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www.karlin.mff.cuni.cz/˜hlavka

Z. Hlávka (KPMS) NMST539 1 / 413

Mnohorozměrná analýza (NMST539)

Mnohorozměrná data.

Opakováńı: lineárńı algebra (matice).

Mnohorozměrné normálńı rozděleńı, Wishartovo a Hotellingovo
rozděleńı.

Metoda hlavńıch komponent, faktorová analýza.

Mnohorozměrné škálováńı, shluková a diskriminačńı analýza.

Kanonické korelace, korespondenčńı analýza.

Daľśı metody (hloubka dat, SIR, projection pursuit).
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Introduction

Použitá literatura:

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis.
Academic press.

Härdle, W. K., & Simar, L. (2014). Applied multivariate statistical analysis, 4th
edition. Springer Science & Business Media.

Anděl, J. (1985). Matematická statistika. SNTL.
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Week 1

Týden 1

Předpokládané znalosti: základńı maticové operace (sč́ıtáńı, násobeńı
apod.)

Mnohorozměrná data:

grafické znázorněńı,

matice dat a popisné statistiky.
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Week 1 Multivariate data sets

Comparison of Batches

Figure: An old Swiss 1000-franc bill.
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Week 1 Multivariate data sets

Example

Example: The authorities have measured

X1 = length of the bill

X2 = height of the bill (left)

X3 = height of the bill (right)

X4 = distance of the inner frame to the lower border

X5 = distance of the inner frame to the upper border

X6 = length of the diagonal of the central picture.
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Week 1 Multivariate data sets

Example: Swiss bank data

The dataset consists of 200 measurements on Swiss bank notes. One half
of these bank notes are genuine, the other half are forged bank notes.

It is important to be able to decide whether a given banknote is genuine.

We want to derive a good rule that separates the genuine and forged
banknotes.

Which measurement is most informative? We have to visualize the
difference.
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Week 1 Graphics

Graphics

Computers allow easy construction of informative plots:

1D Boxplot, histogram, kernel density estimator (KDE), dotplot,
. . . .

2D Histogram, KDE, scatterplot.

3D 3D scatterplot.

4+ Scatterplot matrix, parallel coordinates, Chernoff-Flury faces,
Andrew’s curves.

One typically needs static graphics (PDF) for reports and interactive
graphics for data exploration.
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Week 1 Graphics

Swiss bank notes
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Figure: Variables X6 (diagonal) of bank notes, the genuine at the left. →
MVAboxbank6
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Week 1 Graphics

Swiss bank notes
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Figure: Variables X1 (length) of bank notes, the genuine at the left. →
MVAboxbank1
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Week 1 Graphics

Boxplots

∗ Median and mean bar indicate the central locations.

∗ The relative location of median (and mean) in the box is a measure of
skewness.

∗ The length of box and whiskers is a measure of spread.

∗ The length of whiskers indicate the tail length of the distribution.

∗ Outlying points are marked as ”?” or“•” outside the outside bars.

∗ Boxplots do not indicate multi modality or clusters.

∗ If we compare the relative size and location of the boxes we are
comparing distributions.
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Week 1 Graphics

Histograms

The histogram counts relative frequencies of observations xi falling into
predefined bins:

f̂h(x) = n−1h−1
∑
j∈Z

n∑
i=1

I{xi ∈ Bj(x0, h)} I{x ∈ Bj(x0, h)}

the histogram is a simple estimator of a probability density,

h is a smoothing parameter and controls the width of the histogram
bins.
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Week 1 Graphics

Swiss bank notes
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Figure: Diagonal of forged bank notes. Histograms with x0 = 137.8 and h = 0.1
(upper left), h = 0.2 (lower left), h = 0.3 (upper right), h = 0.4 (lower right).
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Week 1 Graphics

Swiss bank notes
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Swiss bank notes
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Swiss bank notes
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Figure: Diagonal of forged bank notes. Histogram with h = 0.4 and origins
x0 = 137.65 (upper left), x0 = 137.75 (lower left),x0 = 137.85 (upper right),
x0 = 137.95 (lower right).
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Week 1 Graphics

For x ∈ Bj (assuming that the density f (x) is ‘reasonable’), it is easy to

calculcate the bias E f̂h(x)− f (x)
.

= f ′(mj)(mj − x) and variance

var f̂h(x)
.

= 1
nh f (x).

It follows that the Mean Squared Error is

MSE{f̂h(x)} =
1

mn
f (x) + {f ′(mj)}2(mj − x)2 + o(h) + o(1/nh).

By integrating MSE and taking limits, we easily obtain

AMISE{f̂h(x)} =
1

nh
+

h2

12
‖f ′‖2

2

leading the asymptotically optimal bandwidth h0 = {6/(n‖f ′‖2
2)}1/3.
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Week 1 Graphics

Histograms

∗ Modes of the density correspond to strong peaks in the histogram.

∗ Histograms with the same h need not be identical because they also
depend on the origin x0 of the grid.

∗ The consequence of a too large h is a too flat, unstructured
histogram (large bias).

∗ A too small binwidth h results in a wiggly histogram (large variance).

∗ It is recommended to use averaged histograms (so-called kernel
density estimators).
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Week 1 Graphics

Kernel density estimators (KDEs)

Kernel density estimator is a natural generalization of a histogram (by
shifting the “bin”, we obtain smooth estimator of the underlying
probability density).

Histogram (at the center of a bin) can be written as

f̂h(x) = n−1(2h)−1
n∑

i=1

I (|x − xi | ≤ h)

K (u) = I (|u| ≤ 1)/2

f̂h(x) = n−1h−1
n∑

i=1

K

(
x − xi

h

)
K is the so-called kernel.
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Week 1 Graphics

Common kernel functions

K (u) = 1
2 I (|u| ≤ 1) Uniform

K (u) = (1− |u|)I (|u| ≤ 1) Triangle
K (u) = 3

4 (1− u2)I (|u| ≤ 1) Epanechnikov
K (u) = 15

16 (1− u2)2I (|u| ≤ 1) Quartic (Biweight)

K (u) = 1√
2π

exp(−u2

2 ) = ϕ(u) Gaussian
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Week 1 Graphics

Swiss bank notes
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Figure: Densities of diagonals of genuine and forged bank notes. Automatic
density estimates. → MVAdenbank
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Week 1 Graphics

The bias of KDE

Biasf̂h(x) =
h2

2
f ′′(x)µ2(K ) + o(h2)

is of a smaller order than the bias of histogram.

Proceeding similarly, it is straghtforward that the Asymptotic Mean
Integrated Squred Error is

AMISE(f̂h) =
1

nh
‖K‖2

2 +
h4

4
{µ2(K )}2‖f ′′‖2

2

leading the asymptotically optimal bandwidth

h0 =

(
‖K‖2

2

n‖f ′′‖2
2µ2(K )}2

)1/5

.
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Week 1 Graphics

Choice of the bandwidth

Assuming normality and using Gaussian kernel K (u) = 1√
2π

exp(−u2

2 ), the

unknown constants can be calculated and we obtain the so-called
Silverman’s rule of thumb:

hG = 1.06σ̂n−
1
5 ,

where σ̂2 = 1
n

n∑
x=1

(xi − x̄)2

Using Quartic kernel, the constants are somewhat different: hQ = 2.62hG .

In practice, one must be very careful because statistical software may
assume another standardization of the kernel function (i.e., the bandwidth
parameter may be multiplied by some constant).

Cross-validation is a popular bandwidth selection method (producing
somewhat unstable results).
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Week 1 Graphics

KDEs in R

Libraries: KernSmooth, ks, sm.

See R task-views on CRAN:

1D density(),
bkde(KernSmooth),
locpoly(KernSmooth),

3D sm.density (sm)

6D kde(ks)

Unfortunately, multivariate KDEs have slow rates of convergence
(so-called curse of dimensionality) — see Modern Statistical Methods
(NMST434) for more details.
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Week 1 Graphics

Figure: Contours of the density of X4,X5,X6 of genuine and forged bank notes.
→ MVAcontbank3
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Week 1 Graphics

Kernel densities

∗ Kernel densities estimate distribution densities by the kernel method.

∗ The bandwidth h determines the degree of smoothness of the
estimate f̂ .

∗ A simple (but not necessarily correct) way to find a good bandwidth
is to compute the rule of thumb bandwidth hG = 1.06σ̂n−1/5. This
bandwidth is to be used only in combination with a Gaussian kernel ϕ.

∗ Kernel density estimates are a good descriptive tool for seeing modes,
location, skewness, tails, asymmetry etc.
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Week 1 Graphics

Scatterplots

Rotation of data

Separation lines

Draftman plot

Brushing

Parallel coordinate plots
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Week 1 Graphics

Swiss bank notes
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Figure: 2D scatterplot for X5 vs. X6 of the bank notes. Genuine notes are circles,
forged are stars. → MVAscabank56
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Week 1 Graphics

Swiss bank notes
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Figure: 3D Scatterplot for (X4,X5,X6) of the bank notes. Genuine notes are
circles, forged are stars. → MVAscabank456
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Week 1 Graphics

Var 3

Var 4

Var 5

Var 6

Figure: Draftman plot of the bank notes. The pictures in the left column show
(X3,X4), (X3,X5) and (X3,X6), in the middle we have (X4,X5) and (X4,X6), and
in the lower right is (X5,X6). → MVAdrafbank1
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Week 1 Graphics

Figure: Stereo plot of the bank notes — (X4,X5,X6).

Z. Hlávka (KPMS) NMST539 29 / 413

Week 1 Graphics

Figure: Stereo plot of the bank notes — all variables.
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Week 1 Graphics

Scatterplots

∗ Scatterplots in two and three dimensions help us in seeing separated
points or clouds.

∗ They help us in judging positive or negative dependence.

∗ Draftman scatterplot matrices are useful for detecting structures
conditioned on values of certain variables.

∗ As the brush of a scatterplot matrix is moving in the point cloud we
can study conditional dependence (e.g., in Ggobi).
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Week 1 Graphics

Parallel coordinate plots

based on a orthogonal coordinate system

allows to see more than four dimensions

Idea:
Instead of plotting observations in an orthogonal coordinate system one
draws their coordinates in a system of parallel axes. This way of
representation is however sensitive to the order of the variables.
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Week 1 Graphics

Parallel coordinate plot (Bank data)
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Figure: Parallel coordinate plot of observations 96–105 → MVAparcoo1
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Week 1 Graphics

Parallel coordinate plot  (Bank data)
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Figure: The full bank Data set. Genuine banknotes displayed as solid lines. The
forged bank notes are shown as dashed lines. → MVAparcoo2
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Week 1 Graphics

Parallel coordinate plots

∗ Parallel coordinate plots overcome the visulisation problem of the
Cartesian coordinate system for dimensions greater than 4.

∗ Outliers are seen as outlying polygon curves.

∗ The order of variables is still important for detection of subgroups for
example.

∗ Subgroups may be screened by selective coloring in an interactive
manner.
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Week 1 Graphics

Faces

Observations 91 to 110

Figure: Flury faces for observations 91 to 110 of the bank notes. →
MVAfacebank
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Week 1 Graphics

Six variables to the following face elements

X1 = 1, 19 (eye sizes)

X2 = 2, 20 (pupil sizes)

X3 = 4, 22 (eye slants)

X4 = 11, 29 (upper hair lines)

X5 = 12, 29 (lower hair lines)

X6 = 13, 14, 31, 32 (face lines and darkness of hair)

library(aplpack)

faces(bank2)

faces(bank2[91:110])
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Week 1 Graphics

Faces

∗ faces can be used to detect subgroups in multivariate data

∗ subgroups are characterized by similar looking faces

∗ outliers are identified by extreme faces (e.g. dark hair)

∗ if one element of X is unusual the corresponding face element
changes a lot in shape
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Week 1 Summary statistics

Summary Statistics

X (n × p) data matrix

X =


x11 · · · x1p

...
...

...
...

xn1 · · · xnp


mean

x =

 x1
...

xp

 = n−1X>1n
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Week 1 Summary statistics

Covariance matrix
S = n−1X>X − x x>

= n−1(X>X − n−1X>1n1>n X ) = n−1X>HX

Centering matrix
H = In − n−11n1>n

centered data: S = n−1X>X

D = diag(sXjXj
), where Xj , j = 1, . . . , p are the columns of X

Correlation matrix R = D−1/2SD−1/2
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Week 1 Summary statistics

Linear transformations

A (q × p) matrix
Y = XA> = (y1, . . . , yn)>

y = Ax

SY = ASXA>

Example: x = (1, 2)>

y = 4x , x ∈ IR2

y = 4x = (4, 8)>
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Week 1 Summary statistics

Mahalanobis Transformation

zi = S−1/2(xi − x), i = 1, . . . , n,

SZ = n−1Z>HZ = Ip,

Z = 0.

where H is the centering matrix.

Mahalanobis transformation leads to standardized uncorrelated zero mean
data matrix Z.
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Week 1 Summary statistics

Summary Statistics

∗ The center of gravity of a data matrix is given by its mean vector
x = n−1X>1n.

∗ The dispersion of the observations in a data matrix is given by the
empirical covariance matrix S = n−1X>HX .

∗ The empirical correlation matrix is given by R = D−1/2SD−1/2.

∗ A linear transformation Y = XA> of a data matrix X has mean Ax
and empirical covariance ASXA>.

∗ The Mahalanobis transformation is a linear transformation
zi = S−1/2(xi − x) which gives a standardized, uncorrelated data
matrix Z.
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Week 2

Týden 2

Opakováńı základńı maticové algebry:

spektrálńı rozklad matice a kvadratické formy.

Náhodné vektory:

mnohorozměrná distribučńı funkce a hustota,

podḿıněná a marginálńı rozděleńı,

momenty,

mnohorozměrné normálńı rozděleńı.
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Week 2 Matrix algebra

A short Excursion into Matrix Algebra

A(n×p) =

 a11 · · · a1p
...

. . .
...

an1 · · · anp


Definition Notation
Transpose A>
Sum A+ B
Difference A− B
Scalar product c · A
Product A · B
Rank rank(A)
Trace tr(A)
Determinant det(A) = |A|
Inverse A−1

Generalised Inverse A− : AA−A = A

Z. Hlávka (KPMS) NMST539 45 / 413

Week 2 Matrix algebra

Name Definition Notation Example

scalar p = n = 1 a 3

column vector p = 1 a

(
1
3

)
row vector n = 1 a>

(
1 3

)
vector of ones (1, . . . , 1︸ ︷︷ ︸

n

)> 1n

(
1
1

)
vector of zeros (0, . . . , 0︸ ︷︷ ︸

n

)> 0n

(
0
0

)
square matrix n = p A(p × p)

(
2 0
0 2

)

Z. Hlávka (KPMS) NMST539 46 / 413

Week 2 Matrix algebra

Name Definition Notation Example

diagonal matrix aij = 0, i 6= j , n = p diag(aii )

(
1 0
0 2

)
identity matrix diag(1, . . . , 1︸ ︷︷ ︸

p

) Ip
(

1 0
0 1

)
unit matrix aij ≡ 1, n = p 1n1>n

(
1 1
1 1

)
symmetric matrix aij = aji

(
1 2
2 3

)
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Week 2 Matrix algebra

Name Definition Example

null matrix aij = 0

(
0 0
0 0

)
upper triangular matrix aij = 0, i < j

 1 2 4
0 1 3
0 0 1


idempotent matrix A2 = A

(
1
2

1
2

1
2

1
2

)
orthogonal matrix ATA = I = AA>

(
1√
2

1√
2

1√
2
− 1√

2

)
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Week 2 Matrix algebra

Properties of a Square Matrix

For any A(n × n) and B(n × n) and any scalar c

tr(A+ B) = tr(A) + tr(B)

tr(cA) = c tr(A)

|cA| = cn|A|
tr(AB) = tr(BA)

|AB| = |BA|
|AB| = |A||B|
|A−1| = |A|−1
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Week 2 Matrix algebra

Eigenvalues and Eigenvectors

Square matrix A(n × n)

eigenvalue λ = Eval(A)

eigenvector γ = Evec(A)

Aγ = λγ

Eigenvalues describe the ‘size’ of the matrix A:

|A| =
n∏

j=1

λj

tr(A) =
n∑

j=1

λj
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Week 2 Matrix algebra

Matrix Algebra

∗ The determinant |A| is a product of the eigenvalues of A.

∗ The inverse of a matrix A exists if |A| 6= 0.

∗ The trace tr(A) is the sum of the eigenvalues of A.

∗ The sum of the traces of two matrices equals the trace of the sum of
the two matrices.

∗ The trace tr(AB) equals tr(BA).
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Week 2 Matrix algebra

Spectral Decomposition

Every real symmetric matrix A(p × p) can be written as:

A = ΓΛΓ>

=

p∑
j=1

λjγjγ
>
j

Λ = diag(λ1, · · · , λp)

Γ = (γ1, · · · , γp),

where the matrix Γ is orthogonal (i.e. Γ>Γ = Ip).

Spectral decomposition allows easier calculation of powers of the matrix A
(very useful is the inverse A−1 and ‘inverse square root’ A−1/2).
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Week 2 Matrix algebra

Quadratic forms

A(p × p) symmetric matrix

Q(x) = xTAx =

p∑
i=1

p∑
j=1

aijxixj

Definiteness

Q(x) > 0 for all x 6= 0 positive definite (pd) ,
Q(x) ≥ 0 for all x 6= 0 positive semidefinite (psd) .

A is pd (psd) iff Q(x) = xTAx is pd (psd).
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Week 2 Matrix algebra

Example:

Q(x) = xTAx = x2
1 + x2

2 , A =
(

1
0

0
1

)
eigenvalues: λ1 = λ2 = 1 positive definite

Q(x) = (x1 − x2)2, A =
(

1
−1
−1

1

)
eigenvalues λ1 = 2, λ2 = 0 positive semidefinite

Q(x) = x2
1 − x2

2

eigenvalues λ1 = 1, λ2 = −1 indefinite.

A > 0 if and only if all λi > 0, i = 1, . . . , p
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Week 2 Matrix algebra

Maximization of quadratic forms

Theorem: A, B symmetric, B > 0. The maximum of xTAx under the
constraint xTBx = 1 is given by:

max{x :x>Bx=1} xTAx = λ1

λ1 = 1.Eval{B−1A}
argmax{x :x>Bx=1} xTAx = 1.Evec{B−1A}

Proof: the proof will be given during derivation of principal components.
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Week 2 Matrix algebra

Quadratic forms

∗ A quadratic form can be described by a symmetric quadratic matrix
A.

∗ Quadratic forms can always be diagonalized.

∗ Positive definiteness of a quadratic form is equivalent to positiveness
of the eigenvalues of the matrix A.

∗ Maximum and minimum of a quadratic form under constraints can be
expressed in terms of eigenvalues.
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Week 2 Matrix algebra

Geometrical aspects

Distance function d : IR2p → IR+ d2(x , y) = (x − y)TA(x − y), A > 0
A = Ip, Euclidean distance
Ed = {x ∈ IRp | (x − x0)>(x − x0) = d2}

Example: x ∈ IR2, x0 = 0, x2
1 + x2

2 = 1

Norm of a vector
‖x‖ = d(0, x) =

√
xT x
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Figure: Distance d .

d2(x , y) = (x − y)T (x − y)
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Figure: Iso–distance sphere.

A = I2, (x1 − x01)2 + (x2 − x02)2 = d2
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Figure: Iso–distance ellipsoid.

Ed = {x : (x − x0)>A(x − x0) = d2}, γj = Evec(A), A > 0
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Week 2 Matrix algebra

Angle between two Vectors

Angle of vectors x and y can be calculated as

cos θ =
x>y

‖x‖ ‖y‖

Norm of a vector
‖x‖ = d(0, x) =

√
x>x

Unit vectors
{x : ‖x‖ = 1}
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Week 2 Matrix algebra

Angle between two Vectors

Example: Angle = Correlation

Observations {xi}ni=1, {yi}ni=1

x = y = 0

ρXY =

∑
xiyi√∑

x2
i

∑
y 2
i

= cos θ

Correlation corresponds to angle between x , y ∈ IRp.
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Figure: Angle between vectors.

cos θ = x>y
‖x‖‖y‖ = x1y1+x2y2

‖x‖‖y‖ = cos θ1 cos θ2 + sin θ1 sin θ2
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Projection
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Figure: Projection.

px = y(yT y)−1yT x = x>y
‖y‖2 y
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Week 2 Matrix algebra

Column space

X (n × p) data matrix

C (X ) = {x ∈ IRn | ∃a ∈ IRp so that X a = x}

projection matrix
P(n × n), P = P> = P2 (P is idempotent)
let b ∈ IRn, a = Pb is the projection of b on C (P)
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Week 2 Matrix algebra

Projection on C (X )

X (n × p), P = X (X>X )−1X>

PX = X , P is a projector, PP = P.

Q = In − P,Q2 = Q

px =
y>x

‖y‖2
y

PX = X

QX = 0
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Week 2 Matrix algebra

Geometrical aspects

∗ A distance between two p-dimensional points x , y is a quadratic form
(x − y)>A(x − y) in the vectors of differences (x − y). A distance
defines the norm of a vector.

∗ Iso-distance curves of a point x0 are all those points which have the
same distance from x0. Iso-distance curves are ellipsoids whose
principal axes are determined by the direction of the eigenvectors.
The half-length of principal axes is proportional to the inverse of the
roots of the eigenvalues of A.

∗ The angle between to vectors x and y is given by cos θ = x>Ay
‖x‖A ‖y‖A

w.r.t. the metric A.
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Week 2 Matrix algebra

Geometrical aspects

∗ For the Euclidean distance with A = I the correlation between two
centered data vectors x and y is given by the cosine of the angle
between them, i.e. cos θ = ρXY .

∗ The projection P = X (X>X )−1X> is the projection in the column
space C (X ) of X .

∗ The projection of x ∈ IRn on y ∈ IRn is given by

px = y>x
‖y‖2 y .
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Week 2 Random vectors

Random vector

Let us assume that random variables X1, . . . ,Xp are defined on the
probability space (Ω,A,P). In this setup, the vector (X1, . . . ,Xp)> is
called random vector.

Theorem: The p-dimensional random vector X = (X1, . . . ,Xp)> is a
measurable function from (Ω,A,P) to (IRp,Bp)

Proof: See Theorem II.1.1 in Anděl (1985).

The function

F (x1, . . . , xp) = P(X1 < x , . . .Xp < xp)

is the multivariate (joint) cummulative distribution function of the random
vector X = (X1, . . . ,Xp)>.
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Week 2 Random vectors

Multivariate density

A random vector X is absolutely continuous if there exists a probability
density function (pdf), f (.), such that

F (x) =

∫ x

−∞
f (u)du.

For random vector X = (X1, . . . ,Xp)>, we define (one-dimensional):

marginal distributions of Xi , i = 1, . . . , p,

conditional distributions of Xi |Xj = xj , i , j ∈ {1, . . . , p}.

The expressions for marginal and conditional densities are easy to derive.
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Week 2 Random vectors

In the same way, marginal and conditional distributions are defined for all
subvectors:

X = (X1,X2)>, X1 ∈ IRk X2 ∈ IRp−k

marginal density of X1 is fX1(x1) =
∫∞
−∞ f (x1, x2)dx2

conditional density of X2 (conditioned on X1 = x1)
fX2|X1=x1

(x2) = f (x1, x2)/fX1(x1)
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Week 2 Random vectors

Example:

f (x1, x2) =

{
1
2 x1 + 3

2 x2 0 ≤ x1, x2 ≤ 1,
0 otherwise.

f (x1, x2) is a density since∫
f (x1, x2)dx1x2 =

1

2

[
x2

1

2

]1

0

+
3

2

[
x2

2

2

]1

0

=
1

4
+

3

4
= 1.
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Week 2 Random vectors

Example: The marginal densities

fX1(x1) =

∫
f (x1, x2)dx2 =

∫ 1

0

(
1

2
x1 +

3

2
x2

)
dx2 =

1

2
x1 +

3

4
;

fX2(x2) =

∫
f (x1, x2)dx1 =

∫ 1

0

(
1

2
x1 +

3

2
x2

)
dx1 =

3

2
x2 +

1

4
·

The conditional densities

f (x2 | x1) =
1
2 x1 + 3

2 x2

1
2 x1 + 3

4

and f (x1 | x2) =
1
2 x1 + 3

2 x2

3
2 x2 + 1

4

·
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Week 2 Random vectors

Definition of (statistical) independence

Absolutely continuous random vectors X1, X2 are independent iff
f (x) = f (x1, x2) = fX1(x1)fX2(x2).

�
�
�A
A
A

! Two random variables may have identical marginals but different
joint distribution.
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Week 2 Random vectors

Example:

f (x1, x2) = 1, 0 < x1, x2 < 1,

f (x1, x2) = 1 + α(2x1 − 1)(2x2 − 1), 0 < x1, x2 < 1, −1 ≤ α ≤ 1.

fX1(x1) = 1, fX2(x2) = 1.

∫ 1

0
1 + α(2x1 − 1)(2x2 − 1)dx2 = 1 + α(2x1 − 1)[x2

2 − x2]10 = 1.
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Week 2 Random vectors

Moments

EX ∈ IRp denotes the p-dimensional vector of expected values of the
random vector X

EX =

 EX1
...

EXp

 =

∫
xf (x)dx =


∫

x1f (x)dx
...∫

xpf (x)dx

 = µ.

The properties of expected value follow from the properties of the integral:

E (αX + βY ) = αEX + βEY
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Week 2 Random vectors

If X and Y are independent then

E (XY>) =

∫
xy>f (x , y)dxdy

=

∫
xf (x)dx

∫
y>f (y)dy = EXEY>

Definition of variance matrix (Σ)

Σ = Var(X ) = E (X − µ)(X − µ)>

We say that random vector X has a distribution with the vector of
expected values µ and the covariance matrix Σ,

X ∼ (µ,Σ)
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Week 2 Random vectors

Properties of the Covariance Matrix

Elements of Σ are variances and covariances of the components of the
random vector X :

Σ = (σXiXj
)

σXiXj
= cov(Xi ,Xj)

σXiXi
= var(Xi )

Computational formula:
Σ = E (XX>)− µµ>

Variance matrix is positive semidefinite:
Σ ≥ 0

(variance a>Σa of any linear combination a>X cannot be negative).
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Week 2 Random vectors

Properties of Variances and Covariances

var(a>X ) = a> Var(X ) a =
∑
i ,j

aiajσXiXj

Var(AX + b) = A Var(X ) A>

Cov(X + Y ,Z ) = Cov(X ,Z ) + Cov(Y ,Z )

Var(X + Y ) = Var(X ) + Cov(X ,Y ) + Cov(Y ,X ) + Var(Y )

Cov(AX ,BY ) = A Cov(X ,Y ) B>.
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Week 2 Random vectors

Conditional Expectations

(Absolutely continuous) random vector X = (X1,X2)

Conditional expectation of X2, given X1 = x1:

E (X2 | x1) =

∫
x2f (x2 | x1) dx2

and conditional expectation of X1, given X2 = x2:

E (X1 | x2) =

∫
x1f (x1 | x2) dx1

The conditional expectation E (X2 | x1) is a function of x1 (it is the
expected value of X2 if we know that corresponding X1 = x1—typical
example of this setup is simple linear regression, where
E (Y | X = x) = xβ).
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Week 2 Random vectors

Moments

∗ The expectation of a random vector X is µ =
∫

xf (x) dx , the
covariance matrix Σ = Var(X ) = E (X − µ)(X − µ)>. We denote
X ∼ (µ,Σ).

∗ Expectations are linear, i.e., E (αX + βY ) = αEX + βEY . If X ,Y are
independent then E (XY>) = EXEY>.

∗ The covariance between two random vectors X ,Y is
ΣXY = Cov(X ,Y ) = E (X − EX )(Y − EY )> = E (XY>)− EXEY>.
If X ,Y are independent then Cov(X ,Y ) = 0.

∗ The Conditional Expectation E (X2|X1) is the MSE best
approximation of X2 by a function of X1.
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Week 2 Random vectors

Multivariate Normal (Multinormal) Distribution

The pdf of a multinormal is (assuming that Σ has full rank):

f (x) = |2πΣ|−1/2 exp

{
−1

2
(x − µ)>Σ−1(x − µ)

}
.

X ∼ Np(µ,Σ)

Expected value is EX = µ,

Variance matrix of X is Var{X} = Σ > 0.

(what is the meaning of the quadratic form (x − µ)TΣ−1(x − µ) in the
formula for density?)
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Week 2 Random vectors

Geometry of the Np(µ,Σ) Distribution

Density of Np(µ,Σ) is constant on ellipsoids of the form

(x − µ)>Σ−1(x − µ) = d2

If X ∼ Np(µ,Σ), then the variable Y = (X − µ)>Σ−1(X − µ) is χ2
p

distributed, since the Mahalonobis transformation
Z = Σ−1/2(X − µ) ∼ Np(0, Ip) and Y = ZTZ =

∑p
j=1 Z 2

j .
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Week 2 Random vectors
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Week 2 Random vectors

Singular Normal Distribution

Definition of “Normal” distribution in case that the matrix Σ is
singular—we use its eigenvalues λi and the generalized inverse Σ−:

rank(Σ) = k < p, λ1 · · ·λk

(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x − µ)>Σ−(x − µ)

}
Σ− = G-inverse
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Week 2 Random vectors

Multinormal Distribution

∗ The pdf of a p-dimensional multinormal X ∼ Np(µ,Σ) is

f (x) = |2πΣ|−1/2 exp

{
−1

2
(x − µ)>Σ−1(x − µ)

}
.

The contour curves of a multinormal are ellipsoids with half-lengths
proportional to

√
λi , where λi denote the eigenvalues of Σ.

∗ The Mahalanobis transformation transforms X ∼ Np(µ,Σ) to
Y = Σ−1/2(X − µ) ∼ Np(0, Ip). Vice versa, one can create a
X ∼ Np(µ,Σ) from Y ∼ Np(0, Ip) via X = Σ1/2Y + µ.
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Week 2 Random vectors

Multinormal Distribution

∗ If the covariance matrix Σ is singular (i.e., rank(Σ) < p) then it
defines a singular normal distribution.

∗ The density of a singular normal distribution is given by

(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x − µ)>Σ−(x − µ)

}
,

where Σ− denotes the G-inverse of Σ.
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Week 3

Týden 3

Mnohorozměrné normálńı rozděleńı:

hustota transformovaného náhodného vektoru.

centrálńı limitńı věta a transformace,

vlastnosti mnohorozměrného normálńıho rozděleńı.
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Week 3 Multivariate normal distribution

Transformations

Theorem: Assume that random vector (X1, . . . ,Xp)> has density p(x)
and that t is an injective and regular function on a set G such that∫
G p(x)dx = 1. Let τ denote the inverse function to t : G → t(G ). Then

the random vector Y = t(X ) has the density

q(y) =

{
p{τ(y)} abs(|J (y)|) for y ∈ t(G ),
0 otherwise,

where J (y) denotes the Jacobian of the inverse function τ .

Proof: See Theorem III.2.5 in Anděl (1985).
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Week 3 Multivariate normal distribution

Density of a linear transformation

Y = AX + b, A nonsingular

X = A−1(Y − b)

J = A−1

fY (y) = abs(|A|−1)fX{A−1(y − b)}

Starting from X ∼ Np(0p, Ip), it is now easy to calculate the
p-dimensional density of Y = Σ1/2X + µ ∼ Np(µ,Σ) (assuming that Σ
has full rank).

Note that the multivariate standard normal density (or characteristic
function) can be defined as a product of univariate standard normal
densities exp(−x2/2)/

√
2π (or characteristic functions exp(−t2/2)).
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Week 3 Multivariate normal distribution

Multivariate Normal distribution

Elementary properties

pdf:

f (x) = |2πΣ|−1/2 exp
{
−1

2 (x − µ)>Σ−1(x − µ)
}

E (X ) = µ, Var(X ) = Σ > 0

Linear transformations

Linear transformations turn normal random variables into normal random
variables.

X ∼ Np(µ, Σ),A(p × p) full rank, c ∈ IRp

Y = AX + c ∼ Np(Aµ+ c ,AΣA>).
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Week 3 Multivariate normal distribution

Alternative definition (Cramér-Wold characterization)

We have defined Np(µ,Σ) by writing down its density. Unfortunately, this
approach has some disadvantages because we assumed that Σ has full
rank.

Definition: X has multivariate Normal distribution if and only if a>X is
univariate normal for all a ∈ IRp.

It easily follows that Y = Ax + c has multivariate normal distribution even
when A is not square and it does not have full rank.

The random variable Z = t>X ∼ N(t>µ, t>Σt) has the characteristic
function

φZ (s) = E (exp isZ ) = exp(ist>µ− s2t>Σt/2).

Therefore, the characteristic function of X is

φX (t) = E (exp it>X ) = E (exp iZ ) = φZ (1) = exp(it>µ− t>Σt/2).
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Partitioned Matrices

A(n × p)

A =

(
A11 A12

A21 A22

)
Aij(ni × pj)

A+ B =

(
A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
B> =

(
B>11 B>21

B>12 B>22

)
AB> =

(
A11B>11 +A12B>12 A11B>21 +A12B>22

A21B>11 +A22B>12 A21B>21 +A22B>22

)
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Inverse of Partitioned Matrix

A nonsingular, A11,A22 square matrices

A−1 =

(
A11 A12

A21 A22

)
where

A11 = (A11 −A12A−1
22 A21)−1 = (A11·2)−1

A12 = −(A11·2)−1A12A−1
22

A21 = −A−1
22 A21(A11·2)−1

A22 = A−1
22 +A−1

22 A21(A11·2)−1A12A−1
22

Determinant:

|A| = |A11||A22 −A21A−1
11 A12| = |A22||A11 −A12A−1

22 A21|
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Partioned Matrices

∗ For A nonsingular, A11, A22 square matrices,

A−1 =

(
A11 A12

A21 A22

)

A11 = (A11 −A12A−1

22 A21)−1 = (A11·2)−1

A12 = −(A11·2)−1A12A−1
22

A21 = −A−1
22 A21(A11·2)−1

A22 = A−1
22 +A−1

22 A21(A11·2)−1A12A−1
22

∗ For B =

(
1 b>

a A

)
we have |B| = |A − ab>| = |A||1− b>A−1a|.

∗ (A− ab>)−1 = A−1 + A−1ab>A−1

1−b>A−1a
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Correlations and independence

Corollary: Let X =

(
X1

X2

)
∼ Np(µ,Σ), then X1 is independent of X2 if

and only if X1 and X2 are uncorrelated.

Proof: factorization of density (Σ ≥ 0) or characteristic function.

Interestingly, for two jointly multivariate Normal vectors (i.e.,

X =

(
X1

X2

)
∼ Np(µ,Σ)), pair-wise independence of their components

implies complete independence.

The independence of two linear transforms of a multinormal X can be
shown via the following corollary.

Corollary: If X ∼ Np(µ,Σ),A and B matrices, then AX and BX are
independent if and only if AΣB> = 0.
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Marginal and conditional distributions

Marginal distribution is just a special case of linear transform:

X1 = (Iq 0q × 0>p )

(
X1

X2

)

For conditional distribution X2|X1 = x1 we have the following:

Theorem: The conditional distribution of X2 given X1 = x1 is normal with
mean µ2 + Σ21Σ−1

11 (x1 − µ1) and covariance Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12,

i.e.,
(X2 | X1 = x1) ∼ Np−r (µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22.1).

Proof: e.g. via the following lemma or by factorizing the density (using the
formula for inverse of partitioned matrix).
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Decomposition of Normal Random Vector

Lemma:

X =
(X1
X2

)
, X1 ∈ IR r

X2.1 = X2 − Σ21Σ−1
11 X1

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

⇒ X1 ∼ Nr (µ1,Σ11),
independent

⇒ X2.1 ∼ Np−r (µ2.1,Σ22.1)

µ2.1 = µ2 − Σ21Σ−1
11 µ1

Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12
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Example:

p = 2, r = 1, µ =

(
0

0

)
, Σ =

(
1

−0.8

−0.8

2

)
Σ11 = 1, Σ21 = −0.8, Σ22.1 = 2− (0.8)2 = 1.36.

⇒ fX1(x1) = 1√
2π

exp
(
− x2

1
2

)
⇒ f (x2 | x1) = 1√

2π(1.36)
exp

{
− (x2−0.8x1)2

2·(1.36)

}
.
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Theorem: If X1 ∼ Nr (µ1,Σ11) and (X2|X1 = x1) ∼ Np−r (Ax1 + b,Ω)
where Ω does not depend on x1, then

X =

(
X1

X2

)
∼ Np(µ,Σ),

where

µ =

(
µ1

Aµ+ b

)
and

Σ =

(
Σ11 Σ11A>
AΣ11 Ω +AΣ11A>

)
.
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Example: X2 ∈ IR, X1 ∈ IR r

E (X2|X1) = µ2 + Σ21Σ−1
11 (X1 − µ1)

linear approximation!

X2 = E (X2|X1) + U, U ∼ Np−r (0,Σ22.1)

= β0 + β>X1 + U

σ22 = var(X2) Σ =

(
Σ11 σ12

σ21 σ22

)
= β>Σ11β + σ22.1 = σ21Σ−1

11 σ12 + σ22.1
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Consider the case where r = p − 1.

Now X2 ∈ IR and B is a row vector β> of dimension (1× r)

X2 = β0 + β> X1 + U.

This means that the best MSE approximation of X2 by a function of X1 is
a straight line.

The marginal variance of X2 can be decomposed as

σ22 = β>Σ11β + σ22.1 = σ21Σ−1
11 σ12 + σ22.1.

ρ2
2.1...r =

σ21Σ−1
11 σ12

σ22

is the square of the multiple correlation between X2 and the r variables
X1.
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Mahalanobis Transformation (Sphering)

If X ∼ Np(µ,Σ) then the Mahalanobis transformation is

Y = Σ−1/2(X − µ) ∼ Np(0, Ip)

and it holds
Y>Y = (X − µ)> Σ−1(X − µ) ∼ χ2

p.

Notice that Y is random vector. Y>Y is scalar which “measures the
distance” between X and its expected value µ. Y>Y can be easily used
for testing (assuming that Σ is known).

In practice, we do not know Σ. The tests in this situation can be carried
out using Wishart and Hotelling distributions (multivariate generalizations
of χ2 and Student’s t distribution).
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Elementary Properties

∗ If X ∼ Np(µ,Σ) then a linear transformation
AX + c,A(q × p), c ∈ IRq has distribution Nq(Aµ+ c ,AΣA>).

∗ Two linear transformations AX and BX of X ∼ Np(µ,Σ) are
independent if and only if AΣB> = 0.

∗ If X1 and X2 are partitions of X ∼ Np(µ,Σ) then the conditional
distribution of X2 given X1 = x1 is normal again and X1 is
independent of X2 if and only if Σ12 = 0.

∗ The conditional expectation of (X2|X1) is a linear function for(
X1
X2

)
∼ Np(µ,Σ).

∗ The multiple correlation coefficient is the percentage of the variance
of X2 explained by the linear approximation β0 + β>X1.
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Central Limit Theorems

Central Limit Theorem describes the (asymptotic) behaviour of sample
mean

X1,X2, . . . ,Xn, i.i.d with Xi ∼ (µ,Σ)

√
n(x − µ)

L−→ Np(0,Σ) for n −→∞.

The CLT can be easily applied for testing.

Normal distribution plays a central role in statistics.
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Figure: The CLT for Bernoulli distributed random variables. Sample size n = 5
(left) and n = 35 (right). → SMScltbern
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Figure: The CLT in the two-dimensional case. Sample size n = 5 (left) and
n = 500 (right). → SMScltbern3
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Transformation of statistics

If
√

n(t − µ)
L−→ Np(0,Σ) and if f = (f1, . . . , fq)> : IRp → IRq

are real valued functions which are differentiable at µ ∈ IRp, then f (t) is
asymptotically normal with mean f (µ) and covariance D>ΣD, i.e.,

√
n{f (t)− f (µ)} L−→ Nq(0,D>ΣD) for n −→∞,

where

D =

(
∂fj
∂ti

)
(t)

∣∣∣∣
t=µ

(p × q) matrix of all partial derivatives.

This theorem can be applied, e.g., to find the “variance stabilizing”
transformation.
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Example:

Suppose

{Xi}ni=1 ∼ (µ,Σ); µ =

(
0

0

)
, Σ =

(
1 0.5

0.5 1

)
, p = 2.

We have by CLT for n→∞
√

n(x − µ)
L−→ N(0,Σ).

The distribution of

(
x2

1 − x2

x1 + 3x2

)
?

This means to consider f = (f1, f2)> with

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x1 + 3x2, q = 2.
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Then f (µ) =
(0

0

)
and

D = (dij), dij =

(
∂fj
∂xi

)∣∣∣∣
x=µ

=

(
2x1 1
−1 3

)∣∣∣∣
x=0

=

(
0 1
−1 3

)
.

We have the covariance(
0 −1
1 3

) (
1 1

2
1
2 1

) (
0 1
−1 3

)
=

(
1 −7

2
−7

2 13

)
D> Σ D D>ΣD

.

This yields

√
n

(
x2

1 − x2

x1 + 3x2

)
L−→ N2

((
0

0

)
,

(
1 −7

2
−7

2 13

))
.
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Limit Theorems

∗ If X1, . . . ,Xn are i.i.d. random vectors with Xi ∼ (µ,Σ) then the
distribution of

√
n(x − µ) is asymptotically N(0,Σ) (Central Limit

Theorem).

∗ If X1, . . . ,Xn are i.i.d. random variables with Xi ∼ (µ, σ) then an
asymptotic confidence interval can be constructed by the CLT:
x̄ ± σ̂√

n
u1−α/2.

∗ For small sample sizes the Bootstrap improves the precision of this
confidence interval.

∗ If t is a statistic that is asymptotically normal, i.e.,
√

n(t − µ)
L−→ Np(0,Σ), then this holds also for a function f (t), i.e.,

√
n{f (t)− f (µ)} is asymptotically normal.
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Week 4

Týden 4

Datové matice, testováńı mnohorozměrné sťredńı hodnoty:

Wishartovo a Hotellingovo rozděleńı,

testy v́ıcerozměrné sťredńı hodnoty.
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Week 4 Data matrices, Wishart, Hotelling

Further matrix algebra: Kronecker product

Let A⊗ B denote the Kronecker product of matrices A and B and vec(A)
denote the vector obtained by stacking the columns of A. Kronecker
product and vectorization are useful tools for working with (random)
matrices:

α(A⊗ B) = (αA)⊗ B = A⊗ (αB)

A⊗ (B ⊗ C) = (A⊗ B)⊗ C
(A⊗ B)> = A> ⊗ B>

(A⊗ B)(C ⊗ D) = (AC)⊗ (BD)

(A⊗ B)−1 = (A−1 ⊗ B−1)

(A+ B)⊗ C = A⊗ C + B ⊗ C
A⊗ (B + C) = A⊗ B +A⊗ C
vec(AXB) = (B> ⊗A)vec(X )

tr(A⊗ B) = tr(A) tr(B)
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Week 4 Data matrices, Wishart, Hotelling

Normal data matrices

Definition: Let X1, . . . ,Xn be a random sample from Np(µ,Σ). Then
X = (X1, . . . ,Xn)> is called a data matrix from Np(µ,Σ).

Clearly, if X is a data matrix from Np(µ,Σ) then
xn = X>1n/n ∼ Np(µ,Σ/n).

Theorem: If X is a data matrix from Np(µ,Σ) then
Y = AXB ∼ Nq(αB>µ, βB>ΣB) if and only if:

A1n = α1m for some α ∈ IR, or B>µ = 0, and

AA> = βIm for some β ∈ IR, or B>ΣB = 0q0>q .

The proof is based on vectorization of X (i.e., column stacking):
vec(X ) ∼ Nnp(µ⊗ 1n,Σ⊗ In) and vec(AXB) = (B> ⊗A)vec(X ).
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Normal data matrices: independence

Theorem: If X is a data matrix from Np(µ,Σ) then Y = AXB and
Z = CXD are independent if and only if B>ΣD = 0 or AC> = 0.

Proof: assume (WLOG) that µ = 0, then vec(Y) = (B> ⊗A)vec(X ), and
the covariance matrix between vec(Y) and vec(Z) is

E vec(Y)vec(Z)> = (B> ⊗A)E vec(X )vec(X )>(D> ⊗ C)>

= (B> ⊗A)(Σ⊗ In)(D ⊗ C>)

= B>ΣD ⊗AC>.
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Wishart distribution

Definition: Assuming that X is a data matrix from Np(0p,Σ), the
random matrix

M(p × p) = X>X ∼Wp(Σ, n),

where Wp(Σ, n) denotes Wishart distribution with parameters Σ and n.

Example:

p = 1, X ∼ N1(0, σ2)

X =

 x1
...

xn

 M = X>X =
n∑

i=1
x2
i ∼ σ2χ2

n

It follows that Wishart distribution is generalisation of χ2
n
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Theorem:

M∼Wp(Σ, n) and B(p × q)⇒ B>MB ∼Wq(B>ΣB, n)

Theorem:(Cochran) X (n × p) is data matrix with Np(µ,Σ). Then:

X>CX , where C is symmetric, has the same distribution as a
weighted sum of independent Wp(Σ, 1) matrices, where the weights
are eigenvalues of C.

nS = X>HX ∼Wp(Σ, n − 1),

x̄ and S are independent.

Proof: see Theorem 3.4.4. (page 68) in MKB (using spectral
decomposition of C or H).
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Wilks’ Λ-distribution

Definition: Assume that A ∼Wp(I,m) and B ∼Wp(I, n) are
indepependent, m ≥ p, we say that the random variable

Λ = |A|/|A+ B|

has Wilks’ lambda distribution with parameters p, m, and n, i.e.,
Λ ∼ Λ(p,m, n)

This distribution occurs frequently in likelihood ratio tests.

The random variable Λ is basically a ratio of two ‘generalized
variances’—therefore, Wilks’ Λ distribution can be seen as a multivariate
generalization of F distribution.
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Hotelling’s T 2-distribution

Definition: Assume that random vector Y ∼ Np(0, I) is independent of
random matrix M∼Wp(I, n). Then

n Y>M−1Y ∼ T 2(p, n),

where T 2(p, n) denotes Hotelling’s distribution with parameters p and n.

Hotelling’s T 2 generalizes Student’s t-distribution

The critical values of Hotelling’s T 2 can be calculated using F -distribution:

T 2(p, n) =
np

n − p + 1
Fp,n−p+1
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Distributions related to multinormal

∗ The Wishart distribution is a generalization of the χ2-distribution.

∗ Assuming normality, the empirical covariance matrix S has a
1
nWp(Σ, n − 1) distribution.

∗ In the normal case, x̄ and S are independent.

∗ Hotelling’s T 2-distribution is a generalization of the t-distribution.

∗ (n − 1)(x − µ)>S−1(x − µ) has a T 2(p, n − 1) distribution.

∗ The relation between Hotelling’s T 2− and Fisher’s F -distribution is
given by T 2(p, n) = np

n−p+1 Fp,n−p+1.

∗ Wilks’ Λ-distribution can be seen as a multivariate generalization of F
distribution (ratio of two variances).
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Testing the multivariate mean

Xi ∼ Np(µ,Σ) i.i.d.

H0 : µ = µ0, Σ unknown, H1 : no constraints.

Under H0: (n − 1)(x̄ − µ0)>S−1(x̄ − µ0) ∼ T 2(p, n − 1).

Equivalently: (
n − p

p

)
(x̄ − µ0)>S−1(x̄ − µ0) ∼ Fp,n−p

The rejection region may be defined as(
n − p

p

)
(x̄ − µ0)>S−1(x̄ − µ0) > F1−α;p,n−p.
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R: library(DescTools); help(HotellingsT2Test)

Confidence region for µ(
n−p
p

)
(x̄ − µ)>S−1(x̄ − µ) ∼ Fp,n−p{

µ ∈ IRp | (µ− x̄)>S−1(µ− x̄) ≤ p

n − p
F1−α;p,n−p

}
is a confidence region at level (1-α) for µ; it is the interior of an
iso-distance ellipsoid in IRp.

When p is large, ellipsoids are not easy to handle for practical purposes.
One is thus interested in finding confidence intervals for µ1, µ2, . . . , µp so
that simultaneous confidence on all the intervals reaches the desired level
say, 1− α.
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library(mvtnorm)

s=matrix(c(1,-0.5,-0.5,1),2);x=seq(-3,3,by=0.015)

contour(x,x,outer(x,x,

function(x,y){dmvnorm(cbind(x,y),sigma=s)}))

n=20;X=rmvnorm(n,sigma=s);m=apply(X,2,mean);S=cov(X)

points(m[1],m[2],pch=8,col="red",cex=2)

#contour(x,x,outer(x,x,function(x,y){(n-2)*

# diag(t(t(cbind(x,y))-m)%*%solve(S)%*%(t(cbind(x,y))-m))<

# 2*qf(0.95,2,n-2)}),col="red",add=TRUE)

S1=solve(S)

contour(x,x,outer(x,x,function(x,y){(n-2)*

apply(t(t(cbind(x,y))-m),1,function(x){t(x)%*%S1%*%x})<

2*qf(0.95,2,n-2)}),col="red",add=TRUE)

bodyx=m[1]+c(-1,1)*sqrt(S[1,1]*2*qf (0.95,2,n-2) /(n-2))

bodyy=m[2]+c(-1,1)*sqrt(S[2,2]*2*qf (0.95,2,n-2) /(n-2))

polygon(x=bodyx[c(1,1,2,2,1)],y=bodyy[c(1,2,2,1,1)],border="blue")
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Simultaneous Confidence Intervals for a>µ

Obvious confidence interval for certain a>µ is given by:∣∣∣∣√n − 1(a>µ− a>x̄)√
a>Sa

∣∣∣∣ ≤ t1−α
2

;n−1

or equivalently

t2(a) =
(n − 1)

{
a>(µ− x̄)

}2

a>Sa
≤ F1−α;1,n−1

which provides the (1− α) confidence interval for a>µ:a>x̄ −

√
F1−α;1,n−1

a>Sa

n − 1
≤ a>µ ≤ a>x̄ +

√
F1−α;1,n−1

a>Sa

n − 1

 .

Using Theorem on maximum of quadratic forms we see that:

max
a

t2(a) = (n − 1)(x̄ − µ)>S−1(x̄ − µ) ∼ T 2(p, n − 1).
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max
a

t2(a) = (n − 1)(x̄ − µ)>S−1(x̄ − µ) ∼ T 2(p, n − 1)

implies that the simultaneous confidence intervals for all possible linear
combinations a>µ, a ∈ IRp of the elements of µ is given by:(

a>x̄ −
√

Kαa>Sa, a>x̄ +
√

Kαa>Sa
)
,

where Kα = p
n−pF1−α;p,n−p.

Example:

95% confidence region for µf , the mean of the forged banknotes, is given
by the ellipsoid:{

µ ∈ IR6
∣∣∣(µ− x̄f )>S−1

f (µ− x̄f ) ≤ 6

94
F0.95;6,94

}
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95% simultaneous c.i. are given by (using F0.95;6,94 = 2.1966)

214.692 ≤ µ1 ≤ 214.954
130.205 ≤ µ2 ≤ 130.395
130.082 ≤ µ3 ≤ 130.304

10.108 ≤ µ4 ≤ 10.952
10.896 ≤ µ5 ≤ 11.370

139.242 ≤ µ6 ≤ 139.658

Comparison with µ0 = (214.9, 129.9, 129.7, 8.3, 10.1, 141.5)> shows that
almost all components (except the first one) are responsible for the
rejection of µ0.

In addition, choosing e.g. a> = (0, 0, 0, 1, −1, 0) gives c.i.
−1.211 ≤ µ4 − µ5 ≤ 0.005 shows that for the forged bills, the lower
border is essentially smaller than the upper border.
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Testing the difference of two multivariate means

Suppose Xi1 ∼ Np(µ1,Σ),i = 1, · · · , n1 and Xj2 ∼ Np(µ2,Σ),j = 1, · · · , n2,
all the random vectors being independent.

H0 : µ1 = µ2, H1 : no constraints.

Both samples provide the statistics x̄k and Sk , k=1,2.

Let δ = µ1 − µ2,we have

(x̄1 − x̄2) ∼ Np

(
δ,

n1 + n2

n1n2
Σ

)
n1S1 + n2S2 ∼Wp(Σ, n1 + n2 − 2).
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The rejection region is:

n1n2(n1 + n2 − p − 1)

p(n1 + n2)2
((x̄1 − x̄2))> S−1 ((x̄1 − x̄2))

≥ F1−α;p,n1+n2−p−1

A (1− α) ∗ 100% confidence region for δ is given by the ellipsoid centered
at (x̄1 − x̄2)

(δ − (x̄1 − x̄2))> S−1 (δ − (x̄1 − x̄2))

≤ p(n1 + n2)2

(n1 + n2 − p − 1)(n1n2)
F1−α;p,n1+n2−p−1,

and the simultaneous confidence intervals for all linear combinations of the
elements of δ : a>δ are given by

a>δ ∈ a>(x̄1 − x̄2)±

√
p(n1 + n2)2

(n1 + n2 − p − 1)(n1n2)
F1−α;p,n1+n2−p−1a>Sa.
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Week 4 Data matrices, Wishart, Hotelling

Example: We want to compare the mean of the assets (X1) and of the
sales (X2) of the two sectors energy (group 1) and manufacturing (group
2).

We have the following statistics n1 = 15, n2 = 10, p = 2,

x̄1 =

(
4084

2580.5

)
, x̄1 =

(
4307.2
4925.2

)
,

S1 = 107 ∗
(

1.6635 1.2410
1.2410 1.3747

)
,

S2 = 107 ∗
(

1.2248 1.1425
1.1425 1.5112

)
,

S = 107 ∗
(

1.4880 1.2016
1.2016 1.4293

)
.
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Week 4 Data matrices, Wishart, Hotelling

The observed value of the test statistic is Fobs = 2.7036.

Since F0.95;2,22 = 3.4434 the hypothesis of equal means of the two groups
is not rejected although it would be rejected at a less severe level
(p − value = 0.0892).

The 95% simultaneous confidence intervals for the differences are given by

−4628.6 ≤ µ1a − µ2a ≤ 4182.2
−6662.4 ≤ µ1s − µ2s ≤ 1973.0.
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Week 4 Data matrices, Wishart, Hotelling

Testing means with unequal covariance matrices I

Suppose Xi1 ∼ Np(µ1,Σ1),i = 1, · · · , n1 and
Xj2 ∼ Np(µ2,Σ2),j = 1, · · · , n2, all the variables being independent.

H0 : µ1 = µ2, H1 : no constraints.

(x̄1 − x̄2) ∼ Np

(
δ,

Σ1

n1
+

Σ2

n2

)
.

Therefore,

(x̄1 − x̄2)>
(

Σ1

n1
+

Σ2

n2

)−1

(x̄1 − x̄2) ∼ χ2
p

Since Si is a consistent estimator of Σi , i = 1, 2 we have

(x̄1 − x̄2)>
(
S1

n1
+
S2

n2

)−1

(x̄1 − x̄2)→ χ2
p
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Week 4 Data matrices, Wishart, Hotelling

Example: Let us compare the forged and the genuine bank notes again
(n1 and n2 are both large). The test statistic turns out to be 2436.8 which
is again highly significant. The 95% simultaneous confidence intervals are
now:

−0.0389 ≤ δ1 ≤ 0.3309
−0.5140 ≤ δ2 ≤ −0.2000
−0.6368 ≤ δ3 ≤ −0.3092
−2.6846 ≤ δ4 ≤ −1.7654
−1.2858 ≤ δ5 ≤ −0.6442

1.8146 ≤ δ6 ≤ 2.3194

showing that all the components except the first are different from zero,
the larger difference coming from X6 (length of the diagonal) and X4

(lower border).
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Week 4 Data matrices, Wishart, Hotelling

Testing means with unequal covariance matrices II

Clearly, the χ2 approximation to the distribution of the test statistic

(x̄1 − x̄2)>
(
S1

n1
+
S2

n2

)−1

(x̄1 − x̄2)

is usable only for sufficiently large sample sizes.

For smaller sample sizes, one can use approximate likelihood ratio tests
(Mardia et al, Section 5.4.1) or Welch approximation to degrees of
freedom (Mardia et al, Section 5.4.2).

Note: the problem of testing equality of means without equality of
variances is known as the Behrens-Fisher problem (at least in the
univariate case).
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Week 5

Týden 5

Odhadováńı a testováńı:

odhady metodou maximálńı věrohodnosti,

testováńı poměrem věrohodnost́ı,

p̌ŕıklady.
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Week 5 Testing and estimation

Estimation

The aim is to estimate vector of parameters θ from a sample X through
estimators θ̂(X ).

Most common approaches:

maximum likelihood,

Bayesian approach,

robust methods (M-estimation).

In the following, we shortly discuss maximum likelihood theory.
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Week 5 Testing and estimation

The Likelihood Function

X ∼ f (x , θ) pdf. parameter θ

Likelihood function

L(X ; θ) =
n∏

i=1

f (xi ; θ)

MLE
θ̂ = arg max

θ
L(X ; θ)

log-likelihood
`(X ; θ) = log L(X ; θ)
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Week 5 Testing and estimation

Derivatives

Function f : IRp → IR

∂f (x)
∂x is the gradient, i.e., column vector of partial derivatives{
∂f (x)
∂xj

}
, j = 1, . . . , p

∂f (x)
∂x>

row vector of the same derivative

∂2f (x)
∂x∂x>

is the (p × p) Hessian matrix of second derivatives
∂2f (x)
∂xi∂xj

, i = 1, . . . , p, j = 1, . . . , p.
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Week 5 Testing and estimation

Some useful formulae

Linear transformations:

A(p × p), x ∈ IRp

∂a>x

∂x
=
∂x>a

∂x
= a

Quadratic form (i.e., A is symmetric):

∂x>Ax

∂x
= (A+A>)x = 2Ax

∂2x>Ax

∂x∂x>
= 2A
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Week 5 Testing and estimation

Derivative of trace and determinant

This is useful for derivation of MLEs for multivariate normal distribution:

∂trXA
∂X

=

{
A> if elements of A are distinct,
A+A> − diag(A) for A symmetric.

∂|X |
∂xij

= xij if elements of X are distinct.

∂|X |
∂xij

=
xij for i = j
2xij for i 6= j

for X symmetric.

For V = Σ−1 symmetric it follows that:

∂ log |V|
∂V

= 2Σ− diag(Σ).

Z. Hlávka (KPMS) NMST539 139 / 413

Week 5 Testing and estimation

Derivatives

∗ The column vector ∂f (x)
∂x is called the gradient.

∗ The gradient of ∂a>x
∂x = ∂x>a

∂x equals a.

∗ The derivative of the quadratic form ∂x>Ax
∂x equals 2Ax .

∗ The Hessian of f : IRp → IR is the (p × p) matrix of second

derivatives ∂f (x)
∂xi∂xj

.

∗ The Hessian of the quadratic form xTAx equals 2A.
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Week 5 Testing and estimation

Example: {xi}ni=1 is a sample from a normal distribution Np(µ,Σ)

Due to the symmetry of Σ, the unknown parameter θ is in fact
{p + 1

2 p(p + 1)}-dimensional.

L(X ; θ) = |2πΣ|−n/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}

`(X ; θ) = −n

2
log |2πΣ| − 1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ).

After some calculations, the log-likelihood function for Np(µ,Σ) is:

`(X ; θ) = −n

2
log |2πΣ| − n

2
tr{Σ−1S} − n

2
(x − µ)>Σ−1(x − µ)

Z. Hlávka (KPMS) NMST539 141 / 413

Week 5 Testing and estimation

Reparametrizing V = Σ−1, we obtain:

∂`(X ; θ)

∂µ
= nV(x − µ)

and
∂`(X ; θ)

∂V
= n{2M− diag(M)}/2,

where M = Σ− S − (x − µ)(x − µ)>.
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Week 5 Testing and estimation

Score and Fisher information

The score function s(X ; θ) is the derivative of the log-likelihood function
w.r.t. θ ∈ IRk

s(X ; θ) =
∂

∂θ
`(X ; θ) =

1

L(X ; θ)

∂

∂θ
L(X ; θ).

The covariance matrix

Fn = E{s(X ; θ)s(X ; θ)>} = Var{s(X ; θ)} = −E

{
∂2

∂θ∂θ>
`(X ; θ)

}
is called the Fisher information matrix.
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Week 5 Testing and estimation

Cramer-Rao theorem

The importance of the Fisher information matrix is explained by the
Cramer-Rao theorem, which gives the lower bound for the variance matrix
for any unbiased estimator of θ.

Theorem: If θ̂ = t = t(X ) is an unbiased estimator for θ, then under
regularity conditions

Var(t) ≥ F−1
n .

The proof can be based on some special properties of the score function.

An unbiased estimator with the variance equal to F−1
n is called a minimum

variance unbiased estimator.
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Week 5 Testing and estimation

Asymptotic normality of MLEs

Another important result says that the MLE is asymptotically unbiased,
efficient (minimum variance), and normally distributed.

Theorem: Suppose that the sample {xi}ni=1 is i.i.d. If θ̂ is the MLE for
θ ∈ IRk then under some regularity conditions, as n→∞:

√
n(θ̂ − θ)

L−→ Nk(0,F−1
1 ),

where F1 denotes the Fisher information for sample size n = 1.

This result gives us a very useful and simple approximation whenever we
are not able to calculate the exact distribution of the MLE θ̂.

Even in very complicated situations, the Fisher information matrix can be
approximated numerically.
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Week 5 Testing and estimation

Hypothesis Testing

∗ Maximum likelihood estimators are easy to calculate but we have to
know the true distribution.

∗ MLEs have asymptotically normal distribution.

∗ The asymptotic normality of transformed MLEs can be derived by
using Delta theorem.

∗ MLEs are asymptotically optimal.
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Week 5 Likelihood ratio tests

Likelihood ratio tests (LRTs)

Consider hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1,

where θ is a parameter of the distribution of {xi}ni=1, xi ∈ IRp.

Wilks’ Theorem says:

Theorem: If Ω1 ⊂ IRq is a q-dimensional space and if Ω0 ⊂ Ω1 is an
r -dimensional subspace, then under regularity conditions:

∀ θ ∈ Ω0 : −2 log λ = 2(`∗1 − `∗0)
L−→ χ2

q−r as n→∞,

where `∗j , j = 1, 2 are the maxima of the log-likelihood for each hypothesis.
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Week 5 Likelihood ratio tests

Testing the multivariate mean

Xi ∼ Np(µ,Σ) i.i.d.

H0 : µ = µ0, Σ unknown, H1 : no constraints.

Under H0 it can be shown that

`∗0 = `(µ0,S + dd>), d = (x − µ0)

and under H1 we have
`∗1 = `(x ,S).

This leads to

−2 log λ = 2(`∗1 − `∗0) = n log(1 + d>S−1d).

Note that this statistic depends on (n− 1)d>S−1d which has, under H0, a
Hotelling’s T 2-distribution.
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Week 5 Likelihood ratio tests

Testing the variance matrix

Xi ∼ Np(µ,Σ) i.i.d.

H0 : Σ = Σ0, µ unknown, H1 : no constraints.

Looking at the log-likelihood function, we observe that the MLEs are x
and Σ0 under H0 and x and S under the alternative.

Therefore:

l∗0 = −1

2
n log |2πΣ0| −

1

2
n tr Σ−1

0 S, and l∗1 = −1

2
n log |2πS| − 1

2
np.

This leads to

−2 log λ = n tr Σ−1
0 S − n log |Σ−1

0 S| − np = np(a− log g − 1),

where a and g denote respectively the arithmetic and geometric mean of
eigenvalues of Σ−1

0 S.
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Week 5 Likelihood ratio tests

Test of homogeneity of covariances

Let Xih ∼ Np(µh,Σh), i = 1 · · · , nh; h = 1, · · · , k
all variables being independent,

H0 : Σ1 = Σ2 = · · · = Σk , H1 : no constraints.

Sh is the MLE estimator of Σh under the alternative and the weighted
average S = n1S1+···+nkSk

n is the MLE of Σ under the null (H0).

The likelihood ratio test leads to the statistic

−2 log λ = n log |S| −
k∑

h=1

nh log |Sh|

which under H0 is approximately distributed as a X 2
m where

m = 1
2 (k − 1)p(p + 1).
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Week 5 Likelihood ratio tests

Test of independence

Let Xi ∼ Np(µ,Σ), i = 1 · · · , n be independent,

H0 : Σ12 = 0, H1 : no constraints.

We partition the variables into two sets with dimensions p1 and p2. The
estimators under H0 is

µ̂ = xn

and

Σ̂ =

(
S11 0
0 S22

)
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Week 5 Likelihood ratio tests

It follows that the LRT test statistics for H0 : Σ12 = 0 is:

−2 log λ = −n log |Σ̂−1S | = −n log |S22 − S21S−1
11 S12|/|S22|

= −n log |I − S−1
22 S21S−1

11 S12| = −n log
k∏

i=1

(1− λi ),

where λi are non-zero eigenvalues of S−1
22 S21S−1

11 S12.

It can be shown that the test statistics follows the so-called Wilks’ lambda
distribution (distribution of a ratio of determinants of independent Wishart
matrices).

This test is applicable in canonical correlation analysis (investigating
correlations between two sets of variables).

For p1 = 1, the LRT test statistics simplifies to a function of multiple
correlation coefficient.
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Week 5 Likelihood ratio tests

Tests of multivariate normality

Multivariate skewness:

β1,p = E{(X − µ)>Σ−1(Y − µ)}3,

where X and Y are iid.

Multivariate kurtosis:

β2,p = E{(X − µ)>Σ−1(X − µ)}2

It can be shown that β1,p = 0 and β2,p = p(p + 2) for X ∼ Np(µ,Σ). This
easily follows from the symmetry of V = (X − µ)>Σ−1(Y − µ) and
(X − µ)>Σ−1(X − µ) ∼ χ2

p.
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Week 5 Likelihood ratio tests

Tests of multivariate normality

Assuming normality, the distribution of b1,p and b2,p (the sample
counterparts of β1,p and β2,p) is:

1

6
nb1,p ∼ χ2

p(p+1)(p+1)/6

and
√

n
b2,p − p(p + 2)√

8p(p + 2)
∼ N(0, 1).

Note: QQ diagram can be plotted using quantiles of χ2
p distribution and

ordered values of n(Xi − x)>S−1(Xi − x).
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Week 6–7

Týden 6–7

Metoda hlavńıch komponent:

definice a interpretace,

standardizace,

asymptotické vlastnosti,

použit́ı.
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Week 6–7 Principal components

Principal Components

Principal components are (orthogonal) linear combinations maximizing the
variance of standardized linear combinations (SLC):

δ>X =

p∑
j=1

δjXj such that ||δ|| = δ>δ = 1.

Maximizing:

max
{δ:‖δ‖=1}

var(δ>X ) = max
{δ:‖δ‖=1}

δ> Var(X )δ

is easy using the spectral decomposition Var(X ) = ΓΛΓ>.
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Week 6–7 Principal components

Example:

Bivariate normal distribution N(0,Σ), Σ =
(

1
ρ
ρ
1

)
, ρ > 0.

Eigenvalues of this matrix are λ1 = 1 + ρ and λ2 = 1− ρ with
corresponding eigenvectors

γ1 =
1√
2

(
1

1

)
, γ2 =

1√
2

(
1

−1

)
.

The PC transformation is thus

Y = Γ>(X − µ) =
1√
2

(
1 1
1 −1

)
X

or (
Y1

Y2

)
=

1√
2

(
X1 + X2

X1 − X2

)
.
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Week 6–7 Principal components

The first principal component is

Y1 =
1√
2

(X1 + X2)

and the second is

Y2 =
1√
2

(X1 − X2).

Let us compute the variances of these PCs:

var(Y1) = var

{
1√
2

(X1 + X2)

}
=

1

2
var(X1 + X2)

=
1

2
{var(X1) + var(X2) + 2 cov(X1,X2)}

=
1

2
(1 + 1 + 2ρ) = 1 + ρ

= λ1.

Similarly we find that: var(Y2) = λ2.
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Week 6–7 Principal components

Properties of PCs

Let X ∼ (µ,Σ) and let Y be the PC transformation Y = Γ>(X − µ).

Then

EY = 0p

var(Y ) = Λ

var(Y1) ≥ · · · ≥ var(Yp) ≥ 0∑
j

var(Yj) =
∑
j

λj = tr(Σ) =
∑
j

var(Xj)∏
var(Yj) = |Σ|.

Note: |Σ| is called the (population) generalized variance and tr(Σ) the
(population) total variation.

Z. Hlávka (KPMS) NMST539 159 / 413

Week 6–7 Principal components

Example: In practice, the sample principal components are calculated
from the sample variance matrix:

S = GLG>

Y = (X − 1nx̄>)G

data(bank2)

eigen(var(bank2))

pcb=prcomp(bank2)

pcb

plot(pcb)

pcb$x
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Week 6–7 Principal components

PCA stopping rules

For dimension reduction, the number of PCs is usually chosen by simple
ad-hoc rules:

scree-plot (of eigenvalues),

log-eigenvalue diagram (LEV),

percentage of total variation (explain 80 or 90% of total variation),

Kaiser criterion (choose PCs with higher than the “average
variance”).

The interpretation of the Kaiser criterion simplifies for standardized data
sets: tr Σ = p implies that the average variance is 1.
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Week 6–7 Principal components

Interpretation

The interpretation of PCs is based on its variances (eigenvalues) and its
coefficients (eigenvectors).

Warning: rescaling can change everything.

Example: bank2[,1]=bank2[,1]*1000; prcomp(bank2)

Cov(X ,Y ) = ΣΓ = ΓΛΓ>Γ = ΓΛ

ρXiYj
= γij

(
λj
σXiXi

)1/2

Interestingly
∑

j ρ
2
XiYj

= · · · = 1.
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Week 6–7 Principal components

In practice, one should consider standardization of variables before running
PCA.

prcomp(bank2,scale.=TRUE)

Example: Some examples:

bank2,

athletic records,

geopol,

timebudget.

Z. Hlávka (KPMS) NMST539 163 / 413

Week 6–7 Principal components

Asymptotic properties

Theorem: For normal data and Σ with distinct eigenvalues, the sample
principal components and sample eigenvalues are the maximum likelihood
estimators of the (true) principal components and eigenvalues.

Proof: The theorem follows from the inveriance of maximum likelihood
estimators (and because S is MLE of Σ).

Theorem: Assume that Σ = ΓΛΓ> > 0 with with distinct eigenvalues and
U = GLG> ∼ m−1Wp(Σ,m). Then

√
m(`− λ)

L−→ Np(0, 2Λ2)

and

√
n − 1(gj − γj)

L−→ Np

0, λj
∑
k 6=j

λkγkγ
>
k /(λk − λj)2

 .
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Week 6–7 Principal components

The proof uses transformation mΓ>UΓ ∼Wp(Λ,m), see MKB, p. 231.

Example:

Assuming normality:

nS ∼Wp(Σ, n − 1)

√
n − 1(`j − λj)

L−→ N(0, 2λ2
j ), j = 1, . . . , p,

using log transformation:

√
n − 1

2
(log `j − log λj)

L−→ N(0, 1)
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Week 6–7 Principal components

Clearly, the estimator of variance explained by first q PCs

ψ̂ = (`1 + · · ·+ `q)/
p∑

j=1
`j is a nonlinear transformation of `.

Therefore, √
n − 1(ψ̂ − ψ)

L−→ N(0, ω2),

where

ω2 =
2

{tr(Σ)}2

{
(1− ψ)2(λ2

1 + · · ·+ λ2
q) + ψ2(λ2

q+1 + · · ·+ λ2
p)
}

=
2 tr(Σ2)

{tr(Σ)}2
(ψ2 − 2βψ + β),

where β = (λ2
1 + · · ·+ λ2

q)/(λ2
1 + · · ·+ λ2

p).

Remark: use tr(Λ) = tr(Σ) and tr(Λ2) = tr(Σ2) to simplify the calculation!
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Week 6–7 Principal components

Example: The first PC for Swiss bank notes resolves 67% of the variation.
Let us test whether the true proportion could be 75%.

The 95% confidence interval for the true proportion is

0.668± 1.96

√
0.142

199
= (0.615, 0.720).

We reject the hypothesis that ψ = 75%!
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Week 6–7 Principal components

Application of PCA

The usual flow of PCA:

1 Is it necessary to standardize the data set?

2 How many PCs?

3 Interpretation!

Usual applications:

dimension reduction,

visualization (plotting) of high-dimensional datasets,

regression on PCs (removes multicollinearity).
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Week 7–8

Týden 7–8

Faktorová analýza:

model faktorové analýzy,

odhadováńı a rotace faktor̊u,

interpretace.
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Week 7–8 Factor analysis

Factor analysis

Factor analysis has provoked rather turbulent controversy throughout its
history.

. . . each application of the technique must be examined on its own merits
to determine its success.

The essential purpose of factor analysis is to describe, if possible, the
covariance relationships among many variables in terms of a few
underlying, but unobservable, random quantities called factors.

Factor analysis can be considered as an extension of principal component
analysis . . . the approximation based on the factor analysis model is more
elaborate.

(Johnson and Wichern, Applied Multivariate Statistical Analysis, Prentice
Hall, 1992)
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Week 7–8 Factor analysis

Factor Analysis Model

We want to explain p components of X by smaller number of common
factors.

X = QF + U + µ

Q = (p × k) loadings
F = (k × 1) common factors
U = (p × 1) specific factors

where F and U are centered, Var(F ) = Ik ,
Var(U) = Ψ = diag(ψ11, . . . , ψpp), and Cov(F ,U) = 0.

Estimates of the loadings Q and specific variances Ψ are deduced from
var X (using var X = Σ = QQ> + Ψ).
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Week 7–8 Factor analysis

Example: Perfect FA is PCA with only k positive eigenvalues:

Σ =
k∑̀
=1

λ`γ`γ
>
` .

X = QF + µ

Q =
(√
λ1γ1, . . . ,

√
λkγk

)
F = k − dim vector (random)

EF = 0

Var(F ) = Ik

Clearly, the matrix Q is not unique (because rotation leads to equivalent
solution).
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Week 7–8 Factor analysis

Communality and specific variance

Define

h2
j =

k∑̀
=1

q2
j` communality

ψjj specific variance

Notice that var Xj = h2
j + ψjj , i.e., the communality is the part of variance

of Xj explained by the common factors. The specific variance is the
unexplained part.

Two important properties of FA model are invariance of scale and
non-uniqueness (with respect to rotations).
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Week 7–8 Factor analysis

Invariance of scale

Assume that we have the following FA model for X : var X = QXQ>X + ΨX .

What happens if we change the scale of X ?

Y = CX , C = diag(c1, . . . , cp)

Var(Y ) = CΣC>
= CQXQ>XC> + CΨXC>

Hence the k-factor model is also true for Y with

QY = CQX

ΨY = CΨXC>.
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Non-Uniqueness of Factor Loadings

For orthogonal matrix G we get:

X = (QG)(G>F ) + U + µ.

We get a k-factor model with factor loadings QG and common factors
G>F . In practical analysis, we will choose the rotation which gives
“desirable” interpretation.

For the purpose of evaluation, the non-uniqueness can be solved by
imposing additional constraints, e.g.,

Q>Ψ−1Q is diagonal.
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Interpretation of the Factors

Interpretation of unobserved latent factors F is based on covariances and
correlations:

ΣXF = E{(QF + U)F>} = Q

PXF = D−1/2Q,

where D = diag(σX1X1 , . . . .σXpXp).

Correlations PXF show the relationship between the original variables
X1, . . . ,Xp and the common factors F1, . . . ,Fk .
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Number of parameters in the model

We have p(p + 1)/2 equations and pk + p parameters ( pk parameters
from Q and p parameters from Ψ) with 1

2{(k(k − 1)} constraints (e.g.
Q>Ψ−1Q is diagonal):

⇒ d = # pars for Σ unconstrained
−# pars for Σ constrained

= 1
2 (p − k)2 − 1

2 (p + k).

d < 0 infinity of exact solutions
d > 0 look for approximate solutions
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Example: p = 3, k = 1 ⇒ d = 0

Σ =

 q2
1 + ψ11

q1q2 q2
2 + ψ22

q1q3 q2q3 q2
3 + ψ33



�
�
�A
A
A

! d = 0 yields only a unique numerical solution! It need not be
consistent with statistical thinking
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�
�
�A
A
A

! The solution in the case d = 0 might be numerically correct but
inconsistent with statistical interpretation.

Example:

Σ =

 1 0.9 0.7
0.9 1 0.4
0.7 0.4 1


[Ψ11 = −0.575!, q11 = 1.255].
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Example: Suppose now p = 2 and k = 1, then d < 0.

Σ =

(
1
ρ 1

)
=

(
q2

1 + Ψ1

q1q2 q2
2 + Ψ2

)
We have an infinity of solutions: for any α(ρ < α < 1) a solution is
provided by:

q1 = α; q2 = ρ/α; Ψ1 = 1− α2; Ψ2 = 1− (ρ/α)2
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Factor Analysis Model

∗ The factor analysis model aims to describe the dependencies between
the p variables in a data set by a lower number k < p of latent
factors, i.e. it assumes X = QF + U + µ. The random vector F
(k-dimensional) contains the common factors, U (p-dimensional) the
specific factors, Q(p × k) the loadings matrix.

∗ It is supposed that F and U are uncorrelated and have mean zero and
uncorrelated components, i.e., F ∼ (0, I), U ∼ (0,Ψ) with a diagonal
Ψ, Cov(F ,U) = 0.
This leads to the covariance structure Σ = QQ> + Ψ.

∗ The interpretation of the factor F is obtained through the correlation
PXF = D−1/2Q.
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Factor Analysis Model

∗ A normalized analysis is obtained by the model P = QQ> + Ψ The
interpretation of the factors is given directly by the loadings
Q : PXF = Q.

∗ The factor analysis model is scale invariant. The loadings are not
unique (only up to multiplication by an orthogonal matrix).

∗ The non-uniqueness of the model is determined through the degrees
of freedom d = 1/2(p − k)2 − 1/2(p + k)
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Estimation of the Factor Model

It is often easier to make the calculations for the standardized model
(recall that FA is scale invariant).

Define:
Y = HXD−1/2

↑
centering matrix

Find a decomposition of the correlation matrix P:

P = Q̂Y Q̂>Y + Ψ̂Y

Q̂Y Q̂>Y common factors

Ψ̂Y specific factors
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Example: Data set carmean2 consists of the averaged marks (from 1 low
to 7 high) for 31 car types.

We consider price, security and easy handling.

R =

 1 0.975 0.613
1 0.620

1

 .

We look for one factor, i.e. k = 1. (# number of parameters of Σ
unconstrained – # parameters of Σ constrained) equals here
1
2 (p − k)2 − 1

2 (p + k) = 1
2 (3− 1)2 − 1

2 (3 + 1) = 0.

So there is an exact solution!
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The equation 1 rX1X2 rX1X2

1 rX1X3

1

 = R =

 q̂2
1 + ψ̂11 q̂1q̂2 q̂1q̂3

q̂2
2 + ψ̂22 q̂2q̂3

q̂2
3 + ψ̂33


yields the communalities ĥ2

i = q̂2
i

q̂2
1 =

rX1X2rX1X3

rX2X3

q̂2
2 =

rX1X2rX2X3

rX1X3

q̂2
3 =

rX1X3rX2X3

rX1X2

.
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Together with ψ̂11 = 1− q̂2
1 , ψ̂22 = 1− q̂2

2 and ψ̂33 = 1− q̂2
3 we get the

solution

q̂1 = 0.982 q̂2 = 0.993 q̂3 = 0.624

ψ̂11 = 0.035 ψ̂22 = 0.014 ψ̂33 = 0.610.

Since the first two communalities are close to one, we conclude that the
first two variables, namely price and security, are explained by the factor
very well.

This factor might be interpreted as a “price+security” factor.
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The Principal Component Method

Decompose var(X ) = S = GLG>.

Retain the first k eigenvectors to build

Q̂ = [
√
`1g1, . . . ,

√
`kgk ].

Omitting p − k eigenvectors shouldn’t cause big error if the corresponding
eigenvalues λi , i = k + 1, . . . , p are small.

Specific variance are estimated by diagonal elements of

S − Q̂Q̂>.

This gives Ψ̂.
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Error of approximation

Residual matrix S − (Q̂Q̂> + Ψ̂)

[ diag is 0 but off-diag not]

Analytically: ∑
i ,j

[
S − (Q̂Q̂> + Ψ̂)

]2

i ,j
≤ ˆ̀2

k+1 + . . .+ ˆ̀2
p

gives an estimate of error of the approximation (using Frobenius norm).

This gives simple criterion for the choice of number of the factors.
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Method of Principal Factors

We start with an estimate of the communality:

1) h̃2
j = the square of the multiple correlation

coefficient, i.e. ρ2(V ,W β̂) with V = Xj

W = (X`) 6̀=j

β̂ = OLS of regression of V on W

2) h̃2
j = max

6̀=j
|rXjX` |

R = correlation matrix.
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Algorithm of Principal Factors Method

ψ̃jj = 1− h̃2
j

Construct R− Ψ̃

R− Ψ̃ =
p∑̀
=1

λ`γ`γ
>
`

q̂` =
√
λ` γ` , ` = 1, . . . k

Q̂ = Γ1Λ
1/2
1

Γ1 = (γ1, . . . , γk)
Λ1 = diag(λ1, . . . , λk)

ψ̂jj = 1−
k∑̀
=1

q̂2
j`
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The Maximum Likelihood Method

Log-likelihood function ` for a data matrix X of observations for
X ∼ Np(µ,Σ):

`(X ;µ,Σ) = −n

2
log | 2πΣ | −1

2

n∑
i=1

(xi − µ)Σ−1(xi − µ)>

= −n

2
log | 2πΣ | −n

2
tr(Σ−1S)− n

2
(x − µ)Σ−1(x − µ)>.

Evaluated at its maximum µ̂ = x :

`(X ; µ̂,Σ) = −n

2

{
log(| 2πΣ |)− tr(Σ−1S)

}
.
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By substituting Σ = QQ> + Ψ

`(X ; µ̂,Q,Ψ) = −n

2

[
log{| 2π(QQ> + Ψ) |} − tr{(QQ> + Ψ)−1S}

]
.

This model is not well defined.

Therefore, we require that Q>Ψ−1Q is diagonal matrix.

The maximum likelihood estimates of Q and Ψ are obtained using an
iterative numerical algorithm (function factanal() in R library MASS).
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LR test for the Number of Common Factors

The test follows directly from the assumption of normality. We test
H0 : Σ = QQ> + Ψ
H1 : Σ arbitrary (positive definite) matrix

See the chapter on Likelihood Ratio tests.

The likelihood ratio statistic is

−2Λ = −2 log

[
maximized likelihood under H0

maximized likelihood

]

= −2 log

(
|Q̂Q̂> + Ψ̂|
|Sn|

)−n/2

+ n{tr [(Q̂Q̂> + Ψ̂)−1Sn]− p}

with (1/2)[(p −m)2 − p −m] degrees of freedom.
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Rotation

The factor analysis model is not uniquely defined and the factors can be
rotated without any loss of information.

We are free to rotate the estimated factors rather arbitrary. This feature of
factor analysis is rather controversial.

Usually, we rotate the factors in a way which provides reasonable
interpretation which is consistent with the measured variables.

In the most simple case of k = 2 factors a rotation matrix G is given by

G(θ) =

(
cos θ sin θ
− sin θ cos θ

)
which represents a clockwise rotation of the coordinate axes by the angle θ
(then Q̂∗ = Q̂G(θ)).
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Varimax

The varimax method tries to find “reasonable rotation” automatically.

The interpretation of the loadings would be simple if the variables split
into disjoint sets, each of which is associated with one factor. A well
known analytical algorithm which tries to rotate the loadings in this way is
the varimax rotation method.

Varimax method tries to find the rotation which maximizes the sum of the
variances of the squared loadings q̂∗ij within each column of Q̂∗ (this
should lead to qijs close to 0 or 1):

max
rotations Q∗

k∑
j=1

1

p

∑
i

(q∗ij)
4 −

[
1

p

∑
i

(q∗ij)
2

]2
 .
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Promax

The promax rotation is similar to varimax but it works without the
condition of orthogonality (so-called oblique rotation).

The resulting correlated(!) factors are typically easier to interpret.

Z. Hlávka (KPMS) NMST539 196 / 413



Week 7–8 Factor analysis

Strategy for Factor Analysis

1 Perform a principal component factor analysis, look for suspicious
observations, try varimax rotation

2 Perform maximum likelihood factor analysis including varimax rotation

3 Compare the factor analyses: do the loadings group in the same
manner?

4 Repeat the previous steps for other number of common factors

5 For large data sets, split them in half and perform a factor analysis on
each part. Compare the solutions.
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Estimation of the Factor Model

∗ In practice Q and Ψ have to be estimated from S = Q̂Q̂> + Ψ̂. The
number of free parameters is d = 1

2 (p − k)2 − 1
2 (p + k).

∗ The maximum-likelihood method supposes a normal distribution for
the data, a solution can be found by numerical algorithms.

∗ The method of principal factors is a two-stage method which
calculates Q̂ from the reduced correlation matrix R− Ψ̃, Ψ̃ a
pre-estimate for Ψ. The final estimate for Ψ is found by

ψ̂ii = 1−
∑k

j=1 q̂2
ij .

∗ Principal components can be interpreted as a simple factor analysis

model with loadings Q = ΓkΛ
1/2
k .

∗ A better interpretation can be found by rotating the loadings Q.
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Factor scores

Factor scores are estimates of the unobserved random vectors Fl ,
l = 1, . . . , k, for each individual xi , i = 1, . . . , n.

Factor scores may be useful for interpretation as well as in the diagnostic
analysis

The idea of the regression method (or Thomson method) is to consider
the joint distribution of (X − µ) and F (assuming multivariate normality)
and then derive the conditional distribution F |X .

The joint covariance matrix of (X − µ) and F is:

var

(
X − µ

F

)
=

(
QQ> + Ψ Q
Q> Ik

)
.

Note that the upper left entry of this matrix equals Σ and that the matrix
has size (p + k)× (p + k).
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Assuming joint normality, the conditional distribution of F |X is
multinormal with E (F |X = x) = Q>Σ−1(X − µ) and the covariance
matrix var(F |X = x) = Ik −Q>Σ−1Q.

In practice, we replace the unknown Q, Σ and µ by corresponding
estimators, leading to the estimated individual factor scores:

f̂i = Q̂>S−1(xi − x).

We prefer to use the original sample covariance matrix S as an estimator
of Σ, instead of the factor analysis approximation Q̂Q̂> + Ψ̂, in order to
be more robust against incorrect determination of the number of factors.
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Notes

1 The same rule can be followed when using R instead of S. In this
case the factors are given by

f̂i = Q̂>R−1(zi ),

where zi = D−1/2
S (xi − x), Q̂ is the loading obtained with the matrix

R, and DS = diag(s11, . . . , spp).

2 Using MLE (treating F as unknown parameters), one arrives to
Bartlett’s scores.

3 Clearly, if the factors are rotated by the orthogonal matrix G, the
factor scores have to be rotated accordingly, that is

f̂ ∗i = G>f̂i .
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Concluding remarks

In practice, this technique is also called Exploratory Factor Analysis.

After exploring the factors, one can perform the so-called Confirmatory
Factor Analysis allowing more detailed investigation of the underlying
factors (one can imagine that oblique factors could be explained by
another factor analysis leading to a hieararchical model).

Relationship between the unobserved factors can be investigated using
Structural Equation Models (R library sem, M-plus, LISREL).

Factor analysis models are popular mainly in psychology and behavioral
science.
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Week 9

Týden 9

Mnohorozměrné škálováńı:

matice vzdálenost́ı,

metrické řešeńı,

nemetrické řešeńı (PAVA a STRESS).
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Week 9 Distance matrix

Euclidean distance
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d(x , y) =
√

(x − y)T (x − y)
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Week 9 Distance matrix

Distance matrix

X (n × p) with n measurements (objects) of p variables.

The distance matrix D(n × n) is a matrix of all distances between all pairs
of observations:

D =



d11 d12 . . . . . . . . . d1n
... d22

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
dn1 dn2 . . . . . . . . . dnn



Example: L2-norm: dij = ‖xi − xj‖2, where xi and xj denote the rows of
the data matrix X .
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Distance and similarity

Distance can be easily calculated for numerical measurements (Euclidean
distance, L1 distance, Mahalanobis distance, etc.)

Example:
data(bank2)
dist(bank2,method=”euclidean”)
dist(scale(bank2),method=”euclidean”)

For nominal (or binary) variables it is easier to define a measure of
similarity (e.g., various ratios of “number of concordances” such as
Jaccard, Tanimoto, Simple Matching, etc.)
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Example: Let us consider data set on songs in 20 medieval songbooks.

spev P U K E G Kl SMF Pa S M W Lc B F SG To C Me Q R

1 HOMO QUIDAM x x x x x x x _ _ x x x _ _ x x x x x x

2 FACTUM EST x x x x x x x x x x _ _ _ _ x x x x x x

3 ELEVANS AUTEM x x x x x x _ _ _ _ _ _ _ _ _ _ _ x x x

4 ROGO ERGO x x x x x x x x x _ x x _ _ x x _ x x x

5 DIVES ILLE x x x x x x x _ _ _ _ _ _ _ x x x x _ _

6 DEUS CARITAS x x _ _ _ x _ _ _ _ _ _ _ _ _ x _ x x _

7 HOMO QUIDAM x x x x x x x x x x x x x x x x x x x _

8 EXI CITO x x x x x x x x x x x x x x x x x x x _

9 DOMINE FACTUM x x x x x x x _ _ _ _ _ _ _ x _ _ x x x

10 DICO AUTEM x x x x x x x _ _ x _ _ _ _ _ _ x x x x

11 QUIS EX x x x x x x x x x x _ x x x x x x x x x

12 CONGRATULAMINI x x x x x x _ _ _ x x _ _ _ x x x x x x
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Considering observations xi and xj and denoting

a1 =
∑p

k=1
I (xik = xjk = ”x”),

a2 =
∑p

k=1
I (xik = ” ”, xjk = ”x”),

a3 =
∑p

k=1
I (xik = ”x”, xjk = ” ”),

a4 =
∑p

k=1
I (xik = xjk = ” ”).

we can define a proximity measure as

sij =
a1 + δa4

a1 + δa4 + λ(a2 + a3)

by choosing some δ and λ.
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Name δ λ Definition

Jaccard 0 1 a1
a1 + a2 + a3

Tanimoto 1 2 a1 + a4
a1 + 2(a2 + a3) + a4

Simple Matching (M) 1 1 a1 + a4
p

Dice 0 0.5 2a1
2a1 + (a2 + a3)

In the songbooks example, the Jaccard measure seems to be reasonable.
Calculating the similarity measure for all pairs of songbooks, we obtain a
similarity matrix S = sij .
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Distance and similarity

Distances and similarities are closely related. It may be useful to
“transform” similarity to distance because some methods require distances.

Denoting similarities as sij , distances can be defined as
dij =

√
sii − 2sij + sjj or dij = maxi ,j{sij} − sij (we want symmetry and

dii = 0).

In the songbook example, we can define

dij =
a2 + a3

a1 + a2 + a3
= 1− sij

as a ratio of “common songs” (from songs that are contained in
songbooks i and j).
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The Proximity between Objects

∗ The proximity between data points is measured by a distance or
similarity matrix D whose components dij give the similarity
coefficient or the distance between two points xi , xj .

∗ There exists a variety of similarity (distance) measures for binary data
(e.g., Jaccard, Tanimoto, Simple Matching coefficients) and for
continuous data (e.g., Lr -distances).

∗ The nature of the data could impose to choose a particular metric A
for defining the distance (standardization, χ2-metric etc.).
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Euclidean matrix

It is easy to calculate distance matrix D from the data matrix X but is it
possible to calculate the data matrix X from a distance matrix D?

Definition: We say that D = (dij) is a distance matrix if dij = dji ≥ 0 and
dii = 0, for i , j = 1, . . . , n.

The first step would be to verify that the matrix D is Euclidean (i.e., that
it contains Euclidean distances).

Definition: We say that a matrix D = (dij) is Euclidean if for some points
x1, . . . , xn ∈ IRp; d2

ij = (xi − xj)
>(xi − xj).
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Theorem: Define A = (aij), aij = −1
2 d2

ij , B = HAH, H being the
centering matrix. Then the matrix D is Euclidean if and only if B is
positive semidefinite.

Idea of the proof:

1/ Assuming that D is Euclidean for centered data matrix X , we have
d2
ij = x>i xi + x>j xj − 2x>i xj .

Writing B = HAH implies that bij = aij − ai . − a.j + a.. = · · · = x>i xj .
Therefore B = XX> ≥ 0.

2/ Assuming that B ≥ 0 and rank(B) = p, we can write B = ΓpΛpΓ>p and
it follows (similarly as above) that D is matrix of Euclidean distances of

points in X = ΓpΛ
1/2
p .

Note that the matrix X = ΓpΛ
1/2
p is centered.
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Multidimensional scaling

MDS uses proximities (distances) between objects to produce a spatial
representation of these items.

In contrast to the techniques considered so far MDS does not start from
the raw multivariate data matrix, X , but from a (n × n) dissimilarity or a
distance matrix D. Hence, the underlying dimensionality of the data under
investigation is not known.

More precisely: MDS searches for a “configuration” of points in IRk that
“preserves” the distances of objects in IRp (where p is not known).

MDS-techniques can help to understand how people perceive and evaluate
certain items:

metric MDS is based on Euclidean distances,

non-metric MDS assumes that distances are on ordinal scale.
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MDS solution (metric MDS)

Recall that B = HAH, where aij = −1
2 d2

ij .

Assuming that rank(B) = p and writing B = ΓpΛpΓ>p , we obtain data

matrix X = ΓpΛ
1/2
p that preserves the observed distances in p-dimensional

space.y

If some of the eigenvalues are small, we can obtain a good representation

(of the distances) in k-dimensional space by X = ΓkΛ
1/2
k .

Note that the final configuration of points in IRk can be arbitrarily rotated
and shifted without changing the distances.
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Example: Consumers’ impressions of the dissimilarity of certain cars.

Audi 100 BMW 5 Citroen AX Ferrari . . .

Audi 100 0 2.232 3.451 3.689 . . .
BMW 5 2.232 0 5.513 3.167 . . .
Citroen AX 3.451 5.513 0 6.202 . . .
Ferrari 3.689 3.167 6.202 0 . . .
...

...
...

...
...

. . .

library(SMDdata);library(MASS);data(carmean2)

X=cmdscale(dist(carmean2))

plot(X,type="n")

text(X,labels=row.names(carmean2))
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Metric MDS

-4 -2 0 2 4
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fiat ford
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opel_vectra

peugeotrenault

rover
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trabant

vw_golf

vw_passat

wartburg

MDS solution.
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The dissimilarities were in fact computed as Euclidean distances from the
original data containing car marks data on economy, price, security, . . .

Therefore, we can plot the correlation between the MDS projection and
the original variables (see next slide).

The first MDS direction is highly correlated with service(-), value(-),
design(-), sportiness(-), safety(-) and price(+). We can interpret the first
direction as the price direction since a bad mark in price (“high price”)
obviously corresponds with a good mark, say, in sportiness (“very
sportive”).

The second MDS direction is highly positively correlated with practicability.

We see that we have a non-linear relationship between price and
practicability.
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Correlations MDS/Variables
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Correlations between the MDS direction and the original variables.
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Relation to principal components

Let X be a data matrix. Assume (WLOG) that X is centered.

Notice that nS = X>X and B = XX> have the same non-zero
eigenvalues.

The SVD decomposition X = ULV> implies that the spectral
decomposition of X>X is VL2V>. Therefore, the principal compoments
XV = ULV>V = UL = ΓΛ1/2 (where XX> = ΓΛΓ>(= UL2U>)).

Therefore, the metric MDS solution recovers the first k principal
components (of the original data set).
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Multidimensional Scaling

∗ MDS uses distances between n items to project high-dimensional data
in a low-dimensional space.

∗ MDS (using Euclidean distances in p dimensions) leads to first
k principal components of the original data set.

∗ It can be shown that the metric solution to MDS leads to optimal
representation of the original data set in k dimensional space (from
the point of view of

∑
(d2

ij − d̂2
ij ), where dij are the original distances

and d̂ij are the projections in IRk—note also that d̂ij ≤ dij).
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Nonmetric MDS

Nonmetric MDS is based on a “loose” relationship between dissimilarities
and distances.

The distance is defined as an arbitrary monotone function of the
dissimilarities (i.e., nonmetric MDS is based on the rank order of the
dissimilarities).

The most common approach is to determine (some) (non-Euclidean)
distances and then obtain the coordinates of the objects by using the
iterative Shepard-Kruskal algorithm.
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Shepard-Kruskal algorithm

1 calculate Euclidean distances from arbitrarily chosen inital
configuration X (or use metric MDS to obtain the initial coordinates),

2 define new distances so that they are monotone function of the
original dissimilarities (using monotone regression),

3 calculate new configuration of the data which is more closely related
to the distances obtained in step 2 (minimize STRESS, numerical
approximation on a computer is needed),

4 check the change of STRESS, if it isn’t small enough, iterate the
algorithm.

We demonstrate each step of the algorithm using a simple example.
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Example: Consider a small example with 4 objects based on the car marks
data set.

j 1 2 3 4
i Mercedes Jaguar Ferrari VW

1 Mercedes -
2 Jaguar 3 -
3 Ferrari 2 1 -
4 VW 5 4 6 -
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Our aim is to find a p∗ = 2 dimensional representation via MDS. Suppose
that we choose as initial configuration X0 the coordinates as:

Initial Configuration

0 3 6 9 12

 

2
4

6
8

 

Mercedes

Jaguar

Ferrari

VW

 

 

i xi1 xi2
1 Mercedes 3 2
2 Jaguar 2 7
3 Ferrari 1 3
4 VW 10 4
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The corresponding distances dij =
√

(xi − xj)>(xi − xj) are

i , j dij rank(dij) δij
1,2 5.1 3 3
1,3 2.2 1 2
1,4 7.3 4 5
2,3 4.1 2 1
2,4 8.5 5 4
3,4 9.1 6 6
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Dissimilarities and distances

0 1 2 3 4 5 6 7

Dissimilarity

0
2

4
6

8
10

D
is

ta
nc

e

  (2,3)

  (1,3)

  (1,2)

  (2,4)

  (1,4)

  (3,4)

A plot of the dissimilarities is not satisfactory since the ranking of the δij
did not result in a monotone relation of the corresponding distances dij .
We apply therefore the PAV algorithm.
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PAVA = “pool adjacent violators” algorithm (= algoritmus “zpr̊uměrováńı
sousedńıch narušitel̊u”) is used to calculate the LS estimator under
assumption of monotonicity.

The first violator of monotonicity is the second point (1, 3) we therefore
average the distances d13 and d23 to obtain the disparities

d̂13 = d̂23 =
d13 + d23

2
=

2.2 + 4.1

2
= 3.17.

We apply the same procedure to the pair (2, 4) and (1, 4) to yield
d̂24 = d̂14 = 7.9. The plot od δij versus the disparities d̂ij represents a
monotone regression relationship.

In the initial configuration, the point 3 (Ferrari) could be moved so that
the distance to object 2 (Jaguar) is smaller. This procedure however also
alters the distance between objects 3 and 4. More care has therefore to be
taken for an establishment of a monotone relation between δij and dij .
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STRESS

In order to assess how well the derived configuration fits the given
dissimilarities Kruskal suggests a measure called STRESS1 that is given by

STRESS1 =

(∑
i<j(dij − d̂ij)

2∑
i<j d2

ij

) 1
2

.

An alternative measure of STRESS1 is given by

STRESS2 =

(∑
i<j(dij − d̂ij)

2∑
i<j(dij − d)2

) 1
2

,

where d denotes the average distance.
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STRESS calculations for the car example:

(i , j) δij dij d̂ij (dij − d̂ij)
2 d2

ij (dij − d)2

(2,3) 1 4.1 3.15 0.9 16.8 3.8
(1,3) 2 2.2 3.15 0.9 4.8 14.8
(1,2) 3 5.1 5.1 0 26.0 0.9
(2,4) 4 8.5 7.9 0.4 72.3 6.0
(1,4) 5 7.3 7.9 0.4 53.3 1.6
(3,4) 6 9.1 9.1 0 82.8 9.3

Σ 36.3 2.6 256.0 36.4

The average distance is d = 36.4/6 = 6.1. The corresponding STRESS
measures are: STRESS1 =

√
2.6/256 = 0.1,

STRESS2 =
√

2.6/36.4 = −.27
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The aim is a point configuration that balances the effects STRESS and
non monotonicity. This is achieved by an iterative procedure defining new
position of object i relative to object j by

xNEW
il = xil + α

(
1−

d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗.

Here α denotes the step width of the iteration.

The configuration of object i is improved relative to object j . In order to
obtain an overall improvement relative to all remaining points one uses:

xNEW
il = xil +

α

n − 1

n∑
j=1,j 6=i

(
1−

d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗.

The choice of step width α is crucial. Kruskal proposes a starting value of
α = 0.2. The iteration is continued by a numerical approximation
procedure.
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In a fourth step, the evaluation phase, the STRESS measure is used to
evaluate if its change as a result of the last iteration is sufficiently small to
terminate the procedure, or not. At this stage the optimal fit has been
obtained for a given dimension. Hence, the whole procedure needs to be
carried out for a several dimensions.

Let us compute the new point configuration for i = 3 (Ferrari). The initial
coordinates are x31 = 1, x32 = 3. Applying the above formula yields:

xNEW
31 = 1 +

3

4− 1

4∑
j=1,j 6=3

(
1− d̂31

d31

)
(xj1 − 1)

= 1 +

(
1− 3.15

2.2

)
(3− 1) +

(
1− 3.15

2.2

)
(2− 1) +

(
1− 9.1

9.1

)
(10− 1)

= 1− 0.86 + 0.23 + 0 = 0.37

Similarly we obtain xNEW
32 = 4.36.
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First iteration for Ferrari
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First iteration for Ferrari.
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Similarity of cars in R:

d=matrix(c(0,3,2,5,3,0,1,4,2,1,0,6,5,4,6,0),nrow=4)

row.names(d)=c("Mercedes","Jaguar","Ferrari","VW")

colnames(d)=row.names(d)

### the initial configuration

init=matrix(c(3,2,1,10,2,7,3,4),ncol=2)

par(mfrow=c(1,2))

plot(init,xlim=1.1*range(init),ylim=1.1*range(init),

xlab="",ylab="")

text(init,labels=row.names(d))

### the non-metric solution

mds=isoMDS(d,trace=TRUE,y=init)

plot(NULL,xlim=1.1*range(mds$points),

ylim=1.1*range(mds$points),xlab="",ylab="")

text(mds$points,labels=row.names(d))
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Example: Inter-city distances in Czech Republic.

d=matrix(c(0,3,1,5, 3,0,4,2, 1,4,0,6, 5,2,6,0),nrow=4)

row.names(d)=c("Praha","Brno","Plzen","Ostrava")

colnames(d)=row.names(d)

### the metric solution

body=cmdscale(d)

plot(body,xlim=1.1*range(body),ylim=1.1*range(body),

xlab="",ylab="")

text(body,labels=c("Praha","Brno","Plzen","Ostrava"))

### the non-metric solution

mds=isoMDS(d,trace=TRUE)

plot(NULL,xlim=1.1*range(mds$points),

ylim=1.1*range(mds$points),xlab="",ylab="")

text(mds$points,labels=c("Praha","Brno","Plzen","Ostrava"))
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Example: Dissimilarity matrix for car marks data set:

j 1 2 3 4
i Nissan Kia BMW Audi

1 Nissan -
2 Kia 2 -
3 BMW 5 6 -
4 Audi 3 4 1 -

The dissimilarity matrix contains obviously only ranks of dissimilarity.
Applying metric MDS may not be appropriate in this situation.
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The outcome of the Shepard-Kruskal algorithm. It is important that both
axes have the same scale, different scales could lead to wrong
interpretations.
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The Euclidean distances between the points are:

j 1 2 3 4
i Nissan Kia BMW Audi

1 Nissan -
2 Kia 2.00 -
3 BMW 5.02 6.02 -
4 Audi 3.20 4.16 1.88 -

These distances are different from the original dissimilarities but their
order is the same, i.e., the STRESS measure is equal to 0.
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Example: The nonmetric MDS solution for the songbooks example (→
SMSclussong):
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Nonmetric Multidimensional Scaling

∗ Nonmetric MDS is based only upon the rank order of dissimilarities.

∗ The object of nonmetric MDS is to create a spatial representation of
the objects with low dimensionality.

∗ A practical algorithm is given as:
1 Choose an initial configuration
2 Normalize the configuration.
3 Find dij from the normalized configuration
4 Fit d̂ij , the disparities by the PAV algorithm
5 Find the new configuration Xn+1 by using steepest descent.
6 Go to 2 and interate until STRESS is small enough.
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Week 10

Týden 10

Shluková analýza:

shlukovaćı algoritmy,

hierarchické aglomerativńı algoritmy,

dendrogram.
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Cluster analysis

Cluster analysis is a set of tools and methods for building groups (clusters)
from multivariate data objects. The aim is to find groups with
homogeneous properties out of heterogeneous large samples.

The algorithm is usually divided into two fundamental steps:

1 the choice of a proximity measure,

2 the choice of a group-building algorithm.

We have already discussed several distance and proximity measures. The
choice of proximity measure typically follows from the type of
measurements in the data set.

In the following, we assume that we have (n × n) distance matrix D
(calculated from p-dimensional data set X ).
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Group-building algorithms

Two types of clustering methods:

partioning algorithms (typically computationally intensive
optimization of a given criterion),

hierarchical algorithms:

agglomerative,
partioning.

In partitioning techniques the assignment of objects into groups may
change during the (iterative) algorithm.

In hierarchical clustering this assignment cannot be changed (the
algorithm produces a sequence of clusters by “splitting” or “joining”).

In the following, we look at agglomerative techniques.
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Agglomerative algorithms

The agglomerative algorithm consists of the following steps:

1 Construct the finest partition.

2 Compute the distance matrix D.

DO

3. Find the clusters with the closest distance.

4. Put those two clusters into one cluster.

5. Compute the distance between the new groups and obtain a reduced
distance matrix D.

UNTIL all clusters are agglomerated into X .
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Agglomerative techniques are computationaly simple because the distances
between clusters can be easily calculated from the distance matrix D.

If two objects or groups P and Q are to be united one obtains the distance
to another group (object) R by the following distance function

d(R,P +Q) = δ1d(R,P)+δ2d(R,Q)+δ3d(P,Q)+δ4|d(R,P)−d(R,Q)|

δj weighting factors
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δ1 δ2 δ3 δ4

Single linkage 1/2 1/2 0 -1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage
(unweighted)

1/2 1/2 0 0

Average linkage
(weighted)

nP
nP + nQ

nQ
nP + nQ

0 0

Centroid
nP

nP + nQ

nQ
nP + nQ

− nPnQ

(nP + nQ)2 0

Median 1/2 1/2 -1/4 0

Ward
nR + nP

n.
nR + nQ

n. −nR
n. 0

nP =
∑n

i=1 I (xi ∈ P) denotes the number of objects in group P

n. = nR + nP + nQ
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Example: x1 = (0, 0), x2 = (1, 0), x3 = (5, 5) and the squared Euclidean
distance matrix with single linkage weighting.

The algorithm starts with N = 3 clusters P = {x1},Q = {x2},R = {x3}.

The single linkage distance between the remaining two clusters:

d(R,P + Q) =
1

2
d(R,P) +

1

2
d(R,Q)− 1

2
|d(R,P)− d(R,Q)|

= min(d(R,P), d(R,Q))

= min(d(R,P), d(R,Q))

= 41

The reduced distance matrix is then
(

0
41

41
0

)
.

Single linkage = nearest neighbor!
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Dendrogram

Dendrogram:

a graphical representation of the sequence of clustering,

displays the observations, the sequence of clusters and the distances
between the clusters.

Construction of dendrogram:

tree displaying the progress of the agglomerative clustering algorithm,

the row name (or row number) is given on the horizontal axis.

the vertical axis gives the distance between clusters.
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Example:

 8 points
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The 8 points example:
eight=cbind(c(4,2,-2,-3,-2,-2,1,1),c(-3,-4,-1,0,-2, 4,2,4))

.
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Single Linkage Dendrogram - 8 points
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The dendrogram for the 8 points example (single linkage algorithm with
squared Euclidean distances).

plot(hclust(dist(eight)^2,method="single"))
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Cutting the tree

If we decide to cut the tree at the level 10 we define three clusters: {1, 2},
{3, 4, 5} and {6, 7, 8}.

gr=cutree(hclust(dist(eight)^2,method="single"),k=3)

In practice, it is important to interpret the resulting clusters using tables of
means and (multivariate) graphics:

sapply(data.frame(eight),tapply,gr,

function(x)sprintf("%0.1f",mean(x)))

plot(eight,col=as.numeric(gr),pch=as.numeric(gr)+1)

In practice, the choice of the number of clusters is usually based on the
visual inspection of the dendrogram.
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Group building algorithms

Single linkage nearest neighbor, tends to build “chains”.

Complete linkage furthes neighbor, creates groups where all points are
close.

Average linkage computes average distance (compromise between single
and complete linkage).

Centroid uses geometrical distance.

Ward joins groups that do not increase too much a given measure
of heterogeneity (and creates nice looking homogeneous
groups).

In practice, most “usable” results are typically obtained by Ward algorithm.
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Ward algorithm

The measure of heterogeneity for a group R is the inertia inside the group:

IR =
1

nR

nR∑
i=1

d2(xi , xR),

where xR is the mean (center of gravity) of the group R.

When two objects or groups P and Q will be joined, the new group P + Q
will have a larger inertia IP+Q . The increase of inertia is given by

∆(P,Q) =
nPnQ

nP + nQ
d2(P,Q).

The Ward algorithm joins groups P and Q that give the smallest increase
of ∆(P,Q).

This interpretation is correct if we are working with squared Euclidean
distances (note that hclust() contains two versions of Ward algorithm).
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Example: US companies data set.

data(uscomp)

uscomp$Sales=as.numeric(as.character(uscomp$Sales))

uscomp$Sales[65]= 1601

d=dist(scale(uscomp[,c(-7)]))

plot(cluscomp.c<-hclust(d)

plot(cluscomp.s<-hclust(d,method="single"))

plot(cluscomp.w<-hclust(d,method="ward"))

gr3=cutree(cluscomp.w,k=3)

sapply(uscomp[,-7],tapply,gr3,function(x)round(mean(x)))

parcoord(uscomp[,-7],col=as.numeric(gr3))

table(gr3,uscomp[,7])

It seems that better results could be obtained by logarithmic
transformation of the data set.
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The dendrogram for the songbooks example (Ward algorithm based on Jaccard

measure): two cluster solution corresponds to the division of Francia into West

Francia (more-or-less current France) and East Francia (more-or-less current

Germany) in the 9th century (after the death of Charlemagne) → SMSclussong
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Cluster analysis

∗ The class of clustering algorithms can be divided into two types:
hierarchical and partitioning algorithms. Partitioning algorithms start
from a preliminary clustering and optimize given criterion by
exchanging group elements.

∗ Hierarchical agglomerative techniques start from the finest possible
structure, compute the distance matrix, and join clusters with the
smallest distance. This step is repeated until all points are united in
one cluster.

∗ The agglomerative procedure depends on the definition of the
distance between two clusters. Often used distances are single
linkage, complete linkage, Ward distance.

∗ The process of the unification of clusters can be graphically
represented by a dendrogram.
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Week 10–11

Týden 10–11

Diskriminačńı analýza:

motivace a maximálńı věrohodnost,

lineárńı a kvadratická diskriminačńı analýza,

pravděpodobnost chybné klasifikace,

Fisher̊uv p̌ŕıstup.
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Discriminant analysis

The aim of discriminant analysis is to construct discriminant rules allowing
classification of new items (subjects) into known populations Πj ,
j = 1, . . . , J.

Discriminant rule is a partition of the sample space:

J⋃
j=1

Rj = IRp

↑
partition

The new observation is classified into population Πj if it falls in Rj .
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Bayes rule

Suppose that observations from Πj have density fj(x) and that the πj is
the prior probability of Πj .

Using Bayes theorem:

P(Πj |X = x) =
fj(x)πj∑J
i=1 fi (x)πi

.

Interpreting P(Πj |X = x) as the posterior probability of population Πj

(after observing X = x), we classify X to Πargmaxj P(Πj |X ).

The corresponding discriminant rule Rj is defined as
{x : fj(x)πj ≥ fj i(x)πi , i 6= j} (maximum likelihood).
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Example: A discrimination rule based on observations of a
one-dimensional variable with an exponential distribution.

The pdf is f (x) = λ exp {−λx} for x > 0. Comparing the likelihoods for
two populations Π1 : Exp(λ1) and Π2 : Exp(λ2), we allocate the
observation x into population Π1 if

L1(x)/L2(x) ≥ 1

x(λ1 − λ2) ≤ log
λ1

λ2
.

Assuming that λ1 < λ2, we obtain:

R1 =

{
x : x ≥ log λ1 − log λ2

λ1 − λ2

}
.

The observation x is classified into Π1 if it is greater than the constant
(log λ1 − log λ2)/(λ1 − λ2).
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Credit scoring

Example: Let γ denote the gain of the bank from a correctly classified
good client. Let Π2 denote the population of good clients.

Π1 represents the population of bad clients that bring the loss C (2|1) if
they are classified as good clients.

C (1|2) denotes the cost of loosing a good client classified as bad.

The gain of the bank as a function of the discriminant rule “client is good
if he falls in region R” is:

G (R) = γπ2

∫
I (x ∈ R)f2(x)dx − C (2|1)π1

∫
I (x ∈ R)f1(x)dx

− C (1|2)π2

∫
{1− I (x ∈ R)}f2(x)dx
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Straightforward calculations lead to

R =

{
x :

f2(x)

f1(x)
≥ C (2|1)π1

{C (1|2) + γ}π2

}
.

Theorem: The rule minimizing the Ecpected Cost of Misclassification
ECM = C (2|1)p21π1 + C (1|2)p12π2 (where pij is the probability that
observation from Πj falls into region Ri ) is given by

R1 =

{
x :

f1(x)

f2(x)
≥
(

C (1|2)

C (2|1)

)(
π2

π1

)}
,

R2 =

{
x :

f1(x)

f2(x)
<

(
C (1|2)

C (2|1)

)(
π2

π1

)}
.

Clearly, the Bayes rule is a special case of the ECM rule for equal
misclassification costs.
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One-dimensional normal distributions

Consider two normal populations Π1 : N(µ1, σ
2
1) and Π2 : N(µ2, σ

2
2) and

π1 = π2.

Then

Li (x) = (2πσ2
i )−1/2 exp

{
−1

2

(
x − µi

σi

)2
}

and L1(x) > L2(x) (i.e., x ∈ R1 is classified to Π1)

⇐⇒ σ2

σ1
exp

{
−1

2

[(
x − µ1

σ1

)2

−
(

x − µ2

σ2

)2
]}

> 1

⇐⇒ x2

(
1

σ2
1

− 1

σ2
2

)
− 2x

(
µ1

σ2
1

− µ2

σ2
2

)
+

(
µ2

1

σ2
1

− µ2
2

σ2
2

)
< 2 log

σ2

σ1
.

This is quadratic inequality ⇐⇒ σ2
1 6= σ2

2 .
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The quadratic rule classifies distant observations into the group with larger
variance.

Example: Suppose that µ1 = 0, σ1 = 1 and µ2 = 1, σ2 = 1
2 :

R1 =

{
x : x <

1

3

(
4−

√
4 + 6 log(2)

)
or x >

1

3

(
4 +

√
4 + 6 log(2)

)}
,

R2 = IR \ R1.

If σ1 = σ2 then (for µ1 < µ2) we obtain a very simple linear discriminant
rule:

R1 = {x : x ≤ 1

2
(µ1 + µ2)},

R2 = {x : x >
1

2
(µ1 + µ2)}.
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2 Normal distributions
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Maximum likelihood rule for one-dimensional normal distributions with
different variances.

Z. Hlávka (KPMS) NMST539 265 / 413

Week 10–11 Discriminant analysis

Multinormal distribution with common variance matrix

Suppose Πi : Np(µi ,Σ).

The Bayes rule (assuming equal prior probabilities) allocates x to Πj ,
where j ∈ {1, . . . , J} is the value that minimizes the square Mahalanobis
distance between x and µi :

δ2(x , µi ) = (x − µi )>Σ−1(x − µi ) , i = 1, . . . , J.

In the case of J = 2: x is allocated to Π1 if

(x − µ1)>Σ−1(x − µ1) < (x − µ2)>Σ−1(x − µ2).
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Multinormal distribution with common variance matrix

Rearranging terms leads to:

−2µ>1 Σ−1x + 2µ>2 Σ−1x + µ>1 Σ−1µ1 − µ>2 Σ−1µ2 < 0

2(µ2 − µ1)>Σ−1x + (µ1 − µ2)>Σ−1(µ1 + µ2) < 0

(µ1 − µ2)>Σ−1{x − 1

2
(µ1 + µ2)} > 0

α>(x − µ) > 0,

where α = Σ−1(µ1 − µ2) and µ = 1
2 (µ1 + µ2).

The resulting discriminant rule is linear (see also R command lda()).
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Probability of misclassification

Suppose that Πi : Np(µi ,Σ).

Consider

p12 = P(x ∈ R1 | Π2) = P{α>(x − µ) > 0 | Π2}

In Π2, α>(X − µ) ∼ N
(
−1

2δ
2, δ2

)
where δ2 = (µ1 − µ2)>Σ−1(µ1 − µ2) is

the squared Mahalanobis distance between the two populations, we obtain

p12 = Φ

(
−1

2
δ

)
.

Similarly, we obtain the probability of misclassification into population 2
for x from Π1 as p21=Φ

(
−1

2δ
)
.
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Two multinormal distributions

Assuming that Πi : Np(µi ,Σi ), for i = 1, 2, the discriminant rule becomes
more complicated.

R1 =

{
x : −1

2
xT (Σ−1

1 − Σ−1
2 )x + (µT1 Σ−1

1 − µ
T
2 Σ−1

2 )x − k

≥ ln

[{
C (1|2)

C (2|1)

}{
π2

π1

}]}
where k = 1

2 ln
(
|Σ1|
|Σ2|

)
+ 1

2 (µT1 Σ−1
1 µ1 − µT2 Σ−1

2 µ2).

This is a quadratic classification rule (notice that 1
2 xT (Σ−1

1 −Σ−1
2 )x = 0 if

Σ1 = Σ2).
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Discriminant Analysis

∗ Discriminant analysis is a set of methods for distinguishing between
groups in data and allocating new observations into groups.

∗ The Bayes discriminant rule allocates an observation x to the
population Πj that maximizes maxj πj fj(x).

∗ For the ML rule and J = 2 multivariate normal populations, the
discriminant rule can be derived from ratio of the densities. The
discriminant rule is linear for common variance matrices and quadratic
if the variance matrices are different.

∗ For the ML rule and J = 2 normal populations with common variance
matrix, the probabilities of misclassification are given by
p12 = p21 = Φ

(
−1

2δ
)

where δ is the square root of the Mahalanobis
distance between the 2 populations.
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Discriminant rules in practice

The unknown parameters (µj ,Σj) are estimated by (x̄j , Sj) in each Πj .

The common variance matrix Σ can be estimated by the pooled variance

matrix Su =
J∑

j=1
nj

(
Sj
n−J

)
, where n =

J∑
j=1

nj .

R library MASS contains the following simple functions for discriminant
analysis:

lda(): linear discriminant analysis (assuming equal variance
matrices),

qda(): quadratic discriminant analysis (with possibly different
variance matrices).
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Example:

library(MASS);library(MSES);data(bank2)

lda.b2=lda(bank2,pf<-rep(c("Prave","Fales"),each=100))

lda.b2

table(predict(lda.b2,bank2)$class,pf)

qda.b2=qda(bank2,pf)

qda.b2

table(predict(lda.b2,bank2)$class,pf)

?lda

?qda

Note: applying lda() with xi , x2
i , and xixj is similar (but not equivalent)

to qda().
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Apparent and actual error rate

The apparent error rate (APER) is defined as the percentage of
misclassified observations. APER is based on the observations which were
used to construct the discriminant rule and it might be too optimistic.

In order to obtain a more appropriate estimate of the misclassification
probability, we may use simple leave-one-out (or cross-validation)
algorithm:

1 Calculate the discrimination rule from all but one observation.

2 Allocate the omitted observation according to the rule from step 1.

3 Repeat steps 1 and 2 for all observations and count the number of
correct and wrong classifications.

The estimate of the misclassification rate based on this procedure is called
the actual error rate (AER).
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Example:

lda.b2.cv=lda(bank2,pf,CV=TRUE)

table(lda.b2.cv$class,pf)

qda.b2.cv=qda(bank2,pf,CV=TRUE)

table(lda.b2.cv$class,pf)
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Three (or more) groups

Allocation regions for J = 3 groups:

h12(x) = (x1 − x2)>S−1
u (x − 1

2
(x1 + x2))

h13(x) = (x1 − x3)>S−1
u (x − 1

2
(x1 + x3))

h23(x) = (x2 − x3)>S−1
u (x − 1

2
(x2 + x3)) .

The ML rule is to allocate x to
Π1 if h12(x) > 0 and h13(x) > 0
Π2 if h12(x) < 0 and h23(x) > 0
Π3 if h13(x) < 0 and h23(x) < 0.

In R, discriminant analysis with 3 groups works differently.
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Example:

data(iris)

## training data set

train=sample(1:150,75);table(iris$Species[train])

z=lda(Species~.,iris,prior=c(1,1,1)/3,subset = train)

table(predict(z, iris[-train,-5])$class,

iris[-train,"Species"])

## cross-validation

z.cv.cl=lda(Species ~ ., iris, prior = c(1,1,1)/3,

CV=TRUE)$class

z.al.cl=predict(lda(Species ~ ., iris, prior =

c(1,1,1)/3),iris[,-5])$class
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Fisher’s approach

Based on projections Y = X a of the original data set X .

Projections leading to a good separation are found by maximizing the ratio
of the between-group-sum of squares to the within-group-sum of squares.

The within-sum-of-squares measures the sum of variations within each
group:

J∑
j=1

Y>j HjYj =
J∑

j=1

a>X>j HjXja = a>Wa,

where Yj denotes the j-th submatrix of Y corresponding to observations of
group j and Hj denotes the (nj × nj) centering matrix.
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The between-sum-of-squares is

J∑
j=1

nj(y j − y)2 =
J∑

j=1

nj{a>(x j − x)}2 = a>Ba.

The total-sum-of-squares
∑n

i=1(yi − ȳ)2 = Y>HY = a>X>HX a = a>T a
can be decomposed as

total SS = within SS + between SS.
a>T a = a>Wa + a>Ba

The idea is to select a maximizing maximizes the ratio

a>Ba

a>Wa
.
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Theorem: The vector a that maximizes a>Ba
a>Wa

is the eigenvector of W−1B
that corresponds to the largest eigenvalue.

Idea of the proof: see Theorem on maximization of quadratic forms.

Discrimination rule: We classify x into the group j for which a>x̄j is
closest to a>x , i.e.,

x → Πj where j0 = arg min
j
|a>(x − x̄j)|.
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Example: For two groups of sizes n1 and n2, we obtain:

a>Ba = n1{a>(x1 − x)}2 + n2{a>(x2 − x)}2

= n1{a>(x1 − x2)/2}2 + n2{a>(x1 − x2)/2}2

=
n1 + n2

4
{a>(x1 − x2)2}

Clearly, B = {(n1 + n2)/4}dd>, where d = (x1 − x2) and the largest
eigenvalue of W−1B is (n1 + n2/4)d>W−1d .

Therefore, the corresponding eigenvector has to satisfy:

W−1Bγ = {(n1 + n2)/4}d>W−1dγ

W−1dd>γ = d>W−1dγ

leading γ =W−1d =W−1(x1 − x2).
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Proportion of trace and more groups

In this way, we find only one direction maximizing the differences between
two groups.

For three groups, rank(B) = 2, and we obtain two directions (i.e., a linear
transformation of the original data set maximizing the between-group
differences w.r.t. the within-group variability). The eigenvalues of W−1B
correspond to the importance of these directions (its percentages can be
interpreted as percentages of between-group differences explained by the
corresponding directions).

For g groups, rank(B) ≤ min(p, g − 1). I.e., we obtain at most g − 1
linear discriminants.
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Example:

data(iris)

## training data set

train=sample(1:150,75);table(iris$Species[train])

z=lda(Species~.,iris,prior=c(1,1,1)/3,subset = train)

pz<-predict(z, iris[-train,-5])

table(pz$class,iris[-train,"Species"])

eqscplot(pz$x, type="n",xlab="LD1",ylab="LD2")

spec=as.numeric(iris[-train,5],1,1)

text(pz$x,labels=spec,col=spec)

z ## see "proportion of trace"
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Other usable methods

logistic regression

classification trees

k-nearest neighbors

support vector machine

neural networks
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Discrimination Rules in Practice

∗ Linear discriminant rule allocates x to the population with smallest
Mahalanobis distance

δ2(x ;µi ) = (x − µi )>Σ−1(x − µi ).

∗ Classification for different covariance structures in the two
populations leads to quadratic discrimination rules.

∗ The probability of misclassification can be estimated by
cross-validation.

∗ Fisher’s linear discrimination finds a linear combination a>x that
maximizes the ratio of the “between-sum-of-squares” and the
“within-sum-of-squares”. This rule is identical to the (linear) ML rule
in the case of J = 2 for normal populations.
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Week 11–12

Týden 11

Kanonické korelace:

kanonické proměnné, kanonické vektory a kanonické korelace,

praktické použit́ı a p̌ŕıklad.
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Canonical correlations

We have random vectors X ∈ IRq and Y ∈ IRp.

Consider linear combinations:

a>X and b>Y

Correlation of the linear combinations:

ρ(a, b) = ρa>X b>Y .

We want to find a, b maximizing the correlation ρ(a, b).

The linear combinations a>X and b>Y describe the structure of “common
variability” of X and Y .
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Assuming that (
X

Y

)
∼
( (

µ

ν

)
,

(
ΣXX

ΣYX

ΣXY

ΣYY

) )
,

we want to find a, b maximizing the correlation ρ(a, b) = ρa>X b>Y .

Note that ρ(ca, b) = ρ(a, b) for any c ∈ IR. Therefore, we can maximize
a>ΣXY b under the constraints a>ΣXXa = b>ΣYY b = 1.

And this is the same as maximizing u>Σ
−1/2
XX ΣXY Σ

−1/2
YY v under the

constraints ‖u‖ = ‖v‖ = 1.
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Denoting K = Σ
−1/2
XX ΣXY Σ

−1/2
YY , we have u>Σ

−1/2
XX ΣXY Σ

−1/2
YY v = u>Kv .

Clearly, for each v fixed such that ‖v‖ = 1, we have the following

max
u,‖u‖=1

(u>Kv)2 ≤ max
u,‖u‖=1

u>Kvv>K>u

= v>K>Kv

≤ λ1,

where λ1 is the largest eigenvalue of K>K.

The SVD decomposition K = ΓΛ1/2∆> with k = rank(K) and
λ1 ≥ λ2 ≥ . . . ≥ λk > 0 then leads

γ>1 Kδ1 = λ
1/2
1 (= ρ(Σ

−1/2
XX γ1,Σ

−1/2
YY δ1)).
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Theorem: Define fr = max
a,b

a>ΣXY b under the constraints

a>ΣXXa = b>ΣYY b = 1 and a>i ΣXXa = b>i ΣYY b = 0 for i = 1, . . . , r − 1
(for some r ∈ {1, . . . , k} fixed).

The maximum of ρ(a, b) under the above constraints is given by fr and it

is attained when a = ar = Σ
−1/2
XX γr and b = br = Σ

−1/2
YY δr .

The correlation ρ(a, b) is maximized for a = a1 and b = b1 and

ρ(a1, b1) = λ
1/2
1 is the correlation of random variables η1 and ϕ1.

The vectors ar and br maximize the correlation subject to the condition
that a>X and b>X are uncorrelated with the previous canonical variables
a>i X and b>i X , respectively.
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Terminology

Canonical correlation vectors

ai = Σ
−1/2
XX γi

bi = Σ
−1/2
YY δi

Canonical variables

ηi = a>i X

ϕi = b>i Y

Canonical correlation coefficients

λ
1/2
1 , . . . , λ

1/2
k
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Properties

Theorem: Let η and ϕ be the canonical variables, i.e., the components of
the vector η are

ηi =
(

Σ
−1/2
XX γi

)>
X ,

and the components of the vector ϕ are

ϕi =
(

Σ
−1/2
YY δi

)>
Y ,

for 1 ≤ i ≤ k . Then

Var

(
η
ϕ

)
=

(
I Λ1/2

Λ1/2 I

)
,

where Λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
k ).
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Relation to principal components

Both PC and CC are calculated using eigenvalues and eigenvectors of
some (covariance) matrices.

PC analysis decomposes the “total variability” of one dataset.

CC analysis decomposes the total “common variability” of two datasets.
The “common variability” is described in terms of linear combinations (it
is common and therefore we get description of the common variability in
terms of both datasets).

The canonical variables in both datasets are related: the first canonical
variable in the first dataset describes the same part of the common
variablity as the first canonical variability in the second dataset.
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Canonical correlation analysis

∗ Canonical correlation analysis aims to identify possible links between
two (sub-)sets of variables X ∈ IRq and Y ∈ IRp. The idea is to find
indices a>X and b>Y such that the correlation ρ(a, b) = ρa>Xb>Y is
maximal.

∗ The maximum correlation is found by ai = Σ
−1/2
XX γi and bi = Σ

−1/2
YY δi ,

where γi and δi denote the eigenvectors of KK> and K>K,

K = Σ
−1/2
XX ΣXY Σ

−1/2
YY .

∗ The vectors ai and bi are the canonical correlation vectors, ηi = a>i X
and ϕi = b>i Y are the canonical variables.

∗ The covariance between the canonical variables is cov(ηi , ϕi ) =
√
λi ,

i = 1, . . . , k.

∗ Canonical correlations are invariant w.r.t. linear transformations of
the original variables X and Y .
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Canonical Correlations in Practice

In practice, the covariance matrices ΣXX , ΣXY , ΣYY are estimated by
sample covariance matrices SXX , SXY , SYY . The canonical correlation
analysis is carried out on the estimates.

Before running the analysis, one should test the hypothesis of
independence between X and Y (using, e.g., the ML test described
previously):

Let Zi = (X>i ,Y
>
i )> ∼ Nq+p(µ,Σ), i = 1 · · · , n be independent,

H0 : ΣXY = 0, H1 : no constraints.
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Test of independence

We have already seen that −2 log λ = −n log |I − S−1
22 S21S−1

11 S12|.

It can be shown that this LRT test statistic is distributed as a ratio of
determinants of independent Wishart matrices (this is the Wilks’ lambda
distribution).

For large values of n, the Wilks’ lambda distribution can be approximated
(Bartlett’s approximation):

−{n − (p + q + 3)/2} log |I − S−1
22 S21S−1

11 S12| ∼ χ2
pq,

i.e., we reject independence of X and Y if

−{n − (p + q + 3)/2} log |I − S−1
22 S21S−1

11 S12| > χ2
qp(1− α).
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Example: What is the relationship between the datasets on US crimes
(murder, rape, robbery, assault, burglary, larceny, autotheft) and US health
(accident, cardiovascular, cancer, pulmonar, pneumonia, diabetis, liver)?

data(uscrime)

x=sqrt(as.matrix(uscrime[,3:9]))

x=scale(x)

data(ushealth)

y=sqrt(as.matrix(ushealth[,3:9]))

y=scale(y)

n=nrow(x); p=ncol(x); q=ncol(y)

x denotes US crimes
y denotes US health
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sxx=cov(x);syy=cov(y);sxy=cov(x,y)

t=-(n-(p+q+3)/2)*log(det(diag(1,q)-

solve(syy)%*%t(sxy)%*%solve(sxx)%*%sxy))

format.pval(1-pchisq(t,p*q)) ## test of independence

e=eigen(sxx)

sxx12=e$vectors%*%(sqrt(diag(1/e$values)))%*%t(e$vectors)

e=eigen(syy)

syy12=e$vectors%*%(sqrt(diag(1/e$values)))%*%t(e$vectors)

kkt=sxx12%*%sxy%*%syy12%*%syy12%*%t(sxy)%*%sxx12

ktk=syy12%*%t(sxy)%*%sxx12%*%sxx12%*%sxy%*%syy12

e1=eigen(kkt)

e2=eigen(ktk)

print(cbind(e1$values,e2$values))

a=sxx12%*%e1$vectors

b=syy12%*%e2$vectors
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## canonical variables

cvx=x%*%a

cvy=y%*%b

## plot of the first pair

plot(cvx[,1],cvy[,1],type="n")

text(cvx[,1],cvy[,1],row.names(ushealth))

## canonical correlation

cor(cvx[,1],cvy[,1])

sqrt(e1$values[1])

## R library stats

cancor(x,y)

## coefficients are divided by sqrt(dim)?

Z. Hlávka (KPMS) NMST539 298 / 413

Week 11–12 Canonical correlations

Canonical Correlations in Practice

∗ In practice, we estimate ΣXX , ΣXY , ΣYY by the empirical covariances
and to compute estimates `i , gi , di for λi , γi , δi from the SVD of

K̂ = S−1/2
XX SXYS

−1/2
YY .

∗ The coefficients of the canonical variables (i.e., the canonical vectors)
tell us the influence of these variables.

∗ The independence of the two random vectors can be tested by a
likelihood ratio test leading to Wilks’ lambda distribution.

∗ Barlett’s test of the null hypothesis that only s population canonical
correlation coefficients are non zero is based on the statistic
−{n− (p + q + 3)/2} log

∏min(p,q)
i=s+1 (1− ri ) ∼ χ2

(p−s)(q−s), where ri are
the sample canonical correlation coefficients.
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Week 12

Týden 12

Korespondenčńı analýza:

testy nezávislosti v kontingenčńı tabulce,

reprezentace řádk̊u a sloupc̊u.
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Correspondence analysis

Categorical scales are pervasive in the social sciences for measuring
attitudes and opinions on various issues and demographic characteristics
such as gender, race, and social class.

Categorical scales (. . . ) occur frequently in the behavioral sciences, public
health, ecology, education, and marketing. They even occur in highly
quantitative fields such as engineering sciences and industrial quality
control. Such applications often involve subjective evaluation of some
characteristic—how soft to the touch a certain fabric is, how good a
particular food product tastes, or how easy a worker finds a certain task to
be.

(Alan Agresti, Categorical Data Analysis, Wiley, 1990)
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Two-way contingency table

Variable Z has I levels

Variable Y has J levels

This gives IJ combinations of levels of Z and Y

We count the responses (Z ,Y ) in our sample and display this information
in rectangular table which has I rows and J columns.

In each cell we give the number of subjects in our sample having the
corresponding combination of responses on Z and Y .

The entry xij in the contingency table X (n × p) is the number of
observations in a sample that simultaneously fall in the ith row category
and the jth column category.
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Example:

X =


8 4 3
2 1 6
3 6 2

13 11 11 35


← Beer

← Wine

← Spirit

↑ Czechia

↑ Russia

↑ GB

Joint distribution: πij = P(Z = i ,Y = j) is the probability that Z is
equal to i and at the same time Y is j .

Marginal distribution of Z : πi · is the probability that Z is equal to i

Marginal distribution of Y : π·j is the probability that Y is equal to j
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Sampling Distributions

This is the way in which the table was created. It is important for
understanding the table correctly.

The likelihoods depend on the sampling distribution.

Poisson sampling: everything is random,

Multinomial sampling: total number of observed subjects is fixed,

Independent multinomial sampling: number of subject in each row or
column is fixed.

Estimators and likelihood ratio tests are often identical for all types of
sampling (NMST432 Advanced Regression Models).
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Maximum Likelihood Estimates

By maximizing the likelihood function we obtain the ML estimator

π̂ij = pij = xij/x••,

where x•• =
∑n

i=1 xi• =
∑n

j=1 x•j is the total number of observations.

Notice that Z and Y are independent if for all i and j : πi |j = πij/π·j = πi ·
or πj |i = πji/πi · = π·j or or πij = πi ·π·j .

The ML estimators of cell probabilities πij under independence are

π̂ij = pi•p•j = (xi•x•j)/x2
••,

xi• =
∑n

j=1 xij is the number of observations falling into the ith row
category.
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Test of independence

Likelihood-Ratio Test of Independence can be derived by following
standard arguments.

The χ2 test of independence is more popular. It is based on differences
between the observed frequencies xij and Eij , the estimated expected
values under the assumption of independence, i.e.,

Eij =
xi• x•j

x••
.

Under the hypothesis of independence of the row and column categories,
the statistic

t =
n∑

i=1

p∑
j=1

(xij − Eij)
2/Eij

has a χ2
(n−1)(p−1) distribution.
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Example: Alcohol consumption in three countries.

alc=matrix(c(8, 4, 3, 2, 1, 6, 3, 6, 2),3,byrow=T)

row.names(alc)=c("Beer","Wine","Spirit")

colnames(alc)=c("Czechia","Russia","GB")

chisq.test(alc)

Pearson’s Chi-squared test

data: alc

X-squared = 9.8406, df = 4, p-value = 0.0432

Warning message: Chi-squared approximation may be incorrect
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Individual contributions

The correspondence analysis is targeted toward the analysis of the
individual contributions to the χ2-statistic:

cij = (xij − Eij)/E
1/2
ij , (1)

which may be viewed as a measure of the departure of the observed xij
from independence.

Example:

a=apply(alc,1,sum); b=apply(alc,2,sum); n=sum(alc)

E=a%*%t(as.matrix(b))/n

round(C<-(alc-E)/sqrt(E),2)
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Decomposition of χ2-statistic

The SVD of C = (cij)i=1,...,n;j=1,...,p yields

C = ΓΛ1/2∆>

with Λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
R ), where λ1, . . . , λR are the nonzero

eigenvalues of both C>C and CC>.

Now, it is easy to see that

t =
n∑

i=1

p∑
j=1

(xij − Eij)
2/Eij =

n∑
i=1

p∑
j=1

c2
ij = tr(CC>) =

R∑
k=1

λk .

Hence, the SVD of the matrix C decomposes the χ2-statistic t.
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Example:

decomp=svd(C)

gamma1=decomp$u[,1]

delta1=decomp$v[,1]

lambda=decomp$d

sum(lambda^2) ## chi2 statistika
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Marginal frequencies

Defining A = diag(xi•) and B = diag(x•j) leads the vectors of marginal
row and column frequencies:

a = A1n and b = B1p.

This allows to write E = ab>x−1
•• and C = A−1/2(X − E )B−1/2√x••.

It is easy to verify that

C
√

b = 0 and C>
√

a = 0,

δ>k
√

b = 0 and γ>k
√

a = 0.
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Row and column coordinates

The row coordinates rk = A−
1
2Cδk and column coordinates sk = B−

1
2C>γk

satisfy

r>k a = δ>k C>A−
1
2 a = δ>k C>

√
a = δ>k 0 = 0

and
s>k b = γ>k CB−

1
2 b = γ>k C

√
b = γ>k 0 = 0.

The true meaning of relations r>k = 0 and s>k b = 0 is

rk =
1

x••
r>k a = 0 and sk =

1

x••
s>k b = 0,

where means are (of course) weighted by the row and column marginal
frequencies. Hence, both row and column factors are centered.
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Example:

decomp=svd(C); gamma1=decomp$u[,1]; delta1=decomp$v[,1]

A=diag(a); B=diag(b)

r1=diag(1/sqrt(a))%*%C%*%delta1

s1=diag(1/sqrt(b))%*%t(C)%*%gamma1

row.names(r1)=row.names(C)

row.names(s1)=colnames(C)
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Variance of row and column factors

For the sample variances of rk and sk we have the following:

V̂ar(rk) =
1

x••

n∑
i=1

xi•r
2
ki = r>k Ark/x•• = δ>k C>Cδk/x•• =

λk
x••

,

V̂ar(sk) =
1

x••

p∑
j=1

x•js
2
kj = s>k Bsk/x•• = γ>CC>γk/x•• =

λk
x••

.

In practice, statistical software may return differently scaled values (than
rk nad sk). Functions corresp() and ca() in R libraries MASS and ca

standardize row and column factors by ρk = (λk/x••)
1/2.

This means that the row and column factors given by standard software
are standardized.
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Example:

## prumery

sum(r1*a)

sum(s1*b)

## rozptyly

sum((r1^2)*a)/n

sum((s1^2)*b)/n

##

(lambda[1]^2)/n
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Proportion of explained variance

Hence, the proportion of the variance explained by the kth factor is

V̂ar(rk)/
R∑
i=1

V̂ar(rk) = λk/
R∑
i=1

λi .

The variance of the kth row factor, V̂ar(rk), can be further decomposed
into the absolute single row contributions defined as

Ca(i , rk) =
xi•r

2
ki

λk
, for i = 1, . . . , n, k = 1, . . . ,R.

Similarly Ca(j , sk) = x•js
2
kj/λk for j = 1, . . . , p, k = 1, . . . ,R are the

absolute contributions of column j to the variance of the column factor sk .

These absolute contributions may help to interpret the row and column
factors obtained by the correspondence analysis.
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Relation between row and column coordinates

From the properties of SVD we know the relationship between δk and γk :

δk =
1√
λk
C>γk and γk =

1√
λk
Cδk .

Therefore
sk = B−1/2C>γk =

√
λkB−1/2δk .

Using the definition of rk , we have

rk = A−1/2Cδk =
√

x••A−1/2A−1/2(X − E )B−1/2δk

=

√
x••
λk
A−1(X − E )sk =

√
x••
λk
A−1

(
X sk −

ab>sk
x••

)
=

√
x••
λk
A−1X sk .
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Example: Plot of two pairs of indices.

gamma2=decomp$u[,2]; delta2=decomp$v[,2]

r2=diag(1/sqrt(a))%*%C%*%delta2

s2=diag(1/sqrt(b))%*%t(C)%*%gamma2

cumsum(lambda^2)/sum(lambda^2)

plot(NULL,xlim=c(-1,1),ylim=c(-1,1),xlab="",ylab="")

text(r1,r2,labels=row.names(C))

text(s1,s2,labels=colnames(C),col="blue")

library(ca)

calc=ca(alc)

plot(calc)
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Covariance

Ĉov(rk , sk) =
1

x••

n∑
i=1

p∑
j=1

xijskj

= r>k X sk/x•• =

√
λk
x••

r>k Ark/x••

=

√
λk
x••

V̂ar(rk)

=

√
λk
x••

λk
x••

Ĉov(r1, r2) =
1

x••

n∑
i=1

xi•r1i r2i = r>1 Ar2/x•• = δ>1 C>Cδ2/x•• = 0
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Correlation

It follows that the sample correlation coefficient of rk and sk is:

ρk =

√
λk
x••

.

This means that the correlation structure of the row and column
coordinates (in correspondence analysis) is similar to the structure of
canonical variables (in canonical correlation analysis).
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Example: Analysis of Journaux data set (newspapers in Belgium).

# load data

data(journaux); x = journaux;a = rowSums(x);b = colSums(x)

e = matrix(a) %*% b/sum(a)

# chi-matrix

cc = (x - e)/sqrt(e)

# singular value decomposition

sv = svd(cc);g = sv$u;l = sv$d;d = sv$v

# eigenvalues

ll = l * l

# cumulated percentage of the variance

aux = cumsum(ll)/sum(ll); perc = cbind(ll, aux)
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r1=matrix(l, nrow=nrow(g), ncol=ncol(g), byrow=T) * g

r=r1/matrix(sqrt(a),nrow=nrow(g),ncol=ncol(g),byrow=F)

s1=matrix(l, nrow=nrow(d), ncol=ncol(d), byrow=T) * d

s=s1/matrix(sqrt(b),nrow=nrow(d),ncol=ncol(d),byrow=F)

car=matrix(matrix(a), nrow=nrow(r), ncol=ncol(r), byrow=F

) * r^2/matrix(l^2,nrow=nrow(r), ncol=ncol(r), byrow=T)

row.names(car)=row.names(x)

cas=matrix(matrix(b), nrow=nrow(s), ncol=ncol(s), byrow=F

) * s^2/matrix(l^2, nrow=nrow(s), ncol=ncol(s), byrow=T)

row.names(cas)=colnames(x)

rr=r[, 1:2]; row.names(rr)=row.names(x)

ss=s[, 1:2]; row.names(ss)=colnames(x)
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# labels for journals

types =c("va", "vb", "vc", "vd", "ve", "ff", "fg", "fh",

"fi", "bj", "bk", "bl", "vm", "fn", "fo")

# labels for regions

regions =c("brw", "bxl", "anv", "brf", "foc", "for", "hai",

"lig", "lim", "lux")

# plot

plot(rr, type="n", xlim=c(-1.1, 1.5), ylim=c(-1.1, 0.6),

xlab="r_1,s_1", ylab="r_2,s_2", main="Journal Data",

cex.axis=1.2, cex.lab=1.2, cex.main=1.6)

text(rr, types, cex=1.5, col="blue")

text(ss, regions, col="red"); abline(h=0, v=0, lwd=2)

## library(ca); plot(ca(journaux)); plot3d.ca(ca(journaux))
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Example:

data(food); plot(ca(food))

plot3d.ca(ca(food))

Example:

data(carmean); plot(ca(carmean2))

plot(ca(5-carmean2))

Example:

data(uscrime); plot3d.ca(ca(uscrime[,3:9]))

?ca ##
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Correspondence Analysis

∗ Correspondence analysis investigates dependencies in contingency
tables.

∗ Correlations between row and column coordinates correspond to
contributions to χ2 statistic.

∗ The structure of row and column coordinates is similar to canonical
variables in canonical correlation analysis.

∗ Plot of the row and column coordinates displays dependencies in the
contingency table.

∗ The solution allows adding of additional (supplementary) variables
that do not influence the calculation of the original coordinates.
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Week 13

Týden 13

Obecněǰśı mnohorozměrná rozděleńı:

sférická a eliptická rozděleńı,

kopule.

Kvantily mnohorozměrných rozděleńı:

hloubka.

Směrová data.
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Characteristic function

The characteristic function (CF) of a random vector X ∈ Rp is:

ϕX (t) = E (e it>X ) =

∫
e it>x f (x) dx , t ∈ Rp.

The CF has many interesting and useful properties, e.g.:

1 The CF always exists, ϕX (0) = 1, and |ϕX (t)| ≤ 1.

2 Two random vectors have the same CF if and only if they have the
same distribution. If CF ϕX (t) is absolutely integrable then

f (x) = 1
(2π)p

∫∞
−∞ e−it>xϕX (t) dt.

3 Random vectors X1 and X2 are independent if and only if
ϕX (t) = ϕX1(t1)ϕX2(t2), where X = (X>1 ,X

>
2 )>.

4 CF of the sum of two independent random vectors X and Y is the
product ϕX (t)ϕY (t) = ϕX+Y (t).
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Cramér-Wold device

Theorem: (Cramér-Wold) The distribution of X ∈ Rp is completely
determined by the set of all (one-dimensional) distributions of t>X where
t ∈ Rp.

Proof: Let Y = t>X , then CF E (e isY ) = E (e ist>X ) and this becomes the

CF ϕX (t) = E (e it>X ) for s = 1.

Corollary: The random vector X ∼ Np(µ,Σ) if and only if the random
variable Y = a>X ∼ N(a>µ, a>Σa) for all a ∈ IRp.

Recall that we have already used this characterization to define
multivariate normal distribution (see lecture 3).
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Spherical distributions

Definition: A (p × 1) random vector Y is said to have a spherical
distribution Sp(φ) if its characteristic function ψY (t) satisfies:
ψY (t) = φ(t>t) for some scalar function φ(.) (the characteristic generator
of the spherical distribution). We will write Y ∼ Sp(φ).

Clearly, ϕX1(t1) = ϕX (t1, 0, . . . , 0). This implies that all marginal
distributions of a spherical distribution are identical (and symmetric).

Example: The multivariate t-distribution. Let Z ∼ Np(0, Ip) and S ∼ χ2
m

be independent. The random vector

Y =
√

m
Z

S

has a multivariate t-distribution with m degrees of freedom.
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Elliptical distributions

Definition: A (p × 1) random vector X has an elliptical distribution with
parameters µ(p × 1) and Σ(p × p) if X has the same distribution as
µ+A>Y , where Y ∼ Sk(φ) and A is a (k × p) matrix such that
A>A = Σ with rank(Σ) = k. We shall write X ∼ ECp(µ,Σ, φ)

The elliptical distribution can be seen as an extension of Np(µ,Σ).

Example: The CF of standard multinormal distribution is
ϕY (t) = e−t

>t/2 and it is spherically symmetric with the characteristic
generator exp(−x/2). The CF of X = µ+A>Y is

ϕX (t) = e it
>µ−t>A>At/2 because t>(µ+A>Y ) has univariate normal

distribution and

Ee it>(µ+A>Y ) = ϕN(t>µ,t>A>At)(s)|s=1 = e it
>µs−t>A>Ats/2|s=1.
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Elliptical distributions

The characteristic function of elliptically symmetric X is of the form

ψ(t) = e it>µφ(t>Σt)

for a scalar function φ.

Marginal distributions of elliptically distributed variables are elliptical.

The assumption that the returns on all assets available for portfolio
formation are jointly elliptically distributed is used in portfolio theory
(multinormal distribution of returns usually does not work).

Clearly, the contours of a spherical distribution are p-dimensional spheres
and contours of an elliptical distribution are p-dimensional ellipsoids (if the
density exists).
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Spherical and elliptical distributions

∗ The characteristic function is always defined and it uniquely
determines the probability distribution.

∗ An arbitrary function φ : IRn → C is the characteristic function of
some random variable if and only if φ is positive definite, continuous
at the origin, and if φ(0) = 1 (Bochner’s theorem).

∗ Spherical distribution can be seen as a generalization of Np(0, Ip),
elliptical distributions generalize Np(µ,Σ).

∗ Elliptical distributions can also be defined in terms of their density
functions (if it exists): f (x) = k · g((x − µ)′Σ−1(x − µ)) for some
density g(.).
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Copula

A copula allows a generalized representation of (complicated)
dependencies between random variables (risk factors).

The basic idea is to describe the joint distribution of a random variable
X = (X1, . . . ,Xp)> using a function C : [0, 1]p → [0, 1]:

F (x1, . . . , xp) = C (F1(x1), . . . ,Fp(xp)) ,

where F1, . . . ,Fp represent the marginal cumulative distributions function
of the variables Xj , j = 1, · · · , p.

A copula C typically depends on some “tuning parameters” determining
the dependence.
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Two-dimensional copula

Definition: A two-dimensional copula is a function C : [0, 1]2 → [0, 1]
with the following properties:

For every u ∈ [0, 1] C (0, u) = C (u, 0) = 0 (grounded function).

For every u ∈ [0, 1]: C (u, 1) = u and C (1, u) = u (uniform
marginals).

For every (u1, u2), (v1, v2) ∈ [0, 1]× [0, 1] with u1 ≤ v1 and u2 ≤ v2:
C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0 (two-increasing).

Theorem: (Sklar) Every joint distribution function H(.) with marginal
distributions F1(.) and F2(.) can be expressed as:

H(x1, x2) = C (F1(x1),F2(x2))

and the copula C (.) is unique when F1(.) and F2(.) are continuous.
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Example: The product copula Π: two random variables X1 and X2 are
independent if and only if

H(x1, x2) = F1(x1) · F2(x2).

Hence, the so-called product copula C = Π is given by:

Π(u1, · · · , up) =

p∏
j=1

up.

Example: Gaussian or normal copula:

Cρ(u1, u2)=

∫ Φ−1
1 (u1)

−∞

∫ Φ−1
2 (u2)

−∞
ϕρ(r1, r2)dr2dr1 = Φρ{Φ−1

1 (u1),Φ−1
2 (u2)},

where ϕρ denotes the bivariate normal density function with correlation ρ
and Φj , j = 1, 2 represent the gaussian marginal distribution (GOOGLE:
gaussian copula financial crisis).
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Example: An important class of copulas is the Gumbel-Hougaard family:

Cθ(u1, u2)
def
= exp

{
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ
}
.

For θ = 1 we obtain the product copula: C1(u1, u2) = Π(u1, u2) = u1 u2.
For θ →∞ we obtain the so-called minimum copula:

Cθ(u1, u2)−→min(u1, u2)
def
= M(u1, u2)

(that dominates every other copula; M(.) is therefore referred to as the
Fréchet-Hoeffding upper bound.

The two-dimensional function W (u1, u2)
def
= max(u1 + u2 − 1, 0) satisfies

W (u1, u2) ≤ C (u1, u2) for all copulas and is called the Fréchet-Hoeffding
lower bound.
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Copulas

∗ Copulas provide a very flexible way of describing dependencies
between random variables. Mathematically, a copula is a multivariate
probability distribution function for which the marginal probability
distribution of each variable is uniform.

∗ Copulas are popular in high-dimensional statistical applications as
they allow to model and estimate the distribution of random vectors
by estimating marginals and copulae separately.

∗ There are many parametric copula families available, which usually
have parameters that control the strength of dependence.

Archimedean copulas are defined by ψ
[−1]
θ (ψθ(u1) + · · ·+ ψθ(ud)),

where ψθ(.) is a generator function. This allows modeling of
dependence in high dimensions with only one parameter (θ).

∗ More information can be found in [Nelsen, R. B. (1999). An
Introduction to Copulas, Springer, New York.]
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Multivariate quantiles

The contours (iso-density regions) for multinormal (and elliptical)
distributions are ellipsoids that can be understood as multivariate
generalization of quantiles. Unfortunately, defining multivariate quantiles
in general is very complicated.

Notice that:

Median and other quantiles are naturally defined for 1-dim random
variable BUT definition of quantile (apart of multinormal or elliptical
distribution) is not straigtforward,

Median: measure of location, “most central” point.

Quantiles: testing, construction of prediciton regions, boxplots. . .
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Quantiles in more dimensions

THE AIM IS to generalize the definition of “one-dimensional” quantiles to
more dimensional data sets.

The definition of quantiles in 1D uses the order of observations (but
observations in more dimensions are not clearly ordered).

In order to define some kind of “ordering” we may define depth
function—a measure of “how deep in the dataset” is some point.

The p-dimensional data set will be ordered from outside to inside instead
from left to right.
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Motivation

Example: boxplot(carmean2)

The standard definition of boxplot is based on sample quantiles (median
and quartiles) that are not naturally defined in two and more dimensions.

Boxplot (defined without quantiles, by using the inside×outside ordering):

Central box contains 1/2 of “most central” observations.

Whiskers extend to most extreme observations by (at most)
1.5×”central box”.

Outliers are “too far away” from the centre.
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Depth

The required inside×outside ordering can be based on values of some
depth function.

Technically: for a given random vector X ∈ IRp (with distribution function
FX ) depth is a function D : IRp −→ IR.

Region R(a) with given depth a in IRp is {x ∈ IRp : D(x) ≥ a} . . . the
border of the region R(a) is the a-depth contour (and this is the
“multivariate contour”).
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Example: X is one-dimensional random variable with d.f. FX (.).

D(x) = 1− 2|F (x)− 1/2|

Deepest point: F (x) = 1/2 (median).

Point with min. depth: F (x) = 0 (extremes).

Note: for a random sample X1, . . . ,Xn, we define sample version of the
depth function as D(x) = 1− 2|Fn(x)− 1/2|.
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Some desired properties of (sample) depth functions:

Depth should not depend on the coordinate system (rotation and
scale invariance).

If a distribution is symmetric around s then s is the deepest point.

Decreasing along rays from the deepest point.

Vanishing at infinity, i.e., D(x) −→ 0 if ‖x‖ −→ ∞.

Quasi-concavity (level sets of depth function are convex).

More details: Liu (1990), Serfling (2000).

Example: pairs(carmean2); How to find deepest point in more
dimensions?
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Depth functions

Popular depth functions:

Simplicial depth (Liu depth).

Halfspace depth (Tukey).

Implementation in R: library(depth), commands: perspdepth, isodepth,
depth. . .

Other approaches: convex hull peeling, zonoids, L1-depth, location-scale
depth, and many other.
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Simplicial depth

The simplicial depth (or Liu depth) of a data point x is defined as the
number of convex hulls formed from all possible selections of p + 1 points
covering x (convex hull of p + 1 points = simplex).

The multivariate median (the deepest point) may be defined as the point
with the largest simplicial depth, i.e.,

xmed = arg max
i

#{k0, . . . , kp ∈ {1, . . . , n} : xi ∈ hull(xk0 , . . . , xkp)}.

in 1D: closed intervals given by 2 points [xi , xj ],
in 2D: triangles given by 3 points,
in 3D: “pyramids” given by 4 points etc.
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●

●
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●

●

Simplicial Depth Example
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3 4

5

2

→ MVAsimdep1
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Liu depth in R

library(depth)

perspdepth(carmean2[,1:2],method="Liu")

d=perspdepth(carmean2[,1:2],method="Liu",output=TRUE)

contour(d)

text(carmean2[,1:2],rownames(carmean2))
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Halfspace depth

The (sample) halfspace depth of point x (with respect to sample points
x1, . . . , xn) is defined as the minimum number of sample points on one
side of a hyperplane through the point x .

In other words, minimum number of sample points in a halfspace
containing the point x .

Example: 1D, points are lying on real line. . .

Example: 2D

isodepth(carmean2[,1:2],mustdith=TRUE)

text(carmean2[,1:2],rownames(carmean2))
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Halfspace depth

Example: 3D

for (i in 1:nrow(carmean2)) {

print(rownames(carmean2)[i])

print(depth(carmean2[i,1:3],carmean2[,1:3]))

}

...

Example: 8D, almost all point are “outside” (see also Ggobi).
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Bagplot

Example: Command bagplot in library(aplpack).

library(aplpack)

?bagplot # what is BAG, FENCE, LOOP?

library(SMSdata)

data(carmean2)

bagplot(carmean2[,1:2]) # Service & Value

text(carmean2[,1:2],rownames(carmean2))

Z. Hlávka (KPMS) NMST539 350 / 413

Week 13 Depth

Depth

∗ Depth can be seen as a multivariate generalization of (empirical)
quantile.

∗ The most popular depth functions are simplicial (Liu) depth and
halfspace (Tukey) depth but many other depth functions have been
proposed [D. Hlubinka: Výpravy do hlubin dat, Robust 2008,
http://www.karlin.mff.cuni.cz/~hlubinka/soubory/robust08.pdf;
D. Hlubinka: O kvantilech ve v́ıce rozměrech, Robust 2002,
http://www.statspol.cz/oldstat/robust/2002 hlubinka.pdf].

∗ Most depth functions are computationally intensive.

∗ Using depth, it is possible to define bagplot as a two-dimensional
generalization of the boxplot.
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Directional data

Directional statistics is the analysis of data that are directions: these are
unit vectors in a space of any number of dimensions and can be visualized
as points on the surface of a hypersphere (in two- or three-dimensional
spaces we have points on the circumference of a circle or on the surface of
a sphere, i.e. circular and spherical data).

Directional statistics differs from ‘usual linear’ statistics because of the
specific structure of its sample spaces. As hyperspheres have different
characteristics than general Euclidean spaces, standard linear methods for
analyzing data cannot be used and special directional methods are
required.

References: [Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. 2nd

ed., Wiley Series in Probability and Statistics. Wiley, Chichester] or [Malá, O. C.

(2012) Fisherovo-Binghamovo rozděleńı, bakalá̌rská práce, MFF UK.]
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Distribution function and density

Let θ be a random angle. Its distribution function F is given by

F (θ) = P(0 < θ ≤ θ), 0 < θ ≤ 2π

and
F (θ + 2π)− F (θ) = 1, −∞ < θ ≤ ∞.

Let the distribution function F of random angle θ be absolutely
continuous. Then for the probability density function f of random angle θ,
the following holds:

1 f (θ) ≥ 0 almost everywhere on (−∞,∞),

2 f (θ + 2π) = f (θ) almost everywhere on (−∞,∞),

3
∫ 0+2π

0 f (θ)dθ = 1 and
∫ x+2π
x f (θ)dθ = 1.
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Summary statistics

Let’s have a set of independently observed directions in the plane that are
represented by unit vectors V1, . . . ,Vn (these correspond to unique angles
θ1, . . . , θn and to unique points on the unit circle X1, . . . ,Xn.)

By summing these unit vectors and taking their mean, we obtain the mean
resultant vector V =

∑
Vi/n and the endpoint X of the vector V

represents the ‘centre of mass’ (if points X1, . . . ,Xn have equal masses).

Points Xj have Cartesian coordinates (cos θj , sin θj), i.e., the centre of
mass X has Cartesian coordinates (C ,S), where C =

∑
cos(θj)/n and

S =
∑

sin(θj)/n.
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Denoting (R, θ) the polar coordinates of X , we obtain:

Definition: The sample mean resultant length R ≥ 0 is given by

R = ‖V ‖ =

√
C

2
+ S

2
.

If R > 0, the sample mean direction θ is defined as follows:

θ = arctan∗(S/C ) =


arctan(S/C ), if C > 0, S ≥ 0,

π/2 if C = 0, S > 0,

arctan(S/C ) + π, if C < 0,

arctan(S/C ) + 2π, if C ≥ 0, S < 0,

undefined if C = 0, S = 0.

Definition: The sample circular variance V is defined as

V = 1− R, 0 ≤ V ≤ 1.
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Standard circular distribution

The density of von Mises distribution is:

f (x ;µ, κ) = c0(κ) exp{κµ>x}, x ∈ S1,

where c0(κ) is constant.

Notice that

µ>x = (cosµ, sinµ)(cos θ, sin θ)> = (cosµ cos θ+ sinµ sin θ) = cos(θ−µ).

and the probability density function of random angle θ is

g(θ;µ, κ) = c0(κ) exp{κ cos(θ − µ)}, 0 < θ ≤ 2π.

We only used a different way of representation corresponding to ‘unrolling
the circle’.
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von Mises distribution (for angle θ)
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von Mises distribution (on the unit circle)
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Directional statistics

∗ See [Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. 2nd
ed., Wiley Series in Probability and Statistics. Wiley, Chichester] or
[Malá, O. C. (2012) Fisherovo-Binghamovo rozděleńı, bakalá̌rská
práce, MFF UK] for more information.

∗ Directional (or axial) data are encountered in various fields: geology,
meteorology, astronomy, geography, medicine and others.

∗ von Mises distribution can be generalized to more dimensions
(Fisher-Bingham distribution, von Mises-Fisher distribution, etc.)

∗ One can also consider distributions defined on more general ‘surfaces’
(manifolds).
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Week 14

Týden 13

Daľśı zaj́ımavé metody:

jádrové odhady hustoty,

projection pursuit.
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Histograms

The histogram counts relative frequencies of observations xi falling into
predefined bins:

f̂h(x) = n−1h−1
∑
j∈Z

n∑
i=1

I{xi ∈ Bj(x0, h)} I{x ∈ Bj(x0, h)}

the histogram is a simple estimator of a probability density,

h is a smoothing parameter and controls the width of the histogram
bins.
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Example: Diagonal of forged bank notes. Histograms with h = 0.1 (upper
left), h = 0.2 (lower left), h = 0.3 (upper right), h = 0.4 (lower right).
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Kernel density estimators

Kernel density estimator is a natural generalization of a histogram (by
shifting the “bin”, we obtain smooth estimator of the underlying
probability density).

Assume we have n independent observations x1, . . . , xn from the random
variable X . The kernel density estimator f̂h(x) for the estimation of the
density value f (x) at point x is defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
xi − x

h

)
,

where K (.) denotes a kernel function and h the bandwidth.
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Multivariate KDEs

The kernel density estimator can be generalized to the multivariate case in
a straightforward way.

Suppose we have observations x1, . . . , xn where each of the observations is
a d-dimensional vector xi = (xi1, . . . , xid)T . The multivariate kernel
density estimator at a point x = (x1, . . . , xd)T is defined as

f̂h(x) =
1

n

n∑
i=1

1

h1 . . . hd
K

(
xi1 − x1

h1
, . . . ,

xid − xd
hd

)
,

where K is a multivariate kernel funcion and h is a vector of bandwidths
h = (h1, . . . , hd)>.

It can be shown that the optimal MISE is O(n−4/(d+4)) (curse of
dimensionality).
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library(sm); library(MSES); data(athletic)

# univariate kernel density estimator

plot(density(athletic[,"100m"]))

plot(density(athletic[,"Marathon"]))

## bivariate kernel density estimator

library(MASS)

plot(athletic[,"Marathon"],athletic[,"100m"])

d1=kde2d(athletic[,"Marathon"],athletic[,"100m"])

image(d1, zlim = c(0, 0.13))

persp(d1, phi = 30, theta = 20, d = 5)

contour(d1)

# add original points

points(athletic[,"Marathon"],athletic[,"100m"])

identify(athletic[,"Marathon"],athletic[,"100m"],

label=row.names(athletic))
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Week 14 Kernel density estimators

Kernel density estimators

∗ KDEs are sometimes introduced as “average shifted histograms”
(ASH).

∗ High-dimensional KDEs suffer from “curse of dimensionality” because
the optimal MISE is of order O(n−4/(d+4)), where d denotes the
dimension.

∗ The various implementations of KDEs in R are not mutually
compatible (for example, the bandwidth parameter used by one R
function typically does not have exactly the same meaning in other R
function).

∗ One should consider dimension reduction techniques before
calculating high-dimensional KDEs.
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Projection pursuit

Projection pursuit searches for interesting directions in a p-dimensional
data set by maximizing a chosen index.

Exploratory projection pursuit: look for interesting linear
combinations—“interestingness” is usually defined by some measure
(index) of non-normality.

Projection pursuit regression: the goal is to estimate regression function
m(x) = E (Y |x) using approximating function f̂ (x) =

∑
ĝk(Λ>k x)

(obviously, lower dimensional projections defined by Λk improve statistical
properties of the nonparametric regression estimator).
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Exploratory projection pursuit

Given p-dimensional random vector X with zero mean (and typically with
unit variance, i.e., Var(X ) = Ip), we try to find α ∈ IRp such that α>X is
“interesting”.

Interestingness of projections α>X is measured by index I (α).

Example: PCA: I (α) = var(α>X ) works only if the data set is not
sphered.

In practice, we have the data matrix X and we optimize the (sample)
projection pursuit index numerically.
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Friedman and Tukey index

Let f̂h,α(z) denote the kernel density estimator of the pdf of the projection
Z = α>X , where h denotes the bandwidth.

Friedman and Tukey (1974) proposed the index:

IFT ,h(α) = n−1
n∑

i=1

f̂h,α(α>Xi )

that can be rewritten as IFT ,h(α) =
∫

f̂h,α(z)dFN(z) (i.e., it estimates∫
f (z)dF (z) =

∫
f 2(z)dz) leading to the maximization of

∫
f 2(z)dz .

The Friedman-Tukey index is minimal for a parabolic density and, by its
maximization, we search for a distribution that is as far from the parabolic
density as possible.
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10000 directions

The least and the most informative from 10000 randomly chosen
directions (FT index) for Swiss bank notes → SMSeppbank.
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Entropy index

An alternative approach is based on the (minus) entropy measure∫
f (z) log f (z)dz leading to the entropy index:

IE ,h(α) = n−1
n∑

i=1

log{f̂h,α(α>Xi )}

that can be interpreted as an estimator of minus entropy
∫

f (z) log f (z)dz .

The index is minimal for normal distribution and maximization of IE ,h(α)
leads to non-normal projections.
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Jones and Sibson index

Jones and Sibson (1987) suggested to approximate the entropy index by a
moment-based index:

IJS(α) = {κ2
3(α>X ) + κ2

4(α>X )/4}/12,

where κ3(α>X ) = E{(α>X )3} and κ4(α>X ) = E{(α>X )4} − 3 are
cumulants of α>X (skewness and kurtosis).

The maximization of IJS(α) also leads to the least-normal view of the data
set.
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Computational aspects

The optimal projection α ∈ IRp can be found by standard (iterative)
optimization routines.

The optimization task is not very simple because the parameter α is
p-dimensional and the function I (α) has many local maxima.

In practice, one is interested in finding optimal one- and two-dimensional
projections.

It is recommended to use various starting points in order to verify the
stability of the result. Often, the optimization of α is used to define a
guided tour through the data set.
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White noise analysis

White noise projections that are most similar to white noise are identified
and discarded while the remaining informative projections are used to look
for interesting relationships [Hui and Lindsay, 2010, Projection pursuit via
white noise matrices, Sankhya B 72(2), 123-–153.]

The White Noise Analysis (WNA) is based on the eigen-analysis of the
standardized Fisher information matrix for the square transformed density
estimated by the kernel method.

WNA is computationally simpler than the classical Projection Pursuit
searching for low-dimensional least-normal projections.
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Exercise: Swiss bank notes

1 library(SMSdata); data(bank2)

2 sphering (Mahalanobis transformation),

3 generate randomly N directions α1, . . . , αN

4 calculate the value I (αi ) for i = 1, . . . ,N

5 plot kde of the directions that both maximize and minimize the
chosen index,

6 compare the result obtained for PCA index with standard PCA
analysis (this will work only without sphering),

7 compare least and most informative projections obtained by JS and
FT index,

8 try to find the optimal direction using numerical optimization in R
(optim()), compare results obtained by different algorithms
(Nelder-Mead, BFGS, . . . ).
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Ggobi: 1D and 2D guided tour

Guided tour through a multivariate data set is a sequence of
low-dimensional projections that improve the chosen index.

library(SMSdata)

data(bank2)

library(rggobi) # using ggobi is easy if this works

ggobi(bank2)

write.csv(bank2,file="bank2.dat")

# START GGOBI AND LOAD DATA SET FROM CSV FILE
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R: tourr

Guided and grand tours work similarly as in Ggobi (same authors) but R
does not allow interaction.

library(SMSdata)

data(bank2)

library(tourr)

animate(bank2, guided_tour(index_f=holes), display_xy()

,sphere=FALSE)

animate(bank2, guided_tour(index_f=cmass), display_xy())
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R: tourr

# tourr SHOULD work also with other type of graphics

animate_dist(bank2[95:106,],guided_tour(index_f=holes))

animate_image(bank2[95:106,],guided_tour(index_f=holes))

animate_pcp(bank2[95:106,],guided_tour(index_f=holes))

animate_scatmat(bank2[95:106,],guided_tour(index_f=holes))

animate_faces(bank2[95:106,],guided_tour(index_f=holes))

animate_stars(bank2[95:106,],guided_tour(index_f=holes))

animate_stereo(bank2[95:106,],guided_tour(index_f=holes))

animate_trails(bank2[95:106,],guided_tour(index_f=holes))
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Indices in Ggobi and tourr

Holes

IHoles(α) =
1− 1

n exp(−ziz
>
i /2)

1− exp(−p/2)
,

where zi is the i-th row of Z = Xα (the index works also for more
dimensional projections).

Central mass

ICM(α) =
1
n exp(−ziz

>
i /2)− exp(−p/2)

1− exp(−p/2)
,

is basically the opposite of IHoles.

Both indices are based on 1
n exp(−ziz

>
i /2) =

∫
exp(−ziz

>
i /2)dFn(z)

estimating E exp(−Z>Z/2).
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Central mass and Holes

Cook, Buja, Cabrera (1993) Projection Pursuit Indexes Based on
Orthonormal Function Expansions. Journal of Computational and
Graphical Statistics 2(3), 225–250.

The derivation of both indeces is based on Fourier expansion of density
function:

f (x) =
∞∑
i=0

aipi (x),

where pi (x) are (standardized) orthonormal polynomials with weight
function w(x) and ai = 〈f , pi 〉 =

∫
f (x)pi (x)w(x)dx are Fourier

coefficients.
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Fourier approximation of normal density
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Fourier coefficients can be rewritten as expectation

ai = 〈f , pi 〉 =

∫
f (x)pi (x)w(x)dx =

∫
pi (x)w(x)dF (x) = E{pi (X )w(X )}

that can be estimated from random sample X1, . . . ,Xn by sample mean

âi =
1

n

n∑
j=1

pi (Xj)w(Xj).

In practice, the density can be approximated by finite sum

f̂ (x) =
M∑
i=0

âipi (x).
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Fourier approximation from 100 observations
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Distance from Normal distribution

Cook, Buja & Cabrera (1993) define natural Hermite index

IN =

∫
IR
{f (x)− φ(x)}2φ(x)dx

as a measure of dissimilarity of probability densities f (x) and φ(x).

It is easy to show that IN =
∑

(ai − bi )
2, where bi are (known) Fourier

coefficients of φ(x).

The sample version of IN is naturally defined as:

ÎN,M =
M∑
i=0

(âi − bi )
2,

where âi =
∑n

j=1 pi (Xj)w(Xj)/n.
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Distance from Normal distribution

Cook, Buja & Cabrera (1993) investigate the sample natural Hermite
index for M = 0, i.e., ÎN,0 = (â0 − b0)2.

Clearly, the quadratic function (â0 − b0)2 achieves its minimum â0 − b0

and is maximized by extreme values of a0.

Cook, Buja & Cabrera (1993) show that, in a family of distributions with
mean zero and variance at most one, a0 is minimized by the central hole
distribution:

P(X = 1) = 0.5, P(X = −1) = 0.5

and a0 is maximized by the central mass distribution:

P(X = 0) = 1.
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Central mass and holes

The central mass index in Ggobi looks for the rotation α maximizing a0(α).

The holes index in Ggobi looks for the rotation α maximizing −a0(α).

Distributions with very small or very large a0 should have large distance
(natural Hermite index) from Normal distribution.

Switching repeatedly between maximization of these two indeces leads to
informative displays of the data set.

Example: Swiss bank notes in Ggobi and R (tourr).
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Interpretation

Original data matrix X .

Sphered data matrix Y = (X − 1nx>)S−1/2.

Interesting linear combinations are:

Yα = (X − 1nx>)S−1/2α = XS−1/2α + const = XαX + const.
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Visual inference

Chowdhury, Cook, Hofmann, Majumder, Lee & Toth (2015) Using visual
statistical inference to better understand random class separations in high
dimensions, low sample size data, Computational Statistics 30: 293–316.

[The paper can be found using scholar.google.com.]

The problem: lower dimensional projections (especially based on LDA) can
be misleading (see Figure 1).

Example:

d=data.frame(matrix(rnorm(150),ncol=10))

animate(d,guided_tour(index_f=holes),display_xy(),sphere=TRUE)
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Visual inference

Proposed solution: use visual statistical inference via Amazon’s
Mechanical Turk (the original “lived” from 1770–1854).
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Exercise: simulated data set

1 generate three independent samples with the same p-variate
distribution (using, e.g., rmvnorm(mvtnorm)),

2 use function animate(tourr) to find interesting projections
(preferably using the lda pp index),

3 plot the resulting projections (take care about scaling) denoting the
three groups by different symbol–can you see some differences?

4 repeat the simulation both for small and high dimension.
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Week 14

Týden 14

Gentle introduction:

kernel regression estimators,

additive models,

projection pursuit regression.

Sliced inverse regression:

kernel regression estimators,

additive models and projection pursuit regression,

inverse regression curve,

SIR,

SIR II.
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Kernel regression estimators

Suppose that we have independent observations Y1, . . . ,Yn and the
explanatory variable X1, . . . ,Xn. The Nadaraya-Watson kernel regression
estimator is defined as:

m̂h(x) =

∑n
i=1 K

(
Xi−x
h

)
Yi∑n

i=1 K
(
Xi−x
h

) =
1

n

n∑
i=1

Whi (x)Yi .

It can be shown that the asymptotic MSE is:

AMSE(n, h) =
1

nh
C1 + h4C2,

where C1 and C2 are constants depending on the kernel function, the
(derivatives of) the regression function and the density of X . Using the
optimal bandwidth h = C3n−1/5, AMSE is of order O(n−4/5).
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Kernel regression estimates in R:

Typically 1 response and 1 or 2 explanatory variables.

1D ksmooth(), locpoly(KernSmooth)

2D sm.regression(sm)

library(sm); library(MSES); data(athletic)

# most simple univariate kernel regression estimates

# (better functions exist in other libraries)

plot(athletic[,"Marathon"],athletic[,"100m"])

lines(ksmooth(athletic[,"Marathon"],athletic[,"100m"],

kernel="normal", bandwidth=20),col="red",lwd=2)

library(KernSmooth)

plot(athletic[,"Marathon"],athletic[,"100m"])

lines(locpoly(athletic[,"Marathon"],athletic[,"100m"],bandwidth=10),

col="red",lwd=2)
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sm.regression(athletic[,"Marathon"],athletic[,"100m"])

## bivariate kernel density estimator

library(MASS)

plot(athletic[,"Marathon"],athletic[,"100m"])

d1=kde2d(athletic[,"Marathon"],athletic[,"100m"])

image(d1, zlim = c(0, 0.13))

persp(d1, phi = 30, theta = 20, d = 5)

contour(d1)

# add original points

points(athletic[,"Marathon"],athletic[,"100m"])

# add kernel regression line

lines(ksmooth(athletic[,"Marathon"],athletic[,"100m"],

kernel="normal",bandwidth=20),col="red",lwd=2)

Z. Hlávka (KPMS) NMST539 394 / 413

Week 14 Kernel regression

## bivariate kernel regression

library(sm)

sm.regression(athletic[,c("Marathon","400m")],athletic[,"100m"])

sm.regression(athletic[,c("Marathon","400m")],athletic[,"100m"],

display="image")

The asymptotic properties of the kernel regression estimator are bad for
high-dimensional explanatory variable (curse of dimensionality). Moreover,
it is difficult to plot the resulting estimator for p > 2.
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Week 14 Kernel regression

Curse of dimensionality (from Wikipedia)

One way to illustrate the “vastness” of high-dimensional Euclidean space
is to compare the proportion of an inscribed hypersphere with radius r and
dimension d , to that of a hypercube with edges of length 2r . The volume

of such a sphere is: 2rdπd/2

d Γ(d/2) . The volume of the cube would be: (2r)d . As
the dimension d of the space increases, the hypersphere becomes an
insignificant volume relative to that of the hypercube. This can clearly be
seen by comparing the proportions as the dimension d goes to infinity:

πd/2

d2d−1Γ(d/2)
→ 0 as d →∞. Furthermore, the distance between the center

and the corners is r
√

d , which increases without bound for fixed r .

In this sense, nearly all of the high-dimensional space is “far away” from
the centre. To put it another way, the high-dimensional unit hypercube
can be said to consist almost entirely of the ”corners” of the hypercube,
with almost no “middle”.
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Additive model

In order to avoid the curse of dimensionality, it can be useful to consider
additive model (AM) with response p-dimensional explanatory variable X :

E (Y |X = x) =

p∑
j=1

fj (xj) + c ,

where c = E (Y ) and the (univariate) additive components are centered,
i.e., E {fj (Xj)} = 0 for 1 ≤ j ≤ p.

The components of the additive model (and its various generalizations) are
usually estimated by iterative algorithms (backfitting).
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Projection pursuit regression

Projection pursuit regression [Friedman, J.H. and Stuetzle, W. (1981)
Projection Pursuit Regression. Journal of the American Statistical
Association, 76, 817–823]:

E (Y |X = x) =
r∑

j=1

fj(β
>
j x) + c ,

applies the additive model on projections of explanatory variables, i.e., it
reduces the dimensionality of the space of explanatory variables (keeping
in mind that we model the conditional expectation of Y ).

Implementation in R: function ppr() in library stats.
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Sliced inverse regression

Sliced Inverse Regression (SIR) is a dimension reduction technique that
can be described as a generalization of projection pursuit regression.

The idea is to find EDR-directions (i.e., projections of explanatory
variables) suitable for nonparametric regression estimator for the response.

Given a response variable Y and a (random) vector X ∈ IRp of explanatory
variables, SIR is based on the model:

Y = m(β>1 X , . . . , β>k X , ε),

where β1, . . . , βk are unknown projection vectors
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Centered inverse regression curve

Recall that Y = m(β>1 X , . . . , β>k X , ε).

According to Theorem 20.1 in [Härdle and Simar, Applied Multivariate
Statistical Analysis, 4th edition] we have that: “Under some assumptions,
the (p-dimensional) centered inverse regression curve E (X |Y = y)− EX
lies in the linear subspace spanned by Σβi , i = 1, . . . , k , Σ = Var X .”

It follows that for Z = Σ−1/2(X − EX ), the standardized inverse
regression curve m1(y) = E (Z |Y = y) lies in a linear subspace spanned by
ηi = Σ1/2βi .

The idea of SIR algorithm is to generate points lying on the inverse
regression curve and then estimate the linear subspace. . .
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SIR Algorithm (part 1)

The algorithm to estimate the EDR-directions via SIR is as follows:

Standardize x :
zi = Σ̂−1/2(xi − x̄).

Divide the range of yi in S non-overlapping intervals (slices) Sttks ,
s = 1, . . . ,S . ns denotes the number of observations within slice Sttks
and ISttks is the indicator function for this slice (ns =

∑n
i=1 ISttks (yi )):

Compute the mean of zi over all slices. This is a crude estimate m̂1

for the inverse regression curve m1:

z̄s =
1

ns

n∑
i=1

zi ISttks (yi ).
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SIR Algorithm (part 2)

Calculate the estimate for Var{m1(y)}:

V̂ = n−1
S∑

s=1

ns z̄s z̄>s .

Identify the eigenvalues λ̂i and eigenvectors η̂i of V̂ .

Transform the standardized EDR-directions η̂i back to the original
scale. Now the estimates for the EDR-directions are given by

β̂i = Σ̂−1/2η̂i .
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Simulated data set

Example: Let us investigate data simulated from the model

yi = β>1 xi + (β>1 xi )
3 + 4(β2xi )

2 + εi

with β1 = (1, 1, 1)>, β2 = (1,−1,−1)>.

Looking at the data, it is difficult to find the underlying structure (the
surface in 3D plot).

→ MVAsirdata
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True index vs Response
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Plot of the true response versus the true indices. The monotonic and the
convex shapes can be clearly seen → MVAsirdata
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XBeta1 vs Response
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SIR algorithm works quite well (although the IR curve may not span the
entire EDR space).
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US companies
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EDR directions for US companies (for market values).
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SIR II

In some situations SIR does not find EDR directions because the inverse
regression curve does not have to span the entire EDR space.

Example: Suppose that (X1,X2)> ∼ N(0, I2) and Y = X 2
2 .

Notice that the EDR space is spanned by β1 = (0, 1)> and the IR curve is
E (X1|y) = E (X2|y) = 0.

SIR II algorithm uses the (inverse) conditional variance Var(X |y) instead
of the inverse regression curve. In practice, it is recommended to use SIR
and SIR II jointly.
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Simulated example

Example:Let us simulate a data set with
X ∼ N4(0, I4),Y = (X1 + 3X2)2 + (X3 − X4)4 + ε and ε ∼ N(0, 1) and
use the SIR and SIR II technique to find the EDR directions.

The true response variable depends on the explanatory variables
nonlinearly through the linear combinations Xβ1 = X1 + 3X2 and
Xβ2 = X3 − X4, where β1 = (1, 3, 0, 0)> and β2 = (0, 0, 3,−4)>.

We simulate altogether 200 observations.

→ SMSsir2simu
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SIR and SIR II applied on the simulated data set. Screeplot and
scatterplots of first three indices against the response. → SMSsir2simu
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Week 14 Sliced inverse regression

Modifications

SAVE The algorithm sliced average variance estimates is based on
the conditional variance matrix (similarly as SIR II).

pHd The method of principal Hessian directions is based on the
Hessian matrix E{(Z − EZ )(X − EX )(X − EX )>}, where
the vector Z is given either by the response Y or by the
linear model residuals.

R library dr:

method: This character string specifies the method of

fitting. The options include "sir", "save",

"phdy", "phdres" and "ire".

Z. Hlávka (KPMS) NMST539 410 / 413

Week 14 Sliced inverse regression

SIR

∗ SIR serves as dimension reduction tool for regression problems.

∗ Inverse regression helps to avoid the curse of dimensionality.

∗ The dimension reduction can be conducted without estimation of the
regression function y = m(x) .

∗ SIR searches for the eefective dimension reduction (EDR) by
computing the inverse regression IR.

∗ SIR II bases the EDR on computing the inverse conditional variance.

∗ In certain circumstances, SIR might miss EDR directions that are
found by SIR II.
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Conclusion

Závěr

Opakováńı a shrnut́ı:

shrnut́ı,

informace o zkoušce.
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Conclusion Summary

Summary

Multivariate distributions:

random vector and its characteristics,

multinormal, spherical and elliptical distributions, copulas.

Estimation and testing: maximum likelihood techniques.

Analysis of multivariate data:

summary statistics, principal components,

factor analysis, canonical correlations,

discriminant analysis, cluster analysis,

correspondence analysis, projection pursuit,

projection pursuit regression, SIR.

Z. Hlávka (KPMS) NMST539 413 / 413
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