical
observations range from 75% to 90%.

[The Economist (2013) Trouble at the lab]: ...a lot of this priming
research is poorly founded. Over the past few years various researchers
have made systematic attempts to replicate some of the more widely cited
priming experiments. Many of these repolications have failed.

Z. Hldvka (CU Prague) NMST436 17 / 349

Gt =
The ideal and the reality (Bailey, 2008, Section 1.2)

@ Purpose of the experiment.
© Replication.

© Local control.

© Constraints.

@ Choice.

Z. Hldvka (CU Prague) NMST436 19 / 349

Gentle introduction Sample size calculations

Stages in a statistically designed experiment (Bailey, 2008,
Section 1.1)

@ Consultation.

@ Statistical design.
© Data collection.
© Data scrutiny.

© Analysis.

Q |Interpretation.

Z. Hldvka (CU Prague) NMST436 18 / 349

Gentle introduction Sample size calculations

Defining terms (Bailey, 2008, Section 1.4)

An experimental unit is the smallest unit to which a treatment can be
applied.

A treatment is the entire description of what can be applied to an
experimental unit.

An observational unit is the smallest unit on which a response will be
measured.

Treatment structure means meaningful ways of dividing up the set of
treatments.

Plot structure means meaningful ways of dividing up the set of plots,
ignoring the treatments.

The design is the allocation of treatments to plots.

The plan or layout is the design translated into actual plots (some
randomization is usually involved).

Z. Hidvka (CU Prague) NMST436 20 / 349



Week 2

Topic:

e Randomized block design / zndhodn&né bloky.
e Balanced incomplete block design / vyvazené nedplné bloky.

@ Latin and Graeco-Latin squares / latinské a Fecko-latinské Ctverce.
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Blocks and squares Randomized blocks

Example: Like$ (1968), example 4.1.1 (in Czech).

Byl proveden experiment, jehoZ tcelem bylo vysSetfit Gcinek pavodni
velikosti ¢astic a péchovaciho tlaku na pevnost v tahu slinutého Zelezného
prasku. Slinovani bylo provedeno p¥i standardni teploté ve vodikové
atmosféfe na vzorcich materidlu Sesti velikosti &3stic, tlak byl uvaZzovan na
dvou trovnich. Dvanact kombinaci Urovni si miZeme p¥edstavit jako 12
urovni faktoru A.

Pro experiment bylo pouZito t¥i podobnych peci; v kaZzdé peci bylo
zkoumano v8ech 12 tdrovni faktoru A.

Z. Hldvka (CU Prague) NMST436 23 / 349

Blocks and squares Randomized blocks

Randomized blocks

In order to investigate the effect of treatment (factor A) on the dependent
variable, one usually applies the analysis of variance (ANOVA) model.

Often, the sample is not homogeneous but it can be split into b
homogeneous groups (in agriculture: field, in industry: meltage/tavba, in
education: class).

Randomized blocks (zndhodn&né bloky) assign treatments levels (i.e.,
factor A levels) within each block randomly.

Complete randomized blocks (Gplné zndhodn&né bloky) assign all
treatment levels within each block.

Z. Hldvka (CU Prague) NMST436 22 / 349

Blocks and squares Randomized blocks

Example: Like3 (1968), example 4.1.1 (in English).

The aim of the experiment was to investigate the effect of the original
particle size and ramming pressure on the tensile strength of iron power
alloy. Alloying was performed at standard temperature in hydrogen
atmosphere on experimental units with six particle sizes and two pressure
levels. The resulting twelve level combinations were treated as 12 factor A
levels.

The experiment was performed in three similar furnaces and all twelve
treatment levels were investigated in each furnace.
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Blocks and squares Randomized blocks Blocks and squares Randomized blocks

T.b. 13. Hodnoty y,;

We will analyze the data set during exercises, the main aim is to

Velikost ¢astic . . . :
investigate the treatment effect (the influence of factor A on tensile

Pee | Tlak | o
| Lo Vs, Vs V, [ Ve strength).
i H
- N I‘”r - T T .
? ; uestions:
1 A 11,3 12,2 12,9. 12,1 16,9 14,3 Q
T, 21,1 21,1 21,7 24,4 23,6 23,5 .
e @ Should be treat factor B (block) as fixed or random effect?
2 T, 11,9 10,4 124 13,9 149 150 @ Can we split the factor A into some “subfactors”?

Lo, 21,3 204 22,0 241 25,5 22 _ _
N @ Which treatments are significantly different?

11,3 13,3 12,4 13.8
T, 18.8 19,5 21,6 23,8 23,3 20,5
NMsTa3s 25 ) 30 NMsTa3s 26 / 349

Blocks and squares Randomized blocks Blocks and squares Randomized blocks

Treatment structure x design structure Treatment structure x design structure

See Milliken & Johnson 2009, p. 77 Design structure (struktura ndvrhu, struktura rugivych faktori) is
determined by the structure of the experimental units into homogeneous

The experiment design can be split into two parts (the treatment structure groups or blocks.

and the design structure) and it is useful to understand its distinction.
The design structure contains factors determining (describing) the

Treatment structure (struktura o3et¥eni) consists of treatments, factors, or homogeneous groups of experimental units.

groups that the investigator wants to study or compare.
In the most simple setup, all units are homogeneous and, using only one

The treatment structure is determined by the factors of interest: these are block, one can randomly assign treatment levels to all experimental units.
typically various treatments (often including also control or standard The resulting data set can by analyzed by using simple one-way analysis of
treatment). variance.

NMST436 28 / 349
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Blocks and squares Randomized blocks

Often, the size of block is smaller than number of treatments and
complete randomized blocks are not applicable.

Example: It may happen that a furnace (in the previous example) can
contain at most 6 samples. In such case, we cannot investigate effects of
all twelve treatents within each block.

Tables of balanced incomplete randomized blocks can be found in relevant
literature.

The description of the experimental design:

t number of factor A levels,

b number of blocks,

k number of (homogeneous) units within block,

r number of blocks containing each level of factor A,

A number of occurences of each pair (of factor A levels).
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Blocks and squares Randomized blocks

Example: Like3 (1968), example 4.2.1 (in Czech).

U ¢Ety¥ pneumatik byla zkoumana trvanlivost. Kazda pneumatika byla
rozdélena na tfi &asti. Kazda &ast byla vyrobena rliznym zplsobem (faktor
A). Byly uvaZovany &tyfi trovné.

Pneumatiky |ze povazovat za bloky, kazdy blok obsahuje k = 3 jednotky.

P¥i¥azeni tdrovni faktorl A jednotlivym blokim (pneumatikdm) Ize snadno
vycist z tabulky na ndsledujici strang; zfejmé se jedna o vyvazené netplné
bloky.
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Blocks and squares Randomized blocks

V tabulce 15 je uveden pifklad [11] vyvédzeného netplného
bloku pro pipad ¢ =7, k=3,r=3,b=17, 1= 1

Tab. 15. Pifklad vyvaZeného
neuplného bloku

i
(islo bloku 1 Urovné faktoru 4

\
1 I Ay, Ay, A,
2 | A4,, A,, A;
3 | -437 A449 "46
4 ‘44’ A5’ 7
5 ‘41) A57 6
6 «421 AG’ 7
i A, A, A,

Unbalanced two-way ANOVA (model analyzy rozptylu, nevyvézené dvojné
t¥idéni) with 0 or 1 observations in each subclass.
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Blocks and squares Randomized blocks

Example: Like$ (1968), example 4.2.1.

Durability of four tyres was investigated. Each tyre was split into three
parts that were produced by a different technology (factor A with four
levels).

The blocks are defined by tyres, i.e., each block contains k = 3
experimental units.

The factor A levels assigment within each block (tyre) is given from the
table on the next page. By randomized the (order of) treatments within
each block, we obtain balanced incomplete randomized blocks.
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Blocks and squares Randomized blocks

Al

Tab. 17. Hodnoty relativni trvanlivosti

1 2 3 4 Y,
A, 238 196 254 — 688
A4, 238 213 —— 312 763
A, 279 —_— " 334 421 1034
A, —_ 308 367 412 1087
Y, 755 717 955 1145 3 572
NMST43s 3 3

Blocks and squares Latin squares

Example: Like3 (1968), example 4.3.1 (in Czech).

Byl proveden experiment, jehoZ celem bylo vySetfit, jak se projevuje
variabilita materidlu na pevnost v tahu Zihanych médénych trubek.
Variabilita materidlu byla vySetfovana tak, Ze bylo vybrdno z osmi rliznych
dni v obdobi t¥itydenni vyrobni periody vZdy osm trubek. Téchto osm dni
charakterizovalo zm&nu materidlu v tomto obdobi. Skupiny trubek z
jednotlivych dni predstavuji faktor A na osmi trovnich. Trubky byly
Zihdny v peci, pficemz byly upevnény do ptipravku, ktery mél otvory v
osmi ¥adcich a osmi sloupcich. Aby byl eliminovan vliv horizontdIni a
vertikalni polohy trubky v Zihaci peci, byl experiment uspofadan do
latinského Etverce o strané t = 8.
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Blocks and squares Latin squares

Latin squares

Blocks allow to eliminate the effect of a single nuisance (rusivy) factor.
Latin squares can be applied in order to account for two (or more)
nuisance factors.

Latin squares are applicable, if the nuisance factors have the same number
of factor levels as factor A.

Example: Four levels of factoru A, two nuisance factors with four levels,
16 observations.

1 2 3 4
111 2 3 4
212 1 4 3
313 4 1 2
414 3 2 1
NMST436 34 / 349

Blocks and squares Latin squares

Example: Like3 (1968), example 4.3.1.

The aim of the experiment was to investigate the effect of material
variability on tensile strength of annealed copper tubes. The material
variability was investigated by choosing eight tubes from each of eight
days chosen within a given three-weeks production period. These eight
days represented the change of the material during the production period.
Hence, tubes from different days represent factor A with eight levels.
During annealing, tubes were fastened in a template with holes in eight
rows and eight columns. The experiment was arranged as latin squares
with size t = 8 in order to eliminate the effect of the horizontal an vertial
position of a tube in the annealing furnace.
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Blocks and squares Latin squares Blocks and squares Latin squares

Tab. 22. Hodnoty pevnosti v tahu zihanych trubek

. |
Sloupce | q

Previous experience with the annealing furnace suggests that the - | Soutty
temperature varies either vertically or horizontally and that there is not 1| A T S A B
. . . . — ‘
any interaction between rows. and Folumng In addition, there is not any | 1 |4, = 25,4, — 26,2]a, 27’0{442 — 27,04, — 204|4, = 2894, — 20.3]4, = 24.5] 2073
reason to assume that there is an interaction of fator A (day) and the | 2 |dg = 24,64, = 25,4|d, = 24,54, = 20,4|d, = 27,3|4, = 27,6/4, = 20,3|4, = 26,5 214,6
. f tubes in the f Thi . P df .| 3 |4, = 26,54, = 26,0 4, = 29,814, = 25,74, = 24,5|d, = 27,64, = 28,5|4, = 28,4| 217,0
pongon of tubes in the furnace. This experiment was performed for Z | &4} 27,44) = 24164, = 25,34, = 24,8|4 = 21,34, = 276/, = 28,14, — 25,6| 2107
varying temperature. For each temperature, the experiment was arranged 3|0 |4 =270, = 26414, = 26,014, = 20,8 d, = 31,54, = 28,54, = 24,6/, = 24,3) 218,
. o . . 6 A, = 25,6/d, = 24,8/4; = 26,2|4, = 24,6/4, = 26,5/ 4, = 27,1/ 4, — 27,04, = 30,4 212,2
as a Latin square. Results for the temperature 300 °C are given in the 7 |4, = 24,5/4, — 26,2/d, — 24,6/ 4; = 25,6|d, — 27,3| 4, = 30,14, = 26,54, = 28,4 213,2
: = = = =2 = = = 27 =
following table. 8 |Ag = 28,8/4, = 27,0/4, = 27,0\ 4, = 29,8|d, = 26,0|4, = 24,3/4, = 27,0{4, = 28,5 218,4
! ! 4 ! '
Soll,léty 210,1 | 206,6 | 210.4 216,7 | 2148 221,0 2153 | 216,6 | 17115
o] | i i J‘ | ]
Is it possible to test also the assumptions of the model?
38 / 349
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Blocks and squares Latin squares Blocks and squares Latin squares

Graeco-Latin squares Hyper-Graeco-Latin squares

It is possible to design also an experiment with four nuisance (block)

Graeco-Latin square is an overlay of two latin squares (it is known that fact
actors.

such squares exist for t > 3 with the exception of t = 6).
The true factor levels of all factor should be randomized (i.e., the true
‘ ‘ A D factor levels are randomly assigned to the number given in the following
table).

Aa|By|Cd | DB
BB|A3|Dy | Ca A..’

Cy|Da|AB| B3 .AQ. 1 2 3 4 5
D3| CB|Ba |Ay ’Q.A A1l B22 (33 D44 E55

D23 E34 A45 B51 C(Cl12
B35 (C41 D52 E31 A24
E42 A53 Bl14 (C25 D3l
Ch4 D15 E21 A32 B43

A w N

Example: Tensile strength of annealed copper tubes: is it possible to
consider also the production order of tubes within each day?
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Blocks and squares Latin squares

Summary: design structure

Design structure (nuisance factors):

e Completely randomized design (assuming that all experimental units

are homogeneous).

@ Complete randomized blocks.

@ Incomplete randomized blocks.

@ Latin and Graeco-Latin squares.

e Various modifications (consequence of “collision with reality”).

Z. Hldvka (CU Prague)

Blocks and squares Latin squares

Modifications

In practice, modifications of these “standard” designs
example, MJ1 consider block design for “diet effects” including

additionally a control group.

NMST436

Carbohydrate

1 PiC1

P1C2

Protein

2 P2C1

P2C2

Z. Hldvka (CU Prague)

NMST436

Control

41 / 349

are common. For

43 / 349

Blocks and squares Latin squares

Summary: treatment structure

Treatment structure (investigated factors):

@ Single treatment (one-way ANOVA, linear model with one factor

variable).
All combinations of two treatments (two-way ANOVA).
All combinations of many treatments (factorial experiment).

Selected combinations of many treatments (fractional factorial
experiment / zkrdceny faktoridlni experiment).

Optimal regression design (typically for numerical explanatory
variables).

Factorial experiment with controls.

Practical advice: don’t panic!

Z. Hlavka (CU Prague) NMST436

Blocks and squares Latin squares

Factorial experiment 22 with controls

42 / 349

[MJ1, Section 4.3.2] say that “the diet treatment structure is a two-way
factorial arrangement with a control that, when crossed with sex of
person, generates a three-way treatment structure with two

controls. .. The design structure is completely randomized where each

treatment combination is to be assigned to two persons.”

Analysis of Variance Table for a Treatment Structure Consisting
of Three-Way Factorial Arrangement Combined with Two
Controls in a Completely Randomized Design Structure

Source of Variation af

Sex
Diet

Control vs 22

Protein

Carbohydrate

Protein x carbohydrate
Sex x Diet

Sex x control vs 2?

Sex x protein

Sex x carbohydrate

Sex x protein x carbohydrate
Error

| Y

Z. Hldvka (CU Prague) NMST436
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Multilevel designs Multilevel designs

Week 3 One-way ANOVA with fixed effects
. ANOVA table:
Topic:
; : . Source of Sum of squares df Mean EMS
@ Analysis of variance (ANOVA): Variation square
o one-way ANOVA / jednoduché t¥idénf,
o two-way ANOVA / dvojné t¥idéni, Pvramen _ Soutet Etverci Stupn& Pvrﬁmérn)'/ EMS
o fixed, random, and mixed effects / pevné, ndhodné a smi¥ené efekty. ménlivosti volnosti Ctverec
e Multilevel designs / ndvrhy experimenti s vice trovnémi. A Sa= 25:1 rlyi. —y)? -1 % o2+ 7= a2
o cupcakes (see Milliken & Johnson, section 5.1),
o meat (see Milliken & Johnson, example 5.4), Residual  Se=>">(yaw —yi)> I(r—1) s*= ,(rs_el) o2
o cheese (see Milliken & Johnson, example 5.5).
Total S=3(viv—y.)? Ir—1
NMST436 45/ 349 NMST436 46 / 349
Derivation of null distribution Example: Assume that Y ~~ N,(u,0T). The vector of means is

Y = MY, where M = 1,1 /n and centered observations are
Y=Y —Y =(Z—- M)Y = HY. Obviously, matrices H and M are

Theorem:[Nelder, 1965] If C,..., Cx are n x n symmetric matrices with idempotent, Z = H + M, and it follows that the asymptotic distribution of
ranks r,..., re and Zf‘zl C; = 7, then any one of the four following
conditions implies the other three: (n—1) YTMY

YTHY

@ the C; are idempotent;

o GG =0 fori#j;

° Zﬁ(:l = n; Example: Similarly, we can derive the null distribution in one-way
ANOVA. Writing the vector of ‘blockwise means’ as Y 4 = M*Y, we have
that Z = M + (M* — M) + (Z — M*), where matrices M, (M* — M), and
(Z — M*) are obviously idempotent. It is easy to see that, under Hp,

is Fl,nfl if on = 0.

@ there exists an orthogonal matrix H such that the non-zero parts of
HT C;H are disjunct unit matrices.

Theorem:[And&l, 1985, V&ta 17] Assume that X ~ N,(u, V) and A> 0 is YT (M*—M)Y

symmetric. If AV is nonzero and idempotent, then XTAX ~ XE, where -1 ~F_1ng
YT (ZT-M*)Y n

r =tr(AV). =T
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One-way ANOVA with random effects

ANOVA table:
Source of Sum of squares df Mean EMS
variation square
A Sa=Yiarly—y.)? 1-1 2 02 1 ro2

Residual Se=>>iw—y.)* I(r=1) s*= /(rsf1) o

Total S=Y"S(yw—y.)? Ir—1
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Two-way ANOVA with random effects (and interaction)

Shortened ANOVA table:

Source of

variation Mean Square EMS
A % o2 + ro?, + Jro?
5 % 03+ ro, + Iroj
AB r> E()(";‘:l})’b:)l’.)j.ﬂ...)z Ug i roib
Residual %{JU—W 2
Total %&1*)’)2
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Two-way ANOVA with fixed effects (and interaction)

Shortened ANOVA table:

Source of Mean Square EMS
variation
A Jerz(ll({fi)*y..<)2 02+ A5 a2
= REE
AB EEReR ko ey SN0
Residual Zx ) o2
Total 222 Uiy ) %r(f’{ =
NMST436 50 / 349

Two-way ANOVA with mixed effects (and interaction)

Shortened ANOVA table:

Sourceo Mean Squr
A % o2+ 25 Y 0? +rod,
B ”X:Jj?lj(y%l)_y)z 02 + Iro?
AB r> Z({i;r_—l?(g:{-)f*y---f ag + ragb
Residual %{’1;”)2 ol
Total %ﬂ_yf

NNKW (page. 981): The derivations are tedious, but simple rules have
been developed for finding the expected mean squares.
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Multilevel designs Multilevel designs

. _ _ Cupcakes
Milliken & Johnson (2009) Analysis of Messy Data, Volume 1, Designed

Experiments, CRC Press, str. 101:

Consulting statisticians do not always get the chance to design the

experiments for which they must help construct appropriate analyses.

Instead, the statistician must first identify the type of designed experiment

the researcher has employed. The first and most important step in the

identification process is to determine if more than one size of experimental

unit has been used, and if so, to identify each size of experimental unit. These designs are substantially different even though we are always going
to bake 18 cupcakes.

Milliken & Johnson (2009) describe several experiments comparing the
influence of three recipes (factor R) and two temperatures (factor T) on
cupcakes (end-point is not specified).

As will become evident in this section, each size of experimental unit will

have an associated design structure and treatment structure. After the The most simple experimental design is to assume that we can bake all 18
different sizes of the experimental units have been identified, the model for cupcakes 18 times under identical (homogeneous) conditions.

carrying out an appropriate analysis can be constructed by combining the

models used to describe the design structure and treatment structure

corresponding to each size of experimental unit.
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Multilevel designs Multilevel designs

Treatment structure

Combinations of temperature (Tj) and recipe (Rj) Structu re Of A N OVA ta ble

df EMS
Temperature 1 02 4+ d2(7)
Recipe 2 o5 + ®2(5)
Temperature x Recipe 2 o2 + d2(7P3)
Analysis: two-way ANOVA with interactions (treatment design), 18 Error 12 o2

measurements, 5 parameters.

Crucial assumption is the homogeneity of “all baking conditions”.
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Multilevel designs

In practice, baking experiments encounter “real-life difficulties”.

Mixing dough and baking can be time consuming and it is possible to bake
only six homogeneous cupcakes in a day (and cupcakes from different days
can be heterogeneous). In such situation, we can use complete randomized
blocks (with days defining blocks).

The treatment structure remains the same but we have one nuisance
factor (day) leading to three blocks with six measurements.
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Multilevel designs

Structure of ANOVA table:

df EMS
Day 2 02 + 607
Temperature 1 o5 + ®3(7)
Recipe 2 o2 + 9?(B)
Temperature x Recipe 2 o2+ ®%(1)
Error 10 ag

Note: complete randomized blocks.
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Multilevel designs

Treatment structure
Combinations of temperature (Tj) and recipe (Rj)

‘ TR, | TR, T.R, | T,R, | T,R, ‘

T}R;

gesgds|egsdde |fedede

Analysis: three-way ANOVA (including day as a blocking factor).

We have to bake six homogeneous cupcakes each day.
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S o
Split-plot design/ rozd&lené dilce

Assume that three cupcakes can be baked in one oven at the same time.
Then, it would be inefficient to bake only one cupcake in each batch.

It is important to realize that, within one batch, it is not a problem to
compare three recipes but we can not compare different temperatures.

Factor R levels (recipes) can be assigned randomly to three cupcakes in
given oven but these three cupcakes must be baked at the same
temperature.

This experiment contains two treatment levels: recipes are assigned to
“cupcakes within oven” while temperatures are assigned to ovens
(containing three cupcakes).
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Multilevel designs Split-plot design Multilevel designs Split-plot design

Cupcake point of view: six homogeneous blocks (three times with lower

and three times with higher temperature), treatment effect = “recipe”.
Cupcake treatment structure
Cupcake or subplot . . i
| Recipe 1 Recipe 2 Recipe 3 | or small size of Oven point of view: six measurements, one-way anova (three
experimental unit . . .
measurements with lower and three measurements with higher
\ temperature).

@@@ @@ @@@ @@@ @@@ @@z@ The model has altogether nine parameters: temperature (1 par), oven (4

\ W pars), recipe (2 pars), recipe and temperature interaction (2 pars).
Oven or whole-plot

or large size of | Temperature 1 | Temperature 2 | Note 1: factor “oven” has six levels but we need only four parameters
e it . : . .
experimentatunt because of linear dependencies with the temperature and the intercept.

Oven treatment structure

Note 2: factor “day” is not present because we can bake six times in a day
(anyway, the effect of day would be confounded with “oven™).
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Multilevel designs Split-plot design Multilevel designs Split-plot design

Structure of ANOVA table: ] )
Assuming that we can bake only two batches per day, the design can be

df EMS easily extended by including the factor day (naturally confounded with

oven).

Temperature 1 02 + 302 + d2(7) )

Error (oven) 4 o2 + 302 From the point of view of a cupcake, the model does not change.

Recipe 2 o2 + 2(3) From the oven point of view, we have to consider blocks defined by days.

Temperature x Recipe ) o2 + d2(7) This Iea-ds to .cor.nplete randomized blocks, where two temperatures are
randomized within each day.

Error 8 o?

e

Altogether, we are working with three levels: day, oven (within day) and
cupcake (within oven). We investigate two treatments, where recipes are
applied on “cupcakes within oven” and temperatures on “ovens within

day”.

MJ: “split-plot design with a completely randomized whole-plot design
structure”

Note: whole-plot = oven, subplot = cupcake.
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Multilevel designs Split-plot design

Cupcake treatment structure

Cupcake or subplot

‘ Recipe 1 Recipe 2 Recipe 3 ‘ or small size of
- - experimental unit
~— S
AN
= __— (i >/ - T o~
ges s | eed | see | eee | el
< | I = — —
Oven or WW
or large size of ‘ Temperature 1 ‘ Temperature 2 ‘

experimental unit

Oven treatment structure

The analysis basically does not change. Adding the factor day leads to a
different parameterization but the number of parameters is the same.
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Multilevel designs Split-plot design

Split-plot design can be interpreted also as an incomplete randomized
blocks design: the nuisance factor is “oven within day” and we investigate
6 levels of a single treatment by using blocks of size 3.

Oven 1 Oven 2
Temp 2 Temp 2 Temp 2 Temp 1 Temp 1 Temp 1 Davy 1
Recipe 1 Recipe 2 Recipe 3 Recipe 1 | Recipe 2 Recipe 3 Y
Oven 3 Oven 4
Temp 1 Temp 1 Temp 1 Temp 2 Temp 2 Temp 2 Day 2
Recipe 1 | Recipe 2 Recipe 3 Recipe 1 | Recipe 2 Recipe 3 ‘
Oven 5 Oven 6
Temp 2 Temp 2 Temp 2 Temp 1 Temp 1 Temp 1 Day 3
Recipe 1 Recipe 2 Recipe 3 Recipe 1 | Recipe 2 Recipe 3 Y
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Multilevel designs Split-plot design

Structure of ANOVA table:

df EMS
Day 2 02 + 302 + 603
Temperature 1 02 + 302 4+ 02(7)
Error (oven) 2 02 + 302
Recipe 2 o2 + ®2(B3)
Temperature X Recipe 2 o2 + ®2(73)
Error 8 o2

e

MJ: “split-plot design with a randomized complete block whole-plot design
structure”
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Strp-plot design
Strip-plot design (provazané?? dilce)

strip:

pruh, prouzek, pas(ek) latky ap.
bulvar, t¥ida s restauracemi a obchody
kresleny seridl v Casopise ap.

sefvat, sprdnout, sjet koho

obnaZit, odkryt, svléknout co
rozebrat, rozmontovat co stroj ap.

°
°

°

°

@ svléknout se, (vy)svléct se
°

°

@ zbavit koho ¢eho

o

odejmout, odebrat komu co

Source: slovnik.seznam.cz

prepasané, propletené, propojené, svazané, spletené?
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Strip-plot design
Strip-plot design

When we want to bake two cupcakes using the same recipe within a single

day, we can reorganize the experiment so that these two cupcakes are

prepared from a single batch of dough.

This simplifies the realization of the experiment (and reduces its price) but

we have to consider another factor variable (factor “"batch of dough™).

We proceed as follows: measurement planned for each day are arranged in
rectangles: values of the first and second factor (temperature of the oven

and recipe used to prepare the dough batch) are assigned randomly to

rows and columns, respectively.
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S0 s
Strip-plot design model

Analysis: mixed model with random effects of oven and batch nested

within the random effect of day (the rectangle).

y,-jk:,u-|-77+ﬂj+(7ﬂ),-j+dk+t,-k—i—bjk+e,-jk

dy efect of k-th day (“rectangle”),
tix effect of oven within day,
bj. effect of batch within day.
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Multilevel designs Strip-plot design

Batch treatment structure

Recipe 3 ‘

Recipe 2

’ Recipe 1

Cupcake or
subplot or
smallsize of
) experimental unit

Oven is
experimental
unit for levels
of temperature

\ ¢ 7 T
Batch is (@(@(@
experimental

unit for @ @ @ I

levels of recipe

\k \k
Temperature 1 (@(@ (@
Temperature 2 A @ @ é\ N

Oven treatment structure

~ e
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Multilevel designs Strip-plot design

Structure of ANOVA table (strip-plot design):

df EMS

Day 2 02 + 302 + 302 + 607
Temperature 1 02 + 302 4+ d2(7)
Error (oven) 2 02 + 302
Recipe 2 02 + 202 + ®2(B)
Error (batch) 4 02 + 202
Temperature x Recipe 2 o2 + ®2(73)
Error 4 o2
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Strip-plot design
Meat (MJ: example 5.4, page 125, in Czech)

Klient si preje vyhodnotit vliv faktord:

o teplota (T: 3 drovng),
@ obal (O: 2 drovng),
e typ svétla (S: 4 drovnég),

@ intenzita svétla (I: 4 Grovng)

na barvu masa, které je 7 dni uloZené v chladnicce.

K dispozici mame Sest chladni¢ek. KaZda chladnicka je rozdélena na 16
ptihrddek, které tvofi m¥izku 4 x 4. Intenzita svétla je uréena vzdalenosti
od boku ledni¢ky a v8echny pFihradky v jednom sloupci tedy maji stejnou
intenzitu svétla. T&mto &tyfem p¥ihradkdm (se stejnou intenzitou svétla)
ndhodné pritadime rlizné typy osvétleni. Do kazdé pt¥ihradky pak uloZime
dva steaky (ve dvou riiznych obalech).
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Sy et
Cheese (MJ: example 5.5, page 131, in Czech)

MIékarna porovndva vlastnosti syra vyrobeného a skladovaného za riiznych
podminek. Zkoumané faktory jsou: obsah tuku (2 drovng), typ syra (3 drovng),
teplota p¥i uskladnéni (2 drovng), vlhkost vzduchu p¥i uskladn&ni (2 drovng).
Experiment se sklddd ze dvou kroki: vyroba (6 kombinaci) a uskladn&ni (4
moznosti).

P¥i vyrobé se vyrobi davka kazdého ze Sesti typl syra. Kazda davka je pak
rozdélena na Ctyfi ¢asti, které jsou skladovany po dobu &ty¥ tydni za rliznych
podminek (mlékdrna ma Ety¥i komory, kde miZe nastavit teplotu a vlhkost

vzduchu). MIékdrna si p¥eje mit &tyFi mé&Feni pro kaZzdou kombinaci faktoril a cely

experiment je tedy proveden &tyfikrat (to trvd dohromady Ety¥i mésice). KaZzdy
mésic tedy ziskdme celkem 24 méfeni odpovidajicich ¢tyfem riznym oSetfenim
(na drovni “komory”) a Sesti typlim (ddvkam) syra.

Otédzky: O jaky typ ndvrhu experimentu se jedna? Jak presn& ma mlékarna
postupovat p¥i randomizaci? Jaky model pouZijeme k vyhodnoceni experimentu?
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(\UITTHICVARGEST-GEM  Strip-plot design

Meat (MJ: example 5.4, page 125)

A client wants to investigate the influence of:

o temperature (T: 3 levels),
@ packaging (P: 2 levels),
e light type (L: 4 levels),
o Light intensity (I: 4 levels)

on the color of meat stored in refrigerator for 7 days.

We can use six fridges. Each fridge is split into 16 compartments
organized in a 4 x 4 layout. The light intensity is determined by the
distance from the side of the fridge. Hence, all compartments in a single
column have the same light intensity and the four different types of
lighting are randomly assigned to these four compartments. Finally, two
steaks are stored in each compartment (in two different packagings).
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Multilevel designs Strip-plot design

Cheese (MJ: example 5.5, page 131)

A dairy company compares cheese produced and stored in different
conditions.

The factors of interest are:

o fat content (2 levels),
@ type of cheese (3 levels),
@ storage temperature (2 levels),

@ storage humidity (2 levels).

The experiment consists of two steps: production (6 combinations of
factor levels) and storage (4 factor levels combinations).
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Multilevel designs Strip-plot design

The dairy company produces one batch of each type of cheese. Each
batch is split into four parts stored for four weeks in different conditions
(the dairy company has four chambers with climate control).

The dairy company wants to have four measurements for each
combination of factors and, therefore, this experiment is repeated four
times (this takes altogether four months).

Each month, we obtain 24 measurements corresponding to four treatment
levels (in different chambers) and six types (batches) of cheese.

Question: What is the type of the proposed experiment design? How do
we randomize the experiment? Which model can be used to evaluate the
experiment?
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Multilevel designs Strip-plot design

Baking powder experiment

Varka 1 Vérka 2 Varka 3
Recept 1 Recept1l Recept2  Recept 2 Recept 3 Recept 3
Prasek 1 Prasek 2 Prédek 1  Prasek 2 Prasek 1 Prések 2
QOO O [OROIOC O OlC O[O OO O (CONO O |OROIORO!
O OO O [OFOIOR0 O OO0 |O-CHON0 O OO O |OFOIORO

OO0 0| [OOO O OOICQ] [OROIGN0 @ e]e oo oe e

Trouba 1 Trouba 2
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Multilevel designs Strip-plot design

Baking powder (prdopeg)

In 2016, four students (TM, TCh, KJ, MH) have investigated the effect of
baking powder on cupcakes. The experiment was designed using two
ovens (located in student dormitory in Troja) with baking trays allowing to
bake twelve cupcakes at the same time.

The main aim of the experiment was to investigate the amount of waste
depending on two types of baking powder (with and without phosphates)
and three recipes. Second aim was to find out which baking powder
results in a better tasting cupcakes.

See
www.karlin.mff.cuni.cz/"hlavka/vyuka/planex/folie/prasek.pdf
for detailed information.
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Multilevel designs Strip-plot design

Nesting and crossing (for blocking/nuisance factors)

Nelder (1965) notes that:

‘All simple block structures can be built up using two basic operations,
nesting (denoted by —) and crossing (denoted by x). The two simplest
structures are written as B; — B, and By X B>. By — By is the structure
of the randomized block design. . .

A simple block structure may then be defined to be any formula involving
— and X signs with suitable brackets to indicate the order of combination
and with the n;, one for each category, giving the number of units involved
in the category’.
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iy i
Simple block structures with 3 or 4 categories

Some design structures (for blocking factors) are given in Nelder (1965),
page 150:

(By — By) — B3 = By — (B, — Bs) replicated split-plot design
By — (Ba x Bz) mutliple criss-cross (Latin squares)

(B1 x By) — Bs criss-cross with split-plots

(B — By) x Bs criss-cross with split rows

By x (B, — Bs3) criss-cross with split columns

(B1 — B2) x (B3 — By) criss-cross with split rows and columns
By — {By x (B3 — Ba)} repeated criss-cross with split columns
By — (By x B3) — Ba repeated criss-cross with split plots

(By x By) — (B3 x By) criss-cross with split criss-crosses
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s dtn
Nested design

with random effects:

Yijr = B+ ai + bj(i) + eijr

with fixed effects:
Yijr = 1+ i + Bjiiy + ejr
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Week 4
Topic:

@ nested & hierarchical designs / hierarchicky uspo¥adané experimenty,
@ repeated measures / opakovand pozorovani,
@ cross-over design,

@ analysis of repeated measurements in R.
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b dtn
ANOVA table for nested design

f §f  Mean EMS
Sum of squares d square fixed effects random effects

AU Slimv )t =1 P otk al ol rop o]
S r

B(A) r 20 —yi)* U =1) ity o + ity X 0By o2+ 1o

ReS'ZZZ(yijv_Yij.)2/J(r_ 1)% o? g'g

Tot. 3232 2 (yiw — v..)* Mr—1

The test statistic (for testing factor A) is not the same for fixed and
random effects model.
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D)
Example: training centres (NKNW: p. 1121)

A big manufacturing company has three regional training centres. Two
instructors are working in each centre. Each instructor trains a group of
approximately 15 employees for three weeks.

The company would like to evaluate the effects of training centre (factor
A) and the instructor (factor B) on the “outcome” evaluated by
knowledge tests delivered after the end of the course. The experiment was
carried out in a six weeks period: the training groups were created as usual
and the instructors were assigned randomly.
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(a) Crossed Factors

Instructor (factor B)

School (factor A) 1 2 3 4 5 6
Atlanta

Chicago

San Francisco

(b) Nested Factors

Instructor (factor B)

School (factor A) 1 2 3 4 5 6
Atlanta

Chicago

San Francisco
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factor B
instructor 1 instructor 2
25 14
Atlanta 29 1
11 22
factor A (center) Chicago 6 18
_ 17
San Francisco 20

Instructor 1 in Atlanta # instructor 1 in Chicago and, therefore, main
effects of factor B do not have any meaning (instead, “averages of local
instructors’ effects” are confounded with centers).
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1 2 3
i=1 i=2 i=3
School (i) «*) 2 i
=1
Instructor () u-h
1 2 3 4 N 8 9 10 11 12
. (k=1) | (k=2) (k=1) | (k=2) (k=1) | (k=2) (k=1) | (k=2) (k=1) | (k=2) (k=1) | (k=2)
Class (k) o ye) o -0 o e}

Nested design = hierarchicky uspofadany experiment

Important consequence: j-th level of factor B (instructor) in one training
centre does not correspond to the same level of the same factor in another
center.

The model will contain the main effect of factor A and the interaction A:B
(the effect of instructors “within” each center).
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D)
Airplanes (MJ: p. 145)

Airplane manufacturer wants to compare seven engines (A, B, ..., G) and
three types of airplanes (1, 2, 3). Technical requirements imply that the
first airplane can be used only with engines A, B, or C; the second airplane
can be used with engines D or E and the third airplane only with engines F
or G.

Three airplanes were produced for all possible combinations of type of
airplane and engines. Testing pilot then evaluated resulting twenty one
airplanes (in random order) and recorded the requested information.
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gzl et
Coffee (MJ: p. 629)

Consumer magazine in USA investigated the variability of coffee price in
towns with more than 20.000 inhabitants. The main aim was to evaluated
the influence of state, town (within state) and store (within town within
state).

The investigator chose r states randomly. Within each state, t; towns with
more than 20.000 were selected in random. Finally, n;; stores were chosen
in ij-th town, where the price of a certain type of coffee was established.

The variability of coffee price can be described using a random effects
model:

Yijk = B+ Si + mj(jy + Ox(jiys

where s; ~ N(0,02) is the effect of state, m;(;y ~ N(0,02,) effect of town,
and oy(jj) ~ N(0,03) effect of store.
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In this case, we should use fixed effects model (in order to compare
“treatment effects”):

Yijk = p + L; + Mj(;) + Eijk-

ANOVA table:
df EMS
Type of airplane 2 o2+ d2(L)
Engine (type of airplane) 4 o2 + ®2(M(L))
Error (airplane) 14 o?
NMST436 %/ 349

The main aim is to estimate variances of random effects.
It can be useful to calculate:

Var(yjjk) = 02+ 02 + o2

Cov(yjj1, yij2) = o2+ 02,

The correlation coefficient for coffee prices in two stores within a single
town:
B a§ + 02m
Pyii1.yiiz = 03 +Ur2n+0¢2)

Similarly:
2
US

Py: Yo — 5 T o o
Yi1l,Yi22 0_3 +0-%-, +Jc2,

Question: how can be obtain confidence intervals for these correlation
coefficients?
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Repeated measures Repeated measures

Repeated measures (opakovana méreni)

Repeated measures are not independent measurements in homogeneous
conditions but measurements taken repeatedly (e.g. at different times) on
the same subjects. Consequently, measurements taken on one subject are
correlated.

Repeated measures can be seen as hierarchial experiments (nested design)
or hierarchical experiments with more treatment effects (such as “split-plot
design”).
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Repeated measures Repeated measures

Model with repeated measurements can be analyzed as:

o split-plot design (under certain assumptions),
e multivariate dependent variable (dimension is the number of “times”),

e correlated data (e.g., mixed models or GEE).
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Repeated measures Repeated measures

Layout for a Simple Repeated Measures Experiment

TIME
TRT Subject 1 2 3 14
1 1 — — — —
2 — —_ — —_
nl — — — —
2 1 — —_ —_ —
2 — — — —
1, — - — —
t 1 - — — —
2 — — — —
n, — — — —
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Repeated measures Repeated measures

Horses (MJ, p. 136, in Czech)

Veterinarni klinika zkouma dva zpUlsoby Ié¢by zlomeniny kloubu u koni.
Experiment je napldnovan tak, Ze se vezme nékolik koni a zlomi se jim
zvoleny kloub, ktery se o3et¥i jednou nebo druhou technikou. Po &ty¥ech
mésicich se pak vyhodnoti vhodnad mira uzdraveni (tentokrat pomoci
rentgenu, tj. bez op&tovného lamani kosti).

Kromé vlivu zplsobu |é¢by chce klinika vyhodnotit i to, jestli oba zplisoby
[é¢by funguji stejné dobfe na ptedni i zadni nohu.

Experiment je potfeba rozumné naplanovat, protoze koné jsou drazi a pro
tento experiment jsou k dispozici pouze v omezeném mnoZstvi (4 kusy).
Kazdému koni se tedy bude muset zlomit pfedni i zadni noha.

MJ definuji model s opakovanymi pozorovanimi jako situaci, kdy Grovn&
jistého faktoru nelze blokiim (zde konim) p¥ifazovat ndhodn&. Zde je
uréeno, Ze kaZzdému koni se zlomi pfedni i zadni noha. ..
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G2 s
Horses (MJ, p. 136)

Animal hospital investigates two treatments of joint fractures in horses.
The investigator takes several horses, breaks its joints, and treats the
fractures by one of two techniques. Suitable measure of recovery is
evaluated after four months (using x-rays, i.e., without fracturing the
joint).

Apart of the treatment effect, the hospital wants to establish whether the
treatment effect is the same for front and hind legs.

Careful planning of the experiment is crucial because horses are expensive
and there is only a limited supply. In this case, we can use four horses.
Therefore, we have to break more joints on each horse.

MJ define repeated measures model as a situation, when levels of certain
factor (typically time) cannot be assigned to blocks (horses) randomly.
Here, we cannot assign time and front/hind legs.
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Repeated measures Repeated measures

The properties of a given design can be relatively easily assessed using the
R function alias()

> 1ml= lm(y horse+f+p+t)
> alias(1lm1)

Model

y ~ horse + £ + p + ¢t

Complete
(Intercept) kun2 kun3 kund p2 t2
f2 0 0 1 1 0 O

Obviously, the treatment effect (F) cannot be distinguished from the
difference between two pairs of horses. Hence, this experiment design
should not be used to evaluate the treatment effect.
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Repeated measures Repeated measures

Mixed model for repeated measures:

Yiik = Wijk + hm + €jjkm,

where f1;; is the expectation of the response for i-th treatment, j-th leg
and k-th time, hp, is random effect of horse and ¢jjn, is random error
(effect of “leg").

MJ compare two designs.

The first proposal is:

Horse

1 2 3 4

F1P1 Ty F1P1 T FaP1 Ty FaP1 T
F1P>T> F1P> Ty F2P>To FaP> Ty

(F1 and F; are two treatments, P; and P, denote front and hind leg and
T1 and T, are times of the experiment).
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Repeated measures Repeated measures

The second design is:

Horse

1 2 3 4

F1P1 Ty FaP1 Ty F1P1T> FaP1 T
FaPyTo F1P> T FaPy Ty F1P> Ty

> 1m2= 1m(y~kun+F*P+T)
> alias(1m2)

Model

y " kun + F x P + T

Complete
(Intercept) kun2 kun3 kun4 F2 P2 T2
F2:P2 0 -1/2 0-1/2 1/2 1/2 0
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b i
Attitudes / postoje (MJ: p. 583)

Sociologists have repeatedly (thrice in half-year intervals) investigated
attitudes of families in towns and in countryside. 10 town families and 7
country families were recruited. Each family consists of two parents and
one son.

In this dataset, we have two sets of repeated measurements: three
repeated measurements (for each participant) and three members of each
family (because levels of this factor—father/mother/son —cannot be
randomly assigned to individual subjects).
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Repeated measures Repeated measures

Assuming independence of random effects, the attitudes data set can be
analyzed similarly as split-plot design.

MJ (page 585) investigate the structure of the correlation matrix of the
nine-dimensional random error for each family using SAS PROC MIXED
(AIC, AICC, BIC) and reach the conclusion that the Kronecker product of
a unstructured correlation matrix for family members and compound
symmetry for measurement times is appropriate for this data set.

This correlation structure is used to assess the significance of fixed effects
(factors town/country, family member father/mother/son, times
T1/T2/T3 and their interactions).
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Repeated measures Repeated measures

Family Member

Son Father Mother

Family T1 T2 T3 T1 T2 T3 T1 T2 T3

Urban

1 7 17 19 18 19 21 16 16 18
2 12 14 15 19 19 21 16 16 18
3 8 10 11 16 18 19 1 12 12
4 5 7 7 12 12 13 13 14 14
5 2 5 6 12 14 14 14 16 18
6 9 11 11 16 17 18 14 15 16
7 8 9 9 19 20 20 15 16 18
8 13 14 16 16 17 18 18 18 20
9 11 12 13 13 16 17 7 8 10
10 9 20 20 13 15 15 11 12 12
Rural

1 12 1 14 18 19 22 16 16 19
2 13 13 17 18 19 22 16 16 19
3 12 13 16 19 18 22 17 16 20
4 18 18 21 23 23 26 23 22 26
5 5 14 16 15 15 19 17 17 20
6 6 6 10 15 16 19 18 19 21
7 16 17 18 17 17 21 18 20 23
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Repeated measures Cross-over design

Cross-over design

When we want to compare two (or more) treatments in a repeated
measurement setup, it may be helpful to expose each subject successively
to different treatments.

l.e., a subject is first exposed to treatment A. After measuring the effect of
treatment A and after disappearence of all physiological effects, the same
subject is exposed to treatment B, et cetera. Hence, each subject serves as
its own control (and the estimate of treatment effect will not be influenced
by between-subject variability).

The randomization proceeds by creating sequences of treatments (here AB
or BA) and these sequences are then randomly assigned to subjects.
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Repeated measures Cross-over design Repeated measures Mixed models in R

The resulting experiment has two levels: Mixed models in R and SAS
@ treatment sequences AB or BA are randomly assigned to subjects
(typically complete randomization), Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects models in S and
@ individual measurements (within subjects) create random blocks. S-PLUS. Springer.
Subject (animal) :
1 2 n;
Sequence 1 (AB) e
. S-PLUS
A (time 1) Y11A Y12A YimA —
B (time 2) yus Y128 YimB f
Sequence 2 (BA) e
B (time 1) y21B Y228 Y2n,B
A (time 2) Y21A Y22A e Y2mA (AKA the ‘yellow book")

Yiik = ik + Sij + ik, R: function 1me in library nlme & function 1mer in library 1me4.

where pij is the effect of k-th treatment in i-th sequence, s;; is random SAS: PROC MIXED
effect of j-th subject (in i-th sequence) and & is random error.
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Mixed models in R Mixed models in R
Dogs (PB, page 40), in Czech Dogs (PB, page 40)

Na univerzité ve Wisconsinu u 10 psli pomoci poc&itatové tomografie
opakované méfFili stfednfi intenzitu pixelli v obou podpaZich po dobu 14 dnf
po aplikaci kontrastni latky.

Mean pixel intensities were measured by CT scans in lymph nodes in the
anxillary region (on left and right side) of 10 dogs repeatedly during 14
days after injecting a dye contrast.

Vysledna data Pixel jsou k dispozici v knihovné nime. The resulting data set Pixel is available in library nlme.

Tato data jsou pfikladem na hierarchické uspo¥adani ndhodnych efekti
(nested design) a zaroveil na opakovand méfeni (opakovand méfeni na
jednotlivych psech).

This is an example both for nested design (random effects model) and
repeated measurements (subjects = dogs).

The aim of the experiment is to describe the observed growth curves.

Cilem experimentu je popsat chovani pozorovanych ristovych kfivek Therefore, we need a suitable mixed effects model in R.

(k tomu d¢elu musime do R zapsat vhodny model).
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Experts expect that the results measured on left and right side (of a dog)

will be different but one cannot say in advance whether higher values will Approximate 95% confidence intervals

be observed on the left or the right side. Fixed effects: Lower est. upper
(Intercept) 1053.0968388 1073.3391382 1093.5814376

The plot plot(Pixel) shows that, at first, the pixel intensity increases day 4.3796925 6.1295971 7.8795016

and, after some time, starts to decrease. This suggests quadratic I(day~2) -0.4349038 -0.3673503  -0.2997967

regression model. The left and the right side of each dog usually looks

similar (up to a shift). PB are using mixed effects model with random Random Effects:

intercept and slope (for the dependency of intensity on time) in order to Level: Dog lower est. upper

describe the individual variability (between dogs). sd((Intercept)) 15.9296203 28.3699038 50.5254631
sd (day) 1.0815006 1.8437505 3.1432398

library(nlme) cor((Intercept) ,day) -0.8943486 -0.5547222 0.1905316

data(Pixel) Level: Side lower est. upper

plot (Pixel) sd((Intercept)) 10.41733 16.82431 27.17176

fmiPixel <- Ime( pixel ~ day + I(day~2), data = Pixel,

random = list (Dog = ~ day, Side = ~ 1)) Within-group standard error:
intervals(fmiPixel) lower est. upper
plot (augPred(fm1Pixel)) 7.634529 8.989606 10.585199
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fmiPixel.lmed=lmer (pixel~day+I(day~2)+(day|Dog)+(1|Dog:Side), Model building (according to PB)

data=Pixel)

summary (fm1Pixel.lmed) Test for the random effect of side:

fm2Pixel=update (fm1Pixel, random=" day |Dog)

Random effects: anova(fmi1Pixel, fm2Pixel)
Groups  Name Variance Std.Dev. Corr
Dog:Side (Intercept) 283.055 16.824 Model df AIC BIC loglik Test L.Ratio p-value
Dog (Intercept) 804.854 28.370 1 8 841.2102 861.9712 -412.6051

day 3.399 1.844 -0.55 2 7 884.5196 902.6854 -435.2598 1 vs 2 45.3094 <.0001
Residual 80.813  8.990
Number of obs: 102, groups: Dog:Side, 20; Dog, 10 Test for the random slope:

fm3Pixel=update(fm1Pixel, random=" 1 |Dog/Side)
anova(fmiPixel, fm3Pixel)

Fixed effects:

Estimate Std. Error t value
(Intercept) 1073.33914 10.17169 105.52
day 6.12960 0.87932 6.97 Model df AIC BIC loglik Test L.Ratio p-value

2 6 876.8390 892.4098 -432.4195 1 vs 2.39.62885 <:0001
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Summary
Expert does not expect that the difference between left and right side
won't be the same for all dogs. This assumption can be verified.

The functions 1me () and 1lmer () implement mixed models but, in certain
circumstance, the choice matters: plotting is easier for 1me () but the
syntax of lmer () is more general.

fm4Pixel=update (fm1Pixel, pixel ~ day + I(day~2) + Side)

Fixed effects: pixel ~ day + I(day~2) + Side
Value Std.Error DF  t-value p-value
(Intercept) 1077.9484 10.862705 80 99.23388 0.0000

Examples of some wrong models:

day 6.1296 0.879023 80 6.97323 0.0000 fmSPixel=update(fmiPixel, pixel " day + day"2 + Side)
I(day~2) ~0.3674 0.033923 80 -10.82914 0.0000 fm6Pixel=update(fmiPixel, pixel " day + Side)
SideR ~9.2175 7.626768 9 -1.20858 0.2576 fn7Pixel=update(fmiPixel, pixel " dog )
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Mixed models in R
Exercise Week 5

Analysis of simulated cupcakes (strip-plot design) from previous week:

Recommended steps:

Topic:
@ proper coding of variables day, oven (within day) and cupcake (within ’
oven), e Multiple comparisons / metody mnohondsobného porovnavani:
@ randomization, i.e., the assignment of treatments to all levels in the Scheffé, Tukey, ...
experiment (i.e., temperatures should be assigned to ovens and
recipes to batches of dough)., See also The Economist: Trouble in the Lab

https://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble

@ simulation of the response,
@ analysis using either 1me () or lmer (),

@ comparison of the resulting estimates with the chosen (hence: known)
parameters.
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Multiple comparisons

Error rate

Comparisonwise error rate: the number of incorrect conclusions divided by
the total number of tests in all analyzed experiments (i.e.,
the level of significance).

Experimentwise error rate: the number of experiments with at least one
incorrect conclusion divided by the total number of
experiments.

Familywise error rate: the probability that one or more conclusions are
incorrect within a prespecified family of k tests or confidence
intervals.

False discovery rate: the expectation of the ratio of the number of
incorrectly rejected hypotheses and the number of rejected
hypotheses.
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One-way ANOVA and contrasts

In one-way ANOVA model y;; = ;i + €j;, we can investigate differences
(contrasts) p1; — ;. Obviously, i — ij ~ N(ui — pj, 02(1/n; + 1/n))).

Obviously, we reject Hg : pij = pj if

~ A ~ /1 1
i = Ryl = 81— /205 | —+
n; n;

(with comparisonwise error rate = «).

MJ (p. 47) calculated EER (experimentwise error rate) for various
numbers of treatments:

/ 2 3 4 5 6 8 10 20
CER 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
EER 0.05 0.12 020 0.28 0.36 0.47 0.59 0.90
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Multiple comparisons

Error rates in practice

EER & FWER:
EER is used for testing equality of expected values (ANOVA).

Knowing in advance that some expectations are different, the power of the
test may be increased by applying FWER on a smaller number of null
hypotheses (e.g. by using Bonferroni inequality).

FDR:

FDR is typically applied in genomics (with huge numbers of comparisons).
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LSD and Fisher’'s LSD

The test from previous slide is sometimes called Least Significant
Difference (LSD).

LSD controls only the comparisonwise error rate and, therefore, it is not a
usable method for multiple comparisons.

Fisher proposed to use LSD only after rejecting the null hypothesis of
equality of expected values (by ANOVA). On one hand, this “modification”
allows to control EER but, on the other hand, other properties are not
good; for example, resulting confidence intervals are too short etc.
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Multiple comparisons Bonferroni

Bonferroni correction

Theorem: For random events E;:

k k
P (U E,-) <> P(E)
i=1

i=1

The application is straightforward: if P(E;) is the comparisonwise error
rate, then P(|Ji_; E;) is FWER for k tests. In order to guarantee that
FWER < a, it is enough to set P(E;) = a/k.

In practice, all p-values (obtained from k tests) are usually adjusted as
phenferroni — min(1, kp), see p.adjust ().

Sidak's method, using 1 — (1 — a)* instead of a/k is a bit more powerful.
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Bonferron
Tasks and puls rate (MJ, p. 5 and 51), in Czech

Cilem experimentu bylo zjistit, jak riizné pracovni tkoly ovliviiuji tepovou
frekvenci zaméstnancl. Celkem 78 zamé&stnancl bylo ndhodné zafazeno do
Sesti skupin tak, aby v kazdé skuping bylo 13 zaméstnancl. Kazda skupina
pak byla vycvi¢ena a zafazena k vykonavani jistého pracovniho tkolu.

Tepova frekvence pak byla u v8ech zaméstnanci zméfena ve vybrany den
jednu hodinu po zadatku prace. Nékolik zaméstnanci v8ak bohuZel podalo
vypovéd jesté v priibéhu vycviku a tak ziskana data nejsou vyvaZena.
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Multiple comparisons Bonferroni

Monte Carlo approach

Monte Carlo method can be easily applied in order to control FWER for p
contrasts Y Cigiti, ¢ =1,...,p.

@ Generated randomly data sets with the given structure (i.e., with
given number of observations in each class).

@ Calculate t-statistics for given contrasts, i.e.,
tg = Z C;qﬁ;/ 02 Z C,%/n,'.

@ Calculate the maximum of absolute values of tg,
Ts = maxg=1,...,p(tq|)-

© Repeat steps 1, 2, and 3 and calculate 1 — o empirical quantile T1_,
of Ts.

© Calculate t4 for the original data set and reject g-th null hypothesis if
|ty| > T1—o. We obtain confidence intervals

Z C,'qﬁ,' + Tl—om /52 Z Cl%/n,'.
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Multiple comparisons Bonferroni

Tasks and puls rate (MJ, p. 5 and 51)

The aim of the experiment was to investigate the effect of various tasks on
puls rate. 78 employees were randomized into six groups, where each
group contained 13 people. Each group was trained and assigned to a
certain task.

The puls rates were measured one hour after the start of work on a chosen
day. Unfortunately, some employees quit already during the training and,
therefore, the resulting data set is not balanced.
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Multiple comparisons Bonferroni

Pulsation Data and Summary Information for Six Tasks

Task
1 2 3 4 5 6

27 29 34 34 28 28

31 28 36 34 28 26

26 37 34 43 26 29

32 24 41 44 35 25

39 35 30 40 31 35

37 40 44 47 30 34

38 40 44 34 34 37

39 31 32 31 34 28

30 30 32 45 26 21

28 25 31 28 20 28

27 29 41 26

27 25 21

34
Vi 415 373 358 380 354 317
n; 13 12 10 10 12 11
7 31.9231 31.0833 35.8000 38.0000 29.5000 28.8182
SS; 2949231 3529167  253.6000  392.0000  397.0000  225.6364
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Critical Differences Used to Compare the Differences between Pairs of Means for the Unadjusted

t and Several Multiple Comparison Procedures

Standard Tukey- B
TASK _TASK Estimate Error t Bonferroni Kramer  Scheffé Siddk  Simulate
1 2 0.840 2.225 4.449 6.795 6.544 7.650 6.776 6.526
1 3 -3.877 2.338 4.674 7.139 6.876 8.038 7.120 6.857
1 4 -6.077 2.338 4.674 7.139 6.876 8.038 7.120 6.857
1 5 2.423 2.225 4.449 6.795 6.544 7.650 6.776 6.526
1 6 3.105 2.277 4.553 6.953 6.697 7.828 6.935 6.679
2 3 -4.717 2.380 4758 7.267 7.000 8.182 7.248 6.980
2 4 -6.917 2.380 4.758 7.267 7.000 8.182 7.248 6.980
2 5 1.583 2.270 4537 6.929 6.674 7.801 6.911 6.655
2 6 2.265 2.321 4.639 7.085 6.824 7.977 7.066 6.805
3 4 -2.200 2.486 4.970 7.591 7.311 8.546 7.570 7.291
3 5 6.300 2.380 4.758 7.267 7.000 8.182 7.248 6.980
3 6 6.982 2.429 4.855 7.416 7.143 8.349 7.396 7.123
4 5 8.500 2.380 4.758 7.267 7.000 8.182 7.248 6.980
4 6 9.182 2.429 4.855 7.416 7.143 8.349 7.396 7.123
5 6 0.682 2.321 4.639 7.085 6.824 7.977 7.066 6.805
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Multiple comparisons Bonferroni

Percentage Points Used for All Pairwise Comparisons of the Six
Task Means

Simulation Results

Method 95% Quantile  Estimated @  99% Confidence Limits
Simulate 2.932480 0.0500 0.0450 0.0550
Tukey—Kramer 2.940710 0.0486 0.0436 0.0535
Bonferroni 3.053188 0.0359 0.0316 0.0401
Sidak 3.044940 0.0370 0.0326 0.0413
Scheffé 3.437389 0.0131 0.0105 0.0157
t 1.998972 0.3556 0.3446 0.3666

T-statistics for a difference of two expectations are compared to these
critical values.
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Adjusted Significance Levels to Test the Equality of All Pairwise Comparisons of TASK Minus
_TASK Obtained from Six Procedures Where t Corresponds to the Unadjusted ¢

TASK _TASK t Bonferroni  Tukey-Kramer  Scheffé Sidak Simulate
1 2 0.7072 1.0000 0.9990 0.9996 1.0000 0.9990
1 3 0.1024 1.0000 0.5642 0.7378 0.8021 0.5646
1 4 0.0117 0.1751 0.1129 0.2552 0.1615 0.1111
1 5 0.2805 1.0000 0.8840 0.9446 0.9928 0.8804
1 o 0.1777 1.0000 0.7484 0.8661 0.9469 0.7501
2 3 0.0520 0.7795 0.3645 0.5642 0.5509 0.3657
2 4 0.0051 0.0761 0.0546 0.1506 0.0735 0.0545
2 5 0.4880 1.0000 0.9815 0.9923 1.0000 0.9813
2 6 0.3328 1.0000 0.9238 0.9651 0.9977 0.9234
3 4 0.3796 1.0000 0.9488 0.9772 0.9992 0.9474
3 5 0.0103 0.1543 0.1014 0.2364 0.1437 0.0985
3 6 0.0055 0.0831 0.0590 0.1596 0.0799 0.0584
4 5 0.0007 0.0104 0.0087 0.0366 0.0104 0.0090
4 6 0.0004 0.0053 0.0046 0.0219 0.0053 0.0052
5 6 0.7699 1.0000 0.9997 0.9999 1.0000 0.9998
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i
Scheffé (Andél 1985, theorem 2, page 147)

Theorem: Assume that X ~ Ny, (i, 02V), where V is a known matrix
and o2 > 0 is unknown parameter. Let A denote some t-dimensional
subspace of R™. Let s? be an independent estimator of o® with v degrees
of freedom (i.e., vs?/o? ~ x2 and s? and X are independent). Then, the
probability that the inequality

la’X —a'p| < \/tstt,y(l —a)a' Va

holds, for all a € A simultaneously, is equal to 1 — a.
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s
Example: one-way ANOVA

Example: In the unbalanced one-way ANOVA model
Yij = pi+&jj = p+aj +Ejj,

the sample means y; = Zj yij/ nj estimate the parameters ;; and the

variance matrix of the random vector (y1.,...,y;.) is 02V, where
- —1 -1
V =diag(n;~,...,n 7).

Applying Scheffé’s method, we reject the equality of i-th and k-th
expectation if

lVi. — V.| > \/(n,-_1 + nj_l)(l —1)s2F_1p—i(1 — ).

Notice that Scheffé’'s method also shows which pairs of expectations are
significantly different.
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Multiple comparisons IS

Testing the equality of several expected values

Let = (p1,...,m) and V = (vj;). The null hypothesis
Ho : pi1 = -+ = pm holds if and only if a” yz = 0 for all vectors a such that
a'l,, =0. These vectors a define a subspace of dimension m — 1 in R™.

In order to test that p; = p; for all i # j, we define vectors a;; with i-th
element equal to 1, j-th element equal to —1 and all other elements equal
to zero. Obviously, u; = p; holds if and only if aj u = 0.

Clearly, a; Vajj = vji + vjj — 2v;; and, by Scheffé’ theorem, we obtain that
the inequality

1X; = X1 < \/(vir + v — 2v)(m — 1)s2F_1,(1 — )

holds for all pairs (7, /) with probability greater or equal to 1 — a.
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Multiple comparisons Tukey

Tukey (Andé&l 1985, page 150)

Theorem: Assume that Xi,..., Xy, is a random sample from N(u, o?),
02 > 0. Denote by
R = max X; — min X;

the so-called range. Let s? denote an independent estimator of the
variance o2 with v degrees of freedom; this means that vs?/o? ~ x2 and
s?2and X = (X1,...,Xy)" are independent. Denote by

Q=R/s

the so-called studentized range. Then, the distribution of the random
variable Q, denoted by the symbol g, ,, does not depend on y and o2,

In the following, gm. (1 — «) will denote the 1 — « quantile of the
studentized range distribution gn, .

These quantiles are implemented in the function Tukey () in R.
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Multiple comparisons Tukey

Tukey: application to ‘pair differences’

Theorem: Assume that Xi, ..., X, are independent random variables
such that X; ~ N(p;, b?0?), i =1,...,m, where b is a known positive
constant. Let s? denote an independent estimator of the variance o with
v degrees of freedom (i.e., vs?/0? ~ x2). Define T = bgm,(1 — ).
Then, the probability that inequalities

Xi—=Xj—Ts<pj—p <Xi—Xj+Ts
hold for all pairs simultaneously, is 1 — a.

Proof: Denoting Z; = X; — u;, the previous theorem implies that

p { max Z; — min Z;

bs < qm7y(1—a)} =1—aq.
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Multiple comparisons Tukey

Example: Recall the laser example from the first lecture:

> 1m.laser=1lm(strength~ordered(power) ,data=laser)
> summary (aov.laser <- aov(lm.laser))

Df Sum Sq Mean Sq F value Pr(>F)
ordered(power) 2 224.18 112.1  11.32 0.0092 *x*
Residuals 6 59.42 9.9

Sample averages for each laser power are:

> tapply(laser$strength,laser$power,mean)
40 50 60
24.77000 31.34333 36.98333
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Multiple comparisons Tukey

Example: balanced one-way ANOVA

Example: Balanced one-way layout guarantees that all random variables
Y1.,--.,Yy1. have the same variance. Denoting by r denote the number of
observations in each subclass, obviously y; ~ N(u;, a2/r) and, choosing
b =1/r in the previous theorem, we reject equality of expectations in j-th
and j-th group if

lyi. =yl > sqin—1(1 —a)/Vr.

This method is usable only for balanced one-way setup but it is obviously
stronger than Scheffé’'s method if

Qa1 = @) /VF < /(074 (1= D)Fia (1= ).
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Multiple comparisons Tukey

Critical values for the studentized range:

> summary (1lm.laser)$sigma*qtukey(0.95,nmeans=3,df=6)/sqrt(3)
[1] 7.883982

Our conclusion should agree with the R function TukeyHSD:

> TukeyHSD(aov.laser,"ordered(power)")

diff lwr upr p adj
50-40 6.573333 -1.310648 14.45731 0.0947896
60-40 12.213333 4.329352 20.09731 0.0075171
60-50 5.640000 -2.243982 13.52398 0.1506523

We can mark down different groups more easily after sorting the groups in
increasing order (according to observed sample means).
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il i
Modification of Tukey's method

o _|
N Tukey's method was designed for comparing pairs of expected values in a
homoskedastic situation with independent observations.
2 Therefore, Tukey's method can be applied directly also for comparisons of
v treatment effects in a balanced two-way ANOVA without interactions
S 8 (interactions complicate the interpretation of treatment effects).
£ Let us have a look at modifications for:
n _|
@ set of all contrasts (like Scheffé's method),
@ heteroskedasticity (e.g., for unbalanced ANOVA models),
T T T T T
40 45 50 55 60 @ correlated observations.
laser power
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: : Tukey-Kramer
Theorem: Assume that Xi, ..., X, are independent random variables y
such that X; ~ N(u;, b*0?), i = 1,...,m, where b is a known positive

constant and that s? is an independent estimator of the variance o2 with v
degrees of freedom.

Denoting T = bgm (1 — «), the probability that Tukey-Kramer method rejects Ho : pj = p; if
2
ZC,‘X,' — TSZ |C,"/2 < ZC,‘M/ < ZC,'X,' + TSZ |C,‘|/2 ’Ni _,U/j’ > qu(]_ _ a) i l + l ,
i i i i i ’ 2 \ni n
holds simultaneously for all contrasts (}_; ¢; = 0) is equal to 1 — a. where n; is the number of observations in i-th subclass.

Proof (Scheffé, Analysis of Variance, p. 74): Tukey's method is obtained for n; = r
i=r.

The statement follows from the inequality |Y_ ciui| < h(>_|ci|/2) that
holds for all contrasts (i.e. >_; ¢; = 0) if |u; — uj| < h (it suffices to plug in
ui = X; — pj and h = Ts).
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Multiple comparisons Tukey Multiple comparisons Tukey

Example: incomplete blocks Correlated observations

Example: In the first lecture, we have analyzed tyres using an incomplete
randomized block design. In this case, the treatment effect estimators are

. dent. Theorem: Assume that Xi,..., X, are random variables such that

not independent: Xi ~ N(u;, b%02), i =1,...,m, where b is a known positive constant and
that Cov(X;, X;) = ca? for all i # j, where constants b and c satisfy
trv = ¢ (238,196,254,238,213,312,279,334,421,308,367,412) —b? < (m—1)c <0. Let s? denote an independent estimator of the
pneu= factor(c (1,2,3,1,2,4,1,3,4,2,3,4)) variance o2 with v degrees of freedom.
typ = factor(rep(1l:4,each=3)) . -
drzi=data.frame (trv,pneu,typ) Setting T = v/ b? — cqm (1 — @), the probability that
1lm.drzil=1lm(trv typ + pneu,data=drzi) Z ciXj — TSZ lcil/2 < Zciﬂi < Z i X+ TSZ il /2
anova(lm.drzil) ! ! ! ! !
mmi=model.matrix(lm.drzil) holds simultaneously for all contrasts (>, ¢; = 0) is equal to 1 — av.
vi=solve (t (mm1) %*%mm1)
vl
NMST436 141/ 349 NMST436 142 / 349

. ) . o Example: Do we have constant correlation in the tyre examples?
Note: The covariance structure in this theorem looks similar to

“compound symmetry” from the previous week (coffee or attitudes

example) but the correlations have different sign. > Im.drzi2=1m(trv™ -1 + +typ + pneu,data=drzi)
> anova(lm.drzi2)
Proof: Let us find Xo ~ N(0,03) such that Xi=Xo+Xi,i=1,...,mare > mm2=model.matrix(lm.drzi2)
independent. This is quite simple because Cov()~(,-,)~<j) =...=co’+ 0o} > v2=solve (t (mm2)%*/%mm2)
and it suffices to choose 03 = —co?. > v2[1:4,1:4]
typl typ2 typ3 typ4
Next, typl 0.5833333 0.2083333 0.2083333 0.3333333
Var X; = Var(X; + Xo) = (b* — ¢)o? typ2 0.2083333 0.5833333 0.2083333 0.3333333

typ3 0.2083333 0.2083333 0.5833333 0.3333333

d ly Tukey's th the independent rand iabl
and we can apply fukey's theorem on the independent random variables typ4 0.3333333 0.3333333 0.3333333 0.8333333

Var X;.
arai > coef(1lm.drzi2)
) ] o o typl typ2 typ3 typ4 pneu2 pneud pneud
Question: Can we modify the above proof for positive correlations® 5994 799 229 .167 301.042 325.667 -20.875 34.500 96.375
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Multiple comparisons Tukey

Example: How comes that the variances and correlations are constant in
the following output?

Im.drzi3=1lm(trv™ -1 + typ + ordered(pneu),data=drzi)
anova(lm.drzi3)
mm3=model .matrix(lm.drzi3)
v3=solve (t (mm3) %*%mm3)
v3[1:4,1:4]

typl typ2 typ3 typ4
typl 0.36458333 -0.01041667 -0.01041667 -0.01041667
typ2 -0.01041667 0.36458333 -0.01041667 -0.01041667
typ3 -0.01041667 -0.01041667 0.36458333 -0.01041667
typ4 -0.01041667 -0.01041667 -0.01041667 0.36458333
> round(coef (1Im.drzi3),3)

V V V Vv V

typl typ2 typ3 typ4
252.292 256.667 328.542 353.167
ordered(pneu) .L ordered(pneu).Q ordered(pneu).C
77.033 41.375 -15.597
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i e
Practical recommendations (MJ, p. 45), part |

@ Multiple comparison methods may not be applied in exploratory
studies (typically followed by a carefully planned confirmatory
experiment).

e We should use the most powerful test (see the table with comparison
of critical values for studentized differences).

@ Dunnet's test is used to compare treatment effects to a control group
(there is both a one- and both-sided version).

@ Tukey's method is recommended for all pairwise comparisons (for
constant sample sizes). For unequal sample sizes, critical values can
be obtained by Monte Carlo methods.

@ “Multivariate t" is recommended for independent contrasts. For
correlated contrasts, more precise critical value can be obtained by
Monte Carlo methods.
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Multiple comparisons Further methods

Further useful methods

Dunnet Variant of Tukey's method for comparisons of / — 1
treatment effects to the control group (instead of all pairwise
comparisons).

Multivariate t If we are interested in p linearly independent contrasts, the
situation can be “reduced” to finding a quantile of maximum
of absolute values of p independent t-distributions.

Holm P-values are sorted (in increasing order) and compared
sequentially to a/(p — k + 1), where p denotes the number
of comparisons and k the ranks of p-values. If the null
hypothesis is not rejected for some kg, we stop testing and
null hypotheses are not rejected for any k > kg. This
method is obviously stronger than Bonferroni (apart of the
first comparison).

Benjamini-Hochberg Sequential procedure controlling only False Discovery
Rate = FDR (instead of Familywise Error Rate = FWER).
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i
Practical recommendations (MJ, p. 45), part I

@ Confidence intervals for a small number of linear combinations of
parameters can be obtained by Bonferroni method. Scheffé method is
better for more linear combinations (20). Sidék and Holm methods
work well for testing several uncorrelated linear combinations.
Bootstrap or Monte Carlo methods can be used for correlated linear
combinations.

@ Scheffé’s method is recommended for ‘data snooping’, i.e., when
hypotheses are based on observed data (it holds for all contrasts).

@ Only FDR is controlled in genomics and in studies with many tests
(1000), e.g., Benjamini-Hochberg method.

@ Multiple comparison methods should not be used in a safety study,
i.e., when dangers or side effects of some treatments are compared to
a control group (because multiple comparisons would increase
probability of type Il error).
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Measurement of jump height and speed: 796 children Jump height

432 girls, 364 boys (6-19 years)

Girls Boys

Single two-legged jump

—aims to achieve maximum jump height. o | o .
@

Multiple one-legged hopping : 57 § : 57 J

—aims to achieve maximum voluntary forefoot ground reaction force during i 3 § 3 a

landing. One possible application of this test is to evaluate the maximal £ . £ .

force to which the tibia is exposed, and thus it might serve to evaluate the < : <

muscle-bone unit. S LR ’ S I

. s 8 1 1@ 1 1w s 8 1 2 u 1

Sumnik, Z., Matyskova, J., Hlavka, Z., Durdilova, L., Soutek, O., & Zemkova, D. Age Age

(2013). Reference data for jumping mechanography in healthy children and

adolescents aged 6-18 years. Journal of musculoskeletal & neuronal interactions,

13(3), 259-273.
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L st o it
Jumping speed

18 2.33(0.17 34 2.87(0.10 14 0.0000***

girls boys
Age Y1 (/0\1) ny Yo (/0\2) no t-test
6 1.89(0.17) 33 1.87(0.18) 19 0.7799
Girs Boys 7 2.00(0.21) 43 1.98(0.20) 38 0.6459
— 8 2.01(0.21) 33 2.06(0.21) 38 0.3688
3 3 1 e 9 2.06(0.18) 42 2.14(0.18) 29 0.0811.
o e T 10 2.19(0.22) 42 2.17(0.19) 45 0.7131
HER % L 11 2.23(0.15) 30 2.31(0.23) 37 0.0616.
o 12 2.26(0.13) 41 2.35(0.23) 40 0.0473*
3 .| 3 | 13 2.30(0.22) 32 2.53(0.21) 36 0.0001%**
14 2.28(0.23) 31 2.66(0.19) 20 0.0000%**
I R 15 2.37(0.17) 29 2.72(0.22) 26 0.0000%**
S A S A 16 2.33(0.19) 17 2.83(0.28) 9 0.0005***
17 2.35(0.18) 25 2.76(0.16) 13 0.0000%**
(0.17) (0.10)
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Gl
Standard multiple testing adjustment

Multiple comparisons Further methods

Differences

04

03

p-value Holm Hoch. Hommel Bonf. B-H B-Y
6 0.780 1.000 0.780 0.780 1.000 0.780 1.000
7 0.646 1.000 0.780 0.780 1.000 0.763 1.000
8 0.369 1.000 0.780 0.780 1.000 0.479 1.000
9 0.081. 0.405 0.41 0.405 1.000 0.117 0.372

10 0.713 1.000  0.780 0.780 1.000 0.773 1.000

11 0.062. 0.369  0.370 0.308  0.800 0.100 0.318

12 0.047* 0.331 0.331 0.243  0.615 0.088. 0.279

13 0.000*** 0.001*** 0.001*** 0.006*** 0.001*** 0.000*** 0.001***
14 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
15 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
16 0.001*** 0.004** 0.004** 0.004*** 0.006** 0.001** 0.003**
17 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
18 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
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Multiple comparisons Further methods

Traditional one-sample change-point analysis

Y1,..., Y, are independent observations with distribution functions
Fi,...,F,

One-sample change-point problem concerns the test of

Hy: R =F,=---=F, against Hj: Jky such that Fko 7& Fko+1'

Statistical inference is complicated because the location of the possible
change-point (ko) is not known and there could be more than one
change-point.

A lot of results concerning changes in mean (shifts) and variance, change
in regression coefficient, abrupt and gradual change, changes occurring in
time series, off-line and on-line testing (monitoring), nonparametric
approach, etc.
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0.2

0.0
I

Observed sample means of jumping speed for boys (A) and girls (O) in
thirteen age categories. The right plot shows the observed differences D;.
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Multiple comparisons Further methods

General two-sample change-point problem

Two independent random samples Y1 1,..., Y1 and Yo 1,..., Yoy, are
collected at the ordered time points t; < --- < t,.

At each time t;, we observe ny ; observations from the first sample and ny ;
observations from the second sample.

With F; ; denoting the distribution function of Y] ;, we introduce the
general two-sample change-point problem:

Ho: F17,':F2,,' for all i:1,...,n

Hi : Fkg such that F17k =+ Fg’k, for k > kg.

Apart of testing Hp, we are interested in estimating ko.

Additional assumption of gradual change leads to two-sample gradual
change-point analysis.
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Model of gradual change

@ Observations Yjy (j =1,2;k =1...,nj;) are obtained at time /
(i=1...,n).
© All observations are independent.
© E(Y1i—Y2)=0+6,(i — ko)s/n (i=1,...,n), where §, and ko
are unknown parameters and ko = nfly for some 6y € (0, 1).
Q Var(\g-,-k):af,>0 (=12i=1,....,mk=1...,n;).
We use the notation Y = EZ’Ll Yiik/nji, ax = max(a, 0) with ko
denoting the unknown location of the change point, p the unknown
expectation of difference before the change, and J, the slope (speed) of
the gradual change after kg.

See also [Hinkley (1971). Inference in two-phase regression, JASA 66(336):
736-743], [Huskova, M. (1999). Gradual changes versus abrupt changes. JSPI
76(1), 109-125].

Multiple comparisons Further methods

Least squares estimators

The least squares estimator of ky (under homoskedasticity) is:

{zumwwwwfl

> Xi2k

Denoting by UI? = Var(Y1; — Ya2;i), we define:

{27:1 Xik(vli - 72,‘)/0,-2}2
27:1 X,-zk/(fl-2 ’

//; = arg max
& ke(1,n)

ko = arg max
7 ke(1,n)

. . A2 .
Using sample variances 05 observed in each (age/gender) category, we
arrive to:

ke(ln) Sy X3 /67

> xi(Yii — Y2i)/a,'2}2]

/1;5.2 = arg max [

AD _AD AD
where 67 = 67, /mj + 65;/na;.
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Multiple comparisons Further methods Multiple comparisons Further methods

Asymptotic distribution of k (homoscedastic case)

Jumping speeds Differences

Following [Huskovd M. (1998) Estimators in the location model with
gradual changes, Comment.Math.Univ.Carolin. 39,1: 147-157], it can be

shown that: -
~ on<4

k—ko~N _ .

0 (Qa%n—kw>

28
1
0.5

means
>
D,
0.3
I

0.2

Observed sample means of jumping speed for boys (A) and girls (O) in
thirteen age categories. The right plot shows the observed differences D; 3 \L i
and the least squares fit. J/
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Multiple comparisons Further methods Multiple comparisons Further methods

Bootstrap for ks (heteroscedastic case) One-sided confidence intervals and p-values

We use wild bootstrap and simulate bootstrap replicates from normal The bootstrap approximation of g, by g}, leads to:
distribution with the same parameters as the observed sample mean

differences D; = Y1; — Y>; with standard errors 5; = \/6%,-/n1,- + 6%,-/n2,-.

1—a=Plks — ko > qa) = P(ks2 — ko > %) = P(ko < ks2 — q5).

Bootstrap algorithm: The resulting one-sided confidence interval is (—oo,Rp —q).
© Estimate parameters 6 and kg and calculate fitted values Similarly, for fixed ki, wild bootstrap can be used to calculate p-values for
D; = 6(i — kz2)4/n. the test of the null hypothesis
@ Generate bootstrap sample D} = D; + giet, where e ~ N(0,1),
i=1,...,n and calculate the change-point estimator k=,. Ho : ko > ki against Hy : kg < kg

© Repeat the previous step B times in order to obtain a random sample
from k2, — kse.

B
O Finally, the quantiles g} of ;(;2 — k2 are used as an approximation of p-value = P*(;(i;z — ks> < kg2 — ki) = Z I(Zg%b — kz2 < kz2 — ki)/B
the quantiles g, of ](\32 — ko. b=1
NMST436 161 / 349 NMST436 162 / 349
Coverage of 95% confidence intervals Application to jumping speeds
ko k ](\5:2 For the real data analysis, we have to correctly understand the observed
2 96.0 95.3 sample means (and its differences):
4 94.5 95.1
s2—1 8 95.8 94.8 Index  Label Meaning Y1 (61) Y, (52)
12 97.8 97.3 1 6 6-7 years ~6.5years  1.89(0.17) 1.87(0.18)
16 98.5 98.4 ) ) . : )
18 98.7 97.8 : : - : :
5 95 7 943 13 18 18-19 years ~18.5years 2.33(0.17) 2.87(0.10)
4 96.8 96.2
52— 9 8 97.0 96.5 The estimator ;32 = b5 corresponds to the estimated change point
12 97.1 96.2 5+ 5.5 = 10.5 years and the upper limit of one-sided 95% confidence
16 98.8 98.0 interval is 6.14 4+ 5.5 = 11.64 years.
18 90.8 89.3

In our data set, the observed sample means are based on continuous
explanatory variable: this may lead to rounding bias. Therefore, we
1000 simulations, n = 20, n;; = 20, B = 2000. consider also a bias corrected estimator kabzc.
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Multiple comparisons Further methods Multiple comparisons Further methods

- . - - 1 A/\ Abc
Testing for the change-point location ttest Bonferroni  BH i ke Age
6-7 0.780 1.000 0.780 1.000 1.000 0
7-8 0.646 1.000 0.763 1.000 1.000 !
Bootstrap is used in order to calculate one-sided confidence intervals and B ' 1' ' 1.000 1.000 8
p-values for Hp : ko > ki against Hy : ko < ky for chosen k; =1,...,13 89 0.369 000 0.479 0.999 0.997 9
(ie., kB =6 18) 9-10 0.081. 1.000 0.117 0.861 0.846 10
D R 10-11 0.713 1.000 0.773 0.113 0.117 11
For correct interpretation, we have to understand the test (the 11-12  0.062. 0.800 0.100 0:003** 0:003** 12
interpretation depends on k; and it is not the same as the interpretation 12-13  0.047* 0.615 0.088. 0.000%**  0.000*** 13
Of the tWO—Sample t-test) 13—14 OOOO*** 0001*** 0000*** 0000*** 0000*** 14
14-15 0.000*%** 0.000***  0.000*** 0'000*** 0'000*** 15
Y1 (61) n Y (52) n t-test CPT 15-16  0.000*** 0.000***  0.000*** 0.000%**  0.000%** 16

16-17 0.001*** 0.006** 0.001**
17-18 0.000*** 0.000***  0.000%** 0.000%% 0.000"% 17

12-13 2.26(0.13) 41 2.35(0.23) 40 0.047% 0.003* 18=19 0.000*%** 0.000*** 0.000%** 0.000*** ~0.000*** 18

Note: k¢ = 10.5 years and the upper limit of one-sided 95% conf. int. is

11.64 years.
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Further methods
Conclusion Week 6-7

Summary:

@ Two-sample gradual change-point test can replace “multiple testing” )
by a single test concerning only the change-point location. Topic:
@ The change-point approach is applicable to any “table of estimates

. Y e Factorial experiments (experiments with at most one observation per
with standard errors”.

subclass).

© The resulting p-values are decreasing and correspond to right-sided o Tukey's and Mandel's test of additivity.

confidence intervals.

. . . @ Multiplicative interactions.
@ Left-sided confidence intervals may be useful for growth curve P

estimation.

Reference: Hldvka, Huskova (2017) Two-sample gradual change analysis,
REVSTAT, 15(3), 355-372.
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Factorial experiments Factorial experiments

Many factors

Often, one needs to investigate many factors using a limited number of Humidity (%)
observations. In such situations, we usually have at most one Temperature (F) 20 40 60 80
observation in each subclass (defined by a unique combination of factor 50 123 196 257 304
levels). 60 137 169 27.0 315
MJ2 (p. 2) claim that such data set (with only one observation per 70 178 20.0 263 359
subclass) can be obtained by mistake: 80 121 174 369 434
90 6.9 18.8 350 53.0

Example: Biologist investigates the influence of 20 combinations of
temperature and humidity on sorghum growth. He can use 20 greenhouses
allowing to set all possible combinations of temperature and humidity. 10
sorghum plants are grown in each greenhouse but the biologist does not
realize that both treatments are applied on greenhouse level and that,
disregarding the number of plants, we will always have only 20 observations
(although higher number of plants should decrease residual variance).

Measurements of 200 sorghum plants lead to 20 observations (with one
observation in each subclass). Moreover, the interaction of temperature
and humidity is of interest and cannot be omitted.
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Two-way layout with one observation per subclass
An important consequence of having only one observation in each subclass

is the nonexistence of “repetitions of the experiment in identical

- _ _ _ 5 The usual variance estimators cannot be used in the model
conditions” (that is usually needed to estimate the variance o¢).

i = Wij +Eij = p+ T+ B+ vij +€ijs
The biologist has following possibilities: Yi = Hi § = W B Y

because /i = y;; and all residuals are equal to zero.
© Reduce the number of factor levels (with six combinations of
treatment levels, he could have three repetitions in each subclass). The simplest solution is to assume the the interaction term can be

@ Repeat the entire experiment several times (including new omitted, i.e., to use the model:

randomizations). This is possible only for fast growing plants.
. o . Yij = 1+ 7 + Bj + €jj,
© Use more greenhouses (this may not be possible in practice).

Q Keep the original design and apply methods from MJ2: [Milliken & leading directly the estimator
Johnson (1989) Analysis of Messy Data, Vol. 2, Nonreplicated 2= (yij—yi. —yj+y. )2/ {(l —1)(J - 1)}.

Experiments, Chapman & Hall/CRC, Boca Raton.
P P / / Before removing the interaction term, we should test it (but, obviously, the

usual F-test cannot be used).
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Milliken & Rasmuson

Milliken & Rasmuson

Let us assume that:

Yij = p+Ti+ B+ + e

Weaknesses:

@ The observations are split into / groups according to levels of the

@ assumptions for variance homogeneity tests are satisfied only
factor T.

approximately (sample variances v; have noncentral x? distribution

@ In each group, we calculate the sample variance
vi = Ele(y,-j —yi)/(J—1). Thisis, in the model with interaction,
an unbiased estimator of o2 + > (B =B+ — 7 )?/(J = 1) =62
(the point is that 67 = - -- = §7 in the model without interaction).
© Milliken and Rasmuson proposed to test the hypothesis

Ho: 62 =--- = 5,2 using standard tests of homogeneity of variances
(Bartlett, Levene).

even under the null hypothesis)

@ with certain interaction patterns (e.g., latin squares), it may happen
that all row and column variances are identical. . .
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Factorial experiments Tukey's nonadditivity test Factorial experiments Tukey's nonadditivity test

Tukey's nonadditivity test

Tukey's nonadditivity test (AKA Tukey's single df test) can be described
as a test of the hypothesis Hy : A = 0 (against two-sided alternative) in

the model pj; = p + 7; + B8; + A7;3; assuming that the interaction v;; is
proportional to the product of row and columns effects.

Tukey's test statistic is based on

2 =y )y =y )i =i —yj+y))

SS5N = E;(ﬁ — y‘.)2 Ej(y.j - y“)2

and
SSR = Z Z(yij —Yi —yj+y.)?—SSN.
i

The null hypothesis Hy : A = 0 is rejected if
SSN/{SSR/(bt — b —t)} > F1 pt—p—t(1 — ).
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Interaction plots

Two-way ANOVA with interactions:

Vi = pij +€ij = p+ 7 + B + i + €,

symbols 7; and 3; denote row and column effects.

Type | interaction plot shows pj; against i (or j) for all j's (or i's),

Type Il interaction plot shows pj; against 7; (or 3;) for all j's (or i's).

These plots thus consist of J (or /) polygonal lines connecting / (or J)
points.
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EIGIGEIRSGIEN NI Tukey's nonadditivity test

Example: Let's assume that the true expectations p;; satisfy the model
i = p+ 7+ Bj with p =29, 7 = (-5,2,4,0,-1)", B = (-5,2,-1,4)".
The expectations (cell means) are:

mu=29

tau=c(-5,2,4,0,-1)

beta=c(-5,2,-1,4)

cm.add=mu+outer (tau,beta,"+")

rownames (cm.add)=paste("t",1:5,sep="")
colnames(cm.add)=paste("b",1:4,sep="")

bl b2 b3 b4
tl 19 26 23 28
t2 26 33 30 35
t3 28 35 32 37
t4 24 31 28 33
t5 23 30 27 32
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Factorial experiments Tukey's nonadditivity test

Type |
n
o™
o
o™
c
[
Q
1S
n
N
o
~N
T T T T T T
1.0 15 2.0 25 3.0 35 4.0
index
Z. Hldvka (CU Prague) NMST436 179 / 349

ETGIEIRNGIN NI Tukey's nonadditivity test

Type | interaction plot:

# type I - rows

plot(c(1,4),c(max(cm.add) ,min(cm.add)) ,type="n")

for (radek in 1:nrow(cm.add)) {
lines(1:4,cm.add[radek,],lty=radek)

}

legend(1,max(cm.add) ,legend=row.names(cm.add) ,1ty=1:5)

# type I - columns

plot(c(1,5),c(max(cm.add) ,min(cm.add)) ,type="n")

for (sloup in 1:ncol(cm.add)) {
lines(1:5,cm.add[,sloup],lty=sloup)

}

legend(1,max(cm.add) ,legend=colnames(cm.add) ,lty=1:4)
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Type |

— bl

35
|

o

]

b3
- b4

mean

25

20
|

index
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Type Il interaction plot:
Type 1l

# type II - rows

plot(c(max(beta) ,min(beta)),c(max(cm.add) ,min(cm.add)) ,type="n") 9

ob=order (beta)

for (radek in 1:nrow(cm.add)) {
lines(betalob],cm.add[radek,] [ob],lty=radek)

30
|

}
legend (min(beta) ,max(cm.add) ,legend=row.names(cm.add) ,1ty=1:5)

mean

25

# type II - columns
plot(c(max(tau) ,min(tau)),c(max(cm.add) ,min(cm.add)) ,type="n"
ot=order (tau)
for (sloup in 1:ncol(cm.add)) {

lines(taulot],cm.add[,sloup] [ot],1ty=sloup) ‘ | | | |
}

-4 -2 0 2 4
legend(min(tau) ,max(cm.add) ,legend=colnames(cm.add) ,lty=1:4)

20
|

beta
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Interaction plots for Tukey's model look somewhat different:

Type I cm.tuk=cm.add+tau’*’t (beta)
Type |
M yp
w || -~ b2
b3
- b4 o |
Te)
o _|
o™
g ¥
@
£
C
& § 3 -
8 -
o _|
N
T T T T I
-4 -2 0 2 4 S

tau T T T T T T T
1.0 15 2.0 25 3.0 3.5 4.0

index
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ETGIEIRNGIN NI Tukey's nonadditivity test

Type | Type Il
o _| — bl o _|
n _— n
b3
-~ b4 .
o _| : o _|
< <
g : g
g 8 5 ) R § g
o _| o _|
N N
o _| o
- -
T T T T T T T T T
1 2 3 4 5 -4 -2 0 2 4
index beta
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Mandel's test
Mandel’s test

Type Il
3 - — bl
- b2
b3
. ™ - Mandel generalized Tukey's model as
< 7 -
: g pij = p+ 7i + Bj + Aaif;
[ o : -
E © . . . e
: with the null hypothesis of additivity formulated as Hy : a1 = --- = .
g . Example: Interaction plots (type 1) for o = (1,2,4,0,—-2)"
. One of two type Il interaction plots looks like a "bundle of straight lines”.
T T T T T
-4 -2 0 2 4
tau
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Type Il

40

mean
30
|

20
1

10

-4 -2 0 2 4

beta
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Factorial experiments Mandel’s test

Some remarks

Tukey's and Mandel’s test are implemented in standard statistical software.

If not, we can perform these tests by first estimating the main effects and
then testing the appropriate hypotheses concerning the interaction term.

Tukey's single df/Mandel’s model can be further modified (for example,
MJ2, p. 31 describe interaction terms defined by ~;; = A7 exp(—53))).

Main purpose of these tests is verification of absence of interactions (so
that we can justify the model without interactions) in two-way ANOVA
with one observation in each subclass.
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Factorial experiments Mandel’s test

Type 1l

50
1

— bl
- b2
b3

- b4

40

]
E 8
o _|
N
o _|
-
T T T T T
-4 -2 0 2 4
tau
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Factorial experiments Mandel's test

Some remarks

This approach does not really solve anything in presence of significant
interactions. In some situations, transformations may help (e.g.,
logarithmic transformation for Tukey's model) but MJ2 do not recommend
transformations because:

@ assumption of additive random errors is not transferred into the
transformed model,

@ interpretation is usually simpler on the original scale,

@ transforms are unnecessary if we can model our data (e.g., GLM),
interpretation follows from the applicable model.
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Model with multiplicative interactions

Another natural extension of Tukey's

pij =+ 7i + Bj + ATif;
and Mandel’s model

pij = 4 7i + B + A
is the model with multiplicative interactions

wij = p+ 7i + Bj + Aaij,

WhereO:Zﬂ:Zﬁj :Zaizz’yj and 1 :ZOZ,2 :Z’sz
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The multiplicative interactions model is usually more appropriate (than
Tukey's or Mandel's model) if:

© The model contains interactions although all row and column effects
are equal to zero.

@ The interaction appears only for one combination of row and column
effects. Such situation can appear for outlying observations or if some
combnation of row and column treatments behaves strange (e.g., in
presence of control group that does not allow to use the additive
model)

© The interactions appears only in one row or column (corresponding,
e.g., to a control group that behaves differently).
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Multiplicative interactions model
pij = po+ 7 + Bj + A
does not assume that interactions depend on main effects.

Interaction of two rows (i and i) with arbitrary two columns (j and j') can
be expressed as

Hij — ijr — it i

= Ma;j —air) (v — )

Therefore, aj = «j» implies that there isn't any interaction of i-th and /’-th
row with columns effects.
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LS estimators in the model

Vi = 1+ 7i + B + Ay + €,

are:
a = y.
o= yi—y.
o= Yi— Y.

Let Z = (zj) = (vij — yi. — yj + ¥..) denote the matrix of residuals from
the additive model. Then

X2 = largest eivenvalue of Z'Z (or ZZT)
& = eigenvector ZZ | corresponding to 22
4 = eigenvector Z'z corresponding to A2

In other words: estimators of A, & and  can be obtained by the SVD

decomposition of the matrix Z.
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Test of additivity

In the multiplicative interactions model

yii = p+71i + B + Aajyj + €,

the null hypothesis Hp : A = 0 can be tested using tabulated critical values.

If i > --- > I, are nonzero eigenvalues of Z'z (or ZZT), the critical
values for the test statistic

Up=h/RSS=h/>_I;
(where RSS = Zzﬁ is the residual sum of squares from the additive

model), can be found, e.g., in Table A.1 in MJ2 for selected values of
p=min(/ —1,J—1) and n=max(/ —1,J —1).
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Further modifications can be found in MJ2

@ Several multiplicative interactions (estimated by SVD).

197 / 349

@ Choice of the number of multiplicative interactions (sequential testing

of eigenvalues).

@ Variance estimation (pseudo degrees of freedom (/ — 1)(J — 1) —m,
where 7; is the expectation of /1 /02 if A = 0) in the model with one
multiplicative interaction (or assuming that Ha = 0 for some matrix
H).

More involved analysis of interactions (equality of some coefficients
implies non-existence of interactions in some rows or columns: testing
the null hypothesis Ha = 0 [Marasinghe & Johnson (1981). Testing
subhypotheses in the multiplicative interaction model. Technometrics,
23(4), 385-393.] — alternatively, Tukey's additivity test can be used
on all row and column pairs.
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Table A.1 Critical Points for £;/(€; + €, + + - - + {})

p
n 2 3 4 5 6 7 9 11 15 19
UPPER 5%
2 .999*
3 .987* .857
4 965 .882* .84l
S .941* 851 .759* 668
6 .917* .801* .682 .657*  .596
7 .897* .781 .683* 599 S575*% 535
9 .863* .704 .632% 500  .522*% 469 414
11 .836* .694 .595% 524 .484* 450 .402 .367
15 .795*% .630 .543*% 476 434% 399 339 306 .266
19 .766* .629 .509* 454 .400% 365 .314 .288 241 212
31 .713*% 535 .450*% 389 344* 311 264 .234 .194 .170
49 .671* .508  .407* 348 300 .271 .230 .202 .164 .142
99 .622* 461 .358 .302 260  .231 .189 .163 .131 .112
NMIST43s

Factorial experiments Multiplicative interactions

Horses

Example: Let us recall the example with horses.

198 / 349

Assume that the experiment is designed in a way that allows estimation of
all regression parameters in the linear model

yir = horse; + time; + Fjr * leg;, + €y,

where i =1,...,4and t =1,2.

Q: Can we apply some additivity test on this data set?

Z. Hldvka (CU Prague)
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Week 7-8

Topic:

Factorial experiments 2V.

Residual variance estimators:
e without higher-order interactions,
e half-normal plot.

Blocking / slu¢ovani.

Fractional factorial experiments / zkracené faktoridIni experimenty.

Nonregular designs (Plackett-Burman).
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Factorial experiment 2N

In order to investigate as many factors as possible (including also their
interactions) with limited number of observations, one usually considers
only two levels for each factor. Typically, one works with only one
observation in each subclass (cell).

The aim of a factorial experiment 2V (or 3V or mixed experiment 2V3M
etc.) is to identify factors that may have significant influence on the
response variable.

The identified important factors are then investigated using further
experiments (of different type).
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Some repetition: QQ plot

In order to display goodness-of-fit graphically, we often plot sorted
observations against theoretical quantiles.

Normal QQ plot Normal QQ plot

N(0,1) quantiles
0
|

N(0,1) quantiles
0

Clearly, the (theoretical) slope for observations from N(zu,c?) in a QQ-plot
with theoretical quantiles of N(0,1) is 1/0.
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Yates notation

The most simple situation is two-way ANOVA model (with interactions)
and one observation in each subclass: y;j = pjj = p + ;i + 5 + (af)jj,
where i,j € {0,1}. The effect of factor A measures the influence of higher
level compared to the lower level of factor A (i.e., we have A = 2a3 with
the contr.sum contrasts satisfying ) «; = 0).

The so-called Yates notation may seem unusual but it has its advantages:
the lower level of each factor is denoted by 1, higher level is denoted by
lower case letters (a, b,...). Combinations of factor levels are then
denoted by ‘products’ of these symbols.

In the factorial experiment 22, we obtain four possible factor level
combinations: (1), a, b, ab.
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The model: yj = pjj = p+ o + B + afjj, where i,j € {1,2}

st¥. hodnota

A B zna&eni
lower lower (1)
higher lower a

lower higher b

higher higher ab

pi—— = poo — A/2 — B/2+ (AB)/2
p4— = poo +A/2— B/2—(AB)/2
fi—+ = pioo — A/2+ B/2 — (AB)/2
pit = poo +A/24+ B/2+ (AB)/2

Estimators:

A=Yar —Va- ={-(1)+a—b+ab}/2
B=ypgy —yp ={—(1) —a+b+ab}/2

The effect A with factor B on higher level (—b + ab)/2, the effect A with
B on lower level (—(1) + a)/2. The interaction AB is the difference of

these two (conditional) effecs, i.e.,

AB ={(1) —a— b+ ab}/2

Z. Hldvka (CU Prague)
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Tab. 37. Vyjadieni hlavnich efektt a interakei v experimentech typu 22, 2% a 2*

» [ ]

‘()| a | b |ab | ¢ |ac | bc |abc| d | ad | bd |abd | cd |acd | bed |abed

| | |

| ' i

| |
4 e e e e I B e B e e B I B o e S I
B == |+ |+ | ==+ |+ ==+ |+ —|—]|+]|+
AB I e e e B e B e e e e e B A e e
C = ===+ |+ + = ===+ |+ +]|+
AC =+ == | = |+ |+ | =+ | ==+ ]|— |+
BC IR e et Il B B I B I e I
ABC | — | 4 4 | — || ==+ =+ ===+

| {
D Pl = === ===+ |+ |+ |+ |+ |+ ]|+]|+
4D e et B B B e e B I el I B ol I S I
BD B e e e I e I B A e e S
ABD e e e e e e e i e e B e B el e
¢D B e e e I e I e I B B B
40D | — 4 — = === =+ =]+
BOD | — | — |+ |4+ + |+ —|— |+ |+ | — ===+ |+
ABOD !+:—~+1-+!+ — | =+ |+ =+ |=|—]+
N " :' ! —
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Some simple algebra

2A=—-(1)+a—b+ab=(a—1)+bla—1)=(a—1)(b+1)
2B=—(1)—a+b+ab=(b—1)+a(b—1)=(a+1)(b—1)
2AB=(1)—a—b+ab=bla—1)—(a—1)=(a—1)(b—1)

Similar rules hold also in higher order models. For example, the interaction
ABCD in a factorial experiment 2° can be estimated by the contrast:
ABCD = (a—1)(b—1)(c — 1)(d — 1)(e + 1)(f +1)/2°

The signs for estimating interactions can be also obtained by multiplying
the signs of the corresponding main effects, see table [L68] on the
following slide.
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Buns (housky) (MJ2, p. 98)

Example: A bakery has used factorial experiment 2° to investigate the
influence of water (W), mixing time (M), temperature (T) and fat type
(C) on the quality of buns. Two types of mixers (P) were used to prepare
dough.

The resulting data set is given on next slide.

All effects can be easily obtained from 1m(Quality”~ (W+M+T+C+P)"5) but
one has to be careful about the choice (and meaning) of contrasts.

Unfortunately, the variance of €, cannot be estimated from the above
model. In this situation, we can choose from two possible approaches:

@ usual ANOVA with higher-order interactions,
@ half-normal plot (see MJ2).
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Run w M T C P Quality
27 0 0 0 0 0 4.8
3 1 0 0 0 0 3.9
11 0 1 0 0 0 5.0
19 1 1 0 0 0 22
22 0 0 1 0 0 3.9
15 1 0 1 0 0 4.2
5 0 1 1 0 0 3.0
23 1 1 1 0 0 22
21 0 0 0 1 0 5.7
14 1 0 0 1 0 2.2
2 0 1 0 1 0 8.4
12 1 1 0 1 0 8.3
17 0 0 1 1 0 5.3
7 1 0 1 1 0 23
29 0 1 1 1 0 8.6
25 1 1 1 1 0 8.9
32 0 0 0 0 1 4.2
1 1 0 0 0 1 5.0
16 0 1 0 0 1 5.8
24 1 1 0 0 1 5.2
8 0 0 1 0 1 4.6
10 1 0 1 0 1 4.1
26 0 1 1 0 1 5.4
4 1 1 1 0 1 5.2
30 0 0 0 1 1 2.9
6 1 0 0 1 1 3.0
9 0 1 0 1 1 6.7
28 1 1 0 1 1 6.6
20 0 0 1 1 1 5.0
18 1 0 1 1 1 2.7
31 0 1 1 1 1 7.0
13 1 1 1 1 1 71
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1
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library(AlgDesign)
buns=gen.factorial (levels=2,nVars=5,varNames=c("W","M","T",
"C","P"))

buns$Quality=c(4.8,3.9,5.0,2.2,3.9,4.2,3.0,2.2,5.7,2.2,8.4,
8.3,56.3,2.3,8.6,8.9,4.2,5.0,5.8,5.2,4.6,4.1,5.4,5.2,2.9,
3.0,6.7,6.6,5.0,2.7,7.0,7.1)

1m.buns3=1m(Quality~ (W+M+T+C+P) "3,data=buns)

1m.buns5=1m(Quality~ (W+M+T+C+P) "5,data=buns)

a3.1=aov(lm.buns3)

a3.2=anova(lm.buns3)

library(car)

a3.3=Anova(lm.buns3)

# Residual standard error: 0.6086187

a5.2=anova(lm.buns5)

ss5.2=a5.2$"Sum Sq"[1:31]

cf5.2=1m.bunsb$coefficients[-1]

32%cf5.272

209 / 349 Z. Hldvka (CU Prague) NMST436 210 / 349

Factorial experiments 2 Factorial experiments

7.0

6.0
I

6.0
I

55
I
55
I

211 / 349 Z. Hldvka (CU Prague) NMST436 212 / 349



Factorial experiments Al Factorial experiments Factorial experiments Al Half-normal plot

Half-normal plot / polonormalini graf

Sum of squares S; corresponding to each factor are part of standard
output in all statistical packages. In balanced experiments, these sums of
squares are independent random variables with X% distribution (multiplied
by o) under the null hypothesis.

. P+ AT

5.10
I

5.10
I

Hence, random variables v/S; have the same distribution as the absolute
value of N(0,0?).

5.05
I

5.05
I

5.00
I

5.00
I

Half-normal plot is QQ plot for the verification of goodness-of-fit of the

. observed values v/S; with the 'positive half of N(0,1)".

T F In principle, QQ plots could be constructed also for the estimated effects
but these may not be defined uniquely and the interpretation would be
more complicated.
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Interpretation of the half-normal plot

Half-normal plot

25

o M:C

Half-normal plot Half-normal plot

2.0

15

1.0

0.0 05
Il L
\
®
abs(N(0,1)) quantiles
1.0
|

o W:M:C
o M:C:P

abs(N(0,1)) quantiles
abs(N(0,1)) quantiles

0.5

Similarly as with the normal QQ plot, the slope depends on the parameter .
o. Therefore, an estimator of o can be obtained as the inverse value of T ‘ ‘ ‘
the slope of a fitted regression line passing through the origin (in practice,

we have to omit significant effects that may be identified as outliers).

0.0
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Half-normal plot

abs(N(0,1)) quantiles

Half-normal plot without significant effects, o = 0.68.
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anova(lm.pl<-Im(Quality~ (W+M+C) "3, subset=(P>0) ,data=housky))
Df Sum Sq Mean Sq F value

W 1 0.4556
M 1 19.1406
C 1 0.1406
W:M 1 0.0756
W:C 1 0.1806
M:C 1 6.3756
W:M:C 1 0.6806
Residuals 8 2.9850

0.4556

.1406
.0756
.1806
.3756
.6806
.3731

O O O O O O

1.
19.1406 51.
0.
0.
0.
17.
1.

2211

2982 9.593e-05 *x*x

3769
2027
4841
0871
8241

Pr(>F)
0.301267

0.556326
0.664516
0.506282
0.003282 *x*
0.213782
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anova(lm.plmc<-1m(Quality~ (M+C) "3, subset=(P>0) ,data=housky))
Df Sum Sq Mean Sq F value

M 1 19.1406
C 1 0.1406
M:C 1 6.3756
Residuals 12 4.3775

Z. Hldvka (CU Prague)

19.1406 52.4700 1.024e-05 *x*x*

Pr (>F)

0.1406 0.3855 0.546290
6.3756 17.4774 0.001275 *x

0.3648

NMST436
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Significant effects are W, M, C, C:P, M:C, W:M:C, M:C:P. The main
effect of mixer is not significant (P) but the model contains significant
interactions of mixer with type of fat and mixing time (C:P a M:C:P).

MJ2 propose (as the most simple approach) to omit temperature and
analyzed the data set separately for both mixer types.

anova(lm.p0<-1m(Quality~ (W+M+C) "3, subset=(P<0) ,data=housky))

Df Sum Sq Mean Sq F value

W 1 6.891
M 1 12.781
C 1 26.266
W:M 1 0.856
W:C 1 0.276
M:C 1 33.351
W:M:C 1 5.881

Residuals 8 2.735

6.
12.
26.

0.

0.
33.

5.

0.

891
781
266
856
276
351
881
342

20.1554
37.3839
76.8282

2.5027

0.8062
97.55621
17.2011
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Pr (>F)

.002030
.000285
.25e-05
.152305
.395460
.31e-06
.003220
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*kkk
*k
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ndO=gen.factorial (levels=2,nVars=3,varNames=c("W","M","C"))
data.frame(ndO,Estimate=predict (lm.p0,newdata=nd0))

W M C Estimate

1-1-1-1 4.35
2 1-1-1 4.05
3 -1 1-1 4.00
4 1 1-1 2.20
5-1-1 1 5.50
6 1-1 1 2.25
7-1 1 1 8.50
g8 1 1 1 8.60

Water interactions are interesting: more water decreases the quality of
dough if the mixing time is lower and fat higher or if the mixing time

higher and fat lower.
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The second mixer type leads to worse results.

ndl=gen.factorial (levels=2,nVars=2,varNames=c("M","C"))
data.frame(ndl,Estimate=predict(lm.plmc,newdata=nd1))

M C Estimate
1 -1 -1 4.475
2 1 -1 5.400
3 -1 1 3.400
4 1 1 6.850

Best dough is obtained with the first mixer type, longer mixing time, and
with better type of fat. In this circumstances, the amount of water does
not seem to be very important (although the quality seems to be slightly
better for higher level of the factor water).
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Half-normal plot
Some general principles (Wu & Hamada)

Basic principles for factorial experiments according to [Wu & Hamada
(2011). Experiments: planning, analysis, and optimization. Wiley]:

Effect hierarchy principle One can expect that lower order effects and
interactions will be important more often than higher order
interactions.

Effect sparsity principle The number of really important effects in factorial
experiments usually tends to be small.

Effect heredity principle For each significant interaction, at least one of
the corresponding main effects should be also significant.
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Practical recommendations

MJ2 recommend to use half-normal plot for small number of factors (where
omitting some important interaction could lead to information loss).

For higher number of factors (> 6), one can usually neglect interactions
from 5th order and use standard ANOVA methodology.

In practice, one can use the model without higher order interactions also
for smaller number of factors — half-normal plot can be then used to
verify the assumption that the omitted interactions do not have any
influence on the response.

More formal statistical analysis of the half-normal plot can be based on
Lenth's method based on a robust variance estimator (based on a suitable
product of the median of the absolute values, i.e., the so-called pseudo
standard error) and tabulated critical values for the resulting pseudo
t-statistics.
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Example: horses |l

Example: Veterinary hospital compares two treatments of joint fracture in
horses. In this experiment, one takes several horses and breaks their joints
in a precisely defined way. These injuries are treated by one of the two
treatments (factor A) and with one of two antiseptics (factor B). Suitable
measure of recovery is evaluated after two months. Apart of the treatment
effect, the hospital wants to establish whether the treatment effect is the
same for front and hind legs (factor C).

Careful planning is crucial because horses are expensive and there is only a
limited supply.

In this case, we investigate effects of three factors on two levels (factorial
experiment 23). Interestingly, two horses have altogether 23 = 8 feet.
Unfortunately, we do not have 8 independent repetitions, because horse is
an additional blocking factor (say D).
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Example: horses |l Blocking / slu¢ovani

Factorial experiments often need many observations. If constant
conditions cannot be guaranteed for the entire experiment, the

Considering also the horse effect, we obtain factorial experiment 2* that measurements have to be split into homogenenous blocks.

cannot be carried out because of the limited number of horse feet. . . . .
The assignment of observations into blocks can be based on confounding

the blocks with some higher order interaction (looking at the table with
“expressions for main effects and interactions”, we find the row with the
chosen interaction and use it to split the observations into two blocks).

Altogher, we will have only eight observations. The final design can be
described as a factorial experiment 23 with one nuisance (blocking) factor.

The so-called blocking in factorial experiments technique allows to
estimate the possibly interesting effects and interactions in the presence of
nuisance factors (blocks).

In a factorial experiment 23 with blocking defined by 3rd order interaction
ABC, we split the experiment to {(1), ab, ac, bc} and {a, b, c, abc}.

The same can be done with higher number of blocks but one cannot
estimate also the so-called generalized interactions of the interactions that
has been used to define the blocks.
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Factorial experiments 2 Blocking Factorial experiments 2 Fractional replications

Fractional replications / zkrdcené faktoridlni experimenty

Tab. 37. Vyjadieni hlavnich efektt a interakei v experimentech typu 22, 2% a 2*

| a | | a c ac ¢ | abc | a ad al cd | ac cd | abe ractionin raceni) I1s similar to DIOCKIN ut ITS purpose Is 1o decrease
(1) b ab be |abe| d | ad | bd |abd | cd |acd | bed |abed Fract g (k lar to blocking but its purp tod
— ' I _, : the number of observations.
4 |— |+ =+ | = |+ | =+ | =+ |= |+ |=+]|—]|+

[—|— |+ — =+ ==+ |+ =] e method is based on collecting only observations define aving the
B F o+ - Foo4 + |+ Th thod is based llecting only ob t defined by having th
AB b= =+ + - =+ ]+ ==+ + ] =] =]+ .. . . .
B i | same sign in a row for chosen higher order interaction. The chosen
(;ic = ===+ |+ |+ |+ | |—|—|—|+|+]|+|+ interaction cannot be estimated (just like in blocking) but we cannot
BC (RS0 O 0 v I O L B i i directly estimate also some other effects.
ABC | — |+ |+ | =+ |—=|—|+t|— |+ |+ |—=|+ ==+
P o e e e e e e A R R I Example: Fractioning the experiment 23 by the interaction ABC, we can
AD |+ | S it (N O IO O investigate only four treatment level combinations: (1), ab, ac, bc (this is
zgp I o v S e vl B vt Bl i + i fractional factorial experiment 237 1). Consequently, some effects cannot

— | T T - - R e - n - - T - - . . . . . . .
oD B el e e e I B I B IR N B B be distinguished from the corresponding generalized interactions (between
‘égg , - i v n j: i [ O i JP L O + T i the effect and the interaction that has been chosen for fractioning). The
ABCD ot ==+ | =+ |+ | ==+ |+ |—|+|=|—|+ effect A is thus confounded with the interaction BC, the effect B with the
—— " : — interaction AC and the effect C with the interaction AB.
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Factorial experiments Al Fractional replications

Exercise

Re-analyze the buns example after fractioning to one half (e.g., using the
interaction WMTCP).

You may proceed as follows:

@ Determine the signs for estimating the fifth order interaction (this can

be done by looking at the table).

@ Choose one half of the data set and use the function alias() to find

out what can be estimated.
© Plot a half-normal plot for sums of squares.

@ Find a reasonable ANOVA model (i.e., a model without higher order
interactions that can be neglected).

Try to fraction the same experiment to one fourth. What can you estimate

from only eight observations?
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bl B
Orthogonal arrays

Orthogonal array OA(N,s{™ ...s"", t) of power t is a matrix N x m,
where m = my + - - - + m,, such that m; columns contain s; > 2 different

symbols or levels so that all combinations of symbols occur with the same
frequency in each t columns.

Orthogonal arrays of power 2 are most popular (and their power is usually
omitted).

Having m two-level factors and N repetitions, the experiment can be
planned as an orthogonal array OA(N,2™) (clearly, the number of
observations N has to be multiple of 4 because all possible combinations
of two symbols have to be repeated with the same frequency in every two
columns).

It can be shown that OA(N,2V~1) is equivalent to the so-called Hadamard

matrix (N x N orthogonal matrix containing +1 a —1).
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Factorial experiments Al Plackett-Burman

Plackett-Burman

An advantage of factorial experiments (and fractional factorial
experiments) are uncorrelated estimators. (In a so-called regular design, all
estimators have correlation either 0 or 1.)

However, factorial experiments 2V may not be usable in practice because
sample size has to be equal to a power of 2 (i.e., 8, 16, 32, 64, 128, ...).

(Nonregular) Plackett-Burman designs were proposed for sample sizes
equal to multiples of 4 (that are not power of 2) and are suitable mainly
for estimation of main effects (estimation of interactions is more
complicated due to correlations).

Plackett-Burman designs are also (in some way) balanced.
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Factorial experiments 2 Plackett-Burman

Plackett-Burman

For some sample sizes, Plackett-Burman designs can be produced by
sequential shifts of generating vectors (WH, p. 376) by rows or columns:

Table 8.5 Generating Row Vectors for Plackett-Bruman Designs of Run Size N

N Vector

2/4++-4+++-———4-

200++-—-++++-4+-4+—-————++-

4 +++++-+-4++-—-+4+-—-+—-4+—-———-

|l-+-+++---+++++—-+++--+--—-—+-+—-4++-—+-

#“S@++--+-+--+++-+++++--—+—-+4++-—-———- e o =
++—-—+—-—++-
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EEE e
12 observations for 11 factors (WH)

Example:

Table 8.2 Design Matrix and Lifetime Data, Cast Fatigue Experiment

Factor Logged

Rumm | A B C D E F G 8 9 10 11 | Lifetime
1 F P = = R = = = o = 6.058
2 = o s e = = = = ot 4.733
3 -+ + 4+ - - - + - + + 4.625
4 + + + - - - + + + - 5.899
5 o T, S I o + 7.000
6 +F o= = = A = b F = o + 5.752
7 = &= = = &= mp Ss = Bg e + 5.682
8 - + - + + - + + + - 6.607
9 -+ - + + - + + + - - 5.818
10 T L . e - 5.917
11 S L T T T L R B + 5.863
12 e — 4.809
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Factorial experiments 2 Plackett-Burman

Summary

Advantages of nonregular design:

o
2]

o

we can use less observations,

more flexibility for the choice of number of observations (especially
compared to factorial experiments 3V),

more flexibility for mixed designs (e.g., for mixed two- and three-level

factors).

An important property of nonregular designs are correlated estimators.
Therefore, both the evaluation of the proposed design and data analyses
are more involved. On the other way, it may be possible to estimate some
effects that are not estimable in a fractional factorial experiment.

WH (p. 427-433) recommend to find appropriate mode using stepwise
regression, information criteria or Bayesian approach.
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Factorial experiments Al Plackett-Burman

Exercise

Re-analyze the buns example using 12 observations chosen according to
Plackett-Burman design.

Try to answer these questions:

© Is it possible to estimate all main effects?

@ Calculate the correlation matrix of the estimators and compare it to
the fractional factorial experiment.
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Week 8-9

Topic:

@ Response surface methodology.

@ Taguchi approach.

References:

Wu & Hamada (2011). Experiments: planning, analysis, and optimization.
Wiley.
Myers, Montgomery (2002) Response surface methodology, Wiley.
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Response surface

Display of a factorial experiment 23

Figure 4.2. Cuboidal representation of a 23 design.
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GEEED G
Applications

Apart of searching for the optimal values of some factors, RSM can be
used to:

© Construction of models for the expectation of a response in some
region: this allows to predict changes that will happen in case of
some (forced) change in the production process’ settings.

@ Searching for input conditions guaranteeing certain output
parameters: using models for more responses, results can be
summarized in a single graph (see the graph with contours for three
response variables on the following slide).
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Respaiss aiie:

Response surface / vypov&dni plocha

Fractional factorial experiments 2V=k were originally developed in
industrial applications and later applied also in agriculture.

“Response surface” methodology was developed in chemical industry
(Imperial Chemical Industries) and its aim is to find precise values of
important factors maximizing, e.g., amount of a product obtained by
chemical reaction.

The usual sequential algorithm consists of two steps:

@ try to ‘move close’ to optimal values (if we are ‘far away’),

@ determine the optimal values as precisely as possible (if we are
‘close’).
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Response surface Response surface

Using models for concentration andyield, it is easy to plot the region where
Yield>80%, Cost<33, and Concentratione (58, 62).

650
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DS
Response surface methodology (RSM)

Let us assume that a response is an unknown function of input factors:
Y =f(X1,....Xp) +¢

In practice, explanatory variables are standardized so that their values are
—a, —1, 0, 1, a (note that only values —1 a +1 are used in factorial
experiments).

The dependency of (expected value of) Y on input factors can be plotted

as a surface in RP—this suggests the name response surface methodology
(RSM).
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Response surface Response surface

Typical experimenting process

Wu, C. J., & Hamada, M. S. (2011). Experiments: planning, analysis, and
optimization. John Wiley & Sons.

Typical experimental process in practice:

@ screening: choice of possibly important factors (typically fractional
factorial experiment, Plackett-Burman design, etc.)
@ chosen (possibly important) factors are investigated in more detail:
@ first, we have to verify whether the used values of chosen factors are
‘close’ to optimal values (e.g., factorial experiment 2V with additional
central point),
@ in the neighborhood of optimal values, we use quadratic model (with

central composite design) as an approximation of the ‘response
surface’.
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Respaiss aiie:

In practice, polynomial models for the entire response surface are not
usable. On the other hand, local approximations using first or second order
polynomials usually work very well.

* Farther from the optimal values, one uses linear approximation:
P
Y =50+ Bixite
i=1
and we can apply a fractional factorial experiment 2V=.
* Close to the optimal values, one applies quadratic approximation:
P P P
2
Y =Bo+ > Bixi+ Y Bipxixi+ Y Bixt +e,
i=1 i<j =1

allowing the estimation of input factors’ optimal values (in this case,
fractional factorial experiments do not suffice).

Z. Hlavka (CU Prague) NMST436 242 / 349

Response surface Response surface
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Tests of nonlinearity

Typically, we already have some data from a factorial experiment (that
have been collected when we were trying to identify important factors).

Let's assume that we have ns observations from the factorial experiment
and that we additionally collect n. observations in the center (point 0): Y,
denotes the sample mean of central values and Yf the sample mean of
non-central values.

Under the quadratic model, we have EY. = o a EYy = o+ Y Bji. The
difference of sample means Yy — Y. estimates > 3 and linearity can be
tested using the test statistic:

where S2 is the sample variance calculated from n. central measurements.
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Steepest ascent search

If we would reject linearity, we could use quadratic regression model and
estimate the optimal values of input factors (this will be discussed few
minutes later).

If linearity is not rejected, we can estimate the direction in which we can
find better values of the input factors.

Assuming the linear model Y = 8o + >.%_; Bixi + e = o + xT 3, the
steepest ascent direction is the gradient d(Bo + x' 8)/0x = ).

Hint: x* = arg maxeere x ' B/([|x[|1B]) = ... 7

Instead of “steepest ascent”, one can also use “rectangular grid search”,
where the initial values of factors are chosen wide apart and the resolution
is sequentially refined in further steps (similarly as in the half-interval
search).
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Example: Wu & Hamada illustrate this method with an example, aimed
at maximizing the amoung of a product obtained from a chemical
reaction. The factors are time and temperature. The estimators obtained
from a factorial experiment 22 and 2 central (the regression model

EY = o+ Bix1 + Boxa + Praxixe + (Bi1 + B22)x7) are:

Estimate Std. Error t value Pr(>|t])

(Intercept)  135.875 2.571 52.851 0.012 *
x -28.191 1.818 -15.508 0.041 *
N 11.845 1.818 6.516 0.097 .
I(x"2 + y™2) -2.421 1.574 -1.538 0.367
x:y -3.812 1.818 -2.097 0.283

Residual standard error: 3.636 on 1 degrees of freedom
Multiple R-squared: 0.9966,Adjusted R-squared: 0.9828
F-statistic: 72.43 on 4 and 1 DF, p-value: 0.08788

Hence, linearity is not rejected.
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In the chemical product example, we have Bl = —28.191 a Bg = 11.845
and the steepest ascent direction is, e.g., (—1,—32//1)" = (—1,0.420)"

time temp X y yield
1 2.600000 485.0000 -1.00000 -1.000000 143.56824
2 2.600000 515.0000 -1.00000 1.000000 174.88111
3 2.900000 485.0000 1.00000 -1.000000 94.80920
4 2.900000 515.0000  1.00000 1.000000 110.87455
5 2.750000 500.0000 0.00000 0.000000 133.30422
6 2.750000 500.0000 0.00000 0.000000 138.44603
7 2.327129 517.7668 -2.81914 1.184456 225.59176
8 1.904258 535.5337 -5.63828 2.368911 266.83921
9 1.481387 553.3005 -8.45742 3.553367 181.19676
10 1.058516 571.0673 -11.27656 4.737822 92.19063
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Second order model / kvadraticky model

g1 Y S S A A #
/ Near the optimal values, one usually uses a second order model:
_ P P P
g A N N A Ao oA AT Ta
Y(x)=Bo+ > Bixi+ Y Bixixi+ > Bix? = Bo+ BT x + x' Bx,
5 i=1 i<j i=1
g
R where R R R
; Bu P/2 . Pip/2
3 P12/2  Po2 ... [P2p/2
51p/2 52;)/2 Bpp
3 0 o s & /‘bQ /”We 5 & /§/
Tl ; ; ; ; The parameter estimates are typically obtained from a central composite
1.0 15 2.0 25 3.0 . S « , .
ey design (centralni sloZeny experiment).
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Central composite design / centralni sloZeny experiment Central composite design

Central composite design consists of:

@ ns cube (or corner) points with x; = —1,1 for i = 1,..., p. These
points correspond to a (fractional) factorial experiment 2P.

@ n. central points (x; =0 for i =1,...,p).

@ 2p star (or axial) points defined by (0,...,x;,...,0)", where
xi=—a,afori=1,...,p.

The measurements can be collected at the same time or we can add
central and axial points sequentially (after rejecting linearity).

Figure 10.1. A central composite design in three dimensions [cube point (dot), star point (cross),
center point (circle)].

Z. Hldvka (CU Prague) NMST436 251 / 349 Z. Hldvka (CU Prague) NMST436 252 / 349



Practical remarks (from WH) Box-Hunter wire model of central composite design

For central composite design, we have to:

@ Choose the “factorial” part of the experiment (the number of distinct
design points nf + 1 + 2p should be greater than the number of
parameters (p + 1)(p + 2)/2. More detailed discussion and
recommendations for various dimensions are given in WH (Section
10.7, p. 485).

@ Choose « for axial points (usually between 1 and ,/p). Value 1 leads
to the “face center design” (with axial points on the surface of unit
cube), \/p leads to a spherical experiment (with axial points on unit
sphere).

@ Choose the number of central points n.: WH recommend 3-5 for o

I 1-2 for I 1, and 2-4 for mewhere in
close to f’ or a close to 1, and or a somewhere [Barton R. R. (2012). Graphical methods for the design of experiments, Lecture Notes in

between. o .
Statistics 143, Springer, page 167]
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Example: Central composite design for the amount of product obtained
by a chemical reaction.

time temp X y yield

1 1.754258 520.5337 -1.000000 -1.000000 232.1077

- 2 1.754258 550.5337 -1.000000 1.000000 228.8667
*] 3 2.054258 520.5337 1.000000 -1.000000 262.8238
4 2.054258 550.5337 1.000000 1.000000 287.7537

g 5 1.904258 535.5337 0.000000 0.000000 268.1906
6 1.904258 535.5337 0.000000 0.000000 269.6552

g 7 1.904258 535.5337 0.000000 0.000000 267.8820
g N 8 1.904258 514.3205 0.000000 -1.414214 256.7880
) 9 1.904258 556.7469 0.000000 1.414214 267.4575
s 10 1.692126 535.5337 -1.414214 0.000000 227.5922

i 11 2.116390 535.5337 1.414214 0.000000 275.6034

‘ ‘ ‘ ‘ ‘ These values suggest that this is a spherical central composite design.

1.0 15 20 25 3.0

Time (h)
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We have already noted that, close to the optimal values, we usually use
quadratic regression:

Y(x)=Fo+ 8" x+x"Bx.

The maximum of the function ¥ (x) can be found by differentiating:

O () =8+ 23x =0,
Ox

defining the so-callled stationary point:

1~—-14
Xs = _*ﬁ B.
2
NMsTa3s 257 / 349

Response surface Central composite design

(a) (b)

~ v

(© (@

Figure 10.7. Classification of second-order responses surfaces: (a) Elliptic, (b) hyperbolic,
(c) stationary ridge, (d) rising ridge.
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The character of the fitted quadratic surface (in the neighborhood of the
stationary point xs) can be desribed using an alternative system of
coordinates.

Let the columns of the matrix P be the standardized eigenvectors of ,B
Then A
PTBP =N,

where A is a diagonal matrix of eigenvalues.

In a new coordinate system (centered in xs with rotation determined by
columns of the matrix P, i.e., v=PT(x — xs) = PTz) we have

The type of the quadratic surface in the neighborhood of x5 can be
classified according to the eigenvalues.
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Example: Investigation of the stationary point.

time temp X y yield
1 1.754258 520.5337 -1.000000 -1.000000 232.1077
2 1.754258 550.5337 -1.000000 1.000000 228.8667
3 2.054258 520.5337 1.000000 -1.000000 262.8238
4 2.054258 550.5337 1.000000 1.000000 287.7537
5 1.904258 535.5337 0.000000 0.000000 268.1906
6 1.904258 535.5337 0.000000 0.000000 269.6552
7 1.904258 535.5337 0.000000 0.000000 267.8820
8 1.904258 514.3205 0.000000 -1.414214 256.7880
9 1.904258 556.7469 0.000000 1.414214 267.4575
10 1.692126 535.5337 -1.414214 0.000000 227.5922
11 2.116390 535.5337 1.414214 0.000000 275.6034
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Notes
> Beta
[,1] [,2] Other possible designs (apart of the clearly most popular central composite
[1,] -9.482132 3.52136 design) are:

[2,] 3.521360 -4.21964
Box-Behnken design: e.g., for three factors with three levels, it leads to

> eigen(Beta) observations in central point and “edge centers”.
Equiradial design: regular polygon (pentagram, hexagon, heptagon, ...)
$values with central point.

[1] -2.455044 -11.246728 Small composite experiment: based on a fractional factorial experiment.

Koshal design: investigates factors by one (or by pairs if we want to

$vectors . ) ;
[ 1] [ 2] estimate some interaction).
[1,] -0.4480089 -0.8940291 Hybrid design: modification of a central composite design satisfying
[2,] -0.8940291 0.4480089 certain moment (or other) conditions.
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Design comparison Computer algorithms

In practice, we should try to choose a good design that will provide reliable Using computer, it is not difficult to compare quality of standard designs
results under various circumstances. Designs, that are optimal only under in given situation.

ideal conditions (that may not be satisfied in reality), can not be o _ _
recommended. In some situations, computer can be used to design the experiment:
Central composite or Box-Behnken designs are recommended for RSM © Restriction on values of explanatory variables (standard models
(quadratic model). Hybrid design can be used if we have to reduce the assume cuboidal or spherical regions).

number of observations. © Nonlinear or high order polynomial model.

© Limited number of observations: typically, computer can choose the

In special cases that do not allow application of standard approach, we can - ) ) ;
best little composite or hybrid design.

generate the experiment design numerically (using computer). In this
situation, alphabetic optimality criteria (D, A, G, ...) can be used to @ Restrictions on block size that do not allow application of standard

assess the quality of the generated design. designs.
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Taguchi design (robust parameter design)

Taguchi classified the explanatory variables (called parameters) as control
variables (kontrolované prom&nné) and noise variables (nekontrolované
prom&nné).

The idea of Taguchi approach is robust parameter design guaranteeing
small sensitivity to possible changes in the noise variables.

robust parameter design = process robustness study

The influence of noise variables can be evaluated because the noise
variables can be often controlled in an experiment (the control variables
change into noise variables in the production phase).
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Taguchi design

Example

Example:
During baking, temperature can be both controlled and noise variable.
The controlled variable is the nominal temperature set on the oven.

Noise variable could correspond to random deviations from the nominal
temperature (due, e.g., to the thermoregulator switching on and off or to
some other unpredictable effects)
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Taguchi design

Table 11.1 Some Examples of Control Variables and Noise Variables

Application

Control Variables

Noise Variables

Development of a cake mix

Development of a gasoline

Development of a tobacco
product

Large-scale chemical process

Production of a box-filling
machine for filling boxes
of detergent

Manufacturing a dry
detergent

Amount of sugar, starch,

and other ingredients

Ingredients in the blend;

other processing
conditions
Ingredient types and
concentrations; other
processing conditions
Processing conditions,
including nominal
ambiant temperature
Surface area; geometry
of the machine
(rectangular, circular)
Chemical formulation,
processing variables

Oven temperature, baking time,
amount of milk added

Type of driver, driving conditions,
changes in engine type

Moisture conditions; storage
conditions on tobacco

Deviations from nominal ambient
temperature; deviations from
other processing conditions

Particle size of detergent

Temperature and relative
humidity during
manufacture
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NMST436

Taguchi design

Taguchi approach

266 / 349

Taguchi suggested to investigate all combinations of values of controlled

and noise variables.

For example, a factorial experiment 22 for controlled variables is displayed
as the inner array on the following slide. For each combination of values of
controlled variables, we use factorial experiment 22 to investigate all
combinations of values of noise variables (these are displayed as the outer
arrays).

Observations in each outer array are summarized into a suitable descriptive
statistics (comprising both mean and variance of these observations), the
so-called signal-to-noise ratio (SNR) that is then used as the response.
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Taguchi design Taguchi design

The essence of Taguchi approach is utilisation of noise variables jointly
with minimization of variance.

In practice, one can:
-1, 1 1, 1
@ -either set values of controlled variables and carry out the experiment
in the corresponding outer array,
@ or set the values of noise variables and, for these values, carry out the
experiment in the inner array.
sl sl L ol Both possible approaches can be described as split-plot design (that was
Figure 11.1 The 22 X 22 crossed array. not used by Taguchi). The second approach is usually recommended in
practice.
In past, Taguchi design was criticized but these methods are popular (and
useful) in practice.
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Week 9 The ideal course of a designed experiment
Topic:
o Consultation. @ Consultation (investigator & statistician).
e Design. @ Experiment design.
e Protocol. © Data collection.
o Example (ACCEPT). @ Data checks and corrections.

© Data analysis.
Q Interpretation.

References: Bailey (2008). Design of Comparative Experiments.
Cambridge University Press.
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Consultation |deal and reality (Bailey, section 1.2)

Ideally, the investigator comes ahead of time, without sufficient time left

for planning. In such case, the statistician should 1/ ask many questions,

2/ take time for thinking, 3/ compare several possible designs. In more Some tension between the client and statistican may arise mainly in these
complicated cases, one should consult the problem with other statisticians points:

(specialists in respective fields).

© clear definition of the aim of the experiment,
In practice, the following two situations are common:

@ number of observations (repetitions): power x money,
. . . . ?
© The investigator arrives one day before the start of the experiment. © blocks?
Then, his only aim is to check the field experiment was consulted Q restrictions (financial, ethical, legal, ...),
with a statistican on a form and it would be pointless to pay much o
attention to his problems. o)

choice of treatments (is placebo necessary?)
what are “experimental units” (e.g., field or part of field) for
@ More often, the investigator has no idea that some time is needed for application of treatments?

designing an experiment. Then, you should try to understand at least

the main points of the experiment and propose as simple design as

possible. You should stress that this may not be the optimal design.
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Protocol Example: project ACCEPT

Protocol is written by statistician jointly with the investigator:

© What is the aim of the experiment? I+s
@ Which treatments are to be compared? |

© Methods: B Example:
@ What exactly are experimental units? . _ _ _ o
@ Number of observations on each experimental unit. Project ACCEPT: A Cluster-Randomized Trial of Community Mobilization,

Mobile HIV Testing, Post-Test Support Services, and Real-Time

Which measurements will be recorded. Description of data checks.
Performance Feedback

Applied experiment design.

Justification of the proposed design (number of observations, blocks,
assumptions).

Randomization.

Plan of the experiment (which 'coded’ treatments will be used at
every experimental unit). This part of the protocol may be potentially
hidden from those who will carry out the experiment,

@ Description of statistical analysis.
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Protocol can be downloaded at http://www.cbvct.med.ucla.edu/
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Week 9-10

Topic:

@ Design of computer experiments (uniform design).

References: Fang & Wang (1993). Number-theoretic methods in statistics.
CRC Press.
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Computer experiments

Design of computer experiments

Increasingly often, complex analytical problems are solved by sophisticated
computer simulations.

Let us assume that behavior of certain device (or process) depends on
random vector X = (Xi, ... ,XS)T; FWO94 describe an example of electric
circuit depending on certain characteristics that may (randomly) vary.
Other examples: artificial creatures (in computer games), guided missiles.

Usually, one develops appropriate mathematical model (e.g., a system of
differential equations) and implements the resulting computer simulation.
Note that, in this setup, the result with given starting conditions is usually
nonrandom and, therefore, it is not reasonable to run the same simulation
more than once.

Space-filling design are used to choose the set of input values for the
computer simulation so that the estimate is as precise as possible.
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Computer experiments

Space-filling design
Today's topic is related to:

@ calculation of expectation (over noise variables),
@ numerical integration,

@ computer experiments.

Often, we want to calculate the expected value of some characteristics,
e.g., Eh(X). For example, in order to estimate the expected output (of
some industrial process), we can fix the optimal value of controlled
variables (identified, e.g., by RSM) and average (integrate) the output
over possible values of the noise variables.

We have to measure (or simulate) the output on a grid of values in the
p-dimensional region of interest. In the following, we discuss some classical
methods for choosing such “grid” (space-filling designs).
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Computer experiments

Expected value estimation

A simple estimate, based on a sample mean of simulated values h(X), can
be obtained by Monte Carlo:

© generate vectors X; from the distribution of X,
@ Eh(x) can be estimated by the sample mean h = >_"_, h(X;)/n.

Remark 1: similar methods can be applied towards numeric integration
(likelihood function for mixed models) or, e.g., in forest inventory
(estimate of mean or total in more dimensional space).

Remark 2: Monte Carlo estimator is consistent but it is not
efficient—therefore, some authors proposed alternative methods of
generating X; leading to estimators of h with smaller variance (these
methods are usually trying to generate the values X; more “uniformly”).
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Computer experiments

Integration in rectangle

Let C* denote the s-dimensional unit rectangle [0, 1]° and consider the
integral

I(f) = / F(x)d(x).

There are interesting results concerning numerical evaluation of /(f).

Theorem: (Koksma, Hlawka) Let f have bounded variation V() on C°.
Then, for any x; € [0,1)°, i=1,...,n,

/S f(x)dx — % > ()
i=1

< V(f)Dn(x1,- .-, Xn),
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Monte Carlo / simple random sampling

Assuming that the random vector X has uniform distribution on C*, we
obtain:

EF(X) = / F(x)dx = I(f).

An estimator of the integral /(f) can be obtained by generating random
sample X1, ..., X, and by calculating the sample mean

For s > 2, CLT implies that the Monte Carlo estimator has a better rate of
convergence (Op(n~1/?)) than the quadrature rule on the previous slide
(although the rate O(n~'/*) can be improved for ‘smoother’ functions).
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Computer experiments

Integration in rectangle

Proof: this was proved by [J. F. Koksma (1942-43) Een elgemeene stelling
uit de theorie de gelijkmatige Verdeeling modulo 1, Math. B (Zutphen),
11, 7-11] for s = 1 and [E. Hlawka (1961) Funktionen vom beschrankter
Variation in der Theorie Gleichverteilung, Ann. Mat. pure Appl., 54,
325-333] for s > 1.

Application: better approximation can be obtained by choosing a set of
points with smaller discrepancy.

For example [Hua, Kang: Applications of Number Theory to Numerical
Analysis, Springer, 1981] show (on page 110) that:

m—1 m—1
/s F(x)dx — % NS S Fifm, o isfm)| < V(R
0

i1=0 is=

where n = m® is the number of quadrature points (on a regular grid).
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Computer experiments

Rate of convergence

The rate of convergence of the Monte Carlo estimator is Op(n~1/?),
where P denotes convergence in probability. Is it possible to obtain
another type of convergence?

Law of iterated logarithm implies that:

n
li e
nione 2P/ 2 log(log n)

with probability one (i.e. along almost all sequences x;).

[ F0d = 23770 = (1)
i=1

Therefore, the rate of convergence cannot be worse than
O(+/log(log n)/n) (almost surely).
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Lt il Lo bl sl
Latin hypercube sampling (LHS) / latinské hyperkostky Example: LHS for s =2 and n=6.

Latin hypercube sampling is similar to latin squares. The aim is to
guarantee that the final sample X; covers uniformly all marginal
distributions of the random vector X = (X1,..., Xs)". 2 X5

Let's assume that F(x) = [];_; Fk(xk) is the distribution function of X. °

One possible LHS algorithm is:

© Generate matrix P (n x s) such that its columns are independent
random permutations of {0,1,...,n— 1}.

@ Generate matrix U (n x s) containing iid random variables from
U(0, 1) distribution (independent of P).

X

; ; 0 2 >1
© Observations {x; = (xj1, ... ,)(js)T,_] =1,...,n}, where 0 1
-1
ik = Fic {(pjic + uje)/n}
form a sample from the distribution F(x) by LHS.
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Properties of LHS Uniform random design (URD)

Fang & Zhu (1993) proposed the glp (good lattice points) method. They
proposed the following algorithm (for generating uniformly distributed
design points within unit cube):

Estimators h obtained by LHS are unbiased and, under some assumptions,
have small variance (see FW94, p. 239-241). Further variance reduction
can be achieved, e.g., by using “orthogonal arrays LHS".

According to FWO94, p. 241, variances of h obtained from different samples O Generate glp set {ax € [0,1]°,k =1,..., n} using the generating
X; are: vector (n; hy, ... hs).
@ Generate n random vectors u; € R® from the uniform distribution on
o1
SRS: 1 Var(h(X)), (=1,1)°,
LHS: 1 Var(h(X)) — €+ O(n71), © The URD sample is {xx, k = 1,...,n}, where
o1 _d —3/2
OALHS: + Var(h(X)) — € 4 O(n™>/7). X = 3k + /20,
IMPORTANT QUESTION: Can we obtain better approximation by using FW04 [Theorem 5.3-5.4] show that the estimator hy is asymptotically
sequences with smaller discrepancy? unbiased (|Eh, — E(h(X))| = O(n™" log® n)) and

Var(h,) = O(n~?log n).
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Good lattice points (glp)

Definition: Assume that P = {xx, k = 1,...,n} is a set of points on
C* =[0,1]%, N(~,P) is the number of points such that x, <+, and
v([0,~]) denotes the volume of the rectangle [0,~]. Then

N(~,P)

D(n,P) = Sup | v([0,7])

is the discrepancy of the set P.

Remark 1: an uniformly distributed set of points (on C®) should have
small discrepancy.

Remark 2: D(n,P) is actually Kolmogorov-Smirnow distance for
s-dimensional uniform distribution.

Z. Hldvka (CU Prague) NMST436 289 / 349

Computer experiments Good lattice points

05} RN osf
0 . ol 3
0 05 1 0 05 1
(@) 21;1,5) (b) (21;1,13)
1 1
ost - J 05
0 - 0 .
0 05 1 0 05 1

(©) 21;1,19) (d) (21;1,20)

Figure 1.6 Comparisons between different generating vectors
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(GNP TIEONIIG NIl Good lattice points

Good lattice points (glp)

A set with small discrepancy on C® can be found by glp.

Definition: Let (n; hy,..., hs) be a vector of natural numbers such that
1< hi <n, hij# hj (i #j), s < n and the higherst common divisor
(n,hi)=1i=1,...,s. Let

{ qxi = khij(mod n) k=1
xki = (2qki — 1)/2n, T

where the multiplication modulo n is defined so that 1 < g < n. Then,
Pn={xx = (Xk1,---,Xs) ",k =1,...,n} is the lattice point set (mnoZ¥ina
sitovych bodi) of the generating vector (n; hy,. .., hs). If P, has minimal
discrepancy (among all possible generating vectors), it is the glp set.
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Computer experiments Good lattice points

Good lattice points (glp)

If {x} denotes the fractional part of x, then x; can be easily calculated as
follows:
2kh; — 1
Xki = —_— .
ki n

Theorem: For each prime number p, there exists a vector of natural
number h, = (hy, ..., hs) such that the lattice point set of the generating
vector (p; h1, ..., hs) has discrepancy D(p) < c(s)p~*(log p)°.

Proof: see, e.g., [Hlawka, E. (1962). Zur angenidherten berechnung
mehrfacher integrale. Monatshefte fiir Mathematik, 66(2), 140-151].
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Good lattice points (glp) Generating vectors for small n and s € {2, 3,4}.
Tables of generating vectors can be found, e.g., in FW94[Appendix A] Table A13 s=2.h; =1

; C , n|5|7]9]11]13]15]17]19]21[23[25]27[29]31
both for. large n (suitable for .numerlcal integration) and small n mlal3Tal 71 511l 514 13| of 7[16]23 21
(convenient for computer design).

[Fang & Wang (1993). Number-theoretic methods in statistics. CRC

Press] further discuss: Table A.14 s =3,h; =1
n|5]7]9/1113|15[17[19]21]23 25272931
hel2(2]2] 3] 3] 2] 3 15| 8[20]16]11
hy|4|4l4]| 5| 9| 7| 9 10[18|14 (222428

w
>

@ other discrepancy measures,

©

o further methods for constructing small discrepancy point sets on C?,

@ methods for constructing small discrepancy sets on a simplex, unit

ball, or unit sphere, Table A.15 s =4,h; =1

e multivariate normality or sphericity tests [Henze, Hldvka, Meintanis h” ; 2 1; 12 12 1; 12 2; 23 22 2; 23 i’;
(2014) Testing for spherical symmetry via the empirical characteristic hal3la| 5| 8| a|l 4] 7|10| 5| 6|17| 6|19
function, Statistics, 48(6), 1282-1296]. hel6|7] 7|10 8| 8| 9|17|10| 9]25|16]22
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Sample R code
glp (h=23) Ip (h=13)

n=29 # nr.obs
hi=1
h2=23 # generating vector of glp set

0.8
I
0.8

0.6

k=1:n
fract=function(x){x-floor(x)}
xkl=fract ((2xk*h1-1)/(2#*n))
xk2=fract ((2xk*h2-1)/(2#*n))

04

0.2

0.0
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Week 10

Topic:

@ Forest inventory: one-phase sampling scheme.

@ Optimal sampling schemes.

References: Mandallaz, D. (2007). Sampling techniques for forest
inventories. CRC Press.
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Example: forest inventory

Survey sampling: Horvitz-Thompson estimator

Defining I = I(i € s), we have that m; = P(l; = 1) is the probability that
individual 7 will be included in the sample. Interestingly,

mi = E(h) =Y _ p(s),

s3i
where p(s) denotes the probability of selecting sample s.

The famous Horvitz-Thompson estimator

R Y(m) I y(m)
(m) — NN
A= Z ;T; B Z 7Tli
i€s ieP
is unbiased if m; >0, i=1,...,N. This is a so-called design-based

approach (the response variables Yi(m) are fixed). More information:
Survey Sampling (NMST 438).
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Sampling finite populations

Assuming a particular population P of N individuals, we are interested in
)

p response variables Y,.(m ,m=1....p,i=1 ..., N. Usually, we want
to estimate population totals, means and variances:
N
y(m)  _ Z y(m)
1
i=1
(m) L\~ (m)
—(m m
o= Y
i=1
2 o 1 ZN:(Y.(’") _yimy2
vim N—14 i :

Often, we need to estimate also ratios Y(’")/Y(’), covariances, and
correlations. In practice, N is very large and one can investigate only a

subset s C P. Apart of calculating the estimates, the problem is also the
choice of s.
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Example: forest inventory

Forest inventory: sampling schemes

According to Mandallaz (2008, Chapter 4), forest inventory is usually split
into two phases:

first phase: auxilliary information (maps, aerial or satellite photographs),
very large sample size.

second phase: terrestrial information from a sub-sample of the first phase
sample:

first-stage: approximation to response variables (cheap
measurement),
second-stage: exact response.

The trees can be chosen by simple random sampling (this is not used in
practice) or by cluster random sampling (the information is gathered in

some fixed-shape regions with randomly chosen origins.)
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Example: forest inventory Example: forest inventory

Sampling (inclusion probabilities and local density) Local density

The density of X is 1/A(F) and the local densit
Let B C R? denote some region: drawing a random point X uniformly in € density 0 s 1/A(F) an € local denstty

F, the probability of X falling within B is A(B N F)/A(F). Trees are ;N LX)V,
selected if they are within the circle K,(X) (with radius r and center X). Y(X) = (F Z ———
Let /; denote the indicator of i-the tree being within the (random) circle (F) P
K:(X). Obviously -
=1 o XeK(u) thus satisfies
N
and the inclusion probabilities are 1 / 1 / Li(x)Y;
EY(X) = — [ Y(x)dx = — ——————dx
) R N AR Y I CAmETy
T = P(i(X)=1)=P(X € K (u)) = ==+ , N
(F) B Z F deY 1 ZY'—V
mi = MKe(u) N Ke(uj) N F)/A(F). - F) MK F) A& r
Finally, the (observed) local density is Y(X) = (— ZN: /,();i)\/,_ In other words, we need to estimate the expectation EY(X) that can also
be represented as an integral of Y(x) over the forest area F.
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One-phase (terrestrial) sampling schemes _ _ _
Assume that n points (circle centers X;) are drawn uniformly and
Let F C R? denote the forest area. We are interested in a well-defined indepen.dently in the.forest area G. The estimator ¥ = 7377, Y(X;) has
population P of N trees lying in F (the tree coordinates are denoted by the design based variance:
Uy € FCR? i=1,...,N). N N
1 3 Y;2(1—7Ti)+z YiY(mij — mimj)
Again, the error-free responses are Yi(m). Given any set G C F, the n\2(G) | i -~ i
objective is to estimate spatial means (densities), totals or ratios: =1 7
vy Z y(™, — Y} 2dx
IGG leadi
YC(_;m) _ Z Y,-(m, eading to . .
“ Var( V) — N v2
icG Var(Y) = nn—1) Z{Y(X/) Yi©.
%Y y() i=1
Rim = —o7 = i
Ye Ye For details see Mandallaz (2007).

where A(G) denotes the surface area of the set G.
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National forest inventory (NFI = NIL) in Czechia

L

Marodni inventanzace lasl

http://nil.uhul.cz/uvodni-informace/projekt-nil
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Example: forest inventory

Anticipated variance under the local Poisson model

Theorem:[Mandallaz 2007, Theorem 9.2.1, p. 158] Assuming local
Poisson model with negligible boundary effects, the anticipated variance
under simple random sampling of the one-p[hase one-stage estimator Y is
approximately given by

A

E,V(Y)=.

The anticipated variance under cluster random sampling is given by

E,V(Y) =

where

(1+61)5F =

is the inflation factor for cluster-sampling and My x(x) = Z,’\il Ir (x1) is
the number of points in a cluster with its origin at x falling into the
Poisson stratum Fy .
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Example: forest inventory

Optimal sampling schemes: anticipated variance

Mandallaz, p. 155: Meaningful optimality criteria must rely somehow on a
super-population model. The actual population to be surveyed is viewed
as one realization of many similar ones. Design-based variance, i.e. under
hypothetical repetition of the samples, is fixed for the given realization at
hand. The average of that variance under the super-population model is
called the anticipated variance. Optimal sampling schemes are those which
minimize the anticipated variance for given costs or, conversely, minimize
the costs for a given anticipated variance. This concept has been used
successfully for many standard problems when sampling finite populations.

In other words: we should consider a suitable super-population model
(e.g., local Poisson model for location of trees) and minimize the
anticipated variance (of chosen sampling scheme) either theoretically or by
computer simulation.

Z. Hldvka (CU Prague) NMST436 306 / 349

Week 11-12

Topic:

@ Design of regression experiments:

o design matrix / matice experimentu,

e confidence ellipsoids,

e optimality criteria / kritéria optimality,
o software (briefly).

References: Pazman et al (1986) Rie$ené situdcie z navrhovania
experimentov, ALFA, Bratislava.
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Regression experiments

Simple linear regression

Example:
Y = Bo + Bixi + ¢i, ej jsou iid, Egj = 0, Vare; = o°.
We know that Var § = o?(XTX)™t = ... and it follows that

o (o and B are correlated (the correlation can be ‘removed’ by
centering),

2
A o n
Varﬁl = —

n > (xi —%n)?

In order to obtain more precise estimator 31, we have to increase the value
S (xi — Xn)?/n (assuming that x; can be chosen in the interval [a, b], the
optimal design is given by taking one half of measurements at the point a
and the other half at b).
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Regression experiments

The first design is based on these measurements:

yi = Oa+er

yo = 01+0s+¢e2

y3 = b+ 04+e3

ya = 03+ 04+¢e4

The design matrix is:

0 001 -1 1 00
1 001 1 _|-1 010
F= 0101 = -1 0 0 1
0 011 1000

Normal equations imply that 0 = F_ly and, therefore, Var GA,- = 202 for
i=1,2,3.

Z. Hldvka (CU Prague) NMST436 311 / 349

Regression experiments

Example: The weight of three objects (01, 62, 63) should be determined
as precisely as possible (61, 62, 03). The objects can be weighted both by
one-by-one or in groups.

We assume that:

@ the laboratory weighing scale is not calibrated and all measurements
are influenced by a systematic bias 6,.

@ all remaining effects are considered to be random (with constant
variance).

Individual measurements can be written as:
yi ={F}in01+ {F}i2bo + {F}iz03+ 04 + <j,

where Ec; =0 and Vare; = o2
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Regression experiments

The second design uses these four measurements:

yvi = 01+0,+03+04+¢1

yo = O1+04+¢e2

y3 = b+ 04+e3

ya = 03+04+e4

The design matrix is:

1 111 1 1 -1 -1
|1 0 01 1 1 1 -1 1 -1
F=lo1 01" F =2 -1 -1 1
0 011 - 1 1

We obtain Oi=0r+y2—ys—ya)/2, ..., 03 =(y1—y2 — y3+ ya)/2 and
Var0; = 0? for i = 1,2, 3.
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Regression experiments Design of regression experiment

Linear model (more formally)

Regression experiments Design of regression experiment

Information matrix / informaéni matice

(1) (N) . . . . .
Let us assume that the output variable y(x) in the experiment x € H If x ’f XIS experlmTtaI d?ls)lgn with s%E)N,Tthsn we have for the
(where H is the set of all possible design points) satisfies: vector of measurements y = (y(x*”),..., y(x)) " that
y=F0+e¢,

.V(X):elfl(x)+"'0mfm(x)+€(x)7 .
where {F}; = f;,(x()), fori=1,...,Nand j=1,...,m.
i.e.,
=07 f(x) + £(x) The information matrix is
where Ec(x) = 0 and Var = 02(x). We assume that variances o2(x)
are known or that o2(x) = kw(x), where w(x) is known.

y(x)
N

e(x) M=FTs1F =3 F(xO)f T (x0)o2(xD),

i=1

Let N denote the prescribed (maximum possible) number of trials. Then,

the experiment design with prescribed size N is each N-tuplet of points

x() . x(V) from the set H. The design points can be used repeatedly.

We assume that trials are repeated independently (this also implies that

the order of trials does not matter).

where Y2 is a diagonal matrix with o2(x()) on the diagonal.

Clearly, the matrix M~! (or hT M~h) is the covariance matrix of the
random vector (or the estimator of the estimable function h'#). It
follows that the information matrix M can be used for comparing
alternative experimantal designs.
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Regression experiments Design of regression experiment Regression experiments Design of regression experiment

Normalized design measure and information matrix

Let x(1), ..., x(N) be an experimental design with size N. The normalized
design measure & of x(1), ... x(N) is defined as:

§(x) = N(X)/N; - (x € H),

where N(x) denotes the number of repetitions of x in the design
XM x )

Obviously, M = NM(¢), where

M(E) = FROFT (x)o 2 (x)E(x)

x€EH

is the so-called normalized information matrix.
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Normalized design measure and information matrix

For a normalized design measure £ (or, more concisely design £) it holds:

O £(x)>0for x € H,

@ > enélx)=1,
@ the set {x;x € H,&(x) > 0} is finite.

In the following, each function ¢ defined on H satisfying the above three
conditions will be considered as a normalized design measure.

The interpretation of the design £ is that measurements are realized only
in trials with £(x) > 0 and the number £(x) is proportional to the number
of independent repetitions of x.
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Regression experiments Design of regression experiment

Some remarks

Remark 1: For most methods, it is important to assume that the set H is
finite (e.g., the weighing example) or that the set {f(x): x € H} is a
bounded and closed subset of R™ (e.g., the simple linear regression
example).

Remark 2: Sometimes, we have to fulfill restrictions on total cost C
(instead of a the maximal number of observations N). Denoting by c(x)
the price of one run of the experiment with x, we define the design
measure:

§(x) = N(x)e(x)/N;  (x € H),
and the corresponding information matrix:
ME(€) = > FO)F T ()0 2(x)e M (x)é(x)-
xE€H

Formally, this can be achieved by replacing the variance o%(x) by
o?(x)c(x).
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Ol &
Optimality criteria

Optimality criteria are usually defined as a real function ® defined on the
set of all information matrices. The function ® is chosen so that better
design £ leads to smaller values of ®{M(¢&)}.

We will say that a design p is ®-optimal if ®{M(1)} = mingez P{M(£)}.

Optimality criterial can be divided to total and partial (this depends on
whether we estimate all parameters or only their subset; eventually only
some linear combinations).

Further, optimality criteria can be divided to minimax and average
(assuming full rank of M, average criteria have gradient simplifying the
search for the ®-optimal design).
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Regression experiments Design of regression experiment

Comparison of regression designs

Two designs £ and 7 are equivalent if M(§) = M(n), i.e., if
Varg(h'0) = Var,(h'0), vh € R™.

Design & is uniformly better than design 7 if
Vare(h') < Var,(h"), VheR™.

This holds if and only the matrix M(&) — M(n) is positive semidefinite
(u"[M(&) — M(n)]u >0, Vu € R™). If a parameter h'6 is not estimable
with design £, we define Var¢(h'0) = oc.

The uniformly best design & does not generally exist. Instead, one usually
maximizes suitable optimality criteria.
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Regression experiments Optimality criteria

Interpretation

The interpretation of most common optimality criteria (D-, E-, A-) is
related to confidence ellipsoids.

Assuming that the estimator has 0 (approximately) normal distribution
N(O, M~1(£)/n) then

VnMY2(€)(0 - 0) ~ N(0,Zp,)

implying that
n(0 — )T M(£)(0 — 0) ~ X
Therefore,

p(0-0Tmew-o < E0=0) 1

defines a 1 — « confidence ellipsoid for the parameter 6.
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Confidence ellipsoid

The confidence ellipsoid can be described as:

O the center is 4,
@ the size is given by the constant x2,(1 — «)/n,

© the shape depends on the matrix M(&): main half-axes of length
VX2,(1 — a)/(nX;) are in the direction of eigenvectors +; of M(¢&).
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Oy afiai
E-optimality

D-optimality can lead to long ellipsoids with small volume (and some
estimators may have large variance). Therefore, other criteria try to
minimize some measure of overall elongation.

The length of the longest half-axis of the confidence ellipsoid is

max (x5(1 — )t MR

and its minimization (i.e., minimization of max -1 hTM~1(£)h) leads to
the E-optimal design.

Obviously

||rp”ax1 ATM7Y(E)h = = max A7t = (min )7,

where )\; are the eigenvalues of the information matrix M(§).
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D-optimality and volume of the confidence ellipsoid
The volume V(M(€),d) of the confidence ellipsoid {6 : 6T M(£)0 < d?}

can be found by using the spectral decomposition M(¢) = FAI'T and the
transformation z = AV/21 79:

V(M(E),d) = / 1d6/ 1TA~Y2|dz
{6:07 M(£)6<d?} {z:zT z<d?}

= V(@ d)TAY2] = V(T d)y/ITA-V2[A-1/20 T

= V(T )M HEY? = V(Tm, d) [N
=1

where V/(Zp,, d) denotes the volume of m-dimensional unit ball.

Hence, the volume of a confidence ellipsoid is inversely proportion to the
square root of determinant of the matrix M(§). The so-called D-optimality
corresponds to the minimization of — log|M(&)].
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A-optimality
Clearly, projections of the confidence ellipsoid into coordinate axes are

proportional to the (marginal) standard deviations 0;.

The criterion of A-optimality, >_(M~1(€));;, leads to the minimization of
the sum of marginal variances of 0;. Geometrically, this corresponds to the
minimization of the diagonal of a rectangle circumscribed to the
confidence ellipsoid.

The criterion of A-optimality can be easily rewritten in terms of
eigenvalues of M(¢):

Z Varf; = trVar(f) = %tr{M_l(f)}

1 _
= EZ/\,.l.
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G—Optl n Ia | |ty Kritérium Sthrnné Ciastkové
Niizov D)= Podmienky Interpretdcia DM) = Podmienky Interpreticia
Vieobecné sup h"M~'h ¥<R™ sup h"M~'h HeR™
'2 | minimaxné hex dim#=m hex dim % = [ubovolnd <m
£
. . .. . - . £ | G-optimalit sup f7(x)M~' minimalizdcia rozptylu . o »
G-optimal design minimizes the criterion g|Ovpmaiy | oM minimalizii capils Histkové Krtériam s nepoviiin
g
£ | E-optimality max h™M~'h minimalizcia najvié- max h™M~'h #eR™ je
T 1 S ek sieho rozptylu odhadu | | 715! s-rozmerny podpriestor
sup f (X) M~ (5) f(X) funkcie parametrov (s<m)
b) —
Vieobecné ) L 17 p>0, iny ndzov: stopové kri- : . Rt s<mp> 0, univerzdlna trieda kritéri
xeH L,~kritérium [2 (M) M~ (H), Y ] detH¥0 térium, je univerzilne. hodnost (H) = s,
m AkH=1,p-0,tak D- IH=MQ
. . . . optimalita, ak p — o, e
that can be interpreted as the maximal width of a confidence band for sk E-opimala
Vieobecné | - Wjepozi- | vizeny sicet rozptylov . W typu s X s,
y(X) because | | tineqme |2, (Wh(M7) tivne akovariancii 2 (W (M, pozitivne definitnd,
g kritérium definitnd s<m
A
T ~N T 1 %|'5 | d-optima- | sihrnné neexistuje h'M-h ak h70 je rozptyl odhadu h'@
ky _ _ — | | |ty odhadnutelné
Var §(x) = Var f ' (x)0 = Var f ' (x)M~2(§)f(x)/n. il ; — L -
€ .5 | A-optima- (M), sucet rozptylov odha- S (M) s<m,6,,..,6, sucet rozptylov 6, ..., 6,
S| | 2]y % 9, P ‘ st odhadnutelné
IlE
E Vizenej $ (M) w>0 s s<m, vézeny stéet rozptylov
2 A-optima- Z ' " i=1,.,m |odhadové,,..¥6, > 1] 6, .. 0, odhadov 6, ..., 6,
& lity ! sti odhadnutelné
Remark: D-optimality is equivalent to G-optimality in a homoscedastic Doptimality | —IndetM minimalizicia objerms | | 1 det (M) ) s<m, minimalizicia cbjems
— elipsoidu spoahlivosti 6., 6, elipsoidu spoFahlivosti
setup (P86 Proposition |V 6 str 88) pre 6y, ..., 6, st odhadnutelné pre ... 6,
Siicinové kritérium | suhrnné neexistuje n « minimalizécia rozptylu
, 2 fr +oov e odhadu polynému
b ®
p(6):=
H H H H 1a- X JTAM )by,
Overview of other optimality criteria: see, e.g., P86, p. 150-151. I : 0
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Optimization methods Assessment of the degree of optimality

A direct comparison of the value ®{M({)} to the optimal design
o ®{M(&*)} is not possible. Assuming the existence of the gradient
Most popular approaches to optimization are: VO{M(u)}, a convenient measure of quality (distance from the optimal

_ oL _ . design) can be defined as
Numeric optimization (using gradient).

Orthogonal designs. d(r) = S (VOLM(u)} 1 {M(2) )5 — min o 2()FT ()T {M (1)} F().

A catalogue of optimal designs. ij=1

©000

Elfving's method (based on some interpretations related to a point in
which certain line intersects the surface of a certain m-dimensional
polyhedron).

It holds that:

e d(u) > 0 for all designs p,

©

Exclusion of under-informative observations (followed by application

of another optimization method). © d(u) = 0 if and only if x is ®-optimal,

o [®{M(n)} — ming ®{M(&)}] < d(n).
Proof: Proposition IV.27 and IV.28 in Pazman (1986, Foundations).
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Assessment of the degree of optimality Linear dependency on factors
Let us assume the first-order regression model

Example: For D-optimality, we have ®{M(u)} = — log |M ()| and EY(8)] = bo + 01t1 + ... Omtm—1
d{M = —M~1(p).
VeiM(u)} (1) where t = (t1,...,tm_1)' € X C R™ ! and ¢%(t) = 0. [P86]: (Such
model) . ..is often used when there is no theoretical knowledge of the

d(p) = maxo2(x)f T ()M () F(x) — m observed object, and the model is the simplest approximation to reality.
Denote by =y a fixed size () design such that all explanatory variables
The design 11 is approximately D-optimal if are centred (> ,cx ti§(t) = 0) and normed (3, t26(t) = 1).
o 2T (XM7Y () f(x) < m+¢ Theorem: Suppose that X is a compact subset of R™~! and that there is
a design £* € =y having a diagonal information matrix. Then
for each x.

1 = Varg: 0; < Varg 0; and the design £* is D-optimal (i.e., also
G-optimal) and A-optimal within the set =p.

Proof: P86, Proposition VI.1, p. 171.
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) Example: Motor thrust during acceleration is investigated on a test track.
Elfving's method P & satec
The movement of the car on the test track can be approximated by the
function
2
., C . . A s(x) = vx + zx“/2
Elfving's method minimizes the variance of the estimator h' 0 (the (x) +27/2,
so_ca”ed d_optlmallty) and |t proceeds as fo”ows: Where S(X) |S the pOSition in t|me X, "4 |S the Speed in t|me 0 and V4 |S the

acceleration. Parameters v and z are not known. The measuring device

We define the set allows to measure the car's location 10x within the time interval 0-10s

f(x) f(x) (and it is possible to measure the position more than once in a single
=L xeH U — xeH moment).
() a(x)
and its convex hull S. We use the linear model

Z
Ey(x,-) = vXj + 5XI2 = O1x; + 92Xi23

where Var y(x;) = 02 (and f(x;) = (x;,x?)") with the information matrix

Let p denote a line passing through the origin and parallel to the vector h.
Let P denote the intersection of the line p and the border of S. The point
P can be written as a convex combination of points from the set T,

e P =S\ f(x(® ini —opti ion £5(x(D) = [\ 10 1 2 3
ie. P =31, \if(x!")), defining the d-optimal design £*(x")) = |\j|. M — Z FO)FT (o2 = & (Z i Zxﬁ>
=1 o2 \ 22X 22X
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At first, we want to find the optimal experiment for estimating the
accelaration. We choose the d-optimality criterion with h = (0,1)T, i.e.,
we want to minimize the function

1 (M) = (0, )M (2) .

The d-optimal design can be found by Elfving’s method.

The set T is denoted by a full line, its convex hull (set S) is denoted by
the dash-dotted line (&erchované, originally bodkociarkovane).

The point P is the intersection of the border of S and the vector h.
Finally, we express the point P as a linear combination of points A and B.
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d-optimal design is:
£*(45) = 07
£(10) = 03

The information matrix of the design is:
o __o[[(45)% (45)3 10?2 103 B
M) =0 [((4.5)3 (4.5) 0.7 + 103 10% 03| =...

The variance matrix of the estimator @ is:

1.4y 2 (0.2555 0.0283
M) =0 <0.0283 0.0001

and the variance of the estimator of 62 is 10~%o?2.
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t2

100 + B

10 452 745 10 t

-100f

The point P is the intersection of the border of S and the vector h and it
can be expressed as a linear combination of points A and B.

o ()= (3) =07 (25) <05 ()
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Recommended work-flow

e Determination of a model: what can be measured; the relation
between observations and unknown parameters; determination of
measurement'’s precision (up-to a multiplicative constant); what
should be estimated (choice of optimality criteria).

o Determination of the optimal design: using literature; comparison
to some simple (but reasonable) design.

o Verification of the optimal design: is the design reasonably good
also according to other optimality criteria?; consider small
modifications that simplify the design and do not significantly worsen
its properties of the design; check feasibility of the proposed design.

WARNING: the optimal design may not allow verificaiton (testing) of
model’s assumptions (e.g., linearity of the regression function)!
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Software and exercise

Library AlgDesign in R: functions optFederov() and optMonteCarlo().

Exercise 1: Try to calculate the d-optimal design for car's acceleration
(eventually also other parameters) using library AlgDesign.

Exercise 2: Find the optimal design for weighing on a balance scale (i.e.,
if the objects can be put on both weighing pans).
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ELT e
Ordering of regression experiments

Pazman (1986, kap. Ill) investigates the set of all information matrices
M= {M(&); £ € =}, where = is the set of all designs (normalized design
measures).

Last week, we have used information matrices to define partial ordering on
the set = (designs are equivalent if their information matrices are equal;
design & is better n if M(&) — M(n) is positive definite).

Definition: Design ¢ is acceptable if there is not any better design 7.

Recall that M =" f(x)f(x)"&(x). It is easy to see that both = and M
are convex.
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Elfving’s method
Week 11

Topic:

o Elfving's method.

@ Examples: bridge length measurements.

References: Pazman (1986) Foundations of optimum experimental design,
D. Reidel. Pdzman et al (1986) RieSené situdcie z navrhovania
experimentov, ALFA, Bratislava.
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Some consequences of convexity

Theorem:[Caratheodory] Let T C R¥. Then

k+1 k+1
hull(T) ={z € RF: z = Za;x,-,x,- eT,o; > O,Za; =1}.
i=1 i=1

Proof: Optimization (Lachout).

By Caratheodory theorem, each point in the convex hull of T can be
written as a convex combination of at most k + 1 points from T.
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Some consequences of convexity

Theorem:[Pazman 1986, Proposition I1.11] For each design £ there exists
equivalent design 7 such that its support X, = {x; n(x) > 0} contains at
most m(m+ 1)/2 + 1 points.

Proof: see Pazman (1986), p. 60-61 (it follows from Caratheodory
Theorem for convex hull: any point x € R? lying in the convex hull of set
P can be expressed as a convex combination of d + 1 or less points from
P).

Z. Hldvka (CU Prague) NMST436 341 / 349

= it
d-optimality

Let us denote Vare g = Varg(g'8). Pazman (1986, sekce 111.3) shows that
the function M(£) — Var¢ g is lower semicontinuous on the compact set
I and, therefore, it achieves its minimum, i.e., there exists a design &*
such that Varg g = mingez Vare g.

Theorem:[Pazman 1986, Proposition I11.16] Let us assume that

Vare g < oo and vectors {f(x);&(x) > 0} are linearly dependent. Then
there exists design 7 such that X;, C X¢ and Var, g < Vare g. The design
7 can be chosen so that it contains at most m points.

Proof: see Pazman (1986), p. 69-71 (based on a construction of the
better design 7).

This implies that the d-optimal design £* (minimizing variance of the
estimator g ' ) can be chosen as ‘at most m points on the border of the
set S'.
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=i ol
g 1
Elfving's set

Let S denote the smallest convex set in R™ containing the set
T ={f(x);x € X} U{—f(x);x € X} (S is the convex hull of T).

Elfving's set S is important for design comparisons.

Theorem:[Pazman 1986, Proposition 111.7] For each design ¢ there exists
a design 7 that is not worse and such that {f(x); n(x) > 0} is a subset of
the border of the set S.

Proof: see Pazman (1986), p. 56-57 (based on a construction of the
design 7).

This theorem simplifies the search for optimal design (because we can
exclude points x that do not lie on the border of the convex hull S).
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EL DB
Elfving's Theorem

Theorem:[Pazman (1986, Proposition 111.17), Elfving (1952)] The design
&* satisfies Varzg = minge= Vare g if and only if there exists set Y C X«
and a constant ¢ such that:

@ cg lies on the border of the set S,
Q cg =) oy F)E(X) = D rex_y F(X)E (%)

Then
\é‘zrg =c?=inf{\;A>0\1geS})

Proof: see Pazman (1986), p. 72-74.
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Example: bridge centre line / osa mostu (in Slovak)

Priklad 1.6. Vytycenie osi mosta. V ramci pripravnych préc
stavby nového mosta ponad rieku je potrebné vytycit os mosta, t. j. uréit
dva body P, a P, na brehoch rieky a presne zmerat ich vzdialenost (pozri
obr. 1.4). Pretoze pouzivané velmi presné optické dialkomery nemozno
v niektorych pripadoch pouZivat pri merani ponad vodni plochu (vznikaji
reflexie od vodnej hladiny, ktoré nardsaji presnost merania), treba
vzdialenost bodov P;, P, zamerat nepriamo. Robi sa to tak, Ze na kazdom
brehu rieky sa zvoli niekolko stanovi§t. Tieto stanovistia vytvaraju
geodetickii siet, v ktorej je dovolené meraf vzdialenost medzi lubovolny-
mi dvoma stanoviStami leZiacimi na tom istom brehu rieky a uhly
definované Tubovolnou trojicou stanovit (aj takych, ktoré leZia na
réznych brehoch rieky). Z udajov ziskanych meranim v geodetickej sieti
sa na zaklade trigonometrickych vztahov vypocita hladani diska osi
mosta.

Regression experiments Example: bridge

Example: bridge centre line / osa mostu

Example: Before the start of construction works of a new bridge, it is
necessary to find its centre line, i.e., determine points P; and P, on both
river banks and measure ther distance as precisely as possible (see the
picture on the following slide). Unfortunately, standard and very precise
optical distance-meters cannot be used for measuring distances above
water (because water reflections disturb the instrument). Therefore, the
distance between P; and P, has to be measured indirectly. This can be
achieved by choosing several locations on each river bank. These locations
define a geodetic net in which one can measure:

© distances between any points on the same river bank,
@ angles defined by arbitrary three locations (including those on the
other bank).

Finally, the distance between P; and P is calculated from basic
trigonometric identities.
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Example: bridge centre line

Ps(05.0,)

)

P2{91',0)‘— X

Fs(035,04)
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Week 12

Topic:

@ Summary (nonparametric regression models).

o Exam.

Z. Hldvka (CU Prague) NMST436 348 / 349



Summary

Main aim: introduction to standard notions in experimental design (so
course graduates can, e.g., understand the description of libraries in CRAN
Task View: Design of Experiments).

Further topics:

Nonparametric regression “Uniform design” is usually optimal, more
information can be found in [Titterington: Optimal design in
flexible models, including feed-forward networks and
nonparametric regression, in: Optimum Design 2000 (A.
Atkinson, B. Bogacka and A. Zhigljavsky, eds.), Nonconvex
Optim. Appl., Vol. 51, Kluwer, Dordrecht, 2001, pp.
261-272 ]

Applications in medicine NMST532: Planovani a analyza léka¥skych studii
/ planning and analysis of medical studies (in summer
semester).
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