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Experimental design (NMST436)

Repetition: linear model, ANOVA, multiple comparisons.

Block designs, nested designs, repeated measurements.

Factorial experiments, response surface methodology.

Computer experiments.

Regression experiments.

Basic references:

Milliken, Johnson (2009) Analysis of Messy Data I: Designed Experiments, 2nd
ed, CRC Press.

Milliken, Johnson (1989) Analysis of Messy Data II: Nonreplicated Experiments,
Chapman&Hall/CRC.

Likeš (1968) Navrhováńı pr̊umyslových experiment̊u, SNTL.

Wu & Hamada (2011) Experiments: planning, analysis, and optimization, Wiley.

Pázman a kol. (1986) Riešené situácie z navrhovania experimentov, Alfa.
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Further references:

Bailey (2008) Design of Comparative Experiments, Cambridge University Press.

Cochran, Cox (1957) Experimental designs, Wiley.

Scheffé (1959) The analysis of variance, Wiley.

Pázman (1986) Foundations of optimum experimental design, D. Reidel.

Myers, Montgomery (2002) Response surface methodology, Wiley.

Neter, Kutner, Nachtsheim, Wasserman (1996) Applied linear statistical models,
Irwin.

Pinheiro, Bates (2000) Mixed-effects models in S and S-PLUS, Springer.

Fang, Wang (1993) Number-theoretic methods in statistics, CRC Press.

Further usable literature:

Yandell (1997) Practical data analysis for designed experiments, CRC Press.

Robinson (2000) Practical strategies for experimenting, Wiley.

Cox, Reid (2002) The theory of the design of experiments, CRC Press.

Christensen (2011) Plane answers to complex questions: the theory of linear
models, Springer.
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Gentle introduction

Week 1

Assumed prior knowledge:

linear model,

factors (contrasts),

analysis of variance (ANOVA),

ANOVA tables (Type I, II, III),

random effects and mixed models.

Z. Hlávka (CU Prague) NMST436 4 / 349



Gentle introduction Introduction

Tukey, J. W. (1954). Unsolved Problems of Experimental Statistics.
Journal of the American Statistical Association, 49(268), 706-731.

The four hypergeneral principles, which may seem harmless until we come
to their consequences, run as follows:

(A) Different ends require different means and different logical structures.

(B) In each area, statistical method must and does evolve, mainly by
adding both immediate ends and considerations.

(C) While techniques are important in experimental statistics, knowing
when to use them and why to use them are more important.

(D) In the long run, it does not pay a statistician to fool either himself or
his clients.
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Gentle introduction Introduction

Experimental design

Experimental design × data analysis.

Bias × randomization?

Statistician’s participation on designing the experiment (statistician is
often consulted only after the data set has been collected).

Sample size calculations (in practice often ex post).

Experimental design has to account for financial limitations, law
requirements, and natural laws.

Experimental design needs a lot of practice (assuming that one is capable
to think about the problems).

Aim of the lecture: basic experimental designs (including “standard
terminology”) and its analysis (linear regression, mixed models, GLMs).
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Gentle introduction Introduction

The lecture

Prior knowledge: linear model with full rank, estimable parameter, analysis
of variance model (interactions), ANOVA table (type I, II, III), contrasts,
multiple comparisons (Bonferroni, Tukey).

Questions:

Do we have to revisit the linear model and analysis of variance?

Exercise in K4? Notebooks? Time of the lecture?
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Gentle introduction Introduction

Example:

Wu & Hamada (2009), p. 57:

Laser-assisted manufacturing of a thermoplastic composite, the response is
interply bond strength of the composite as measure by a short-beam-sher
test (Mazumdar & Hoa, 1995).

Laser Power

40 W 50 W 60 W

25.66 29.15 35.73
28.00 35.09 39.56
20.65 29.79 35.66
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Gentle introduction Sample size calculations

Two-sample t-test

The simplest and most effective approach is to use experimental designs
allowing application of two-sample t-test.

Such designs are often using randomization (i.e., the random assignment
of treatment (ošeťreńı) to individuals).

The power of the two-sample t-test is a function of number of
observations, the variance and the true difference of expected values.
Using a realistic (expert) estimate of the variance, we can easily calculated
approximate power of the test against “reasonable” alternatives.

Example: power.t.test()
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Gentle introduction Sample size calculations

Two-sample t-test vs. Wilcoxon (Mann-Whitney) test

“...in most practical cases the two-sample t-test is so robust that it can be
recommended in nearly all applications.” (Rasch et al, 1987)

References:

Rasch, Teuscher, Guiard, How robust are tests for two independent
samples?, Journal of Statistical Planning and Inference, Volume 137, Issue
8, Pages 2706–2720.
http://www.sciencedirect.com/science/article/pii/S0378375807000225

Heeren T, D’Agostino R. Robustness of the two independent samples t-test
when applied to ordinal scaled data. Stat Med. 1987 Jan–Feb;6(1):79–90.
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Gentle introduction Sample size calculations

Two-sample t-test (Welch approximation)

Without the assumption of homoskedasticity, the obvious test statistic is

T =
X − Y√
S2
X

nX
+

S2
Y
ny

.

Unfortunately, this test statistic does not have t-distribution. Welch
(1938) used moment method in order to approximate the null distribution

of
S2
X

nX
+

S2
Y
ny

by χ2
f , where

f =
(σ2

X/nX + σ2
Y /nY )2

σ4
X/(n2

X (nX − 1)) + σ4
Y /(n2

Y (nY − 1))
.

Therefore, tf is usable as an approximation of the distribution of T .

Question: Sample size calculations for Welch test?
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Gentle introduction Sample size calculations

ANOVA: sample size calculations

See NKNW, Chapter 26:

power for a chosen noncentrality parameter,

power for a chosen interesting difference between factor levels,

length of confidence intervals for parameters of interest,

finding the best treatment.
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Gentle introduction Sample size calculations

ANOVA: linear combinations with unequal variance

It may happen that we reject the hypothesis of homoskedasticity. In that
case, we can approximate the distribution of the estimator of the linear
combination

∑
ciµi .

Obviously ∑
ci µ̂i ∼ N

(∑
ciµi ,

∑
c2
i σ

2
i /ni

)
and ∑

ci µ̂i −
∑

ciµi√∑
c2
i σ

2
i /ni

∼ N(0, 1).

For large values of ni (at least for ci > 0), we can use the asymptotic
normality of the statistic:

Z =

∑
ci µ̂i −

∑
ciµi√∑

c2
i σ̂

2
i /ni

D→ N(0, 1).
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Gentle introduction Sample size calculations

ANOVA: Satterthwaite’s approximation

If ni ’s are too small, we can rewrite Z as a ratio of two independent
random variables:

Z =

∑
ci µ̂i −

∑
ciµi√∑

c2
i σ̂

2
i /ni

=
(
∑

ci µ̂i −
∑

ciµi ) /
√∑

c2
i σ

2
i /ni√∑

c2
i σ̂

2
i /ni/

√∑
c2
i σ

2
i /ni

The distribution of the numerator is N(0, 1) and the distribution of Z can
be approximated by tν-distribution (since we can approximate
(ν×)numerator by χ2

ν-distribution—the only problem is the choice of the
number of degrees of freedom ν).

Satterthwaite suggested ν =
(
∑

c2
i σ

2
i /ni)

2∑
{c4

i σ
4
i /n

2
i (ni−1)} , guaranteeing the equality of

the first two moments. Plugging in σ̂2, we obtain Satterthwaite’s ν̂ (and
the distribution of Z is approximated by tν̂-distribution.)
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Gentle introduction Sample size calculations

Types of studies

Yandell (1997, p. 35-36) comments of the most common types of studies:

pure observational studies may lead to seriously biased results,

sample surveys monitor small samples of the population of interest,

designed experiments, where the scientist controls the study by either (i)
randomizing subjects to study groups or by (ii) selecting
subjects at random from the populations of interest (e.g.,
male vs. female).
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Gentle introduction Sample size calculations

Designed experiments

Designed experiments:

randomize over extraneous factors while controlling assignment to
groups,

require careful attention to a protocol established before the
experiment is run.

[Yandell (1997, p. 36)]

In the following, we describe basic designs that were developed mainly in
agriculture and industry. Biostatistical experiments will be treated in
NMST532: Design and Analysis of Medical Studies.
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Gentle introduction Sample size calculations

Publication bias and reproducibility

[Begley, Ioannidis (2015) Reproducibility in science: Improving the
standard for basic and preclinical research, Circ Res. 116, 116–126]
. . . inability to replicate the majority of findings presented in high-profile
journals. The estimated for irreproduciblity based on these empirical
observations range from 75% to 90%.

[The Economist (2013) Trouble at the lab]: . . . a lot of this priming
research is poorly founded. Over the past few years various researchers
have made systematic attempts to replicate some of the more widely cited
priming experiments. Many of these repolications have failed.
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Gentle introduction Sample size calculations

Stages in a statistically designed experiment (Bailey, 2008,
Section 1.1)

1 Consultation.

2 Statistical design.

3 Data collection.

4 Data scrutiny.

5 Analysis.

6 Interpretation.
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Gentle introduction Sample size calculations

The ideal and the reality (Bailey, 2008, Section 1.2)

1 Purpose of the experiment.

2 Replication.

3 Local control.

4 Constraints.

5 Choice.
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Gentle introduction Sample size calculations

Defining terms (Bailey, 2008, Section 1.4)

An experimental unit is the smallest unit to which a treatment can be
applied.

A treatment is the entire description of what can be applied to an
experimental unit.

An observational unit is the smallest unit on which a response will be
measured.

Treatment structure means meaningful ways of dividing up the set of
treatments.

Plot structure means meaningful ways of dividing up the set of plots,
ignoring the treatments.

The design is the allocation of treatments to plots.

The plan or layout is the design translated into actual plots (some
randomization is usually involved).
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Blocks and squares

Week 2

Topic:

Randomized block design / znáhodněné bloky.

Balanced incomplete block design / vyvážené neúplné bloky.

Latin and Graeco-Latin squares / latinské a řecko-latinské čtverce.
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Blocks and squares Randomized blocks

Randomized blocks

In order to investigate the effect of treatment (factor A) on the dependent
variable, one usually applies the analysis of variance (ANOVA) model.

Often, the sample is not homogeneous but it can be split into b
homogeneous groups (in agriculture: field, in industry: meltage/tavba, in
education: class).

Randomized blocks (znáhodněné bloky) assign treatments levels (i.e.,
factor A levels) within each block randomly.

Complete randomized blocks (úplné znáhodněné bloky) assign all
treatment levels within each block.
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Blocks and squares Randomized blocks

Example: Likeš (1968), example 4.1.1 (in Czech).

Byl proveden experiment, jehož účelem bylo vyšeťrit účinek původńı
velikosti částic a pěchovaćıho tlaku na pevnost v tahu slinutého železného
prášku. Slinováńı bylo provedeno p̌ri standardńı teplotě ve vod́ıkové
atmosfé̌re na vzorćıch materiálu šesti velikost́ı částic, tlak byl uvažován na
dvou úrovńıch. Dvanáct kombinaćı úrovńı si můžeme p̌redstavit jako 12
úrovńı faktoru A.

Pro experiment bylo použito ťŕı podobných pećı; v každé peci bylo
zkoumáno všech 12 úrovńı faktoru A.
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Blocks and squares Randomized blocks

Example: Likeš (1968), example 4.1.1 (in English).

The aim of the experiment was to investigate the effect of the original
particle size and ramming pressure on the tensile strength of iron power
alloy. Alloying was performed at standard temperature in hydrogen
atmosphere on experimental units with six particle sizes and two pressure
levels. The resulting twelve level combinations were treated as 12 factor A
levels.

The experiment was performed in three similar furnaces and all twelve
treatment levels were investigated in each furnace.
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Blocks and squares Randomized blocks
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Blocks and squares Randomized blocks

We will analyze the data set during exercises, the main aim is to
investigate the treatment effect (the influence of factor A on tensile
strength).

Questions:

Should be treat factor B (block) as fixed or random effect?

Can we split the factor A into some “subfactors”?

Which treatments are significantly different?
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Blocks and squares Randomized blocks

Treatment structure × design structure

See Milliken & Johnson 2009, p. 77

The experiment design can be split into two parts (the treatment structure
and the design structure) and it is useful to understand its distinction.

Treatment structure (struktura ošeťreńı) consists of treatments, factors, or
groups that the investigator wants to study or compare.

The treatment structure is determined by the factors of interest: these are
typically various treatments (often including also control or standard
treatment).
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Blocks and squares Randomized blocks

Treatment structure × design structure

Design structure (struktura návrhu, struktura rušivých faktor̊u) is
determined by the structure of the experimental units into homogeneous
groups or blocks.

The design structure contains factors determining (describing) the
homogeneous groups of experimental units.

In the most simple setup, all units are homogeneous and, using only one
block, one can randomly assign treatment levels to all experimental units.
The resulting data set can by analyzed by using simple one-way analysis of
variance.

Z. Hlávka (CU Prague) NMST436 28 / 349



Blocks and squares Randomized blocks

Often, the size of block is smaller than number of treatments and
complete randomized blocks are not applicable.

Example: It may happen that a furnace (in the previous example) can
contain at most 6 samples. In such case, we cannot investigate effects of
all twelve treatents within each block.

Tables of balanced incomplete randomized blocks can be found in relevant
literature.

The description of the experimental design:

t number of factor A levels,

b number of blocks,

k number of (homogeneous) units within block,

r number of blocks containing each level of factor A,

λ number of occurences of each pair (of factor A levels).
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Blocks and squares Randomized blocks

Unbalanced two-way ANOVA (model analýzy rozptylu, nevyvážené dvojné
ťŕıděńı) with 0 or 1 observations in each subclass.
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Blocks and squares Randomized blocks

Example: Likeš (1968), example 4.2.1 (in Czech).

U čty̌r pneumatik byla zkoumána trvanlivost. Každá pneumatika byla
rozdělena na ťri části. Každá část byla vyrobena r̊uzným způsobem (faktor
A). Byly uvažovány čty̌ri úrovně.

Pneumatiky lze považovat za bloky, každý blok obsahuje k = 3 jednotky.

Přǐrazeńı úrovńı faktor̊u A jednotlivým blok̊um (pneumatikám) lze snadno
vyč́ıst z tabulky na následuj́ıćı straně; žrejmě se jedná o vyvážené neúplné
bloky.
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Blocks and squares Randomized blocks

Example: Likeš (1968), example 4.2.1.

Durability of four tyres was investigated. Each tyre was split into three
parts that were produced by a different technology (factor A with four
levels).

The blocks are defined by tyres, i.e., each block contains k = 3
experimental units.

The factor A levels assigment within each block (tyre) is given from the
table on the next page. By randomized the (order of) treatments within
each block, we obtain balanced incomplete randomized blocks.
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Blocks and squares Randomized blocks
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Blocks and squares Latin squares

Latin squares

Blocks allow to eliminate the effect of a single nuisance (rušivý) factor.
Latin squares can be applied in order to account for two (or more)
nuisance factors.

Latin squares are applicable, if the nuisance factors have the same number
of factor levels as factor A.

Example: Four levels of factoru A, two nuisance factors with four levels,
16 observations.

1 2 3 4

1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1
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Blocks and squares Latin squares

Example: Likeš (1968), example 4.3.1 (in Czech).

Byl proveden experiment, jehož účelem bylo vyšeťrit, jak se projevuje
variabilita materiálu na pevnost v tahu ž́ıhaných měděných trubek.
Variabilita materiálu byla vyšeťrována tak, že bylo vybráno z osmi r̊uzných
dnů v obdob́ı ťŕıtýdenńı výrobńı periody vždy osm trubek. Těchto osm dńı
charakterizovalo změnu materiálu v tomto obdob́ı. Skupiny trubek z
jednotlivých dnů p̌redstavuj́ı faktor A na osmi úrovńıch. Trubky byly
ž́ıhány v peci, p̌ričemž byly upevněny do p̌ŕıpravku, který měl otvory v
osmi řádćıch a osmi sloupćıch. Aby byl eliminován vliv horizontálńı a
vertikálńı polohy trubky v ž́ıhaćı peci, byl experiment uspǒrádán do
latinského čtverce o straně t = 8.
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Blocks and squares Latin squares

Example: Likeš (1968), example 4.3.1.

The aim of the experiment was to investigate the effect of material
variability on tensile strength of annealed copper tubes. The material
variability was investigated by choosing eight tubes from each of eight
days chosen within a given three-weeks production period. These eight
days represented the change of the material during the production period.
Hence, tubes from different days represent factor A with eight levels.
During annealing, tubes were fastened in a template with holes in eight
rows and eight columns. The experiment was arranged as latin squares
with size t = 8 in order to eliminate the effect of the horizontal an vertial
position of a tube in the annealing furnace.
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Blocks and squares Latin squares

Previous experience with the annealing furnace suggests that the
temperature varies either vertically or horizontally and that there is not
any interaction between rows and columns. In addition, there is not any
reason to assume that there is an interaction of fator A (day) and the
position of tubes in the furnace. This experiment was performed for
varying temperature. For each temperature, the experiment was arranged
as a Latin square. Results for the temperature 300 ◦C are given in the
following table.
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Blocks and squares Latin squares

Is it possible to test also the assumptions of the model?
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Blocks and squares Latin squares

Graeco-Latin squares

Graeco-Latin square is an overlay of two latin squares (it is known that
such squares exist for t ≥ 3 with the exception of t = 6).

Example: Tensile strength of annealed copper tubes: is it possible to
consider also the production order of tubes within each day?
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Blocks and squares Latin squares

Hyper-Graeco-Latin squares

It is possible to design also an experiment with four nuisance (block)
factors.

The true factor levels of all factor should be randomized (i.e., the true
factor levels are randomly assigned to the number given in the following
table).

1 2 3 4 5

1 A11 B22 C33 D44 E55
2 D23 E34 A45 B51 C12
3 B35 C41 D52 E31 A24
4 E42 A53 B14 C25 D31
5 C54 D15 E21 A32 B43
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Blocks and squares Latin squares

Summary: design structure

Design structure (nuisance factors):

Completely randomized design (assuming that all experimental units
are homogeneous).

Complete randomized blocks.

Incomplete randomized blocks.

Latin and Graeco-Latin squares.

Various modifications (consequence of “collision with reality”).
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Blocks and squares Latin squares

Summary: treatment structure

Treatment structure (investigated factors):

Single treatment (one-way ANOVA, linear model with one factor
variable).

All combinations of two treatments (two-way ANOVA).

All combinations of many treatments (factorial experiment).

Selected combinations of many treatments (fractional factorial
experiment / zkrácený faktoriálńı experiment).

Optimal regression design (typically for numerical explanatory
variables).

Factorial experiment with controls.

Practical advice: don’t panic!
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Blocks and squares Latin squares

Modifications

In practice, modifications of these “standard” designs are common. For
example, MJ1 consider block design for “diet effects” including
additionally a control group.
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Blocks and squares Latin squares

Factorial experiment 22 with controls

[MJ1, Section 4.3.2] say that “the diet treatment structure is a two-way
factorial arrangement with a control that, when crossed with sex of
person, generates a three-way treatment structure with two
controls. . . The design structure is completely randomized where each
treatment combination is to be assigned to two persons.”
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Multilevel designs

Week 3

Topic:

Analysis of variance (ANOVA):

one-way ANOVA / jednoduché ťŕıděńı,
two-way ANOVA / dvojné ťŕıděńı,
fixed, random, and mixed effects / pevné, náhodné a sḿı̌sené efekty.

Multilevel designs / návrhy experiment̊u s v́ıce úrovněmi.

cupcakes (see Milliken & Johnson, section 5.1),
meat (see Milliken & Johnson, example 5.4),
cheese (see Milliken & Johnson, example 5.5).
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Multilevel designs

One-way ANOVA with fixed effects

ANOVA table:

Source of Mean
variation

Sum of squares df
square

EMS

Pramen Stupně Pr̊uměrný
měnlivosti

Součet čtverc̊u
volnosti čtverec

EMS

A SA =
∑I

i=1 r(yi. − y..)
2 I − 1 SA

I−1 σ2 + r
I−1

∑
α2
i

Residual Se =
∑∑

(yiv − yi.)
2 I (r − 1) s2 = Se

I (r−1) σ2

Total S =
∑∑

(yiv − y..)
2 Ir − 1
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Multilevel designs

Derivation of null distribution

Theorem:[Nelder, 1965] If C1, . . . ,Ck are n × n symmetric matrices with
ranks r1, . . . , rk and

∑k
i=1 Ci = I, then any one of the four following

conditions implies the other three:

the Ci are idempotent;

CiCj = 0 for i 6= j ;∑k
i=1 ri = n;

there exists an orthogonal matrix H such that the non-zero parts of
H>CiH are disjunct unit matrices.

Theorem:[Anděl, 1985, Věta 17] Assume that X ∼ Nn(µ,V ) and A ≥ 0 is
symmetric. If AV is nonzero and idempotent, then X>AX ∼ χ2

r , where
r = tr(AV ).
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Multilevel designs

Example: Assume that Y ∼∼ Nn(µ, σ2I). The vector of means is
Y = MY , where M = 1n1>n /n and centered observations are
Y c = Y − Y = (I −M)Y = HY . Obviously, matrices H and M are
idempotent, I = H + M, and it follows that the asymptotic distribution of

(n − 1)
Y>MY

Y>HY

is F1,n−1 if µ = 0.

Example: Similarly, we can derive the null distribution in one-way
ANOVA. Writing the vector of ‘blockwise means’ as Y A = M∗Y , we have
that I = M + (M∗ −M) + (I −M∗), where matrices M, (M∗ −M), and
(I −M∗) are obviously idempotent. It is easy to see that, under H0,

Y>(M∗−M)Y
I−1

Y>(I−M∗)Y
n−I

∼ FI−1,n−I .
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Multilevel designs

One-way ANOVA with random effects

ANOVA table:

Source of Mean
variation

Sum of squares df
square

EMS

A SA =
∑I

i=1 r(yi. − y..)
2 I − 1 SA

I−1 σ2
e + rσ2

a

Residual Se =
∑∑

(yiv − yi.)
2 I (r − 1) s2 = Se

I (r−1) σ2
e

Total S =
∑∑

(yiv − y..)
2 Ir − 1
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Multilevel designs

Two-way ANOVA with fixed effects (and interaction)

Shortened ANOVA table:

Source of
variation

Mean Square EMS

A
Jr

∑I
i=1(yi..−y...)

2

(I−1) σ2 + Jr
I−1

∑
α2
i

B
Ir
∑J

j=1(y.j.−y...)
2

(J−1) σ2 + Ir
J−1

∑
β2
j

AB
r
∑∑

(yij.−yi..−y.j.+y...)
2

(I−1)(J−1) σ2 + r
(I−1)(J−1)

∑∑
(αβ)2

ij

Residual
∑∑∑

(yijv−yij.)
2

IJ(r−1) σ2

Total
∑∑∑

(yijv−y..)
2

IJr−1
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Multilevel designs

Two-way ANOVA with random effects (and interaction)

Shortened ANOVA table:

Source of
variation

Mean Square EMS

A
Jr

∑I
i=1(yi..−y...)

2

(I−1) σ2
e + rσ2

ab + Jrσ2
a

B
Ir
∑J

j=1(y.j.−y...)
2

(J−1) σ2
e + rσ2

ab + Irσ2
b

AB
r
∑∑

(yij.−yi..−y.j.+y...)
2

(I−1)(J−1) σ2
e + rσ2

ab

Residual
∑∑∑

(yijv−yij.)
2

IJ(r−1) σ2
e

Total
∑∑∑

(yijv−y..)
2

IJr−1
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Multilevel designs

Two-way ANOVA with mixed effects (and interaction)

Shortened ANOVA table:

Source of
variation

Mean Square EMS

A
Jr

∑I
i=1(yi..−y...)

2

(I−1) σ2
e + Jr

I−1

∑
α2
i + rσ2

ab

B
Ir
∑J

j=1(y.j.−y...)
2

(J−1) σ2
e + Irσ2

b

AB
r
∑∑

(yij.−yi..−y.j.+y...)
2

(I−1)(J−1) σ2
e + rσ2

ab

Residual
∑∑∑

(yijv−yij.)
2

IJ(r−1) σ2
e

Total
∑∑∑

(yijv−y..)
2

IJr−1

NNKW (page. 981): The derivations are tedious, but simple rules have
been developed for finding the expected mean squares.
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Multilevel designs

Milliken & Johnson (2009) Analysis of Messy Data, Volume 1, Designed
Experiments, CRC Press, str. 101:

Consulting statisticians do not always get the chance to design the
experiments for which they must help construct appropriate analyses.
Instead, the statistician must first identify the type of designed experiment
the researcher has employed. The first and most important step in the
identification process is to determine if more than one size of experimental
unit has been used, and if so, to identify each size of experimental unit.

As will become evident in this section, each size of experimental unit will
have an associated design structure and treatment structure. After the
different sizes of the experimental units have been identified, the model for
carrying out an appropriate analysis can be constructed by combining the
models used to describe the design structure and treatment structure
corresponding to each size of experimental unit.
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Multilevel designs

Cupcakes

Milliken & Johnson (2009) describe several experiments comparing the
influence of three recipes (factor R) and two temperatures (factor T ) on
cupcakes (end-point is not specified).

These designs are substantially different even though we are always going
to bake 18 cupcakes.

The most simple experimental design is to assume that we can bake all 18
cupcakes 18 times under identical (homogeneous) conditions.
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Multilevel designs

T1R1 T1R2 T2R1 T2R2 T2R3

RANDOMIZE
T1R3

Treatment structure
Combinations of temperature (Ti) and recipe (Rj)

Analysis: two-way ANOVA with interactions (treatment design), 18
measurements, 5 parameters.

Crucial assumption is the homogeneity of “all baking conditions”.
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Multilevel designs

Structure of ANOVA table:

df EMS

Temperature 1 σ2
e + Φ2(τ)

Recipe 2 σ2
e + Φ2(β)

Temperature × Recipe 2 σ2
e + Φ2(τβ)

Error 12 σ2
e
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Multilevel designs

In practice, baking experiments encounter “real-life difficulties”.

Mixing dough and baking can be time consuming and it is possible to bake
only six homogeneous cupcakes in a day (and cupcakes from different days
can be heterogeneous). In such situation, we can use complete randomized
blocks (with days defining blocks).

The treatment structure remains the same but we have one nuisance
factor (day) leading to three blocks with six measurements.

Z. Hlávka (CU Prague) NMST436 57 / 349

Multilevel designs

T1R1 T1R2 T2R1 T2R2 T2R3

RANDOMIZE

T1R3

Treatment structure
Combinations of temperature (Ti) and recipe (Rj)

Analysis: three-way ANOVA (including day as a blocking factor).

We have to bake six homogeneous cupcakes each day.
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Multilevel designs

Structure of ANOVA table:

df EMS

Day 2 σ2
e + 6σ2

d

Temperature 1 σ2
e + Φ2(τ)

Recipe 2 σ2
e + Φ2(β)

Temperature × Recipe 2 σ2
e + Φ2(τβ)

Error 10 σ2
e

Note: complete randomized blocks.
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Multilevel designs Split-plot design

Split-plot design/ rozdělené d́ılce

Assume that three cupcakes can be baked in one oven at the same time.
Then, it would be inefficient to bake only one cupcake in each batch.

It is important to realize that, within one batch, it is not a problem to
compare three recipes but we can not compare different temperatures.

Factor R levels (recipes) can be assigned randomly to three cupcakes in
given oven but these three cupcakes must be baked at the same
temperature.

This experiment contains two treatment levels: recipes are assigned to
“cupcakes within oven” while temperatures are assigned to ovens
(containing three cupcakes).
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Multilevel designs Split-plot design

Recipe 1 Recipe 2 Recipe 3

RANDOMIZE

Cupcake treatment structure

Temperature 1 Temperature 2

Oven treatment structure

RANDOMIZE

Cupcake or subplot
or small size of
experimental unit

Oven or whole-plot
or large size of
experimental unit
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Multilevel designs Split-plot design

Cupcake point of view: six homogeneous blocks (three times with lower
and three times with higher temperature), treatment effect = “recipe”.

Oven point of view: six measurements, one-way anova (three
measurements with lower and three measurements with higher
temperature).

The model has altogether nine parameters: temperature (1 par), oven (4
pars), recipe (2 pars), recipe and temperature interaction (2 pars).

Note 1: factor “oven” has six levels but we need only four parameters
because of linear dependencies with the temperature and the intercept.

Note 2: factor “day” is not present because we can bake six times in a day
(anyway, the effect of day would be confounded with “oven”).
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Multilevel designs Split-plot design

Structure of ANOVA table:

df EMS

Temperature 1 σ2
e + 3σ2

t + Φ2(τ)

Error (oven) 4 σ2
e + 3σ2

t

Recipe 2 σ2
e + Φ2(β)

Temperature × Recipe 2 σ2
e + Φ2(τβ)

Error 8 σ2
e

MJ: “split-plot design with a completely randomized whole-plot design
structure”

Note: whole-plot = oven, subplot = cupcake.

Z. Hlávka (CU Prague) NMST436 63 / 349

Multilevel designs Split-plot design

Assuming that we can bake only two batches per day, the design can be
easily extended by including the factor day (naturally confounded with
oven).

From the point of view of a cupcake, the model does not change.

From the oven point of view, we have to consider blocks defined by days.
This leads to complete randomized blocks, where two temperatures are
randomized within each day.

Altogether, we are working with three levels: day, oven (within day) and
cupcake (within oven). We investigate two treatments, where recipes are
applied on “cupcakes within oven” and temperatures on “ovens within
day”.
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Multilevel designs Split-plot design

Recipe 1 Recipe 2 Recipe 3

RANDOMIZE

Cupcake treatment structure

Temperature 1 Temperature 2

Oven treatment structure

RANDOMIZE

Cupcake or subplot
or small size of
experimental unit

Oven or whole-plot
or large size of
experimental unit

The analysis basically does not change. Adding the factor day leads to a
different parameterization but the number of parameters is the same.
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Multilevel designs Split-plot design

Structure of ANOVA table:

df EMS

Day 2 σ2
e + 3σ2

t + 6σ2
d

Temperature 1 σ2
e + 3σ2

t + Φ2(τ)

Error (oven) 2 σ2
e + 3σ2

t

Recipe 2 σ2
e + Φ2(β)

Temperature × Recipe 2 σ2
e + Φ2(τβ)

Error 8 σ2
e

MJ: “split-plot design with a randomized complete block whole-plot design
structure”
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Multilevel designs Split-plot design

Split-plot design can be interpreted also as an incomplete randomized
blocks design: the nuisance factor is “oven within day” and we investigate
6 levels of a single treatment by using blocks of size 3.
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Multilevel designs Strip-plot design

Strip-plot design (provázané?? d́ılce)

strip:

pruh, proužek, pás(ek) látky ap.

bulvár, ťŕıda s restauracemi a obchody

kreslený seriál v časopise ap.

sěrvat, sprdnout, sjet koho

svléknout se, (vy)svléct se

obnažit, odkrýt, svléknout co

rozebrat, rozmontovat co stroj ap.

zbavit koho čeho

odejmout, odebrat komu co

Source: slovnik.seznam.cz

p̌repásané, propletené, propojené, svázané, spletené?
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Multilevel designs Strip-plot design

Strip-plot design

When we want to bake two cupcakes using the same recipe within a single
day, we can reorganize the experiment so that these two cupcakes are
prepared from a single batch of dough.

This simplifies the realization of the experiment (and reduces its price) but
we have to consider another factor variable (factor “batch of dough”).

We proceed as follows: measurement planned for each day are arranged in
rectangles: values of the first and second factor (temperature of the oven
and recipe used to prepare the dough batch) are assigned randomly to
rows and columns, respectively.
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Multilevel designs Strip-plot design

Recipe 1 Recipe 2 Recipe 3

Batch treatment structure

RANDOMIZE

Temperature 1

Temperature 2

Oven treatment structure

RANDOMIZE

Batch is
experimental
unit for

levels of recipe

Cupcake or
subplot or
smallsize of

experimental unit

Oven is
experimental
unit for levels
of temperature
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Multilevel designs Strip-plot design

Strip-plot design model

Analysis: mixed model with random effects of oven and batch nested
within the random effect of day (the rectangle).

yijk = µ+ τi + βj + (τβ)ij + dk + tik + bjk + eijk

dk efect of k-th day (“rectangle”),

tik effect of oven within day,

bjk effect of batch within day.
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Multilevel designs Strip-plot design

Structure of ANOVA table (strip-plot design):

df EMS

Day 2 σ2
e + 3σ2

t + 3σ2
b + 6σ2

d

Temperature 1 σ2
e + 3σ2

t + Φ2(τ)

Error (oven) 2 σ2
e + 3σ2

t

Recipe 2 σ2
e + 2σ2

b + Φ2(β)

Error (batch) 4 σ2
e + 2σ2

b

Temperature × Recipe 2 σ2
e + Φ2(τβ)

Error 4 σ2
e
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Multilevel designs Strip-plot design

Meat (MJ: example 5.4, page 125, in Czech)

Klient si p̌reje vyhodnotit vliv faktor̊u:

teplota (T: 3 úrovně),

obal (O: 2 úrovně),

typ světla (S: 4 úrovně),

intenzita světla (I: 4 úrovně)

na barvu masa, které je 7 dńı uložené v chladničce.

K dispozici máme šest chladniček. Každá chladnička je rozdělená na 16
p̌rihrádek, které tvǒŕı mř́ıžku 4× 4. Intenzita světla je určena vzdálenost́ı
od boku ledničky a všechny p̌rihrádky v jednom sloupci tedy maj́ı stejnou
intenzitu světla. Těmto čty̌rem p̌rihrádkám (se stejnou intenzitou světla)
náhodně p̌rǐrad́ıme r̊uzné typy osvětleńı. Do každé p̌rihrádky pak ulož́ıme
dva steaky (ve dvou r̊uzných obalech).
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Multilevel designs Strip-plot design

Meat (MJ: example 5.4, page 125)

A client wants to investigate the influence of:

temperature (T: 3 levels),

packaging (P: 2 levels),

light type (L: 4 levels),

Light intensity (I: 4 levels)

on the color of meat stored in refrigerator for 7 days.

We can use six fridges. Each fridge is split into 16 compartments
organized in a 4× 4 layout. The light intensity is determined by the
distance from the side of the fridge. Hence, all compartments in a single
column have the same light intensity and the four different types of
lighting are randomly assigned to these four compartments. Finally, two
steaks are stored in each compartment (in two different packagings).

Z. Hlávka (CU Prague) NMST436 74 / 349

Multilevel designs Strip-plot design

Cheese (MJ: example 5.5, page 131, in Czech)

Mlékárna porovnává vlastnosti sýra vyrobeného a skladovaného za r̊uzných
podḿınek. Zkoumané faktory jsou: obsah tuku (2 úrovně), typ sýra (3 úrovně),
teplota p̌ri uskladněńı (2 úrovně), vlhkost vzduchu p̌ri uskladněńı (2 úrovně).
Experiment se skládá ze dvou krok̊u: výroba (6 kombinaćı) a uskladněńı (4
možnosti).

Při výrobě se vyrob́ı dávka každého ze šesti typů sýra. Každá dávka je pak
rozdělena na čty̌ri části, které jsou skladovány po dobu čty̌r týdnů za r̊uzných
podḿınek (mlékárna má čty̌ri komory, kde může nastavit teplotu a vlhkost
vzduchu). Mlékárna si p̌reje ḿıt čty̌ri mě̌reńı pro každou kombinaci faktor̊u a celý
experiment je tedy proveden čty̌rikrát (to trvá dohromady čty̌ri měśıce). Každý
měśıc tedy źıskáme celkem 24 mě̌reńı odpov́ıdaj́ıćıch čty̌rem r̊uzným ošeťreńım
(na úrovni “komory”) a šesti typům (dávkám) sýra.

Otázky: O jaký typ návrhu experimentu se jedná? Jak p̌resně má mlékárna

postupovat p̌ri randomizaci? Jaký model použijeme k vyhodnoceńı experimentu?
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Multilevel designs Strip-plot design

Cheese (MJ: example 5.5, page 131)

A dairy company compares cheese produced and stored in different
conditions.

The factors of interest are:

fat content (2 levels),

type of cheese (3 levels),

storage temperature (2 levels),

storage humidity (2 levels).

The experiment consists of two steps: production (6 combinations of
factor levels) and storage (4 factor levels combinations).
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Multilevel designs Strip-plot design

The dairy company produces one batch of each type of cheese. Each
batch is split into four parts stored for four weeks in different conditions
(the dairy company has four chambers with climate control).

The dairy company wants to have four measurements for each
combination of factors and, therefore, this experiment is repeated four
times (this takes altogether four months).

Each month, we obtain 24 measurements corresponding to four treatment
levels (in different chambers) and six types (batches) of cheese.

Question: What is the type of the proposed experiment design? How do
we randomize the experiment? Which model can be used to evaluate the
experiment?
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Multilevel designs Strip-plot design

Baking powder (prdopeč)

In 2016, four students (TM, TCh, KJ, MH) have investigated the effect of
baking powder on cupcakes. The experiment was designed using two
ovens (located in student dormitory in Troja) with baking trays allowing to
bake twelve cupcakes at the same time.

The main aim of the experiment was to investigate the amount of waste
depending on two types of baking powder (with and without phosphates)
and three recipes. Second aim was to find out which baking powder
results in a better tasting cupcakes.

See
www.karlin.mff.cuni.cz/~hlavka/vyuka/planex/folie/prasek.pdf

for detailed information.
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Multilevel designs Strip-plot design

Baking powder experiment

Z. Hlávka (CU Prague) NMST436 79 / 349

Multilevel designs Strip-plot design

Nesting and crossing (for blocking/nuisance factors)

Nelder (1965) notes that:

‘All simple block structures can be built up using two basic operations,
nesting (denoted by →) and crossing (denoted by ×). The two simplest
structures are written as B1 → B2 and B1 × B2. B1 → B2 is the structure
of the randomized block design. . .

A simple block structure may then be defined to be any formula involving
→ and × signs with suitable brackets to indicate the order of combination
and with the ni , one for each category, giving the number of units involved
in the category’.
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Multilevel designs Strip-plot design

Simple block structures with 3 or 4 categories

Some design structures (for blocking factors) are given in Nelder (1965),
page 150:

(B1 → B2)→ B3 = B1 → (B2 → B3) replicated split-plot design

B1 → (B2 × B3) mutliple criss-cross (Latin squares)

(B1 × B2)→ B3 criss-cross with split-plots

(B1 → B2)× B3 criss-cross with split rows

B1 × (B2 → B3) criss-cross with split columns

(B1 → B2)× (B3 → B4) criss-cross with split rows and columns

B1 → {B2 × (B3 → B4)} repeated criss-cross with split columns

B1 → (B2 × B3)→ B4 repeated criss-cross with split plots

(B1 × B2)→ (B3 × B4) criss-cross with split criss-crosses
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Repeated measures

Week 4

Topic:

nested & hierarchical designs / hierarchicky uspǒrádané experimenty,

repeated measures / opakovaná pozorováńı,

cross-over design,

analysis of repeated measurements in R.
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Repeated measures Nested design

Nested design

with random effects:

yijr = µ+ ai + bj(i) + eijr

with fixed effects:
yijr = µ+ αi + βj(i) + eijr
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Repeated measures Nested design

ANOVA table for nested design

Mean EMSSum of squares df
square fixed effects random effects

A Jr
∑

(yi.. − y...)
2 I − 1 SA

I−1 σ2 + Jr
I−1

∑
α2
i σ2

e + rσ2
b + Jrσ2

a

B(A) r
∑∑

(yij. − yi..)
2 I (J − 1)

SB(A)

I (J−1) σ
2 + r

I (J−1)

∑∑
β2
j(i) σ2

e + rσ2
b

Res.
∑∑∑

(yijv − yij.)
2IJ(r − 1) Se

IJ(r−1) σ2 σ2
e

Tot.
∑∑∑

(yijv − y...)
2 IJr − 1

The test statistic (for testing factor A) is not the same for fixed and
random effects model.
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Repeated measures Nested design

Example: training centres (NKNW: p. 1121)

A big manufacturing company has three regional training centres. Two
instructors are working in each centre. Each instructor trains a group of
approximately 15 employees for three weeks.

The company would like to evaluate the effects of training centre (factor
A) and the instructor (factor B) on the “outcome” evaluated by
knowledge tests delivered after the end of the course. The experiment was
carried out in a six weeks period: the training groups were created as usual
and the instructors were assigned randomly.
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Repeated measures Nested design

factor B

instructor 1 instructor 2

25 14
Atlanta

29 11

11 22
factor A (center) Chicago

6 18

17 5
San Francisco

20 2

Instructor 1 in Atlanta 6= instructor 1 in Chicago and, therefore, main
effects of factor B do not have any meaning (instead, “averages of local
instructors’ effects” are confounded with centers).
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Repeated measures Nested design
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Repeated measures Nested design

Nested design = hierarchicky uspǒrádaný experiment

Important consequence: j-th level of factor B (instructor) in one training
centre does not correspond to the same level of the same factor in another
center.

The model will contain the main effect of factor A and the interaction A:B
(the effect of instructors “within” each center).
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Repeated measures Nested design

Airplanes (MJ: p. 145)

Airplane manufacturer wants to compare seven engines (A, B, . . . , G) and
three types of airplanes (1, 2, 3). Technical requirements imply that the
first airplane can be used only with engines A, B, or C; the second airplane
can be used with engines D or E and the third airplane only with engines F
or G.

Three airplanes were produced for all possible combinations of type of
airplane and engines. Testing pilot then evaluated resulting twenty one
airplanes (in random order) and recorded the requested information.
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Repeated measures Nested design

In this case, we should use fixed effects model (in order to compare
“treatment effects”):

yijk = µ+ Li + Mj(i) + εijk .

ANOVA table:

df EMS

Type of airplane 2 σ2
e + Φ2(L)

Engine (type of airplane) 4 σ2
e + Φ2(M(L))

Error (airplane) 14 σ2
e
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Repeated measures Nested design

Coffee (MJ: p. 629)

Consumer magazine in USA investigated the variability of coffee price in
towns with more than 20.000 inhabitants. The main aim was to evaluated
the influence of state, town (within state) and store (within town within
state).

The investigator chose r states randomly. Within each state, ti towns with
more than 20.000 were selected in random. Finally, nij stores were chosen
in ij-th town, where the price of a certain type of coffee was established.

The variability of coffee price can be described using a random effects
model:

yijk = µ+ si + mj(i) + ok(ji),

where si ∼ N(0, σ2
s ) is the effect of state, mj(i) ∼ N(0, σ2

m) effect of town,
and ok(ji) ∼ N(0, σ2

o) effect of store.
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Repeated measures Nested design

The main aim is to estimate variances of random effects.

It can be useful to calculate:

Var(yijk) = σ2
s + σ2

m + σ2
o

Cov(yij1, yij2) = σ2
s + σ2

m

The correlation coefficient for coffee prices in two stores within a single
town:

ρyij1,yij2 =
σ2
s + σ2

m

σ2
s + σ2

m + σ2
o

Similarly:

ρyi11,yi22 =
σ2
s

σ2
s + σ2

m + σ2
o

Question: how can be obtain confidence intervals for these correlation
coefficients?
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Repeated measures Repeated measures

Repeated measures (opakovaná mě̌reńı)

Repeated measures are not independent measurements in homogeneous
conditions but measurements taken repeatedly (e.g. at different times) on
the same subjects. Consequently, measurements taken on one subject are
correlated.

Repeated measures can be seen as hierarchial experiments (nested design)
or hierarchical experiments with more treatment effects (such as “split-plot
design”).
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Repeated measures Repeated measures
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Repeated measures Repeated measures

Model with repeated measurements can be analyzed as:

split-plot design (under certain assumptions),

multivariate dependent variable (dimension is the number of “times”),

correlated data (e.g., mixed models or GEE).
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Repeated measures Repeated measures

Horses (MJ, p. 136, in Czech)

Veterinárńı klinika zkoumá dva způsoby léčby zlomeniny kloubu u końı.
Experiment je naplánován tak, že se vezme několik końı a zloḿı se jim
zvolený kloub, který se ošeťŕı jednou nebo druhou technikou. Po čty̌rech
měśıćıch se pak vyhodnot́ı vhodná ḿıra uzdraveńı (tentokrát pomoćı
rentgenu, tj. bez opětovného lámáńı kost́ı).

Kromě vlivu způsobu léčby chce klinika vyhodnotit i to, jestli oba způsoby
léčby funguj́ı stejně dob̌re na p̌redńı i zadńı nohu.

Experiment je poťreba rozumně naplánovat, protože koně jsou draźı a pro
tento experiment jsou k dispozici pouze v omezeném množstv́ı (4 kusy).
Každému koni se tedy bude muset zlomit p̌redńı i zadńı noha.

MJ definuj́ı model s opakovanými pozorováńımi jako situaci, kdy úrovně
jistého faktoru nelze blok̊um (zde końım) p̌rǐrazovat náhodně. Zde je
určeno, že každému koni se zloḿı p̌redńı i zadńı noha. . .
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Repeated measures Repeated measures

Horses (MJ, p. 136)

Animal hospital investigates two treatments of joint fractures in horses.
The investigator takes several horses, breaks its joints, and treats the
fractures by one of two techniques. Suitable measure of recovery is
evaluated after four months (using x-rays, i.e., without fracturing the
joint).

Apart of the treatment effect, the hospital wants to establish whether the
treatment effect is the same for front and hind legs.

Careful planning of the experiment is crucial because horses are expensive
and there is only a limited supply. In this case, we can use four horses.
Therefore, we have to break more joints on each horse.

MJ define repeated measures model as a situation, when levels of certain
factor (typically time) cannot be assigned to blocks (horses) randomly.
Here, we cannot assign time and front/hind legs.
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Mixed model for repeated measures:

yijk = µijk + hm + εijkm,

where µijk is the expectation of the response for i-th treatment, j-th leg
and k-th time, hm is random effect of horse and εijkm is random error
(effect of “leg”).

MJ compare two designs.

The first proposal is:

Horse
1 2 3 4

F1P1T1 F1P1T2 F2P1T1 F2P1T2

F1P2T2 F1P2T1 F2P2T2 F2P2T1

(F1 and F2 are two treatments, P1 and P2 denote front and hind leg and
T1 and T2 are times of the experiment).
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The properties of a given design can be relatively easily assessed using the
R function alias()

> lm1= lm(y~horse+f+p+t)

> alias(lm1)

Model :

y ~ horse + f + p + t

Complete :

(Intercept) kun2 kun3 kun4 p2 t2

f2 0 0 1 1 0 0

Obviously, the treatment effect (F) cannot be distinguished from the
difference between two pairs of horses. Hence, this experiment design
should not be used to evaluate the treatment effect.
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The second design is:

Horse
1 2 3 4

F1P1T1 F2P1T1 F1P1T2 F2P1T2

F2P2T2 F1P2T2 F2P2T1 F1P2T1

> lm2= lm(y~kun+F*P+T)

> alias(lm2)

Model :

y ~ kun + F * P + T

Complete :

(Intercept) kun2 kun3 kun4 F2 P2 T2

F2:P2 0 -1/2 0 -1/2 1/2 1/2 0
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Attitudes / postoje (MJ: p. 583)

Sociologists have repeatedly (thrice in half-year intervals) investigated
attitudes of families in towns and in countryside. 10 town families and 7
country families were recruited. Each family consists of two parents and
one son.

In this dataset, we have two sets of repeated measurements: three
repeated measurements (for each participant) and three members of each
family (because levels of this factor—father/mother/son —cannot be
randomly assigned to individual subjects).
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Assuming independence of random effects, the attitudes data set can be
analyzed similarly as split-plot design.

MJ (page 585) investigate the structure of the correlation matrix of the
nine-dimensional random error for each family using SAS PROC MIXED
(AIC, AICC, BIC) and reach the conclusion that the Kronecker product of
a unstructured correlation matrix for family members and compound
symmetry for measurement times is appropriate for this data set.

This correlation structure is used to assess the significance of fixed effects
(factors town/country, family member father/mother/son, times
T1/T2/T3 and their interactions).
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Cross-over design

When we want to compare two (or more) treatments in a repeated
measurement setup, it may be helpful to expose each subject successively
to different treatments.

I.e., a subject is first exposed to treatment A. After measuring the effect of
treatment A and after disappearence of all physiological effects, the same
subject is exposed to treatment B, et cetera. Hence, each subject serves as
its own control (and the estimate of treatment effect will not be influenced
by between-subject variability).

The randomization proceeds by creating sequences of treatments (here AB
or BA) and these sequences are then randomly assigned to subjects.
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The resulting experiment has two levels:

treatment sequences AB or BA are randomly assigned to subjects
(typically complete randomization),

individual measurements (within subjects) create random blocks.

Subject (animal)
1 2 . . . ni

Sequence 1 (AB)
A (time 1) y11A y12A . . . y1n1A

B (time 2) y11B y12B . . . y1n1B

Sequence 2 (BA)
B (time 1) y21B y22B . . . y2n2B

A (time 2) y21A y22A . . . y2n2A

yijk = µik + sij + εijk ,

where µik is the effect of k-th treatment in i-th sequence, sij is random
effect of j-th subject (in i-th sequence) and εijk is random error.
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Mixed models in R and SAS

Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects models in S and
S-PLUS. Springer.

(AKA the ‘yellow book’)

R: function lme in library nlme & function lmer in library lme4.

SAS: PROC MIXED
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Dogs (PB, page 40), in Czech

Na univerzitě ve Wisconsinu u 10 ps̊u pomoćı poč́ıtačové tomografie
opakovaně mě̌rili sťredńı intenzitu pixel̊u v obou podpaž́ıch po dobu 14 dńı
po aplikaci kontrastńı látky.

Výsledná data Pixel jsou k dispozici v knihovně nlme.

Tato data jsou p̌ŕıkladem na hierarchické uspǒrádáńı náhodných efekt̊u
(nested design) a zároveň na opakovaná mě̌reńı (opakovaná mě̌reńı na
jednotlivých psech).

Ćılem experimentu je popsat chováńı pozorovaných r̊ustových ǩrivek
(k tomu účelu muśıme do R zapsat vhodný model).
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Dogs (PB, page 40)

Mean pixel intensities were measured by CT scans in lymph nodes in the
anxillary region (on left and right side) of 10 dogs repeatedly during 14
days after injecting a dye contrast.

The resulting data set Pixel is available in library nlme.

This is an example both for nested design (random effects model) and
repeated measurements (subjects = dogs).

The aim of the experiment is to describe the observed growth curves.
Therefore, we need a suitable mixed effects model in R.
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Experts expect that the results measured on left and right side (of a dog)
will be different but one cannot say in advance whether higher values will
be observed on the left or the right side.

The plot plot(Pixel) shows that, at first, the pixel intensity increases
and, after some time, starts to decrease. This suggests quadratic
regression model. The left and the right side of each dog usually looks
similar (up to a shift). PB are using mixed effects model with random
intercept and slope (for the dependency of intensity on time) in order to
describe the individual variability (between dogs).

library(nlme)

data(Pixel)

plot(Pixel)

fm1Pixel <- lme( pixel ~ day + I(day^2), data = Pixel,

random = list (Dog = ~ day, Side = ~ 1 ))

intervals(fm1Pixel)

plot(augPred(fm1Pixel))
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Approximate 95% confidence intervals

Fixed effects: lower est. upper

(Intercept) 1053.0968388 1073.3391382 1093.5814376

day 4.3796925 6.1295971 7.8795016

I(day^2) -0.4349038 -0.3673503 -0.2997967

Random Effects:

Level: Dog lower est. upper

sd((Intercept)) 15.9296203 28.3699038 50.5254631

sd(day) 1.0815006 1.8437505 3.1432398

cor((Intercept),day) -0.8943486 -0.5547222 0.1905316

Level: Side lower est. upper

sd((Intercept)) 10.41733 16.82431 27.17176

Within-group standard error:

lower est. upper

7.634529 8.989606 10.585199
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fm1Pixel.lme4=lmer(pixel~day+I(day^2)+(day|Dog)+(1|Dog:Side),

data=Pixel)

summary(fm1Pixel.lme4)

Random effects:

Groups Name Variance Std.Dev. Corr

Dog:Side (Intercept) 283.055 16.824

Dog (Intercept) 804.854 28.370

day 3.399 1.844 -0.55

Residual 80.813 8.990

Number of obs: 102, groups: Dog:Side, 20; Dog, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 1073.33914 10.17169 105.52

day 6.12960 0.87932 6.97

I(day^2) -0.36735 0.03395 -10.82
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Model building (according to PB)

Test for the random effect of side:

fm2Pixel=update(fm1Pixel, random=~ day |Dog)

anova(fm1Pixel, fm2Pixel)

Model df AIC BIC logLik Test L.Ratio p-value

1 8 841.2102 861.9712 -412.6051

2 7 884.5196 902.6854 -435.2598 1 vs 2 45.3094 <.0001

Test for the random slope:

fm3Pixel=update(fm1Pixel, random=~ 1 |Dog/Side)

anova(fm1Pixel, fm3Pixel)

Model df AIC BIC logLik Test L.Ratio p-value

1 8 841.2102 861.9712 -412.6051

2 6 876.8390 892.4098 -432.4195 1 vs 2 39.62885 <.0001
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Expert does not expect that the difference between left and right side
won’t be the same for all dogs. This assumption can be verified.

fm4Pixel=update(fm1Pixel, pixel ~ day + I(day^2) + Side)

...

Fixed effects: pixel ~ day + I(day^2) + Side

Value Std.Error DF t-value p-value

(Intercept) 1077.9484 10.862705 80 99.23388 0.0000

day 6.1296 0.879023 80 6.97323 0.0000

I(day^2) -0.3674 0.033923 80 -10.82914 0.0000

SideR -9.2175 7.626768 9 -1.20858 0.2576

...
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Summary

The functions lme() and lmer() implement mixed models but, in certain
circumstance, the choice matters: plotting is easier for lme() but the
syntax of lmer() is more general.

Examples of some wrong models:

fm5Pixel=update(fm1Pixel, pixel ~ day + day^2 + Side)

fm6Pixel=update(fm1Pixel, pixel ~ day + Side)

fm7Pixel=update(fm1Pixel, pixel ~ dog )
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Exercise

Analysis of simulated cupcakes (strip-plot design) from previous week:

Recommended steps:

proper coding of variables day, oven (within day) and cupcake (within
oven),

randomization, i.e., the assignment of treatments to all levels in the
experiment (i.e., temperatures should be assigned to ovens and
recipes to batches of dough).,

simulation of the response,

analysis using either lme() or lmer(),

comparison of the resulting estimates with the chosen (hence: known)
parameters.
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Multiple comparisons

Week 5

Topic:

Multiple comparisons / metody mnohonásobného porovnáváńı:
Scheffé, Tukey, . . .

See also The Economist: Trouble in the Lab
https://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
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Error rate

Comparisonwise error rate: the number of incorrect conclusions divided by
the total number of tests in all analyzed experiments (i.e.,
the level of significance).

Experimentwise error rate: the number of experiments with at least one
incorrect conclusion divided by the total number of
experiments.

Familywise error rate: the probability that one or more conclusions are
incorrect within a prespecified family of k tests or confidence
intervals.

False discovery rate: the expectation of the ratio of the number of
incorrectly rejected hypotheses and the number of rejected
hypotheses.
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Error rates in practice

EER & FWER:

EER is used for testing equality of expected values (ANOVA).

Knowing in advance that some expectations are different, the power of the
test may be increased by applying FWER on a smaller number of null
hypotheses (e.g. by using Bonferroni inequality).

FDR:

FDR is typically applied in genomics (with huge numbers of comparisons).
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One-way ANOVA and contrasts

In one-way ANOVA model yij = µi + εij , we can investigate differences
(contrasts) µi − µj . Obviously, µ̂i − µ̂j ∼ N(µi − µj , σ2(1/ni + 1/nj)).

Obviously, we reject H0 : µi = µj if

|µ̂i − µ̂j | ≥ tν(1− α/2)σ̂

√
1

ni
+

1

nj
,

(with comparisonwise error rate = α).

MJ (p. 47) calculated EER (experimentwise error rate) for various
numbers of treatments:

I 2 3 4 5 6 8 10 20
CER 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
EER 0.05 0.12 0.20 0.28 0.36 0.47 0.59 0.90
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LSD and Fisher’s LSD

The test from previous slide is sometimes called Least Significant
Difference (LSD).

LSD controls only the comparisonwise error rate and, therefore, it is not a
usable method for multiple comparisons.

Fisher proposed to use LSD only after rejecting the null hypothesis of
equality of expected values (by ANOVA). On one hand, this “modification”
allows to control EER but, on the other hand, other properties are not
good; for example, resulting confidence intervals are too short etc.
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Bonferroni correction

Theorem: For random events Ei :

P

(
k⋃

i=1

Ei

)
≤

k∑
i=1

P(Ei )

The application is straightforward: if P(Ei ) is the comparisonwise error
rate, then P(

⋃n
i=1 Ei ) is FWER for k tests. In order to guarantee that

FWER ≤ α, it is enough to set P(Ei ) = α/k .

In practice, all p-values (obtained from k tests) are usually adjusted as
pbonferroni = min(1, kp), see p.adjust().

Šidák’s method, using 1− (1−α)1/k instead of α/k is a bit more powerful.
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Monte Carlo approach

Monte Carlo method can be easily applied in order to control FWER for p
contrasts

∑
ciqµi , q = 1, . . . , p.

1 Generated randomly data sets with the given structure (i.e., with
given number of observations in each class).

2 Calculate t-statistics for given contrasts, i.e.,

tq =
∑

ciqµ̂i/
√
σ̂2
∑

c2
iq/ni .

3 Calculate the maximum of absolute values of tq,
Ts = maxq=1,...,p(|tq|).

4 Repeat steps 1, 2, and 3 and calculate 1− α empirical quantile T1−α
of Ts .

5 Calculate tq for the original data set and reject q-th null hypothesis if
|tq| > T1−α. We obtain confidence intervals∑

ciqµ̂i ± T1−α
√
σ̂2
∑

c2
iq/ni .
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Tasks and puls rate (MJ, p. 5 and 51), in Czech

Ćılem experimentu bylo zjistit, jak r̊uzné pracovńı úkoly ovlivňuj́ı tepovou
frekvenci zaměstnanc̊u. Celkem 78 zaměstnanc̊u bylo náhodně zǎrazeno do
šesti skupin tak, aby v každé skupině bylo 13 zaměstnanc̊u. Každá skupina
pak byla vycvičena a zǎrazena k vykonáváńı jistého pracovńıho úkolu.

Tepová frekvence pak byla u všech zaměstnanc̊u změ̌rena ve vybraný den
jednu hodinu po začátku práce. Několik zaměstnanc̊u však bohužel podalo
výpověď ještě v pr̊uběhu výcviku a tak źıskaná data nejsou vyvážená.
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Tasks and puls rate (MJ, p. 5 and 51)

The aim of the experiment was to investigate the effect of various tasks on
puls rate. 78 employees were randomized into six groups, where each
group contained 13 people. Each group was trained and assigned to a
certain task.

The puls rates were measured one hour after the start of work on a chosen
day. Unfortunately, some employees quit already during the training and,
therefore, the resulting data set is not balanced.
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T-statistics for a difference of two expectations are compared to these
critical values.
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Scheffé (Anděl 1985, theorem 2, page 147)

Theorem: Assume that X ∼ Nm(µ, σ2V ), where V is a known matrix
and σ2 > 0 is unknown parameter. Let A denote some t-dimensional
subspace of Rm. Let s2 be an independent estimator of σ2 with ν degrees
of freedom (i.e., νs2/σ2 ∼ χ2

ν and s2 and X are independent). Then, the
probability that the inequality

|a>X − a>µ| ≤
√

ts2Ft,ν(1− α)a>Va

holds, for all a ∈ A simultaneously, is equal to 1− α.

Z. Hlávka (CU Prague) NMST436 129 / 349

Multiple comparisons Scheffé

Testing the equality of several expected values

Let µ = (µ1, . . . , µm) and V = (vij). The null hypothesis
H0 : µ1 = · · · = µm holds if and only if a>µ = 0 for all vectors a such that
a>1m = 0. These vectors a define a subspace of dimension m − 1 in Rm.

In order to test that µi = µj for all i 6= j , we define vectors aij with i-th
element equal to 1, j-th element equal to −1 and all other elements equal
to zero. Obviously, µi = µj holds if and only if a>ij µ = 0.

Clearly, a>ij Vaij = vii + vjj − 2vij and, by Scheffé’ theorem, we obtain that
the inequality

|Xi − Xj | ≤
√

(vii + vjj − 2vij)(m − 1)s2Fm−1,ν(1− α)

holds for all pairs (i , j) with probability greater or equal to 1− α.
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Example: one-way ANOVA

Example: In the unbalanced one-way ANOVA model

yij = µi + εij = µ+ αi + εij ,

the sample means yi . =
∑

j yij/nj estimate the parameters µi and the

variance matrix of the random vector (y1., . . . , yI .) is σ2V , where
V = diag(n−1

1 , . . . , n−1
I ).

Applying Scheffé’s method, we reject the equality of i-th and k-th
expectation if

|yi . − yk.| >
√

(n−1
i + n−1

j )(I − 1)s2FI−1,n−I (1− α).

Notice that Scheffé’s method also shows which pairs of expectations are
significantly different.
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Tukey (Anděl 1985, page 150)

Theorem: Assume that X1, . . . ,Xm is a random sample from N(µ, σ2),
σ2 > 0. Denote by

R = max
i

Xi −min
i

Xi

the so-called range. Let s2 denote an independent estimator of the
variance σ2 with ν degrees of freedom; this means that νs2/σ2 ∼ χ2

ν and
s2 and X = (X1, . . . ,Xm)> are independent. Denote by

Q = R/s

the so-called studentized range. Then, the distribution of the random
variable Q, denoted by the symbol qm,ν , does not depend on µ and σ2.

In the following, qm,ν(1− α) will denote the 1− α quantile of the
studentized range distribution qm,ν .

These quantiles are implemented in the function Tukey() in R.
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Tukey: application to ‘pair differences’

Theorem: Assume that X1, . . . ,Xm are independent random variables
such that Xi ∼ N(µi , b

2σ2), i = 1, . . . ,m, where b is a known positive
constant. Let s2 denote an independent estimator of the variance σ2 with
ν degrees of freedom (i.e., νs2/σ2 ∼ χ2

ν). Define T = bqm,ν(1− α).
Then, the probability that inequalities

Xi − Xj − Ts ≤ µi − µj ≤ Xi − Xj + Ts

hold for all pairs simultaneously, is 1− α.

Proof: Denoting Zi = Xi − µi , the previous theorem implies that

P

{
max Zi −min Zi

bs
≤ qm,ν(1− α)

}
= 1− α.
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Example: balanced one-way ANOVA

Example: Balanced one-way layout guarantees that all random variables
y1., . . . , yI . have the same variance. Denoting by r denote the number of
observations in each subclass, obviously yi . ∼ N(µi , σ

2/r) and, choosing
b = 1/r in the previous theorem, we reject equality of expectations in i-th
and j-th group if

|yi . − yj .| > sqI ,n−I (1− α)/
√

r .

This method is usable only for balanced one-way setup but it is obviously
stronger than Scheffé’s method if

qI ,n−I (1− α)/
√

r <
√

(n−1
i + n−1

j )(I − 1)FI−1,n−I (1− α).
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Example: Recall the laser example from the first lecture:

> lm.laser=lm(strength~ordered(power),data=laser)

> summary(aov.laser <- aov(lm.laser))

Df Sum Sq Mean Sq F value Pr(>F)

ordered(power) 2 224.18 112.1 11.32 0.0092 **

Residuals 6 59.42 9.9

Sample averages for each laser power are:

> tapply(laser$strength,laser$power,mean)

40 50 60

24.77000 31.34333 36.98333
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Critical values for the studentized range:

> summary(lm.laser)$sigma*qtukey(0.95,nmeans=3,df=6)/sqrt(3)

[1] 7.883982

Our conclusion should agree with the R function TukeyHSD:

> TukeyHSD(aov.laser,"ordered(power)")

diff lwr upr p adj

50-40 6.573333 -1.310648 14.45731 0.0947896

60-40 12.213333 4.329352 20.09731 0.0075171

60-50 5.640000 -2.243982 13.52398 0.1506523

We can mark down different groups more easily after sorting the groups in
increasing order (according to observed sample means).
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Modification of Tukey’s method

Tukey’s method was designed for comparing pairs of expected values in a
homoskedastic situation with independent observations.

Therefore, Tukey’s method can be applied directly also for comparisons of
treatment effects in a balanced two-way ANOVA without interactions
(interactions complicate the interpretation of treatment effects).

Let us have a look at modifications for:

set of all contrasts (like Scheffé’s method),

heteroskedasticity (e.g., for unbalanced ANOVA models),

correlated observations.
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Theorem: Assume that X1, . . . ,Xm are independent random variables
such that Xi ∼ N(µi , b

2σ2), i = 1, . . . ,m, where b is a known positive
constant and that s2 is an independent estimator of the variance σ2 with ν
degrees of freedom.

Denoting T = bqm,ν(1− α), the probability that∑
i

ciXi − Ts
∑
i

|ci |/2 ≤
∑
i

ciµi ≤
∑
i

ciXi + Ts
∑
i

|ci |/2

holds simultaneously for all contrasts (
∑

i ci = 0) is equal to 1− α.

Proof (Scheffé, Analysis of Variance, p. 74):

The statement follows from the inequality |
∑

ciui | ≤ h(
∑
|ci |/2) that

holds for all contrasts (i.e.
∑

i ci = 0) if |ui − uj | ≤ h (it suffices to plug in
ui = Xi − µi and h = Ts).
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Tukey-Kramer

Tukey-Kramer method rejects H0 : µi = µj if

|µi − µj | > qI ,ν(1− α)

√
s2

2

(
1

ni
+

1

nj

)
,

where ni is the number of observations in i-th subclass.

Tukey’s method is obtained for ni ≡ r .
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Example: incomplete blocks

Example: In the first lecture, we have analyzed tyres using an incomplete
randomized block design. In this case, the treatment effect estimators are
not independent:

trv = c (238,196,254,238,213,312,279,334,421,308,367,412)

pneu= factor(c (1,2,3,1,2,4,1,3,4,2,3,4))

typ = factor(rep(1:4,each=3))

drzi=data.frame(trv,pneu,typ)

lm.drzi1=lm(trv~typ + pneu,data=drzi)

anova(lm.drzi1)

mm1=model.matrix(lm.drzi1)

v1=solve(t(mm1)%*%mm1)

v1
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Correlated observations

Theorem: Assume that X1, . . . ,Xm are random variables such that
Xi ∼ N(µi , b

2σ2), i = 1, . . . ,m, where b is a known positive constant and
that Cov(Xi ,Xj) = cσ2 for all i 6= j , where constants b and c satisfy
−b2 ≤ (m − 1)c ≤ 0. Let s2 denote an independent estimator of the
variance σ2 with ν degrees of freedom.

Setting T =
√

b2 − cqm,ν(1− α), the probability that∑
i

ciXi − Ts
∑
i

|ci |/2 ≤
∑
i

ciµi ≤
∑
i

ciXi + Ts
∑
i

|ci |/2

holds simultaneously for all contrasts (
∑

i ci = 0) is equal to 1− α.
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Note: The covariance structure in this theorem looks similar to
“compound symmetry” from the previous week (coffee or attitudes
example) but the correlations have different sign.

Proof: Let us find X0 ∼ N(0, σ2
0) such that X̃i = X0 + Xi , i = 1, . . . ,m are

independent. This is quite simple because Cov(X̃i , X̃j) = · · · = cσ2 + σ2
0

and it suffices to choose σ2
0 = −cσ2.

Next,
Var X̃i = Var(Xi + X0) = (b2 − c)σ2

and we can apply Tukey’s theorem on the independent random variables
Var X̃i .

Question: Can we modify the above proof for positive correlations?
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Example: Do we have constant correlation in the tyre examples?

> lm.drzi2=lm(trv~ -1 + typ + pneu,data=drzi)

> anova(lm.drzi2)

> mm2=model.matrix(lm.drzi2)

> v2=solve(t(mm2)%*%mm2)

> v2[1:4,1:4]

typ1 typ2 typ3 typ4

typ1 0.5833333 0.2083333 0.2083333 0.3333333

typ2 0.2083333 0.5833333 0.2083333 0.3333333

typ3 0.2083333 0.2083333 0.5833333 0.3333333

typ4 0.3333333 0.3333333 0.3333333 0.8333333

> coef(lm.drzi2)

typ1 typ2 typ3 typ4 pneu2 pneu3 pneu4

224.792 229.167 301.042 325.667 -20.875 34.500 96.375

Z. Hlávka (CU Prague) NMST436 144 / 349



Multiple comparisons Tukey

Example: How comes that the variances and correlations are constant in
the following output?

> lm.drzi3=lm(trv~ -1 + typ + ordered(pneu),data=drzi)

> anova(lm.drzi3)

> mm3=model.matrix(lm.drzi3)

> v3=solve(t(mm3)%*%mm3)

> v3[1:4,1:4]

typ1 typ2 typ3 typ4

typ1 0.36458333 -0.01041667 -0.01041667 -0.01041667

typ2 -0.01041667 0.36458333 -0.01041667 -0.01041667

typ3 -0.01041667 -0.01041667 0.36458333 -0.01041667

typ4 -0.01041667 -0.01041667 -0.01041667 0.36458333

> round(coef(lm.drzi3),3)

typ1 typ2 typ3 typ4

252.292 256.667 328.542 353.167

ordered(pneu).L ordered(pneu).Q ordered(pneu).C

77.033 41.375 -15.597
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Further useful methods

Dunnet Variant of Tukey’s method for comparisons of I − 1
treatment effects to the control group (instead of all pairwise
comparisons).

Multivariate t If we are interested in p linearly independent contrasts, the
situation can be “reduced” to finding a quantile of maximum
of absolute values of p independent t-distributions.

Holm P-values are sorted (in increasing order) and compared
sequentially to α/(p − k + 1), where p denotes the number
of comparisons and k the ranks of p-values. If the null
hypothesis is not rejected for some k0, we stop testing and
null hypotheses are not rejected for any k > k0. This
method is obviously stronger than Bonferroni (apart of the
first comparison).

Benjamini-Hochberg Sequential procedure controlling only False Discovery
Rate = FDR (instead of Familywise Error Rate = FWER).
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Practical recommendations (MJ, p. 45), part I

Multiple comparison methods may not be applied in exploratory
studies (typically followed by a carefully planned confirmatory
experiment).

We should use the most powerful test (see the table with comparison
of critical values for studentized differences).

Dunnet’s test is used to compare treatment effects to a control group
(there is both a one- and both-sided version).

Tukey’s method is recommended for all pairwise comparisons (for
constant sample sizes). For unequal sample sizes, critical values can
be obtained by Monte Carlo methods.

“Multivariate t” is recommended for independent contrasts. For
correlated contrasts, more precise critical value can be obtained by
Monte Carlo methods.
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Practical recommendations (MJ, p. 45), part II

Confidence intervals for a small number of linear combinations of
parameters can be obtained by Bonferroni method. Scheffé method is
better for more linear combinations (20). Šidák and Holm methods
work well for testing several uncorrelated linear combinations.
Bootstrap or Monte Carlo methods can be used for correlated linear
combinations.

Scheffé’s method is recommended for ‘data snooping’, i.e., when
hypotheses are based on observed data (it holds for all contrasts).

Only FDR is controlled in genomics and in studies with many tests
(1000), e.g., Benjamini-Hochberg method.

Multiple comparison methods should not be used in a safety study,
i.e., when dangers or side effects of some treatments are compared to
a control group (because multiple comparisons would increase
probability of type II error).
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Measurement of jump height and speed: 796 children

432 girls, 364 boys (6–19 years)

Single two-legged jump
–aims to achieve maximum jump height.

Multiple one-legged hopping
–aims to achieve maximum voluntary forefoot ground reaction force during
landing. One possible application of this test is to evaluate the maximal
force to which the tibia is exposed, and thus it might serve to evaluate the
muscle-bone unit.

Šumńık, Z., Matysková, J., Hlávka, Z., Durdilová, L., Souček, O., & Zemková, D.

(2013). Reference data for jumping mechanography in healthy children and

adolescents aged 6-18 years. Journal of musculoskeletal & neuronal interactions,

13(3), 259-273.
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Jump height
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Jumping speed
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girls boys

Age Y 1 (σ̂1) n1 Y 2 (σ̂2) n2 t-test

6 1.89(0.17) 33 1.87(0.18) 19 0.7799
7 2.00(0.21) 43 1.98(0.20) 38 0.6459
8 2.01(0.21) 33 2.06(0.21) 38 0.3688
9 2.06(0.18) 42 2.14(0.18) 29 0.0811.

10 2.19(0.22) 42 2.17(0.19) 45 0.7131
11 2.23(0.15) 30 2.31(0.23) 37 0.0616.
12 2.26(0.13) 41 2.35(0.23) 40 0.0473*
13 2.30(0.22) 32 2.53(0.21) 36 0.0001***
14 2.28(0.23) 31 2.66(0.19) 20 0.0000***
15 2.37(0.17) 29 2.72(0.22) 26 0.0000***
16 2.33(0.19) 17 2.83(0.28) 9 0.0005***
17 2.35(0.18) 25 2.76(0.16) 13 0.0000***
18 2.33(0.17) 34 2.87(0.10) 14 0.0000***
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Standard multiple testing adjustment

p-value Holm Hoch. Hommel Bonf. B-H B-Y

6 0.780 1.000 0.780 0.780 1.000 0.780 1.000
7 0.646 1.000 0.780 0.780 1.000 0.763 1.000
8 0.369 1.000 0.780 0.780 1.000 0.479 1.000
9 0.081. 0.405 0.41 0.405 1.000 0.117 0.372
10 0.713 1.000 0.780 0.780 1.000 0.773 1.000
11 0.062. 0.369 0.370 0.308 0.800 0.100 0.318
12 0.047* 0.331 0.331 0.243 0.615 0.088. 0.279
13 0.000*** 0.001*** 0.001*** 0.006*** 0.001*** 0.000*** 0.001***
14 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
15 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
16 0.001*** 0.004** 0.004** 0.004*** 0.006** 0.001** 0.003**
17 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
18 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
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Traditional one-sample change-point analysis

Y1, . . . ,Yn are independent observations with distribution functions
F1, . . . ,Fn

One-sample change-point problem concerns the test of

H0 : F1 = F2 = · · · = Fn against H1 : ∃k0 such that Fk0 6= Fk0+1.

Statistical inference is complicated because the location of the possible
change-point (k0) is not known and there could be more than one
change-point.

A lot of results concerning changes in mean (shifts) and variance, change
in regression coefficient, abrupt and gradual change, changes occurring in
time series, off-line and on-line testing (monitoring), nonparametric
approach, etc.
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General two-sample change-point problem

Two independent random samples Y1,1, . . . ,Y1,N1 and Y2,1, . . . ,Y2,N2 are
collected at the ordered time points t1 < · · · < tn.

At each time ti , we observe n1,i observations from the first sample and n2,i

observations from the second sample.

With Fj ,i denoting the distribution function of Yj ,i , we introduce the
general two-sample change-point problem:

H0 : F1,i = F2,i for all i = 1, . . . , n

H1 : ∃k0 such that F1,k 6= F2,k , for k ≥ k0.

Apart of testing H0, we are interested in estimating k0.

Additional assumption of gradual change leads to two-sample gradual
change-point analysis.

Z. Hlávka (CU Prague) NMST436 156 / 349



Multiple comparisons Further methods

Model of gradual change

1 Observations Yjik (j = 1, 2; k = 1 . . . , nji ) are obtained at time i
(i = 1 . . . , n).

2 All observations are independent.
3 E (Y 1i − Y 2i ) = 0 + δn(i − k0)+/n (i = 1, . . . , n), where δn and k0

are unknown parameters and k0 = nθ0 for some θ0 ∈ (0, 1).
4 Var(Yjik) = σ2

ji > 0 (j = 1, 2; i = 1, . . . , n; k = 1 . . . , nji ).

We use the notation Y ji =
∑nji

k=1 Yjik/nji , a+ = max(a, 0) with k0

denoting the unknown location of the change point, µ the unknown
expectation of difference before the change, and δn the slope (speed) of
the gradual change after k0.

See also [Hinkley (1971). Inference in two-phase regression, JASA 66(336):

736–743], [Hušková, M. (1999). Gradual changes versus abrupt changes. JSPI

76(1), 109-125].
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Least squares estimators

The least squares estimator of k0 (under homoskedasticity) is:

k̂ = arg max
k∈(1,n)

[{∑n
i=1 xik(Y 1i − Y 2i )

}2∑n
i=1 x2

ik

]
.

Denoting by σ2
i = Var(Y 1i − Y 2i ), we define:

k̂σ2 = arg max
k∈(1,n)

[{∑n
i=1 xik(Y 1i − Y 2i )/σ

2
i

}2∑n
i=1 x2

ik/σ
2
i

]
.

Using sample variances σ̂2
ji observed in each (age/gender) category, we

arrive to:

k̂σ̂2 = arg max
k∈(1,n)

[{∑n
i=1 xik(Y 1i − Y 2i )/σ̂

2
i

}2∑n
i=1 x2

ik/σ̂
2
i

]
,

where σ̂2
i = σ̂2

1i/n1i + σ̂2
2i/n2i .

Z. Hlávka (CU Prague) NMST436 158 / 349

Multiple comparisons Further methods

6 8 10 12 14 16 18

2.
0

2.
2

2.
4

2.
6

2.
8

Jumping speeds

age

m
ea

ns

●

● ●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

8 10 12 14 16 18

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Differences

age

D
i

Observed sample means of jumping speed for boys (4) and girls (©) in
thirteen age categories. The right plot shows the observed differences Di

and the least squares fit.

Z. Hlávka (CU Prague) NMST436 159 / 349

Multiple comparisons Further methods

Asymptotic distribution of k̂ (homoscedastic case)

Following [Hušková M. (1998) Estimators in the location model with
gradual changes, Comment.Math.Univ.Carolin. 39,1: 147–157], it can be
shown that:

k̂ − k0 ∼ N

(
0,

σ2n24

δ2(n − k0)

)
.
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Bootstrap for k̂σ̂2 (heteroscedastic case)

We use wild bootstrap and simulate bootstrap replicates from normal
distribution with the same parameters as the observed sample mean

differences Di = Y 1i −Y 2i with standard errors σ̂i =
√
σ̂2

1i/n1i + σ̂2
2i/n2i .

Bootstrap algorithm:

1 Estimate parameters δ and k0 and calculate fitted values
D̂i = δ̂(i − k̂σ̂2)+/n.

2 Generate bootstrap sample D∗i = D̂i + σ̂iε
∗
i , where ε∗i ∼ N(0, 1),

i = 1, . . . , n and calculate the change-point estimator k̂∗σ̂2 .

3 Repeat the previous step B times in order to obtain a random sample
from k̂∗σ̂2 − k̂σ̂2 .

4 Finally, the quantiles q∗α of k̂∗σ̂2 − k̂σ̂2 are used as an approximation of

the quantiles qα of k̂σ̂2 − k0.
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One-sided confidence intervals and p-values

The bootstrap approximation of qα by q∗α leads to:

1− α = P(k̂σ̂2 − k0 > qα)
.

= P(k̂σ̂2 − k0 > q∗α) = P(k0 < k̂σ̂2 − q∗α).

The resulting one-sided confidence interval is (−∞, k̂σ̂2 − q∗α).

Similarly, for fixed k1, wild bootstrap can be used to calculate p-values for
the test of the null hypothesis

H0 : k0 ≥ k1 against H1 : k0 < k1

p-value = P∗(k̂∗σ̂2 − k̂σ̂2 < k̂σ̂2 − k1)
.

=
B∑

b=1

I (k̂∗σ̂2,b − k̂σ̂2 < k̂σ̂2 − k1)/B
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Coverage of 95% confidence intervals

k0 k̂ k̂σ̂2

2 96.0 95.3
4 94.5 95.1
8 95.8 94.8

σ2 = 1
12 97.8 97.3
16 98.5 98.4
18 98.7 97.8
2 95.7 94.3
4 96.8 96.2
8 97.0 96.5

σ2 = 2
12 97.1 96.2
16 98.8 98.0
18 90.8 89.3

1000 simulations, n = 20, nij = 20, B = 2000.

Z. Hlávka (CU Prague) NMST436 163 / 349

Multiple comparisons Further methods

Application to jumping speeds

For the real data analysis, we have to correctly understand the observed
sample means (and its differences):

Index Label Meaning Y 1 (σ̂1) Y 2 (σ̂2)

1 6 6–7 years ∼6.5 years 1.89(0.17) 1.87(0.18)
...

...
...

...
...

...
13 18 18–19 years ∼18.5 years 2.33(0.17) 2.87(0.10)

The estimator k̂σ̂2 = 5 corresponds to the estimated change point
5 + 5.5 = 10.5 years and the upper limit of one-sided 95% confidence
interval is 6.14 + 5.5 = 11.64 years.

In our data set, the observed sample means are based on continuous
explanatory variable: this may lead to rounding bias. Therefore, we
consider also a bias corrected estimator k̂bc

σ̂2 .
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Testing for the change-point location

Bootstrap is used in order to calculate one-sided confidence intervals and
p-values for H0 : k0 ≥ k1 against H1 : k0 < k1 for chosen k1 = 1, . . . , 13
(i.e., kage

1 = 6, . . . , 18).

For correct interpretation, we have to understand the test (the
interpretation depends on k1 and it is not the same as the interpretation
of the two-sample t-test).

Y 1 (σ̂1) n1 Y 2 (σ̂2) n2 t-test CPT
...

...
...

...
...

...
...

12–13 2.26(0.13) 41 2.35(0.23) 40 0.047* 0.003*
...

...
...

...
...

...
...
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t-test Bonferroni BH k̂σ̂2 k̂bc
σ̂2 Age

6–7 0.780 1.000 0.780
1.000 1.000 6

7–8 0.646 1.000 0.763
1.000 1.000 7

8–9 0.369 1.000 0.479
1.000 1.000 8

9–10 0.081. 1.000 0.117
0.999 0.997 9

10–11 0.713 1.000 0.773
0.861 0.846 10

11–12 0.062. 0.800 0.100
0.113 0.117 11

12–13 0.047* 0.615 0.088.
0.003** 0.003** 12

13–14 0.000*** 0.001*** 0.000***
0.000*** 0.000*** 13

14–15 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 14

15–16 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 15

16–17 0.001*** 0.006** 0.001**
0.000*** 0.000*** 16

17–18 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 17

18–19 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 18

Note: k̂age = 10.5 years and the upper limit of one-sided 95% conf. int. is
11.64 years.

Z. Hlávka (CU Prague) NMST436 166 / 349

Multiple comparisons Further methods

Conclusion

Summary:

1 Two-sample gradual change-point test can replace “multiple testing”
by a single test concerning only the change-point location.

2 The change-point approach is applicable to any “table of estimates
with standard errors”.

3 The resulting p-values are decreasing and correspond to right-sided
confidence intervals.

4 Left-sided confidence intervals may be useful for growth curve
estimation.

Reference: Hlávka, Hušková (2017) Two-sample gradual change analysis,
REVSTAT, 15(3), 355–372.
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Factorial experiments

Week 6–7

Topic:

Factorial experiments (experiments with at most one observation per
subclass).

Tukey’s and Mandel’s test of additivity.

Multiplicative interactions.
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Many factors

Often, one needs to investigate many factors using a limited number of
observations. In such situations, we usually have at most one
observation in each subclass (defined by a unique combination of factor
levels).

MJ2 (p. 2) claim that such data set (with only one observation per
subclass) can be obtained by mistake:

Example: Biologist investigates the influence of 20 combinations of
temperature and humidity on sorghum growth. He can use 20 greenhouses
allowing to set all possible combinations of temperature and humidity. 10
sorghum plants are grown in each greenhouse but the biologist does not
realize that both treatments are applied on greenhouse level and that,
disregarding the number of plants, we will always have only 20 observations
(although higher number of plants should decrease residual variance).
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Humidity (%)

Temperature (F) 20 40 60 80

50 12.3 19.6 25.7 30.4

60 13.7 16.9 27.0 31.5

70 17.8 20.0 26.3 35.9

80 12.1 17.4 36.9 43.4

90 6.9 18.8 35.0 53.0

Measurements of 200 sorghum plants lead to 20 observations (with one
observation in each subclass). Moreover, the interaction of temperature
and humidity is of interest and cannot be omitted.
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An important consequence of having only one observation in each subclass
is the nonexistence of “repetitions of the experiment in identical
conditions” (that is usually needed to estimate the variance σ2).

The biologist has following possibilities:

1 Reduce the number of factor levels (with six combinations of
treatment levels, he could have three repetitions in each subclass).

2 Repeat the entire experiment several times (including new
randomizations). This is possible only for fast growing plants.

3 Use more greenhouses (this may not be possible in practice).

4 Keep the original design and apply methods from MJ2: [Milliken &
Johnson (1989) Analysis of Messy Data, Vol. 2, Nonreplicated
Experiments, Chapman & Hall/CRC, Boca Raton.]
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Two-way layout with one observation per subclass

The usual variance estimators cannot be used in the model

yij = µij + εij = µ+ τi + βj + γij + εij ,

because µ̂ij = yij and all residuals are equal to zero.

The simplest solution is to assume the the interaction term can be
omitted, i.e., to use the model:

yij = µ+ τi + βj + εij ,

leading directly the estimator
σ̂2 =

∑∑
(yij − yi . − y.j + y..)

2/{(I − 1)(J − 1)}.

Before removing the interaction term, we should test it (but, obviously, the
usual F-test cannot be used).
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Milliken & Rasmuson

Let us assume that:

yij = µ+ τi + βj + γij + εij .

1 The observations are split into I groups according to levels of the
factor T .

2 In each group, we calculate the sample variance
vi =

∑J
j=1(yij − yi .)/(J − 1). This is, in the model with interaction,

an unbiased estimator of σ2 +
∑

j(βj − β.+ γij − γi .)2/(J − 1) = δ2
i

(the point is that δ2
1 = · · · = δ2

I in the model without interaction).

3 Milliken and Rasmuson proposed to test the hypothesis
H0 : δ2

1 = · · · = δ2
I using standard tests of homogeneity of variances

(Bartlett, Levene).
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Milliken & Rasmuson

Weaknesses:

assumptions for variance homogeneity tests are satisfied only
approximately (sample variances vi have noncentral χ2 distribution
even under the null hypothesis)

with certain interaction patterns (e.g., latin squares), it may happen
that all row and column variances are identical. . .
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Tukey’s nonadditivity test

Tukey’s nonadditivity test (AKA Tukey’s single df test) can be described
as a test of the hypothesis H0 : λ = 0 (against two-sided alternative) in
the model µij = µ+ τi + βj + λτiβj assuming that the interaction γij is
proportional to the product of row and columns effects.

Tukey’s test statistic is based on

SSN =
{
∑

i

∑
j(yi . − y ..)(y.j − y..)(yij − yi . − y.j + y..)}2∑

i (yi . − y ..)2
∑

j(y.j − y..)2

and
SSR =

∑
i

∑
j

(yij − yi . − y.j + y..)
2 − SSN.

The null hypothesis H0 : λ = 0 is rejected if
SSN/{SSR/(bt − b − t)} > F1,bt−b−t(1− α).
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Interaction plots

Two-way ANOVA with interactions:

yij = µij + εij = µ+ τi + βj + γij + εij ,

symbols τi and βj denote row and column effects.

Type I interaction plot shows µij against i (or j) for all j ’s (or i ’s),

Type II interaction plot shows µij against τi (or βj) for all j ’s (or i ’s).

These plots thus consist of J (or I ) polygonal lines connecting I (or J)
points.
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Example: Let’s assume that the true expectations µij satisfy the model
µij = µ+ τi + βj with µ = 29, τ = (−5, 2, 4, 0,−1)>, β = (−5, 2,−1, 4)>.
The expectations (cell means) are:

mu=29

tau=c(-5,2,4,0,-1)

beta=c(-5,2,-1,4)

cm.add=mu+outer(tau,beta,"+")

rownames(cm.add)=paste("t",1:5,sep="")

colnames(cm.add)=paste("b",1:4,sep="")

b1 b2 b3 b4

t1 19 26 23 28

t2 26 33 30 35

t3 28 35 32 37

t4 24 31 28 33

t5 23 30 27 32
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Type I interaction plot:

# type I - rows

plot(c(1,4),c(max(cm.add),min(cm.add)),type="n")

for (radek in 1:nrow(cm.add)) {

lines(1:4,cm.add[radek,],lty=radek)

}

legend(1,max(cm.add),legend=row.names(cm.add),lty=1:5)

# type I - columns

plot(c(1,5),c(max(cm.add),min(cm.add)),type="n")

for (sloup in 1:ncol(cm.add)) {

lines(1:5,cm.add[,sloup],lty=sloup)

}

legend(1,max(cm.add),legend=colnames(cm.add),lty=1:4)
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Type II interaction plot:

# type II - rows

plot(c(max(beta),min(beta)),c(max(cm.add),min(cm.add)),type="n")

ob=order(beta)

for (radek in 1:nrow(cm.add)) {

lines(beta[ob],cm.add[radek,][ob],lty=radek)

}

legend(min(beta),max(cm.add),legend=row.names(cm.add),lty=1:5)

# type II - columns

plot(c(max(tau),min(tau)),c(max(cm.add),min(cm.add)),type="n")

ot=order(tau)

for (sloup in 1:ncol(cm.add)) {

lines(tau[ot],cm.add[,sloup][ot],lty=sloup)

}

legend(min(tau),max(cm.add),legend=colnames(cm.add),lty=1:4)
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Interaction plots for Tukey’s model look somewhat different:
cm.tuk=cm.add+tau%*%t(beta)
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Mandel’s test

Mandel generalized Tukey’s model as

µij = µ+ τi + βj + λαiβj

with the null hypothesis of additivity formulated as H0 : α1 = · · · = αI .

Example: Interaction plots (type II) for α = (1, 2, 4, 0,−2)>

One of two type II interaction plots looks like a “bundle of straight lines”.
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Some remarks

Tukey’s and Mandel’s test are implemented in standard statistical software.
If not, we can perform these tests by first estimating the main effects and
then testing the appropriate hypotheses concerning the interaction term.

Tukey’s single df/Mandel’s model can be further modified (for example,
MJ2, p. 31 describe interaction terms defined by γij = λτi exp(−βj)).

Main purpose of these tests is verification of absence of interactions (so
that we can justify the model without interactions) in two-way ANOVA
with one observation in each subclass.
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Some remarks

This approach does not really solve anything in presence of significant
interactions. In some situations, transformations may help (e.g.,
logarithmic transformation for Tukey’s model) but MJ2 do not recommend
transformations because:

assumption of additive random errors is not transferred into the
transformed model,

interpretation is usually simpler on the original scale,

transforms are unnecessary if we can model our data (e.g., GLM),
interpretation follows from the applicable model.
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Model with multiplicative interactions

Another natural extension of Tukey’s

µij = µ+ τi + βj + λτiβj

and Mandel’s model

µij = µ+ τi + βj + λαiβj

is the model with multiplicative interactions

µij = µ+ τi + βj + λαiγj ,

where 0 =
∑
τi =

∑
βj =

∑
αi =

∑
γj and 1 =

∑
α2
i =

∑
γ2
j .
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Multiplicative interactions model

µij = µ+ τi + βj + λαiγj ,

does not assume that interactions depend on main effects.

Interaction of two rows (i and i ′) with arbitrary two columns (j and j ′) can
be expressed as

µij − µij ′ − µi ′j + µi ′j ′

= . . .

= λ(αi − αi ′)(γj − γj ′)

Therefore, αi = αi ′ implies that there isn’t any interaction of i-th and i ′-th
row with columns effects.
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The multiplicative interactions model is usually more appropriate (than
Tukey’s or Mandel’s model) if:

1 The model contains interactions although all row and column effects
are equal to zero.

2 The interaction appears only for one combination of row and column
effects. Such situation can appear for outlying observations or if some
combnation of row and column treatments behaves strange (e.g., in
presence of control group that does not allow to use the additive
model)

3 The interactions appears only in one row or column (corresponding,
e.g., to a control group that behaves differently).
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LS estimators in the model

yij = µ+ τi + βj + λαiγj + εij ,

are:

µ̂ = y..

τ̂i = yi . − y..

β̂j = y.j − y..

Let Z = (zij) = (yij − yi . − y.j + y..) denote the matrix of residuals from
the additive model. Then

λ̂2 = largest eivenvalue of Z>Z (or ZZ>)

α̂ = eigenvector ZZ> corresponding to λ̂2

γ̂ = eigenvector Z>Z corresponding to λ̂2

In other words: estimators of λ, α and β can be obtained by the SVD
decomposition of the matrix Z .
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Test of additivity

In the multiplicative interactions model

yij = µ+ τi + βj + λαiγj + εij ,

the null hypothesis H0 : λ = 0 can be tested using tabulated critical values.

If l1 > · · · > lp are nonzero eigenvalues of Z>Z (or ZZ>), the critical
values for the test statistic

U1 = l1/RSS = l1/
∑

li

(where RSS =
∑

z2
ij is the residual sum of squares from the additive

model), can be found, e.g., in Table A.1 in MJ2 for selected values of
p = min(I − 1, J − 1) and n = max(I − 1, J − 1).
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Further modifications can be found in MJ2

Several multiplicative interactions (estimated by SVD).

Choice of the number of multiplicative interactions (sequential testing
of eigenvalues).

Variance estimation (pseudo degrees of freedom (I − 1)(J − 1)− η1,
where η1 is the expectation of l1/σ

2 if λ = 0) in the model with one
multiplicative interaction (or assuming that Hα = 0 for some matrix
H).

More involved analysis of interactions (equality of some coefficients
implies non-existence of interactions in some rows or columns: testing
the null hypothesis Hα = 0 [Marasinghe & Johnson (1981). Testing
subhypotheses in the multiplicative interaction model. Technometrics,
23(4), 385-393.] — alternatively, Tukey’s additivity test can be used
on all row and column pairs.
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Horses

Example: Let us recall the example with horses.

Assume that the experiment is designed in a way that allows estimation of
all regression parameters in the linear model

yit = horsei + timet + Fit ∗ legit + εit ,

where i = 1, . . . , 4 and t = 1, 2.

Q: Can we apply some additivity test on this data set?
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Week 7–8

Topic:

Factorial experiments 2N .

Residual variance estimators:

without higher-order interactions,
half-normal plot.

Blocking / slučováńı.

Fractional factorial experiments / zkrácené faktoriálńı experimenty.

Nonregular designs (Plackett-Burman).

Z. Hlávka (CU Prague) NMST436 201 / 349

Factorial experiments 2N

Some repetition: QQ plot

In order to display goodness-of-fit graphically, we often plot sorted
observations against theoretical quantiles.
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Clearly, the (theoretical) slope for observations from N(µ, σ2) in a QQ-plot
with theoretical quantiles of N(0, 1) is 1/σ.
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Factorial experiment 2N

In order to investigate as many factors as possible (including also their
interactions) with limited number of observations, one usually considers
only two levels for each factor. Typically, one works with only one
observation in each subclass (cell).

The aim of a factorial experiment 2N (or 3N or mixed experiment 2N3M

etc.) is to identify factors that may have significant influence on the
response variable.

The identified important factors are then investigated using further
experiments (of different type).
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Yates notation

The most simple situation is two-way ANOVA model (with interactions)
and one observation in each subclass: yij = µij = µ+ αi + βj + (αβ)ij ,
where i , j ∈ {0, 1}. The effect of factor A measures the influence of higher
level compared to the lower level of factor A (i.e., we have A = 2α1 with
the contr.sum contrasts satisfying

∑
αi = 0).

The so-called Yates notation may seem unusual but it has its advantages:
the lower level of each factor is denoted by 1, higher level is denoted by
lower case letters (a, b, . . . ). Combinations of factor levels are then
denoted by ‘products’ of these symbols.

In the factorial experiment 22, we obtain four possible factor level
combinations: (1), a, b, ab.
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The model: yij = µij = µ+ αi + βj + αβij , where i , j ∈ {1, 2}

A B značeńı sťr. hodnota

lower lower (1) µ−− = µ00 − A/2− B/2 + (AB)/2
higher lower a µ+− = µ00 + A/2− B/2− (AB)/2
lower higher b µ−+ = µ00 − A/2 + B/2− (AB)/2
higher higher ab µ++ = µ00 + A/2 + B/2 + (AB)/2

Estimators:

A = yA+ − yA− = {−(1) + a− b + ab}/2

B = yB+ − yB− = {−(1)− a + b + ab}/2

The effect A with factor B on higher level (−b + ab)/2, the effect A with
B on lower level (−(1) + a)/2. The interaction AB is the difference of
these two (conditional) effecs, i.e.,

AB = {(1)− a− b + ab}/2
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Some simple algebra

2A = −(1) + a− b + ab = (a− 1) + b(a− 1) = (a− 1)(b + 1)

2B = −(1)− a + b + ab = (b − 1) + a(b − 1) = (a + 1)(b − 1)

2AB = (1)− a− b + ab = b(a− 1)− (a− 1) = (a− 1)(b − 1)

Similar rules hold also in higher order models. For example, the interaction
ABCD in a factorial experiment 26 can be estimated by the contrast:
ABCD = (a− 1)(b − 1)(c − 1)(d − 1)(e + 1)(f + 1)/25

The signs for estimating interactions can be also obtained by multiplying
the signs of the corresponding main effects, see table [L68] on the
following slide.
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Buns (housky) (MJ2, p. 98)

Example: A bakery has used factorial experiment 25 to investigate the
influence of water (W), mixing time (M), temperature (T) and fat type
(C) on the quality of buns. Two types of mixers (P) were used to prepare
dough.

The resulting data set is given on next slide.

All effects can be easily obtained from lm(Quality~(W+M+T+C+P)^5) but
one has to be careful about the choice (and meaning) of contrasts.

Unfortunately, the variance of εijklm cannot be estimated from the above
model. In this situation, we can choose from two possible approaches:

1 usual ANOVA with higher-order interactions,

2 half-normal plot (see MJ2).
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library(AlgDesign)

buns=gen.factorial(levels=2,nVars=5,varNames=c("W","M","T",

"C","P"))

buns$Quality=c(4.8,3.9,5.0,2.2,3.9,4.2,3.0,2.2,5.7,2.2,8.4,

8.3,5.3,2.3,8.6,8.9,4.2,5.0,5.8,5.2,4.6,4.1,5.4,5.2,2.9,

3.0,6.7,6.6,5.0,2.7,7.0,7.1)

lm.buns3=lm(Quality~(W+M+T+C+P)^3,data=buns)

lm.buns5=lm(Quality~(W+M+T+C+P)^5,data=buns)

a3.1=aov(lm.buns3)

a3.2=anova(lm.buns3)

library(car)

a3.3=Anova(lm.buns3)

# Residual standard error: 0.6086187

a5.2=anova(lm.buns5)

ss5.2=a5.2$"Sum Sq"[1:31]

cf5.2=lm.buns5$coefficients[-1]

32*cf5.2^2
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Half-normal plot / polonormálńı graf

Sum of squares Si corresponding to each factor are part of standard
output in all statistical packages. In balanced experiments, these sums of
squares are independent random variables with χ2

1 distribution (multiplied
by σ2) under the null hypothesis.

Hence, random variables
√

S i have the same distribution as the absolute
value of N(0, σ2).

Half-normal plot is QQ plot for the verification of goodness-of-fit of the
observed values

√
S i with the ’positive half of N(0, 1)’.

In principle, QQ plots could be constructed also for the estimated effects
but these may not be defined uniquely and the interpretation would be
more complicated.
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Interpretation of the half-normal plot
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Similarly as with the normal QQ plot, the slope depends on the parameter
σ. Therefore, an estimator of σ can be obtained as the inverse value of
the slope of a fitted regression line passing through the origin (in practice,
we have to omit significant effects that may be identified as outliers).
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Half-normal plot without significant effects, σ̂
.

= 0.68.
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Significant effects are W, M, C, C:P, M:C, W:M:C, M:C:P. The main
effect of mixer is not significant (P) but the model contains significant
interactions of mixer with type of fat and mixing time (C:P a M:C:P).

MJ2 propose (as the most simple approach) to omit temperature and
analyzed the data set separately for both mixer types.

anova(lm.p0<-lm(Quality~(W+M+C)^3,subset=(P<0),data=housky))

Df Sum Sq Mean Sq F value Pr(>F)

W 1 6.891 6.891 20.1554 0.002030 **

M 1 12.781 12.781 37.3839 0.000285 ***

C 1 26.266 26.266 76.8282 2.25e-05 ***

W:M 1 0.856 0.856 2.5027 0.152305

W:C 1 0.276 0.276 0.8062 0.395460

M:C 1 33.351 33.351 97.5521 9.31e-06 ***

W:M:C 1 5.881 5.881 17.2011 0.003220 **

Residuals 8 2.735 0.342
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anova(lm.p1<-lm(Quality~(W+M+C)^3,subset=(P>0),data=housky))

Df Sum Sq Mean Sq F value Pr(>F)

W 1 0.4556 0.4556 1.2211 0.301267

M 1 19.1406 19.1406 51.2982 9.593e-05 ***

C 1 0.1406 0.1406 0.3769 0.556326

W:M 1 0.0756 0.0756 0.2027 0.664516

W:C 1 0.1806 0.1806 0.4841 0.506282

M:C 1 6.3756 6.3756 17.0871 0.003282 **

W:M:C 1 0.6806 0.6806 1.8241 0.213782

Residuals 8 2.9850 0.3731

anova(lm.p1mc<-lm(Quality~(M+C)^3,subset=(P>0),data=housky))

Df Sum Sq Mean Sq F value Pr(>F)

M 1 19.1406 19.1406 52.4700 1.024e-05 ***

C 1 0.1406 0.1406 0.3855 0.546290

M:C 1 6.3756 6.3756 17.4774 0.001275 **

Residuals 12 4.3775 0.3648
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nd0=gen.factorial(levels=2,nVars=3,varNames=c("W","M","C"))

data.frame(nd0,Estimate=predict(lm.p0,newdata=nd0))

W M C Estimate

1 -1 -1 -1 4.35

2 1 -1 -1 4.05

3 -1 1 -1 4.00

4 1 1 -1 2.20

5 -1 -1 1 5.50

6 1 -1 1 2.25

7 -1 1 1 8.50

8 1 1 1 8.60

Water interactions are interesting: more water decreases the quality of
dough if the mixing time is lower and fat higher or if the mixing time
higher and fat lower.

Z. Hlávka (CU Prague) NMST436 220 / 349



Factorial experiments 2N Half-normal plot

The second mixer type leads to worse results.

nd1=gen.factorial(levels=2,nVars=2,varNames=c("M","C"))

data.frame(nd1,Estimate=predict(lm.p1mc,newdata=nd1))

M C Estimate

1 -1 -1 4.475

2 1 -1 5.400

3 -1 1 3.400

4 1 1 6.850

Best dough is obtained with the first mixer type, longer mixing time, and
with better type of fat. In this circumstances, the amount of water does
not seem to be very important (although the quality seems to be slightly
better for higher level of the factor water).
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Practical recommendations

MJ2 recommend to use half-normal plot for small number of factors (where
omitting some important interaction could lead to information loss).

For higher number of factors (> 6), one can usually neglect interactions
from 5th order and use standard ANOVA methodology.

In practice, one can use the model without higher order interactions also
for smaller number of factors — half-normal plot can be then used to
verify the assumption that the omitted interactions do not have any
influence on the response.

More formal statistical analysis of the half-normal plot can be based on
Lenth’s method based on a robust variance estimator (based on a suitable
product of the median of the absolute values, i.e., the so-called pseudo
standard error) and tabulated critical values for the resulting pseudo
t-statistics.
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Some general principles (Wu & Hamada)

Basic principles for factorial experiments according to [Wu & Hamada
(2011). Experiments: planning, analysis, and optimization. Wiley]:

Effect hierarchy principle One can expect that lower order effects and
interactions will be important more often than higher order
interactions.

Effect sparsity principle The number of really important effects in factorial
experiments usually tends to be small.

Effect heredity principle For each significant interaction, at least one of
the corresponding main effects should be also significant.
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Example: horses II

Example: Veterinary hospital compares two treatments of joint fracture in
horses. In this experiment, one takes several horses and breaks their joints
in a precisely defined way. These injuries are treated by one of the two
treatments (factor A) and with one of two antiseptics (factor B). Suitable
measure of recovery is evaluated after two months. Apart of the treatment
effect, the hospital wants to establish whether the treatment effect is the
same for front and hind legs (factor C).

Careful planning is crucial because horses are expensive and there is only a
limited supply.

In this case, we investigate effects of three factors on two levels (factorial
experiment 23). Interestingly, two horses have altogether 23 = 8 feet.
Unfortunately, we do not have 8 independent repetitions, because horse is
an additional blocking factor (say D).
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Example: horses II

Considering also the horse effect, we obtain factorial experiment 24 that
cannot be carried out because of the limited number of horse feet.

Altogher, we will have only eight observations. The final design can be
described as a factorial experiment 23 with one nuisance (blocking) factor.

The so-called blocking in factorial experiments technique allows to
estimate the possibly interesting effects and interactions in the presence of
nuisance factors (blocks).
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Blocking / slučováńı

Factorial experiments often need many observations. If constant
conditions cannot be guaranteed for the entire experiment, the
measurements have to be split into homogenenous blocks.

The assignment of observations into blocks can be based on confounding
the blocks with some higher order interaction (looking at the table with
“expressions for main effects and interactions”, we find the row with the
chosen interaction and use it to split the observations into two blocks).

In a factorial experiment 23 with blocking defined by 3rd order interaction
ABC , we split the experiment to {(1), ab, ac , bc} and {a, b, c , abc}.

The same can be done with higher number of blocks but one cannot
estimate also the so-called generalized interactions of the interactions that
has been used to define the blocks.

Z. Hlávka (CU Prague) NMST436 226 / 349

Factorial experiments 2N Blocking

Z. Hlávka (CU Prague) NMST436 227 / 349

Factorial experiments 2N Fractional replications

Fractional replications / zkrácené faktoriálńı experimenty

Fractioning (kráceńı) is similar to blocking but its purpose is to decrease
the number of observations.

The method is based on collecting only observations defined by having the
same sign in a row for chosen higher order interaction. The chosen
interaction cannot be estimated (just like in blocking) but we cannot
directly estimate also some other effects.

Example: Fractioning the experiment 23 by the interaction ABC , we can
investigate only four treatment level combinations: (1), ab, ac , bc (this is
fractional factorial experiment 23−1). Consequently, some effects cannot
be distinguished from the corresponding generalized interactions (between
the effect and the interaction that has been chosen for fractioning). The
effect A is thus confounded with the interaction BC, the effect B with the
interaction AC and the effect C with the interaction AB.
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Exercise

Re-analyze the buns example after fractioning to one half (e.g., using the
interaction WMTCP).

You may proceed as follows:

1 Determine the signs for estimating the fifth order interaction (this can
be done by looking at the table).

2 Choose one half of the data set and use the function alias() to find
out what can be estimated.

3 Plot a half-normal plot for sums of squares.

4 Find a reasonable ANOVA model (i.e., a model without higher order
interactions that can be neglected).

Try to fraction the same experiment to one fourth. What can you estimate
from only eight observations?

Z. Hlávka (CU Prague) NMST436 229 / 349

Factorial experiments 2N Plackett-Burman

Plackett-Burman

An advantage of factorial experiments (and fractional factorial
experiments) are uncorrelated estimators. (In a so-called regular design, all
estimators have correlation either 0 or 1.)

However, factorial experiments 2N may not be usable in practice because
sample size has to be equal to a power of 2 (i.e., 8, 16, 32, 64, 128, . . . ).

(Nonregular) Plackett-Burman designs were proposed for sample sizes
equal to multiples of 4 (that are not power of 2) and are suitable mainly
for estimation of main effects (estimation of interactions is more
complicated due to correlations).

Plackett-Burman designs are also (in some way) balanced.
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Orthogonal arrays

Orthogonal array OA(N, sm1
1 . . . s

mγ
γ , t) of power t is a matrix N ×m,

where m = m1 + · · ·+ mγ such that mi columns contain si ≥ 2 different
symbols or levels so that all combinations of symbols occur with the same
frequency in each t columns.

Orthogonal arrays of power 2 are most popular (and their power is usually
omitted).

Having m two-level factors and N repetitions, the experiment can be
planned as an orthogonal array OA(N, 2m) (clearly, the number of
observations N has to be multiple of 4 because all possible combinations
of two symbols have to be repeated with the same frequency in every two
columns).

It can be shown that OA(N, 2N−1) is equivalent to the so-called Hadamard
matrix (N × N orthogonal matrix containing +1 a −1).
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Plackett-Burman

For some sample sizes, Plackett-Burman designs can be produced by
sequential shifts of generating vectors (WH, p. 376) by rows or columns:
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12 observations for 11 factors (WH)

Example:
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Exercise

Re-analyze the buns example using 12 observations chosen according to
Plackett-Burman design.

Try to answer these questions:

1 Is it possible to estimate all main effects?

2 Calculate the correlation matrix of the estimators and compare it to
the fractional factorial experiment.
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Summary

Advantages of nonregular design:

1 we can use less observations,

2 more flexibility for the choice of number of observations (especially
compared to factorial experiments 3N),

3 more flexibility for mixed designs (e.g., for mixed two- and three-level
factors).

An important property of nonregular designs are correlated estimators.
Therefore, both the evaluation of the proposed design and data analyses
are more involved. On the other way, it may be possible to estimate some
effects that are not estimable in a fractional factorial experiment.

WH (p. 427–433) recommend to find appropriate mode using stepwise
regression, information criteria or Bayesian approach.
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Week 8–9

Topic:

Response surface methodology.

Taguchi approach.

References:

Wu & Hamada (2011). Experiments: planning, analysis, and optimization.
Wiley.

Myers, Montgomery (2002) Response surface methodology, Wiley.
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Display of a factorial experiment 23
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Response surface / výpovědńı plocha

Fractional factorial experiments 2N−k were originally developed in
industrial applications and later applied also in agriculture.

“Response surface” methodology was developed in chemical industry
(Imperial Chemical Industries) and its aim is to find precise values of
important factors maximizing, e.g., amount of a product obtained by
chemical reaction.

The usual sequential algorithm consists of two steps:

1 try to ‘move close’ to optimal values (if we are ‘far away’),

2 determine the optimal values as precisely as possible (if we are
‘close’).
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Applications

Apart of searching for the optimal values of some factors, RSM can be
used to:

1 Construction of models for the expectation of a response in some
region: this allows to predict changes that will happen in case of
some (forced) change in the production process’ settings.

2 Searching for input conditions guaranteeing certain output
parameters: using models for more responses, results can be
summarized in a single graph (see the graph with contours for three
response variables on the following slide).
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Using models for concentration andyield, it is easy to plot the region where
Yield>80%, Cost<33, and Concentration∈ (58, 62).
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Response surface methodology (RSM)

Let us assume that a response is an unknown function of input factors:

Y = f (X1, . . . ,Xp) + ε

In practice, explanatory variables are standardized so that their values are
−α, −1, 0, 1, α (note that only values −1 a +1 are used in factorial
experiments).

The dependency of (expected value of) Y on input factors can be plotted
as a surface in Rp—this suggests the name response surface methodology
(RSM).
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In practice, polynomial models for the entire response surface are not
usable. On the other hand, local approximations using first or second order
polynomials usually work very well.

? Farther from the optimal values, one uses linear approximation:

Y = β0 +

p∑
i=1

βixi + ε

and we can apply a fractional factorial experiment 2N−k .

? Close to the optimal values, one applies quadratic approximation:

Y = β0 +

p∑
i=1

βixi +

p∑
i<j

βijxixj +

p∑
i=1

βiix
2
i + ε,

allowing the estimation of input factors’ optimal values (in this case,
fractional factorial experiments do not suffice).
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Response surface Response surface

Typical experimenting process

Wu, C. J., & Hamada, M. S. (2011). Experiments: planning, analysis, and
optimization. John Wiley & Sons.

Typical experimental process in practice:

1 screening: choice of possibly important factors (typically fractional
factorial experiment, Plackett-Burman design, etc.)

2 chosen (possibly important) factors are investigated in more detail:
1 first, we have to verify whether the used values of chosen factors are

‘close’ to optimal values (e.g., factorial experiment 2N with additional
central point),

2 in the neighborhood of optimal values, we use quadratic model (with
central composite design) as an approximation of the ‘response
surface’.
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Response surface Tests of nonlinearity

Tests of nonlinearity

Typically, we already have some data from a factorial experiment (that
have been collected when we were trying to identify important factors).

Let’s assume that we have nf observations from the factorial experiment
and that we additionally collect nc observations in the center (point 0): Ȳc

denotes the sample mean of central values and Ȳf the sample mean of
non-central values.

Under the quadratic model, we have E Ȳc = β0 a E Ȳf = β0 +
∑
βii . The

difference of sample means Ȳf − Ȳc estimates
∑
βii and linearity can be

tested using the test statistic:

Ȳf − Ȳc

Sc

√
n−1
f + n−1

c

H0∼ tnc−1,

where S2
c is the sample variance calculated from nc central measurements.
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Example: Wu & Hamada illustrate this method with an example, aimed
at maximizing the amoung of a product obtained from a chemical
reaction. The factors are time and temperature. The estimators obtained
from a factorial experiment 22 and 2 central (the regression model
EY = β0 + β1x1 + β2x2 + β12x1x2 + (β11 + β22)x2

1 ) are:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 135.875 2.571 52.851 0.012 *

x -28.191 1.818 -15.508 0.041 *

y 11.845 1.818 6.516 0.097 .

I(x^2 + y^2) -2.421 1.574 -1.538 0.367

x:y -3.812 1.818 -2.097 0.283

Residual standard error: 3.636 on 1 degrees of freedom

Multiple R-squared: 0.9966,Adjusted R-squared: 0.9828

F-statistic: 72.43 on 4 and 1 DF, p-value: 0.08788

Hence, linearity is not rejected.
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Steepest ascent search

If we would reject linearity, we could use quadratic regression model and
estimate the optimal values of input factors (this will be discussed few
minutes later).

If linearity is not rejected, we can estimate the direction in which we can
find better values of the input factors.

Assuming the linear model Y = β0 +
∑p

i=1 βixi + ε = β0 + x>β, the
steepest ascent direction is the gradient ∂(β0 + x>β)/∂x = β).

Hint: x∗ = arg maxx∈Rp x>β/(‖x‖‖β‖) = . . . ?

Instead of “steepest ascent”, one can also use “rectangular grid search”,
where the initial values of factors are chosen wide apart and the resolution
is sequentially refined in further steps (similarly as in the half-interval
search).
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In the chemical product example, we have β̂1 = −28.191 a β̂2 = 11.845
and the steepest ascent direction is, e.g., (−1,−β̂2/β̂1)>

.
= (−1, 0.420)>

time temp x y yield

1 2.600000 485.0000 -1.00000 -1.000000 143.56824

2 2.600000 515.0000 -1.00000 1.000000 174.88111

3 2.900000 485.0000 1.00000 -1.000000 94.80920

4 2.900000 515.0000 1.00000 1.000000 110.87455

5 2.750000 500.0000 0.00000 0.000000 133.30422

6 2.750000 500.0000 0.00000 0.000000 138.44603

7 2.327129 517.7668 -2.81914 1.184456 225.59176

8 1.904258 535.5337 -5.63828 2.368911 266.83921

9 1.481387 553.3005 -8.45742 3.553367 181.19676

10 1.058516 571.0673 -11.27656 4.737822 92.19063
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Response surface Tests of nonlinearity
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Response surface Tests of nonlinearity

Second order model / kvadratický model

Near the optimal values, one usually uses a second order model:

Ŷ (x) = β̂0 +

p∑
i=1

β̂ixi +

p∑
i<j

β̂ijxixj +

p∑
i=1

β̂iix
2
i = β̂0 + β̂>x + x>β̂ββx ,

where

β̂ββ =


β̂11 β̂12/2 . . . β̂1p/2

β̂12/2 β̂22 . . . β̂2p/2
...

...
...

β̂1p/2 β̂2p/2 . . . β̂pp


The parameter estimates are typically obtained from a central composite
design (centrálńı složený experiment).
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Response surface Central composite design

Central composite design / centrálńı složený experiment
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Central composite design

Central composite design consists of:

nf cube (or corner) points with xi = −1, 1 for i = 1, . . . , p. These
points correspond to a (fractional) factorial experiment 2p.

nc central points (xi = 0 for i = 1, . . . , p).

2p star (or axial) points defined by (0, . . . , xi , . . . , 0)>, where
xi = −α, α for i = 1, . . . , p.

The measurements can be collected at the same time or we can add
central and axial points sequentially (after rejecting linearity).
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Response surface Central composite design

Practical remarks (from WH)

For central composite design, we have to:

Choose the “factorial” part of the experiment (the number of distinct
design points nf + 1 + 2p should be greater than the number of
parameters (p + 1)(p + 2)/2. More detailed discussion and
recommendations for various dimensions are given in WH (Section
10.7, p. 485).

Choose α for axial points (usually between 1 and
√

p). Value 1 leads
to the “face center design” (with axial points on the surface of unit
cube),

√
p leads to a spherical experiment (with axial points on unit

sphere).

Choose the number of central points nc : WH recommend 3–5 for α
close to

√
p, 1–2 for α close to 1, and 2–4 for α somewhere in

between.
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Box-Hunter wire model of central composite design

[Barton R. R. (2012). Graphical methods for the design of experiments, Lecture Notes in

Statistics 143, Springer, page 167]
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Example: Central composite design for the amount of product obtained
by a chemical reaction.
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Response surface Central composite design

time temp x y yield

1 1.754258 520.5337 -1.000000 -1.000000 232.1077

2 1.754258 550.5337 -1.000000 1.000000 228.8667

3 2.054258 520.5337 1.000000 -1.000000 262.8238

4 2.054258 550.5337 1.000000 1.000000 287.7537

5 1.904258 535.5337 0.000000 0.000000 268.1906

6 1.904258 535.5337 0.000000 0.000000 269.6552

7 1.904258 535.5337 0.000000 0.000000 267.8820

8 1.904258 514.3205 0.000000 -1.414214 256.7880

9 1.904258 556.7469 0.000000 1.414214 267.4575

10 1.692126 535.5337 -1.414214 0.000000 227.5922

11 2.116390 535.5337 1.414214 0.000000 275.6034

These values suggest that this is a spherical central composite design.
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Response surface Central composite design

We have already noted that, close to the optimal values, we usually use
quadratic regression:

Ŷ (x) = β̂0 + β̂>x + x>β̂ββx .

The maximum of the functionŶ (x) can be found by differentiating:

∂Ŷ (x)

∂x
= β̂ + 2β̂ββx = 0,

defining the so-callled stationary point:

xs = −1

2
β̂ββ
−1
β̂.
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Response surface Central composite design

The character of the fitted quadratic surface (in the neighborhood of the
stationary point xs) can be desribed using an alternative system of
coordinates.

Let the columns of the matrix P be the standardized eigenvectors of β̂ββ.
Then

P>β̂ββP = ΛΛΛ,

where ΛΛΛ is a diagonal matrix of eigenvalues.

In a new coordinate system (centered in xs with rotation determined by
columns of the matrix P, i.e., v = P>(x − xs) = P>z) we have

Ŷ = · · · = Ŷs +
∑

λiv
2
i .

The type of the quadratic surface in the neighborhood of xs can be
classified according to the eigenvalues.
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Response surface Central composite design

Example: Investigation of the stationary point.

time temp x y yield

1 1.754258 520.5337 -1.000000 -1.000000 232.1077

2 1.754258 550.5337 -1.000000 1.000000 228.8667

3 2.054258 520.5337 1.000000 -1.000000 262.8238

4 2.054258 550.5337 1.000000 1.000000 287.7537

5 1.904258 535.5337 0.000000 0.000000 268.1906

6 1.904258 535.5337 0.000000 0.000000 269.6552

7 1.904258 535.5337 0.000000 0.000000 267.8820

8 1.904258 514.3205 0.000000 -1.414214 256.7880

9 1.904258 556.7469 0.000000 1.414214 267.4575

10 1.692126 535.5337 -1.414214 0.000000 227.5922

11 2.116390 535.5337 1.414214 0.000000 275.6034
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Response surface Central composite design

> Beta

[,1] [,2]

[1,] -9.482132 3.52136

[2,] 3.521360 -4.21964

> eigen(Beta)

$values

[1] -2.455044 -11.246728

$vectors

[,1] [,2]

[1,] -0.4480089 -0.8940291

[2,] -0.8940291 0.4480089
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Notes

Other possible designs (apart of the clearly most popular central composite
design) are:

Box-Behnken design: e.g., for three factors with three levels, it leads to
observations in central point and “edge centers”.

Equiradial design: regular polygon (pentagram, hexagon, heptagon, . . . )
with central point.

Small composite experiment: based on a fractional factorial experiment.

Koshal design: investigates factors by one (or by pairs if we want to
estimate some interaction).

Hybrid design: modification of a central composite design satisfying
certain moment (or other) conditions.
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Design comparison

In practice, we should try to choose a good design that will provide reliable
results under various circumstances. Designs, that are optimal only under
ideal conditions (that may not be satisfied in reality), can not be
recommended.

Central composite or Box-Behnken designs are recommended for RSM
(quadratic model). Hybrid design can be used if we have to reduce the
number of observations.

In special cases that do not allow application of standard approach, we can
generate the experiment design numerically (using computer). In this
situation, alphabetic optimality criteria (D, A, G, . . . ) can be used to
assess the quality of the generated design.

Z. Hlávka (CU Prague) NMST436 263 / 349

Response surface Central composite design

Computer algorithms

Using computer, it is not difficult to compare quality of standard designs
in given situation.

In some situations, computer can be used to design the experiment:

1 Restriction on values of explanatory variables (standard models
assume cuboidal or spherical regions).

2 Nonlinear or high order polynomial model.

3 Limited number of observations: typically, computer can choose the
best little composite or hybrid design.

4 Restrictions on block size that do not allow application of standard
designs.
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Taguchi design

Taguchi design (robust parameter design)

Taguchi classified the explanatory variables (called parameters) as control
variables (kontrolované proměnné) and noise variables (nekontrolované
proměnné).

The idea of Taguchi approach is robust parameter design guaranteeing
small sensitivity to possible changes in the noise variables.

robust parameter design = process robustness study

The influence of noise variables can be evaluated because the noise
variables can be often controlled in an experiment (the control variables
change into noise variables in the production phase).
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Example

Example:

During baking, temperature can be both controlled and noise variable.

The controlled variable is the nominal temperature set on the oven.

Noise variable could correspond to random deviations from the nominal
temperature (due, e.g., to the thermoregulator switching on and off or to
some other unpredictable effects)
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Taguchi approach

Taguchi suggested to investigate all combinations of values of controlled
and noise variables.

For example, a factorial experiment 22 for controlled variables is displayed
as the inner array on the following slide. For each combination of values of
controlled variables, we use factorial experiment 22 to investigate all
combinations of values of noise variables (these are displayed as the outer
arrays).

Observations in each outer array are summarized into a suitable descriptive
statistics (comprising both mean and variance of these observations), the
so-called signal-to-noise ratio (SNR) that is then used as the response.
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The essence of Taguchi approach is utilisation of noise variables jointly
with minimization of variance.

In practice, one can:

1 either set values of controlled variables and carry out the experiment
in the corresponding outer array,

2 or set the values of noise variables and, for these values, carry out the
experiment in the inner array.

Both possible approaches can be described as split-plot design (that was
not used by Taguchi). The second approach is usually recommended in
practice.

In past, Taguchi design was criticized but these methods are popular (and
useful) in practice.
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Protocol

Week 9

Topic:

Consultation.

Design.

Protocol.

Example (ACCEPT).

References: Bailey (2008). Design of Comparative Experiments.
Cambridge University Press.
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Protocol

The ideal course of a designed experiment

1 Consultation (investigator & statistician).

2 Experiment design.

3 Data collection.

4 Data checks and corrections.

5 Data analysis.

6 Interpretation.
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Protocol

Consultation

Ideally, the investigator comes ahead of time, without sufficient time left
for planning. In such case, the statistician should 1/ ask many questions,
2/ take time for thinking, 3/ compare several possible designs. In more
complicated cases, one should consult the problem with other statisticians
(specialists in respective fields).

In practice, the following two situations are common:

1 The investigator arrives one day before the start of the experiment.
Then, his only aim is to check the field experiment was consulted
with a statistican on a form and it would be pointless to pay much
attention to his problems.

2 More often, the investigator has no idea that some time is needed for
designing an experiment. Then, you should try to understand at least
the main points of the experiment and propose as simple design as
possible. You should stress that this may not be the optimal design.
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Ideal and reality (Bailey, section 1.2)

Some tension between the client and statistican may arise mainly in these
points:

1 clear definition of the aim of the experiment,

2 number of observations (repetitions): power × money,

3 blocks?

4 restrictions (financial, ethical, legal, . . . ),

5 choice of treatments (is placebo necessary?)

6 what are “experimental units” (e.g., field or part of field) for
application of treatments?
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Protocol

Protocol is written by statistician jointly with the investigator:

1 What is the aim of the experiment? I+s
2 Which treatments are to be compared? I
3 Methods: B
4 What exactly are experimental units?
5 Number of observations on each experimental unit.
6 Which measurements will be recorded. Description of data checks.
7 Applied experiment design.
8 Justification of the proposed design (number of observations, blocks,

assumptions).
9 Randomization.

10 Plan of the experiment (which ’coded’ treatments will be used at
every experimental unit). This part of the protocol may be potentially
hidden from those who will carry out the experiment,

11 Description of statistical analysis.
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Protocol

Example: project ACCEPT

Example:

Project ACCEPT: A Cluster-Randomized Trial of Community Mobilization,
Mobile HIV Testing, Post-Test Support Services, and Real-Time
Performance Feedback

Protocol can be downloaded at http://www.cbvct.med.ucla.edu/
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Computer experiments

Week 9–10

Topic:

Design of computer experiments (uniform design).

References: Fang & Wang (1993). Number-theoretic methods in statistics.
CRC Press.

Z. Hlávka (CU Prague) NMST436 277 / 349

Computer experiments

Space-filling design

Today’s topic is related to:

calculation of expectation (over noise variables),

numerical integration,

computer experiments.

Often, we want to calculate the expected value of some characteristics,
e.g., Eh(X ). For example, in order to estimate the expected output (of
some industrial process), we can fix the optimal value of controlled
variables (identified, e.g., by RSM) and average (integrate) the output
over possible values of the noise variables.

We have to measure (or simulate) the output on a grid of values in the
p-dimensional region of interest. In the following, we discuss some classical
methods for choosing such “grid” (space-filling designs).
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Design of computer experiments

Increasingly often, complex analytical problems are solved by sophisticated
computer simulations.

Let us assume that behavior of certain device (or process) depends on
random vector X = (X1, . . . ,Xs)>; FW94 describe an example of electric
circuit depending on certain characteristics that may (randomly) vary.
Other examples: artificial creatures (in computer games), guided missiles.

Usually, one develops appropriate mathematical model (e.g., a system of
differential equations) and implements the resulting computer simulation.
Note that, in this setup, the result with given starting conditions is usually
nonrandom and, therefore, it is not reasonable to run the same simulation
more than once.

Space-filling design are used to choose the set of input values for the
computer simulation so that the estimate is as precise as possible.

Z. Hlávka (CU Prague) NMST436 279 / 349

Computer experiments

Expected value estimation

A simple estimate, based on a sample mean of simulated values h(X), can
be obtained by Monte Carlo:

1 generate vectors Xi from the distribution of X ,

2 Eh(x) can be estimated by the sample mean h̄ =
∑n

i=1 h(Xi )/n.

Remark 1: similar methods can be applied towards numeric integration
(likelihood function for mixed models) or, e.g., in forest inventory
(estimate of mean or total in more dimensional space).

Remark 2: Monte Carlo estimator is consistent but it is not
efficient—therefore, some authors proposed alternative methods of
generating Xi leading to estimators of h̄ with smaller variance (these
methods are usually trying to generate the values Xi more “uniformly”).
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Integration in rectangle

Let C s denote the s-dimensional unit rectangle [0, 1]s and consider the
integral

I (f ) =

∫
C s

f (x)d(x).

There are interesting results concerning numerical evaluation of I (f ).

Theorem: (Koksma, Hlawka) Let f have bounded variation V (f ) on C s .
Then, for any xi ∈ [0, 1)s , i = 1, . . . , n,∣∣∣∣∣

∫
C s

f (x)dx − 1

n

n∑
i=1

f (xi )

∣∣∣∣∣ ≤ V (f )D∗N(x1, . . . , xn),

where D∗N(x1, . . . , xn) denotes the so-called star-discrepancy of the set
{x1, . . . , xn}.
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Computer experiments

Integration in rectangle

Proof: this was proved by [J. F. Koksma (1942–43) Een elgemeene stelling
uit de theorie de gelijkmatige Verdeeling modulo 1, Math. B (Zutphen),
11, 7–11] for s = 1 and [E. Hlawka (1961) Funktionen vom beschränkter
Variation in der Theorie Gleichverteilung, Ann. Mat. pure Appl., 54,
325–333] for s > 1.

Application: better approximation can be obtained by choosing a set of
points with smaller discrepancy.

For example [Hua, Kang: Applications of Number Theory to Numerical
Analysis, Springer, 1981] show (on page 110) that:∣∣∣∣∣∣

∫
C s

f (x)dx − 1

n

m−1∑
i1=0

· · ·
m−1∑
is=0

f (i1/m, . . . , is/m)

∣∣∣∣∣∣ ≤ V (f )2sn−1/s ,

where n = ms is the number of quadrature points (on a regular grid).
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Monte Carlo / simple random sampling

Assuming that the random vector X has uniform distribution on C s , we
obtain:

Ef (X ) =

∫
C s

f (x)dx = I (f ).

An estimator of the integral I (f ) can be obtained by generating random
sample X1, . . . ,Xn and by calculating the sample mean

I (f , n) =
1

n

n∑
i=1

f (Xi ).

For s > 2, CLT implies that the Monte Carlo estimator has a better rate of
convergence (OP(n−1/2)) than the quadrature rule on the previous slide
(although the rate O(n−1/s) can be improved for ‘smoother’ functions).
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Rate of convergence

The rate of convergence of the Monte Carlo estimator is OP(n−1/2),
where P denotes convergence in probability. Is it possible to obtain
another type of convergence?

Law of iterated logarithm implies that:

lim
n→∞

sup

√
n

2 log(log n)

∣∣∣∣∣
∫
C s

f (x)d(x)− 1

n

n∑
i=1

f (Xi )

∣∣∣∣∣ = σ2(f )

with probability one (i.e. along almost all sequences xi ).

Therefore, the rate of convergence cannot be worse than
O(
√

log(log n)/n) (almost surely).
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Computer experiments Latin hypercube sampling

Latin hypercube sampling (LHS) / latinské hyperkostky

Latin hypercube sampling is similar to latin squares. The aim is to
guarantee that the final sample Xi covers uniformly all marginal
distributions of the random vector X = (X1, . . . ,Xs)>.

Let’s assume that F (x) =
∏s

i=1 Fk(xk) is the distribution function of X.

One possible LHS algorithm is:

1 Generate matrix P (n × s) such that its columns are independent
random permutations of {0, 1, . . . , n − 1}.

2 Generate matrix U (n × s) containing iid random variables from
U(0, 1) distribution (independent of P).

3 Observations {xj = (xj1, . . . , xjs)>, j = 1, . . . , n}, where

xjk = F−1
k {(pjk + ujk)/n}

form a sample from the distribution F (x) by LHS.
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Computer experiments Latin hypercube sampling

Example: LHS for s = 2 and n = 6.
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Properties of LHS

Estimators h̄ obtained by LHS are unbiased and, under some assumptions,
have small variance (see FW94, p. 239–241). Further variance reduction
can be achieved, e.g., by using “orthogonal arrays LHS”.

According to FW94, p. 241, variances of h̄ obtained from different samples
Xi are:

SRS: 1
n Var(h(X)),

LHS: 1
n Var(h(X))− c

n + O(n−1),

OALHS: 1
n Var(h(X))− d

n + O(n−3/2).

IMPORTANT QUESTION: Can we obtain better approximation by using
sequences with smaller discrepancy?
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Uniform random design (URD)

Fang & Zhu (1993) proposed the glp (good lattice points) method. They
proposed the following algorithm (for generating uniformly distributed
design points within unit cube):

1 Generate glp set {ak ∈ [0, 1]s , k = 1, . . . , n} using the generating
vector (n; h1, . . . hs).

2 Generate n random vectors ui ∈ Rs from the uniform distribution on
(−1, 1)s ,

3 The URD sample is {xk , k = 1, . . . , n}, where

xk = ak + uk/2n.

FW94 [Theorem 5.3–5.4] show that the estimator h̄n is asymptotically
unbiased (|E h̄n − E (h(X))| = O(n−1 logs n)) and
Var(h̄n) = O(n−2 log2s n).
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Good lattice points (glp)

Definition: Assume that P = {xk , k = 1, . . . , n} is a set of points on
C s = [0, 1]s , N(γ,P) is the number of points such that xk ≤ γ, and
v([0, γ]) denotes the volume of the rectangle [0, γ]. Then

D(n,P) = sup
γ∈C s

∣∣∣∣N(γ,P)

n
− v([0, γ])

∣∣∣∣
is the discrepancy of the set P.

Remark 1: an uniformly distributed set of points (on C s) should have
small discrepancy.

Remark 2: D(n,P) is actually Kolmogorov-Smirnow distance for
s-dimensional uniform distribution.
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Good lattice points (glp)

A set with small discrepancy on C s can be found by glp.

Definition: Let (n; h1, . . . , hs) be a vector of natural numbers such that
1 ≤ hi < n, hi 6= hj (i 6= j), s < n and the higherst common divisor
(n, hi ) = 1, i = 1, . . . , s. Let{

qki = khi (mod n)
xki = (2qki − 1)/2n,

k = 1, . . . , n, i = 1, . . . , s,

where the multiplication modulo n is defined so that 1 ≤ qki ≤ n. Then,
Pn = {xk = (xk1, . . . , xks)>, k = 1, . . . , n} is the lattice point set (množina
śı̌tových bodů) of the generating vector (n; h1, . . . , hs). If Pn has minimal
discrepancy (among all possible generating vectors), it is the glp set.
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Good lattice points (glp)

If {x} denotes the fractional part of x , then xki can be easily calculated as
follows:

xki =

{
2khi − 1

2n

}
.

Theorem: For each prime number p, there exists a vector of natural
number hp = (h1, . . . , hs) such that the lattice point set of the generating
vector (p; h1, . . . , hs) has discrepancy D(p) < c(s)p−1(log p)s .

Proof: see, e.g., [Hlawka, E. (1962). Zur angenäherten berechnung
mehrfacher integrale. Monatshefte für Mathematik, 66(2), 140–151].
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Good lattice points (glp)

Tables of generating vectors can be found, e.g., in FW94[Appendix A]
both for large n (suitable for numerical integration) and small n
(convenient for computer design).

[Fang & Wang (1993). Number-theoretic methods in statistics. CRC
Press] further discuss:

other discrepancy measures,

further methods for constructing small discrepancy point sets on C s ,

methods for constructing small discrepancy sets on a simplex, unit
ball, or unit sphere,

multivariate normality or sphericity tests [Henze, Hlávka, Meintanis
(2014) Testing for spherical symmetry via the empirical characteristic
function, Statistics, 48(6), 1282–1296].
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Generating vectors for small n and s ∈ {2, 3, 4}.
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Sample R code

n=29 # nr.obs

h1=1

h2=23 # generating vector of glp set

k=1:n

fract=function(x){x-floor(x)}

xk1=fract((2*k*h1-1)/(2*n))

xk2=fract((2*k*h2-1)/(2*n))
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Example: forest inventory

Week 10

Topic:

Forest inventory: one-phase sampling scheme.

Optimal sampling schemes.

References: Mandallaz, D. (2007). Sampling techniques for forest
inventories. CRC Press.
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Sampling finite populations

Assuming a particular population P of N individuals, we are interested in

p response variables Y
(m)
i , m = 1, . . . , p, i = 1, . . . ,N. Usually, we want

to estimate population totals, means and variances:

Y (m) =
N∑
i=1

Y
(m)
i

Y
(m)

=
1

N

N∑
i=1

Y
(m)
i

S2

Y
(m) =

1

N − 1

N∑
i=1

(Y
(m)
i − Y

(m)
)2.

Often, we need to estimate also ratios Y (m)/Y (l), covariances, and
correlations. In practice, N is very large and one can investigate only a
subset s ⊂ P. Apart of calculating the estimates, the problem is also the
choice of s.
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Survey sampling: Horvitz-Thompson estimator

Defining Ii = I (i ∈ s), we have that πi = P(Ii = 1) is the probability that
individual i will be included in the sample. Interestingly,

πi = E (I1) =
∑
s3i

p(s),

where p(s) denotes the probability of selecting sample s.

The famous Horvitz-Thompson estimator

Ŷ (m)
π =

∑
i∈s

Y
(m)
i

πi
=
∑
i∈P

IiY
(m)
i

πi

is unbiased if πi > 0, i = 1, . . . ,N. This is a so-called design-based

approach (the response variables Y
(m)
i are fixed). More information:

Survey Sampling (NMST 438).
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Forest inventory: sampling schemes

According to Mandallaz (2008, Chapter 4), forest inventory is usually split
into two phases:

first phase: auxilliary information (maps, aerial or satellite photographs),
very large sample size.

second phase: terrestrial information from a sub-sample of the first phase
sample:

first-stage: approximation to response variables (cheap
measurement),

second-stage: exact response.

The trees can be chosen by simple random sampling (this is not used in
practice) or by cluster random sampling (the information is gathered in
some fixed-shape regions with randomly chosen origins.)
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Sampling (inclusion probabilities and local density)

Let B ⊆ R2 denote some region: drawing a random point X uniformly in
F , the probability of X falling within B is λ(B ∩ F )/λ(F ). Trees are
selected if they are within the circle Kr (X ) (with radius r and center X ).
Let Ii denote the indicator of i-the tree being within the (random) circle
Kr (X ). Obviously

Ii = 1 ⇔ X ∈ Kr (ui )

and the inclusion probabilities are

πi = P(Ii (X ) = 1) = P(X ∈ Kr (ui )) =
λ(Kr (ui ) ∩ F )

λ(F )
,

πij = λ(Kr (ui ) ∩ Kr (uj) ∩ F )/λ(F ).

Finally, the (observed) local density is Y (X ) = 1
λ(F )

∑N
i=1

Ii (X )Yi

πi
.
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Local density

The density of X is 1/λ(F ) and the local density

Y (X ) =
1

λ(F )

N∑
i=1

Ii (X )Yi

πi

thus satisfies

EY (X ) =
1

λ(F )

∫
F

Y (x)dx =
1

λ(F )

∫
F

N∑
i=1

Ii (x)Yi

λ(Kr (ui ) ∩ F )
dx

=
1

λ(F )

N∑
i=1

∫
F Ii (x)dxYi

λ(Kr (ui ) ∩ F )
=

1

λ(F )

N∑
i=1

Yi = Y F .

In other words, we need to estimate the expectation EY (X ) that can also
be represented as an integral of Y (x) over the forest area F .
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One-phase (terrestrial) sampling schemes

Let F ⊂ R2 denote the forest area. We are interested in a well-defined
population P of N trees lying in F (the tree coordinates are denoted by
ui ∈ F ⊂ R2, i = 1, . . . ,N).

Again, the error-free responses are Y
(m)
i . Given any set G ⊆ F , the

objective is to estimate spatial means (densities), totals or ratios:

Y
(m)
G =

1

λ(G )

∑
i∈G

Y
(m)
i ,

Y
(m)
G =

∑
i∈G

Y
(m)
i ,

Rl ,m =
Y

(l)
G

Y
(m)
G

=
Y

(l)
G

Y
(m)
G

,

where λ(G ) denotes the surface area of the set G .
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Assume that n points (circle centers Xi ) are drawn uniformly and
independently in the forest area G . The estimator Ŷ = 1

n

∑n
i=1 Y (Xi ) has

the design based variance:

1

nλ2(G )

 N∑
i=1

Y 2
i (1− πi )
πi

+
N∑
i 6=j

YiYj(πij − πiπj)
πiπj


=

1

nλ(G )

∫
G
{Y (x)− Y }2dx

leading to

V̂ar(Ŷ ) =
1

n(n − 1)

n∑
i=1

{Y (Xi )− Ŷ }2.

For details see Mandallaz (2007).
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National forest inventory (NFI = NIL) in Czechia

http://nil.uhul.cz/uvodni-informace/projekt-nil

Z. Hlávka (CU Prague) NMST436 305 / 349

Example: forest inventory

Optimal sampling schemes: anticipated variance

Mandallaz, p. 155: Meaningful optimality criteria must rely somehow on a
super-population model. The actual population to be surveyed is viewed
as one realization of many similar ones. Design-based variance, i.e. under
hypothetical repetition of the samples, is fixed for the given realization at
hand. The average of that variance under the super-population model is
called the anticipated variance. Optimal sampling schemes are those which
minimize the anticipated variance for given costs or, conversely, minimize
the costs for a given anticipated variance. This concept has been used
successfully for many standard problems when sampling finite populations.

In other words: we should consider a suitable super-population model
(e.g., local Poisson model for location of trees) and minimize the
anticipated variance (of chosen sampling scheme) either theoretically or by
computer simulation.
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Anticipated variance under the local Poisson model

Theorem:[Mandallaz 2007, Theorem 9.2.1, p. 158] Assuming local
Poisson model with negligible boundary effects, the anticipated variance
under simple random sampling of the one-p[hase one-stage estimator Ŷ is
approximately given by

EωV (Ŷ ) = .

The anticipated variance under cluster random sampling is given by

EωV (Ŷ ) =

where
(1 + θ1)β2

1 =

is the inflation factor for cluster-sampling and M1,k(x) =
∑M

l=1 IFk
(xl) is

the number of points in a cluster with its origin at x falling into the
Poisson stratum F1,k .
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Regression experiments

Week 11–12

Topic:

Design of regression experiments:

design matrix / matice experimentu,
confidence ellipsoids,
optimality criteria / kritéria optimality,
software (briefly).

References: Pázman et al (1986) Riešené situácie z navrhovania
experimentov, ALFA, Bratislava.
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Simple linear regression

Example:

Yi = β0 + β1xi + εi , εi jsou iid,Eεi = 0,Var εi = σ2.

We know that Var β̂ = σ2(X>X )−1 = . . . and it follows that

β̂0 and β̂1 are correlated (the correlation can be ‘removed’ by
centering),

Var β̂1 =
σ2

n

n∑
(xi − x̄n)2

.

In order to obtain more precise estimator β̂1, we have to increase the value∑
(xi − x̄n)2/n (assuming that xi can be chosen in the interval [a, b], the

optimal design is given by taking one half of measurements at the point a
and the other half at b).
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Example: The weight of three objects (θ1, θ2, θ3) should be determined
as precisely as possible (θ1, θ2, θ3). The objects can be weighted both by
one-by-one or in groups.

We assume that:

the laboratory weighing scale is not calibrated and all measurements
are influenced by a systematic bias θ4.

all remaining effects are considered to be random (with constant
variance).

Individual measurements can be written as:

yi = {F}i1θ1 + {F}i2θ2 + {F}i3θ3 + θ4 + εi ,

where Eεi = 0 and Var εi = σ2.
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The first design is based on these measurements:

y1 = θ4 + ε1

y2 = θ1 + θ4 + ε2

y3 = θ2 + θ4 + ε3

y4 = θ3 + θ4 + ε4

The design matrix is:

F =


0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1

 , F−1 =


−1 1 0 0
−1 0 1 0
−1 0 0 1

1 0 0 0

 .

Normal equations imply that θ̂ = F−1y and, therefore, Var θ̂i = 2σ2 for
i = 1, 2, 3.
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The second design uses these four measurements:

y1 = θ1 + θ2 + θ3 + θ4 + ε1

y2 = θ1 + θ4 + ε2

y3 = θ2 + θ4 + ε3

y4 = θ3 + θ4 + ε4

The design matrix is:

F =


1 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1

 , F−1 =
1

2


1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
−1 1 1 1

 .

We obtain θ̂1 = (y1 + y2 − y3 − y4)/2, . . . , θ̂3 = (y1 − y2 − y3 + y4)/2 and
Var θ̂i = σ2 for i = 1, 2, 3.
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Linear model (more formally)

Let us assume that the output variable y(x) in the experiment x ∈ H
(where H is the set of all possible design points) satisfies:

y(x) = θ1f1(x) + . . . θmfm(x) + ε(x),

i.e.,
y(x) = θ>f (x) + ε(x),

where Eε(x) = 0 and Var ε(x) = σ2(x). We assume that variances σ2(x)
are known or that σ2(x) = kw(x), where w(x) is known.

Let N denote the prescribed (maximum possible) number of trials. Then,
the experiment design with prescribed size N is each N-tuplet of points
x (1), . . . , x (N) from the set H. The design points can be used repeatedly.
We assume that trials are repeated independently (this also implies that
the order of trials does not matter).
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Information matrix / informačńı matice

If x (1), . . . , x (N) is experimental design with size N, then we have for the
vector of measurements y = (y(x (1)), . . . , y(x (N)))> that

y = Fθ + ε,

where {F}ij = fj(x (i)), for i = 1, . . . ,N and j = 1, . . . ,m.

The information matrix is

M = F>Σ−1F =
N∑
i=1

f (x (i))f >(x (i))σ−2(x (i)),

where Σ2 is a diagonal matrix with σ2(x (i)) on the diagonal.

Clearly, the matrix M−1 (or h>M−h) is the covariance matrix of the
random vector θ̂ (or the estimator of the estimable function h>θ). It
follows that the information matrix M can be used for comparing
alternative experimantal designs.
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Normalized design measure and information matrix

Let x (1), . . . , x (N) be an experimental design with size N. The normalized
design measure ξ of x (1), . . . , x (N) is defined as:

ξ(x) = N(x)/N; (x ∈ H),

where N(x) denotes the number of repetitions of x in the design
x (1), . . . , x (N).

Obviously, M = NM(ξ), where

M(ξ) =
∑
x∈H

f (x)f >(x)σ−2(x)ξ(x)

is the so-called normalized information matrix.
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Normalized design measure and information matrix

For a normalized design measure ξ (or, more concisely design ξ) it holds:

1 ξ(x) ≥ 0 for x ∈ H,

2
∑

x∈H ξ(x) = 1,

3 the set {x ; x ∈ H, ξ(x) > 0} is finite.

In the following, each function ξ defined on H satisfying the above three
conditions will be considered as a normalized design measure.

The interpretation of the design ξ is that measurements are realized only
in trials with ξ(x) > 0 and the number ξ(x) is proportional to the number
of independent repetitions of x .
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Some remarks

Remark 1: For most methods, it is important to assume that the set H is
finite (e.g., the weighing example) or that the set {f (x) : x ∈ H} is a
bounded and closed subset of Rm (e.g., the simple linear regression
example).

Remark 2: Sometimes, we have to fulfill restrictions on total cost C
(instead of a the maximal number of observations N). Denoting by c(x)
the price of one run of the experiment with x , we define the design
measure:

ξ(x) = N(x)c(x)/N; (x ∈ H),

and the corresponding information matrix:

Mc(ξ) =
∑
x∈H

f (x)f >(x)σ−2(x)c−1(x)ξ(x).

Formally, this can be achieved by replacing the variance σ2(x) by
σ2(x)c(x).
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Comparison of regression designs

Two designs ξ and η are equivalent if M(ξ) = M(η), i.e., if
Var ξ(h>θ̂) = Varη(h>θ̂), ∀h ∈ Rm.

Design ξ is uniformly better than design η if

Var ξ(h>θ̂) ≤ Varη(h>θ̂), ∀h ∈ Rm.

This holds if and only the matrix M(ξ)−M(η) is positive semidefinite
(u>[M(ξ)−M(η)]u ≥ 0, ∀u ∈ Rm). If a parameter h>θ is not estimable
with design ξ, we define Var ξ(h>θ̂) =∞.

The uniformly best design ξ does not generally exist. Instead, one usually
maximizes suitable optimality criteria.
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Optimality criteria

Optimality criteria are usually defined as a real function Φ defined on the
set of all information matrices. The function Φ is chosen so that better
design ξ leads to smaller values of Φ{M(ξ)}.

We will say that a design µ is Φ-optimal if Φ{M(µ)} = minξ∈Ξ Φ{M(ξ)}.

Optimality criterial can be divided to total and partial (this depends on
whether we estimate all parameters or only their subset; eventually only
some linear combinations).

Further, optimality criteria can be divided to minimax and average
(assuming full rank of M, average criteria have gradient simplifying the
search for the Φ-optimal design).
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Interpretation

The interpretation of most common optimality criteria (D-, E-, A-) is
related to confidence ellipsoids.

Assuming that the estimator has θ̂ (approximately) normal distribution
N(θ,M−1(ξ)/n) then

√
nM1/2(ξ)(θ̂ − θ) ∼ N(0, Im)

implying that
n(θ̂ − θ)>M(ξ)(θ̂ − θ) ∼ χ2

m.

Therefore,

P

(
(θ − θ̂)>M(ξ)(θ − θ̂) ≤ χ2

m(1− α)

n

)
= 1− α

defines a 1− α confidence ellipsoid for the parameter θ.
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Confidence ellipsoid

The confidence ellipsoid can be described as:

1 the center is θ̂,

2 the size is given by the constant χ2
m(1− α)/n,

3 the shape depends on the matrix M(ξ): main half-axes of length√
χ2
m(1− α)/(nλi ) are in the direction of eigenvectors γi of M(ξ).
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D-optimality and volume of the confidence ellipsoid

The volume V (M(ξ), d) of the confidence ellipsoid {θ : θ>M(ξ)θ ≤ d2}
can be found by using the spectral decomposition M(ξ) = ΓΛΓ> and the
transformation z = Λ1/2Γ>θ:

V (M(ξ), d) =

∫
{θ:θ>M(ξ)θ≤d2}

1dθ =

∫
{z:z>z≤d2}

1|ΓΛ−1/2|dz

= V (Im, d)|ΓΛ−1/2| = V (Im, d)
√
|ΓΛ−1/2||Λ−1/2Γ>|

= V (Im, d)|M−1(ξ)|1/2 = V (Im, d)
m∏
i=1

λ
−1/2
i ,

where V (Im, d) denotes the volume of m-dimensional unit ball.

Hence, the volume of a confidence ellipsoid is inversely proportion to the
square root of determinant of the matrix M(ξ). The so-called D-optimality
corresponds to the minimization of − log |M(ξ)|.
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E-optimality

D-optimality can lead to long ellipsoids with small volume (and some
estimators may have large variance). Therefore, other criteria try to
minimize some measure of overall elongation.

The length of the longest half-axis of the confidence ellipsoid is

max
‖h‖=1

{χ2
m(1− α)n−1h>M−1(ξ)h}1/2,

and its minimization (i.e., minimization of max‖h‖=1 h>M−1(ξ)h) leads to
the E-optimal design.

Obviously

max
‖h‖=1

h>M−1(ξ)h = · · · = max
i
λ−1
i = (minλi )

−1,

where λi are the eigenvalues of the information matrix M(ξ).
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A-optimality

Clearly, projections of the confidence ellipsoid into coordinate axes are
proportional to the (marginal) standard deviations θ̂i .

The criterion of A-optimality,
∑

(M−1(ξ))ii , leads to the minimization of
the sum of marginal variances of θ̂i . Geometrically, this corresponds to the
minimization of the diagonal of a rectangle circumscribed to the
confidence ellipsoid.

The criterion of A-optimality can be easily rewritten in terms of
eigenvalues of M(ξ):∑

Var θ̂i = tr Var(θ̂) =
1

n
tr{M−1(ξ)}

=
1

n

∑
λ−1
i .
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G-optimality

G-optimal design minimizes the criterion

sup
x∈H

f >(x)M−1(ξ)f (x),

that can be interpreted as the maximal width of a confidence band for
y(x) because

Var ŷ(x) = Var f >(x)θ̂ = Var f >(x)M−1(ξ)f (x)/n.

Remark: D-optimality is equivalent to G-optimality in a homoscedastic
setup (P86, Proposition IV.6, str. 88).

Overview of other optimality criteria: see, e.g., P86, p. 150–151.
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Optimization methods

Most popular approaches to optimization are:

1 Numeric optimization (using gradient).

2 Orthogonal designs.

3 A catalogue of optimal designs.

4 Elfving’s method (based on some interpretations related to a point in
which certain line intersects the surface of a certain m-dimensional
polyhedron).

5 Exclusion of under-informative observations (followed by application
of another optimization method).
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Assessment of the degree of optimality

A direct comparison of the value Φ{M(ξ)} to the optimal design
Φ{M(ξ∗)} is not possible. Assuming the existence of the gradient
∇Φ{M(µ)}, a convenient measure of quality (distance from the optimal
design) can be defined as

d(µ) =
m∑

i ,j=1

{∇Φ{M(µ)}}ij{M(µ)}ij −min
x
σ−2(x)f >(x)∇Φ{M(µ)}f (x).

It holds that:

d(µ) ≥ 0 for all designs µ,

d(µ) = 0 if and only if µ is Φ-optimal,

|Φ{M(µ)} −minξ Φ{M(ξ)}| ≤ d(µ).

Proof: Proposition IV.27 and IV.28 in Pázman (1986, Foundations).
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Assessment of the degree of optimality

Example: For D-optimality, we have Φ{M(µ)} = − log |M(µ)| and
∇Φ{M(µ)} = −M−1(µ).

d(µ) = max
x
σ−2(x)f >(x)M−1(µ)f (x)−m

The design µ is approximately D-optimal if

σ−2(x)f >(x)M−1(µ)f (x) ≤ m + ε

for each x .
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Linear dependency on factors

Let us assume the first-order regression model

E [Y (t)] = θ0 + θ1t1 + . . . θmtm−1

where t = (t1, . . . , tm−1)> ∈ X ⊂ Rm−1 and σ2(t) ≡ σ2. [P86]: (Such
model) . . . is often used when there is no theoretical knowledge of the
observed object, and the model is the simplest approximation to reality.

Denote by ΞM a fixed size (N) design such that all explanatory variables
are centred (

∑
t∈X tiξ(t) = 0) and normed (

∑
t∈X t2

i ξ(t) = 1).

Theorem: Suppose that X is a compact subset of Rm−1 and that there is
a design ξ∗ ∈ ΞM having a diagonal information matrix. Then
1 = Var ξ∗ θ̂i ≤ Var ξ θ̂i and the design ξ∗ is D-optimal (i.e., also
G-optimal) and A-optimal within the set ΞM .

Proof: P86, Proposition VI.1, p. 171.
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Elfving’s method

Elfving’s method minimizes the variance of the estimator h>θ̂ (the
so-called d-optimality) and it proceeds as follows:

We define the set

T =

{
f (x)

σ(x)
: x ∈ H

}⋃{
− f (x)

σ(x)
: x ∈ H

}
and its convex hull S .

Let p denote a line passing through the origin and parallel to the vector h.
Let P denote the intersection of the line p and the border of S . The point
P can be written as a convex combination of points from the set T ,
i.e. P =

∑n
i=1 λi f (x (i)), defining the d-optimal design ξ∗(x (i)) = |λi |.
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Example: Motor thrust during acceleration is investigated on a test track.
The movement of the car on the test track can be approximated by the
function

s(x) = vx + zx2/2,

where s(x) is the position in time x , v is the speed in time 0 and z is the
acceleration. Parameters v and z are not known. The measuring device
allows to measure the car’s location 10× within the time interval 0–10 s
(and it is possible to measure the position more than once in a single
moment).

We use the linear model

Ey(xi ) = vxi +
z

2
x2
i = θ1xi + θ2x2

i ,

where Var y(xi ) = σ2 (and f (xi ) = (xi , x
2
i )>) with the information matrix

M =
10∑
k=1

f (xk)f >(xk)σ−2 =
1

σ2

(∑
x2
k

∑
x3
k∑

x3
k

∑
x4
k

)
.

Z. Hlávka (CU Prague) NMST436 332 / 349



Regression experiments Optimality criteria

At first, we want to find the optimal experiment for estimating the
accelaration. We choose the d-optimality criterion with h = (0, 1)>, i.e.,
we want to minimize the function

Φ1(M) = (0, 1)M−1

(
0
1

)
.

The d-optimal design can be found by Elfving’s method.

The set T is denoted by a full line, its convex hull (set S) is denoted by
the dash-dotted line (čerchovaně, originally bodkočiarkovane).

The point P is the intersection of the border of S and the vector h.
Finally, we express the point P as a linear combination of points A and B.
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The point P is the intersection of the border of S and the vector h and it
can be expressed as a linear combination of points A and B.

P =

(
p1

p2

)
=

(
0

17

)
= 0.7

(
−4.5
−4.52

)
+ 0.3

(
10
102

)
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d-optimal design is:

ξ∗(4.5) = 0.7

ξ∗(10) = 0.3

The information matrix of the design is:

M(ξ∗) = σ−2

[(
(4.5)2 (4.5)3

(4.5)3 (4.5)4

)
0.7 +

(
102 103

103 104

)
0.3

]
= . . .

The variance matrix of the estimator θ̂ is:

M−1(ξ∗) = σ2

(
0.2555 0.0283
0.0283 0.0001

)
and the variance of the estimator of θ2 is 10−4σ2.
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Recommended work-flow

Determination of a model: what can be measured; the relation
between observations and unknown parameters; determination of
measurement’s precision (up-to a multiplicative constant); what
should be estimated (choice of optimality criteria).

Determination of the optimal design: using literature; comparison
to some simple (but reasonable) design.

Verification of the optimal design: is the design reasonably good
also according to other optimality criteria?; consider small
modifications that simplify the design and do not significantly worsen
its properties of the design; check feasibility of the proposed design.

WARNING: the optimal design may not allow verificaiton (testing) of
model’s assumptions (e.g., linearity of the regression function)!
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Software and exercise

Library AlgDesign in R: functions optFederov() and optMonteCarlo().

Exercise 1: Try to calculate the d-optimal design for car’s acceleration
(eventually also other parameters) using library AlgDesign.

Exercise 2: Find the optimal design for weighing on a balance scale (i.e.,
if the objects can be put on both weighing pans).
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Week 11

Topic:

Elfving’s method.

Examples: bridge length measurements.

References: Pázman (1986) Foundations of optimum experimental design,
D. Reidel. Pázman et al (1986) Riešené situácie z navrhovania
experimentov, ALFA, Bratislava.

Z. Hlávka (CU Prague) NMST436 338 / 349

Regression experiments Elfving’s method

Ordering of regression experiments

Pázman (1986, kap. III) investigates the set of all information matrices
M ≡ {M(ξ); ξ ∈ Ξ}, where Ξ is the set of all designs (normalized design
measures).

Last week, we have used information matrices to define partial ordering on
the set Ξ (designs are equivalent if their information matrices are equal;
design ξ is better η if M(ξ)−M(η) is positive definite).

Definition: Design ξ is acceptable if there is not any better design η.

Recall that M =
∑

x f (x)f (x)>ξ(x). It is easy to see that both Ξ and M
are convex.
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Some consequences of convexity

Theorem:[Caratheodory] Let T ⊂ Rk . Then

hull(T ) = {z ∈ Rk : z =
k+1∑
i=1

αixi , xi ∈ T , αi ≥ 0,
k+1∑
i=1

αi = 1}.

Proof: Optimization (Lachout).

By Caratheodory theorem, each point in the convex hull of T can be
written as a convex combination of at most k + 1 points from T .
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Some consequences of convexity

Theorem:[Pázman 1986, Proposition III.11] For each design ξ there exists
equivalent design η such that its support Xη = {x ; η(x) > 0} contains at
most m(m + 1)/2 + 1 points.

Proof: see Pázman (1986), p. 60–61 (it follows from Caratheodory
Theorem for convex hull: any point x ∈ Rd lying in the convex hull of set
P can be expressed as a convex combination of d + 1 or less points from
P).
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Elfving’s set

Let S denote the smallest convex set in Rm containing the set
T ≡ {f (x); x ∈ X} ∪ {−f (x); x ∈ X} (S is the convex hull of T ).

Elfving’s set S is important for design comparisons.

Theorem:[Pázman 1986, Proposition III.7] For each design ξ there exists
a design η that is not worse and such that {f (x); η(x) > 0} is a subset of
the border of the set S .

Proof: see Pázman (1986), p. 56–57 (based on a construction of the
design η).

This theorem simplifies the search for optimal design (because we can
exclude points x that do not lie on the border of the convex hull S).
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d-optimality

Let us denote Var ξ g = Var ξ(g>θ̂). Pázman (1986, sekce III.3) shows that
the function M(ξ) −→ Var ξ g is lower semicontinuous on the compact set
M and, therefore, it achieves its minimum, i.e., there exists a design ξ∗

such that Var∗ξ g = minξ∈Ξ Var ξ g .

Theorem:[Pázman 1986, Proposition III.16] Let us assume that
Var ξ g <∞ and vectors {f (x); ξ(x) > 0} are linearly dependent. Then
there exists design η such that Xη ( Xξ and Varη g ≤ Var ξ g . The design
η can be chosen so that it contains at most m points.

Proof: see Pázman (1986), p. 69–71 (based on a construction of the
better design η).

This implies that the d-optimal design ξ∗ (minimizing variance of the
estimator g>θ̂) can be chosen as ‘at most m points on the border of the
set S ’.
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Elfving’s Theorem

Theorem:[Pázman (1986, Proposition III.17), Elfving (1952)] The design
ξ∗ satisfies Var∗ξ g = minξ∈Ξ Var ξ g if and only if there exists set Y ⊂ Xξ∗

and a constant c such that:

1 cg lies on the border of the set S ,

2 cg =
∑

x∈Y f (x)ξ∗(x)−
∑

x∈X−Y f (x)ξ∗(x).

Then
Var
ξ∗

g = c−2 = inf{λ;λ > 0, λ−1g ∈ S}

Proof: see Pázman (1986), p. 72–74.
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Example: bridge centre line / osa mostu (in Slovak)
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Example: bridge centre line / osa mostu

Example: Before the start of construction works of a new bridge, it is
necessary to find its centre line, i.e., determine points P1 and P2 on both
river banks and measure ther distance as precisely as possible (see the
picture on the following slide). Unfortunately, standard and very precise
optical distance-meters cannot be used for measuring distances above
water (because water reflections disturb the instrument). Therefore, the
distance between P1 and P2 has to be measured indirectly. This can be
achieved by choosing several locations on each river bank. These locations
define a geodetic net in which one can measure:

1 distances between any points on the same river bank,

2 angles defined by arbitrary three locations (including those on the
other bank).

Finally, the distance between P1 and P2 is calculated from basic
trigonometric identities.
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Example: bridge centre line
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Summary

Week 12

Topic:

Summary (nonparametric regression models).

Exam.
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Summary

Main aim: introduction to standard notions in experimental design (so
course graduates can, e.g., understand the description of libraries in CRAN

Task View: Design of Experiments).

Further topics:

Nonparametric regression “Uniform design” is usually optimal, more
information can be found in [Titterington: Optimal design in
flexible models, including feed-forward networks and
nonparametric regression, in: Optimum Design 2000 (A.
Atkinson, B. Bogacka and A. Zhigljavsky, eds.), Nonconvex
Optim. Appl., Vol. 51, Kluwer, Dordrecht, 2001, pp.
261–272.]

Applications in medicine NMST532: Plánováńı a analýza lékǎrských studíı
/ planning and analysis of medical studies (in summer
semester).
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