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Remark from author

The text is under developing and is continuously improving. Its aim is to
give a comprehensive and self-confident description of subject “Convergence
of Random Processes”. Basis of Topology, Product Topology, Topology with
Randomness are starting points of our text. Metric spaces are remembered
as a particular case of topological spaces. After this introduction, several
spaces of real functions are introduced. Particularly, space of all real func-
tions, space of bounded real functions, space of continuous real functions,
Skorokhod space of cadlag functions are treated. Talk finishes with Sko-
rokhod imbedding and Strong Invariance principle.
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Chapter 1

Measures and Topology

1.1 Measures

The text is devoted to real random processes and their convergence in dis-
tribution. It means we have to deal with probability measures on some
convenient topological spaces of real functions and their weak convergence.
Let us begin with recalling notions of g-algebra and measure.

Definition 1.1 We say ¥ = (X, X) is a o-algebra (cz. o-algebra), if

o X £

o ¥C P(X).

o ). X €.

o X\ AeX for each set A € 3.

° U;of A; € 3 for each sequence of sets A; € 3, 1 € N.
Definition 1.2 We say u = (u, X, X) is a measure (cz. mira), if

o X #£1(.

o ¥ =(%,X) is a o-algebra.

o i X —RY,.

° ,u( :r:of Ai) = Z:ffu (A;) for each sequence of pairwise disjoint sets
A;eX,ieN.

We say u = (p, X, %) is a sign measure (cz. znaménkovd mira), if
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o X #£0.

o ¥ =(X,X) is a o-algebra.

o X — R,

o uf By A) = ST (A for each sequence of pairwise disjoint sets

A, e, ieN.
Let us recall definitions of outer and inner measures.

Definition 1.3 Let p = (u, X, X) be a measure. Then, outer measure (cz.
vnéjsi mira) is defined as

pePX) =R, Ae P(X) = inf{u(B) : AC BeX}

and inner measure (cz. vnitini mira) is defined as
po s P(X) =Ry A€ P(X) = sup{p(B) : ADBeX}.

Definition 1.4 If p = (u, X, X)) is a measure, we denote
o-algebra of all p-measurable sets (cz. o-algebra viech p-méritelnych mnozin)

by

MS(p) = {AeP(X) : p'(A) = p(A)}.

Lemma 1.5 MS (u) is a o-algebra.

1.2 Topological spaces

Definition 1.6 Space X = (X, G) is called topological space (cz. topologicks
prostor), if X is a nonempty set and G C P(X) fulfills

1. 0,X €g.
2. [fGl,GQ € Q then G1 ﬁGQ € Q

3. If A is a nonempty set and Gy € G for each X € A then |J,, Gx € G.
We will use the following standard notation and terminology.

Definition 1.7 Let X = (X,G) be a topological space. Then

o Any member of G is called an open set of the topological space X and
G tself is called the set of all open sets of the topological space X and
will be denoted by G (X).




o F(X)={X\G : GeG(X)} is called the set of all closed sets of the
topological space X and its members are called closed sets of the topo-
logical space X .

o B(X)=0(G(X)) is called Borel o-algebra of the topological space X
and its members are called Borel sets of the topological space X .

For real line, we will use a convention B = B (R).

Open sets possesses a nice characterization.

Lemma 1.8 Let X be a topological space and A C X. Then

AeG(X)«<—=Vae AIGeG((X) st. ae G C A.

1. If A € G(X) the property is trivial, since for a € A we can set G = A.

2. Let Vae AIG e G(X) st. ae G C A
Choose G, € G (X) such that a € G, C A for each a € A.
Hence, A = J,c4 Ga € G (X).

Borel sets can be constructed using §, o operations.

Definition 1.9 Let X be a topological space. We define

+oo

Gs (X) = {ﬂai . Gy € G(X) for allieN},
i=1
+00

Gso (X) = {UG, : Gy € Gs(X) forallie N},
i=1
+oo

F,(X) = {UFi  F, € F(X) for alliEN},
i=1
+00

Fos (X) = {ﬂFl . F, e F, (X) for alliGN}.
i=1

CO?’LSGQU@TLﬂy, sets g505 (X)7 faéa (X); gﬁa&a (X), «Faéaé (X>; GtC., can be de-
fined.
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Definition 1.10 Let X be a topological space. Then, for each set A € P(X)
we define its

e closure clo(A; G (X)) = Nacperw I
e interior int (A; g (X)) = UADG’EQ(X) G;

e boundary 0(A; G(X))=clo(A; G(X))\int(A; G(X)).

One can check that the closure of a sets is a closed set and the interior of
a sets is an open set.

Let us recall, that the notion of topology is introduced in [3] in more
general way than we did. Setup is based on a closure operator ¢ : P(X) —
P(X), The only requirements are monotonicity and closure of a union of
finite number of sets must be union of their closures.

There are equivalent descriptions of closure, interior and boundary.

Lemma 1.11 Let X be a topological space, A C X and v € X.

i) reclo(A; G(X)) < VGeG(X), v G wehave ANG # (.

)
iW) v ¢clo(A; G(X)) <= IG e G(X) suchthatz € G, ANG = 0.
ii) v €int(A; G(X)) < IJG € G(X) such that x € G C A.

w) xgint(A; G(X)) < VG eG(X), v € G we have G\ A # (.

v) 1 €0(A;G(X)) <= VGeG(X), v € G we have
ANG # 0 and G\ clo(A; G (X)) # 0.

Definition 1.12 Let X be a topological space and H C X. We say
H is dense in X whenever clo (H) = X.

Compact sets are a specific class of sets in a topological space.

Definition 1.13 Let X be a topological space. A set K C X is called a
compact whenever the following properties are fulfilled:

1. K € F(X).

2. If A # 0 and Gy € G(X), X € A are given such that K C |J,c, G
then there is I € Fin (A) with K C |, Gi.

The set of all compact sets of the topological space X is denoted by K (X).
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Definition 1.14 Let X be a topological space. A set K C X is called a
relative compact (cz. relativni kompakt) whenever clo (K) € K (X).

Definition 1.15 We say X is a compact topological space if it is a topological
space and X € IC(X).

We have a simple observation

Lemma 1.16 Let X be a topological space. Then, always
B(X) =0(G (X)) = o(F (X)) D o(K(X)). (1.1)

Equality B (X) = o(K (X)) is in power for X = R™, for compact topolog-
ical spaces, and, for some other particular cases.

Consider nice and helpful properties of compact sets.
Lemma 1.17 If K € K(X) and F € F(X) then KNF € K(X).

Intersection of closed sets is a closed set, therefore, KNF € F (X).
Take a system of open sets such that K N F C J,., G
Then K C (Jyep Ga U (X'\ F) is an open covering of compact K.
Therefore, there exists I € Fin (A) such that K C (J,.; G; U (X' \ F).

Thus, K N F C |J,; Gi and, consequently, K N F is a compact.

Proposition 1.18 Let K € K (X)) and Fy € F (X) for each X € A.
Let K N(yep Fa = 0 then there exists I € Fin (A) such that K N(,c; F; = 0.

We have covering of the compact K by open sets K C [J, ., (X'\ Fh).
Thus, there exists I € Fin (A) such that K C [J,, (X \ F).
In other words, K N(,.; F; = 0.

icl

Proposition 1.18 is, actually, equivalent to the definition of compact set.
The following consequence of Proposition 1.18 possesses a great impor-
tance in measure theory.

Proposition 1.19 Let K, € K(X), n € N be such that K1 D Ky D K3 D
... Let ﬂ:g K,, = 0 then there exists ng € N such that K,, = 0.
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We have covering of a compact by open sets K; C |JI=5(X \ K,,).
Thus, there exists no € N such that K1 C (JI2 (X \ K,,) = X \ K,,.
Hence, K,,, = 0. since K,, C K;.

According to the definition, topology is determined by a collection of
open sets. Fortunately, there are smaller systems of sets fully describing the
topology.

Definition 1.20 Let X' be a topological space and G C G (X). Then,

i) G is called a (topological) basis of X, whenever, each open set can be
written as a (possibly uncountable) union of sets from G.

ii) G is called a (topological) subbasis of X, whenever, set of all inter-
sections of finitely many sets from G forms a basis of X .

As an example, let us mention that {(a,b) : a,b € R, a < b} is a ba-
sis and {(—o0,a) : a € R} U {(a,+00) : a € R} is a subbasis of the natural
topology on R.

Let us introduce a construction of a topology. Assume Y is a nonempty
set and H C P(Y) then H uniquely determines a topology on Y. Topology
is constructed in three steps:

1. Ho=HU{D, Y}
2. 7{1:{mf:1H’i : Hl,HQ,...,HkE%O, kEN}

3. Ho = {U/\eAHA . H,, EHl,V)\EA, A#@}

Proposition 1.21 Let Y be a nonempty set and H C P(Y') then (Y, Hs) is
a topological space, Hy is its basis and Ho s its subbasis.
We will denote this induced topology by T(H) := Ha,.

We make some observations:
1. 0,Y € Hy and 0,Y € H,, since 0,Y € H,.

2. Let Hl,HQ € Hl.

I I
Hence, Hy = (1, Hi; and Hy = ﬂf:l H, j for some sets
Hl,h e 7H1,I17 H271, . ,H27[2 € Ho.

Then, Hi N Hy = ﬂizl ﬂfil Hy; € Hi.

Therefore, H; is closed on intersection of finite number of sets.
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Let Hl,HQ c Hg.

Hence, H, = U/\EA1 H,, and Hy = U%A2 H, ,, for some sets
H17)\7H27¢ € Hy, AE Al, 1/) € As.

Then, Hi N Hy, = UAeA1 UweAg (Hi AN Hyy) € Ho, since Hy is closed
on intersection of a finite number of sets.

We have shown that Hs is also closed on intersection of a finite number
of sets.

. Let for each A € A a set Hy, € Hs be given.

Then, Hy = Uwe% H,  for some sets Hy € H;.

Hence, U)\EA H/\ = U)\GA Ul/)G‘l/x HAW € Hg.

Thus, Hs is closed on union of an arbitrary number of sets.

We have verified that Hs is a system of open sets on Y, H; is its basis and
H, is its subbasis.

The construction can be written as

T(H) = {U ﬁ Hipy : Hppn€ G, Ky ENJA# @} u{ru{x}. (1.2)

AEA k=1

Examples of a topological basis and a subbasis:

X = R, G := open intervals of type (a,b), a,b € R, a < b;

X = R, G := closed intervals of type [a,b], a,b € R, a < b;

X = R, G := half-closed intervals of type [a,b), a,b € R, a < b;
X = R, G := open intervals of type (a,+0), a € R;

X = R, G := closed intervals of type [a, +00), a € R.
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1.3 Topology - Local characterization

Topology can be fully described by local properties.

Definition 1.22 Let X be a topological space and U, C P(X) be given for
each x € X. If the following two properties are fulfilled for all x € X :

i) For each U € U, there exists G € G (X) such that x € G C U.

i) For each G € G (X), x € G there exists U € U, such that U C G.

Then U, is called (topological) (local) basis of neighborhoods at x (cz. baze
okoli bodu x ).

Let us emphasis that sets from U, do not need to be open, even they can
be non-Borel !
Basis of neighborhoods determine topology.

Lemma 1.23 Let X be a topological space, U, C P(X) be basis of neighbor-
hoods at x for each x € X and A C X. Then

AeG(X)<—=Vac AIU el, st. U C A.

1. Let A € G (X).
Take a € A. By definition 1.22, there is U € U, such that U C A.

2. Let Vae AJU e U, st. U C A.
Take a € A. Then there is U € U, such that U C A.
By definition 1.22, there is G € G (X)) such that a € G C U C A.
According to Lemma 1.8, A € G (X).

Now assume, for each x € X systems of sets S, C P(X) are given.
Consider following four properties:

(Neighbor-0) Far all x € X we have S, # 0.

(Neighbor-1) Far all z € X, U € S, we have x € U.
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(Neighbor-2) Far all z € X, U,V € S, there exists Z € S, such that
ZcUunV.

(Neighbor-3) Far all z € X, U € S, there exists Z € S, and U, € S,
y € Z such that U, C U for each y € Z.

These given systems build up a topology

t(S,,z€X) = {GEP(X) :VyeGIUES, UCG}. (13)

Proposition 1.24 If properties (Neighbor-0), (Neighbor-2) are fulfilled then
t(S,,x € X) forms open sets in X.

Step by step we check properties of open sets.
1. From definition (1.3) we see () € t(S,,z € X).
2. Property (Neighbor-0) is giving X € t(S,,z € X).

3. Let G,H € t(S,,z € X).
Take v € GN H.

Then, there are U,V € S, such that U C G and V C H. Accordingly
to property (Neighbor-2), there exists W € S, such that W C GN H.

We have checked GN H € t(S,,z € X).

4. Let Gy € t(S,,x € X) for each A € A.
Take © € [Jycp G-
Then, there exists v € A and U € S, such that U C Gy.
We have checked | J,., G € t(S,, 2 € X).

Proposition 1.25 Requiring (Neighbor-0), (Neighbor-1), (Neighbor-2) and
(Neighbor-3), then t(S,,x € X) forms open sets in X and for each x € X
the system S, is a basis of neighborhoods at point x.

According to Proposition 1.24, we know t(S,,x € X') are open sets
in X. It remains to verify S, is a basis of neighborhoods at point z.
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1.

1. Take G € t(S,,x € X) and x € G.
Directly from Definition (1.3) there exists U € S, such that U C G.

2. Takez € X and U € S,.

Denote G = {y € U : 3V € S, such that V C U}.
Let y € G then there exists V' € §, such that V C U.

From property (Neighbor-3), there exists W € S, such that for each
w € W there exists Z, € S, and Z,, C V.

Therefore, W C G.
We have checked G € t(S,,z € X).
Moreover, G C U and from property (Neighbor-1) we have = € G.

4 Classification of topological spaces

Definition 1.26 Topological space X is called

i) 1o, if for each x,y € X, x # y there exists G € G (X) such that either
reGyedGorx g G, yed.

i) Th, if for each x,y € X, v # y there exists G € G(X) such that
reG,yégaG.

iii) Hausdorff, if for each x,y € X, © # y there are G,Q € G (X) such
thatx € G,y € Q and GNQ = 0.

w) reqular, if for each v € X, F € F(X), F # 0, x & F there are
G,Q € G (X) such thatx € G, F C Q and GNQ = (.

v) normal, if for each F,H € F(X), F # 0, H# (), FNH = there
are G,Q € G(X) such that F C G, HC Q and GNQ = .

vi) locally compact, if for each x € X there exists G € G (X) such that
r€G andclo(G; G (X)) € L(X).

vii) fulfilling 1. axiom of countability, if for each x € X there exists
countable basis of neighborhoods at point x.
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viii) separable (fulfilling I1. axiom of countability),
whenever it possesses a countable basis.

Some observations and notes to the classification.

Lemma 1.27 Let X be a topological space and ~ be a relation defined on X
r~y = VG eG((X) itis fulfilled (x € G <= yeG). (1.4)

Then, ~ is an equivalence on X and X |- is Tj.

Topology of X | is determined as follows. For x € X we denote
] ={ye X :y~zx} and for A C X we set [A] = {[y] : y € A}. Then,
Xl|lo=A{lz] :2€X} and G(X|.)={[G] : GeG(X)}.

Evidently, the relation ~ is an equivalence on X'.
Take v,w € X|. and v # w. Then, there are z,y € X, v = [z], w = [y]
and there exists G € G (X)) such that either xr € G,y € Gorx € G, y € G.
Therefore either v € [G], w & [G] or v € [G], w € [G].
We have checked X | is Tp.

Space T7 possesses an equivalent characterization.

Lemma 1.28 Let X be a topological space. Then, X is Ty if and only if
{z} € F(X) for each z € X.

1. Let X be T} and x € X.

Then, for each y € X, y # x there exists G, € G (X) such that y € G,
and = € G,,.

Then,, {z} = X'\ U, .. Gy € F (X).
2. Let {z} € F(X) for each z € X.

Eachy € X,y #z fulfillsy € X\ {z} € G(X).
Therefore X is T7.
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Lemma 1.29 Classification of topological spaces fulfills

Ty <= T <= Hausdorff <= reqular N T} <= normal \ T}.

According to Proposition 1.28, we know that 77 means that points
are closed sets. Then, all implication follows directly Definition 1.26.

Also, regular space possesses an equivalent characterization by means of
neighborhoods at points.

Lemma 1.30 Let X be a topological space. Then, the following properties
are equivalent:

i) Space X is regular.

ii) For all x € X we have implication if U, is a basis of neighborhoods
at x then {clo (U; G (X)) : U € U,} is also basis of neighborhoods at x.

iii) For all x € X there exists U, C F (X) basis of neighborhoods at x.

1. Assume, X is a regular space and U, is a basis of neighborhoods at
point x € X.

Denote S, = {clo(U; G (X)) : U € U, }.

(a) System of sets S, fulfills condition (i) of Definition 1.22, since
always U C clo (U ; G (X)).

(b) Take G € G(X), x € G. Then, X \ G € F(X) and z ¢ X\ G.
From regularity of X, there are W, Q € G (X)) such that x € W,
X\GCQand WNQ =0
Then, there exists U € U, such that U C W.

Hence, clo(U; G (X)) C X\ Q C G.
Thus, system of sets S, fulfills condition (ii) of Definition 1.22.

Therefore, S, is a basis of neighborhoods at point z.

2. Property (i) implies (iii).
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3. Assume property (iii) and take z € X, F € F (X), x & F.
Then, there exists U, C F (X) basis of neighborhoods at point x.
Then, z € X\ F € G (X) and there exists U € U, such that U C X'\ F.
Moreover, there exists G € G (X) such that x € G C U.
Finally, z € G, FC X\U €G(X)aGnNnX\U=1.

We have shown, the space X is regular.

Lemma 1.31 Let X be a topological space. Then, X is separable if and only
if X fulfills 1. axiom of separability and there is a countable set H C X which
15 dense in X.

1. Let G be a countable basis of X and z € X.
Then, U, = {G € G : x € G} is a basis of neighborhoods at x.
Moreover, U, is countable, therefore, X fulfills I. axiom of separability.
Select for each nonempty G € G a point &5 € G.

Hence, H = {{s : G € G,G # 0} is countable and dense in X, since
otherwise X \ clo(H) € G(X) is nonempty, therefore, containing a
point from H.

2. Let for each x € X', U, is a countable basis of neighborhoods at x and
H is a countable dense subset of X.

Hence, G = |,y U. is a countable basis of X'

Definition of compact set become more simple in regular 77 topological
spaces.

Lemma 1.32 Let X be a reqular T topological space and A C X. Then, the
following s equivalent:

i) Ae K(X).
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i) Let Gy € G(X), A€ A and A C U, G, then one is able to select
I € Fin(A) such that A C |J,¢; Gax.

Compact sets fulfill condition (ii). To show reverse implication, we
have only to show that (ii) implies compactness.
Assume, A € P(X) fulfilling condition (ii) and A & F (&X).
Then, there exists x € X'\ A such that G N A # () for each
Gel, ={UecG(X):zeU}
Since &' is regular, for each U € U, there are Gy, Hy € G(X), x € Hy,
Gy DX\Uand GUHHUZQ.
Then, Uy ¢y, Gu D A since X is T1.
According to property (ii), there exists I € Fin (U,) such that J,., G D A.
That is a contradiction since | J,;c; Gu N(\ye; Hu = 0 and in the same time
Nuer Hu A # 0, since (¢, Hu € U,
Therefore A € F (X)) and then also A € K (X).

Lemma 1.33 Let X be a topological space. Then, X \ K (X) is a basis X if
and only if F (X)\{X} C L(X).

1. Let X\ £ (X) be basis X and F' € F (X)\ {X}.
Then, there exists x € F and X \ F € G (X).
One can find K € K (X) such that ¥ \ K C X'\ F.
Consequently, F' C K and then F' € K (X).

2. Let F(X)\ {X} C L(X), then X\ £ (X) is a basis X.

Particularly, if X' is compact space then X \ K (X) is a basis X.
Let us present some examples.

Example 1.34: Consider X = {1,2} equipped with topology
G(X)=1{0,{1},{1,2}}. Then, X is Ty and is not T3.
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Example 1.35: Consider X = N equipped with topology
GXx) = {ACN:N\AeFin(N)}uU{0}.

Then, X is T} and is not Hausdorff.
Proof is simple.

1. Let z,y € N, z # y then G = N\ {y} fulfills G € G (X), z € G and
y & G. Therefore X is T7.

2. Let G,Q € G(X),G#0,Q#0then GNQ # 0.
Therefore X cannot be Hausdorfl.

Example 1.36: Consider X equipped with topology
GX) = {ACcX : X\ AeFin(X)}U{0}.

Then, X is T} Hausdorff if and only if X is a finite set.
Proof is simple.

1. Let z,y € X, © # y then G = X \ {y} fulfills G € G (X), x € G and
y & G. Therefore X is Tj.

2. Let X be a finite set.
Let x € X then {2} = X\ (X \ {z}) € G(X), since X' \ {z} is finite.
Therefore, if 2,y € X', © # y, then {2}, {y} € G (X).

3. Let X be at least countable.

Let G,Q € G(X), G#0D, Q # 0 then GNQ # (). Therefore X cannot
be Hausdorff.

Example 1.37: Consider topological space (X, 7) which is 7. We intro-
duce another topology denoted by o

G(X;0)={X\K : KeK(X;7)}u{0}.

Then, (X,0) is 1.
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o If ¥ ¢ K (X;7) then (X;0) cannot be Hausdorff.
o If ¥ € L(X;7) then (X;7), (X;0) coincide.
Here is a proof:

1. Space (X;7) is T3, therefore, its points are compacts.
Take x,y € X, x # y.
Then G =X\ {y} € G(X;0),z € Gand y ¢ G.
Therefore (X; o) is T7.

2. Let m,ye X, 2 #y, G,QeG(X;o),z€G yeQ and GNQ = .
Then, there are K, L € K (X;7) such that G = X \ K, Q@ = X'\ L.
Consequently, ¥ = K UL € K (X;71).

We have derived if X ¢ IC(X;7) then (X;0) is not Hausdorff.

3. Let X € K (X;7).
Then, F (X;7) =K (X;7) = F (X;0).
Consequently, (X;7), (X;0) coincide.

1.5 Relative and product topology

Definition 1.38 Let X be a topological space andY C X, Y # 0. Then,
relative topology on'Y induced by topology of X is a topology determined by
open sets G(Y)=G(X)NY ={GNY : Ge G (X)}.

Lemma 1.39 Let X be a topological space and Y C X, Y # () be equipped
with relative topology. Then, F (Y)=F (X)NY ={FNY : FeF(X)}.
Let X be Ty regular topological space then K (Y) ={K e K(X) : K CY}.

1. Take F € F(X).

Then, X \ F € G(X). Therefore, (X \ F)NY =Y \FNY € G(Y)
and, consequently, FNY € F (V).
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2. Take F € F(Y).
Then, Y\ F € G (V) and there exists G € G (X)) such that GNY = Y\ F.
Hence, FF = (X \ G)NY and (X \ G) € F(&X).

3. Let K e L(X) and K C Y.
Take Gy € G(Y), A € A such that K C |J,., G-
Then, there are Q) € G (X) such that Gy, = @, NY for each A € A.

Hence, K C (J,c, @ and one can find I € Fin(A) such that K C
UAGI Q)\‘
Then also K C |J,¢;Gr and K € K (Y).

4. Let K €e K (Y).
Then, immediately K C Y.

Space X is regular T} then according to lemma 1.32 we have to verify,
that from each open cover we are able to select a finite subcover.

Take G\ € G (X), A € A such that K C |J,., G-

Then, GxNY € G(Y) foreach A€ Aa K C J,c,GaNY.

Hence, there is I € Fin (A) such that K C ., Gy NY C U,¢; Gx.
We have shown K € K (X).

Product of topological spaces is equipped with a product topology. We
will use the following notation.

JHr  projection from X X;to X &i, where 0 # ' C W C T, (1.5)
ter

tew
o1 ! inverse of projection. (1.6)

Definition 1.40 Let T # () and X,, t € T be topological spaces. Then, we
define a product topological space

®Xt = ®<Xt,7t) = <té(TXt7®Tt>>

teT teT teT

where X &, is Cartesian product and product topology @), T¢ is determined
teT

by a subbasis

G={, 1} (G): Geg(X),teT}.
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A basis of neighborhoods at point z € X A} can be taken as
teT

el

An important observation is, Cartesian product of compacts is a compact
in product topology.

Theorem 1.41 (Tikhonov): Let T # () and for each t € T a topological
space Xy be given. If K, € K (X;) for each t € T then

X KtelC<®Xt).

teT
€ teT

A proof can be found in [3].

1.6 Topology and convergence

Topology is inducing a convergence.

Definition 1.42 Set A = (A, <) is called directed (or, directed preorder,
filtered set) (cz. usmérnénd mnozina), if

1. A#0.

2. (reflexivity) A < \ for each X € A.

3. (transitivity) For each A\, v,y € A, if A < and ¢ < then X\ < 7.
4. For each \;v € A, there exists w € A such that A < w and ¥ < w.

Recall, we speak about preorder if reflexivity and transitivity are fulfilled.

Definition 1.43 Let A be directed set and Ay, A € A be logical expressions.
Then, we say

i) Ay is true eventually, If there exists \g € A such that Ay is true for
of all A\ > o, X € A.
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ii) Ay is true confinally, if for each X € A there exists p € A, ¢ > X
such that A, is true.

Definition 1.44 Let A, U be directed sets and w : W — A. We say that

i) w is monotone, if w(vr) < w(1s) whenever Py, 1y € W, by < 1hs.
i) w is confinal, if for each X € A there exists » € U such that A < w(1)).

i11) w is eventual, If there exists \g € A such that for each X € A, X > Xg
there exists 1 € U such that A = w(v).

Definition 1.45 Let A be a nonempty set, A be an directed set and ay € A be
given for each A € A. Collection < ay >yxen 1 called net in A (or, generalized
sequence) (cz. met, zobecnénd sequence).

Definition 1.46 Let < ay >xep and < by >yecw be nets in A. We say that
< by >yew 15 subnet of < ax >xen, whenever there exists monotone confinal
mapping w : ¥ — A such that by = ayy) for all € V.

Definition 1.47 Let X be a topological space, < ay >xep be a net in X and
a € X. We say that < a, >,cp converges to a (cz. konverguje k), whenever
for each G € G(X), a € G there is a) € G eventually.

Convergence will be denoted by ay F a i X.

Limit of a net is not determined uniquely in general topological space.
The set of all limit points of a net (cz. mnozina vSech limitnich bodu) will
be denoted by Liye (ax || X).

Lemma 1.48 Let X be a Hausdorff topological space then limit of a net is
determined uniquely.

Proof: Take z,y € X, x # v.

Since the space is Hausdorff, given points can be separated by open sets.
Hence, if a net converges to one of these points, then it cannot converge to
the second one.

Q.E.D.

Definition 1.49 Let X be a topological space and < ay > cp be a net in X.
We say that © € X is a cluster point of < ay > en (cz. hromadny bod), if
there exists its subnet which converges to x.

The set of all cluster points of the net will be denoted by Lsyep (ay || X).
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Lemma 1.50 Let X be a topological space and < ay > cpn be a net in X.
Then the set of all cluster points possesses a description

Lsrea (ax [|X) =
={reX :VGeG(X), v €G we have ay € G confinally} .

1. Let o € Lsyea (ay || X).
Then, there is < by, >yecw subnet of < ay >\ca which converges to .
Hence, by, € G eventually for each G € G (X), z € G.
Consequently, a) € G confinally for each G € G (X)), x € G.

2. Let ay € G confinally for each G € G (X)), x € G.

Define an index set with a preordering

UV={(\G): GeG(X),x €d, ayeG},
(A, G1) < (M2, Ga) «— A < Ao, G1 D Ghs.

Take (A1, G1), (A2, G) € V.

Set G = G1 N Gy, then, G € G(X),x € G.

Since A is directed, there is v € A such that v > Ay, v > Ao.
We know ay € G confinally.

Hence, there is 1) € A such that v < and ay € G.

We have constructed (¢,G) € ¥ with property (¢,G) > (A, Gy),
(¥, G) > (A2, G3). We have checked, W is a directed set.

Setting by = ax for (A, G) € ¥, we are receiving < by >ycw subnet
of < ay >xea. Moreover, < by >yecy converges to .
Thus, x € Lsyea (ay||X).

Lemma 1.51 Let G be a subbasis of a topological space X, < ay >xea be a
net in X and a € X. Then, < ay >xen converges to a if and only if ay € G
eventually for each G € G, a € G.
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1. Let net < ay >)\ca converge to a.

Then, a) € G eventually for each G € G, a € G, because G C G (X).

2. Let ay € G eventually for each G € G, a € G.
Take Q € G (X), a € Q.

Then, there exist £ € N and G4, G, ...,Gi € G such that
aceGiNGyN---NGL CQ.

We know a, € G eventually, ay € Gy eventually, ..., ayn € Gy
eventually. Then, a), € G; NGy N --- N Gy eventually, and therefore,
ay € Q eventually.

We have checked < ay >)cp converges to a.

Lemma 1.52 Let X be a topological space, a € X, U, be a basis of neigh-
borhoods at point a, < ay >xep be a net in X. Then, < ay >xcp converges
to a if and only if ay € U eventually for each U € U,,.

1. Let < ay >)ep converge to a.
Take U € U,.
Then, there is G € G (X), a € G such that G C U.
Then, ay € G eventually.
Hence, ay € U eventually, since G C U.

2. Let ay) € U eventually for each U € U,,.
Take Q € G (X), a € Q.
Then, there exists U € U, such that U C Q.
Then, ay € U eventually.
Finally, a) € @ eventually, since U C Q.

We have checked < a) >)cp converges to a.
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Lemma 1.53 Let X' be a topological space and A C X. Then, A € F (X) if
and only if for each net < ay >xep in A, ay ﬁa € X we have a € A.
€

1. Let A € F(X), < ay > ep be anet in A, a,\ﬁaEXandaQA.
S

Then, a € X'\ A.

But, X\ A € G (X).

Hence, a) € X'\ A eventually.

That contradicts with assumption ay € A for each A € A.

2. Let for each net < ay >y ca in A, ay ﬁa € X we have a € A.
(S

Assume, A & F (X).

Then, there exists x € X'\ A such that for each Q € G (X), z € Q we
have Q N A # 0.

Define an index set with an ordering

o= {Qeg(X):ze},
Q1 <Qy <= Q1D Qs

we are receiving a directed set.
Far each G € ¥ we select ag € G N A, since we know G N A # ().

Then, < ag >gew is a net in A and agﬁx e X.
€

According to our assumption x € A. That is a contradiction, since
point was chosen such that = & A.

Lemma 1.54 Let X be a topological space, A C X and < ay >y epn be a net
in A. Then Lsyea (ay [|X) C clo(A).

The observation is a direct consequence of cluster points Definition
1.49 and previous Lemma 1.53.
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Lemma 1.55 Let X be a topological space and < ay >xcp be a net in X.
Then LS)\EA (CL>\ ||X) S .F(X)
Take a net < &, >.er in Lsyep (ay [|X) with &, —nE€ X.
ve

Consider G € G (X), n € G.

Then, there is v € I' such that &, € G.

Accordingly to Lemma 1.50, a) € G confinally, since &, € Lsyen (ay || X).
Hence, Lemma 1.50 says 1 € Lsyca (ay || X).

Finally according to Lemma 1.53, Lsyca (ay ||X) € F (X).

Lemma 1.56 Let X be a topological space and F € F (X). Then,
F € K(X) if and only if Lsyea (ax ||X) # O for each net < ay >xep in F.

1. Let FF € K (X).
Assume, < f\ >,ca in F possesses no cluster point.
According to Lemma 1.54, Lsyep (fi ||X) C F, since F' € F (X).

Then, for each point g € F' there exists G, € G (X) and A\, € A such
that g € G, and f\ € G, for each A > A\j, A € A.

Then, ' C U er Gy-

Since F' is a compact, one can select I € Fin (F') such that F' C Ugel Gy.
Then, for all A € A, fulfilling A > A, for of all ¢ € I, we have f, ¢
U,er Gg- Therefore fy € F', that is a contradiction.

2. Let each net < f\ >,ca in F possess a cluster point.
Assume, F' ¢ K (X).

Then, there exists index set A and G, € G(X) for A\ € A such that
F C Jyep G and nobody is able to select any finite subcover.

Index set W = Fin (A) with ordering
Il < [2 <~ [1 C [2

is a directed set.

Since there exists no finite subcover, for each I € ¥ we can select a
point f; € F'\ U,¢; Ga-
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We are receiving a net < f; >7cy in F. According to our assumption,
there is at least one cluster point of the net, say h.

According to Lemma 1.54, Lsycp (fi||X) C F, since F' € F (X).
Therefore, h € F.

Then, there exists ¢ € A such that h € G,,.

Then, for each I € ¥, I > {p}, i.e. p € I, we have f; & G,,.

That is a contradiction because h is a cluster point of < f; >/cy.

Theorem 1.57: Let X be a topological space, < x) >xea be a net in X and
r € X. Then,

from each subnet < yy >ypcw of < Ty >rea
T srin X <= Oneis able to select a subnet < zg >4ca
A€A such that z4 ﬁx m X.
€

. If net converges to x then each its subnet converges to x.

. Let < ) >)\ca be a net in X such that from each its subnet one is able

to select a subnet which converges to z € X.

Assume, the net is not converging to x.

Then, there exists G € G (X), x € G such that x) € G confinally.
Define

U = {AeA:x &G}

The set is directed, if ordering of A is considered.
Define a net < by >,cy in X setting by = x, for all A € U.
Then, < by >,cy is a subnet of < x\ >)ea.

According to our assumption, there is its subnet < &, >,cr such that
&y —F> x. That is a contradiction with selection of < by >\cy.
~e
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This property is typical for convergence induced by a topology.
Convergence induced by product topology is a convergence via coordi-
nates.

Theorem 1.58: Let T # 0 and for each t € T a topological space X; be

gien. Let < xy >yecw be a net in X X; and x € X X;. Then,
teT teT

x¢—q]>xm ®Xt — VteT: xw,t—\y}It m X,.
ve teT ve

Product topology is determined by a subbasis
G={,1}(G): Geg(X),teT}.

1. Let — i X;.
Ty =" zin @Q,er Xy

FixteT.

Then for each G € G (X,), z; € G we have x,, € TH{_&, (G) eventually,
since x € TH;} (G) and TH;} (G) eg.

That means z, ¢ € G eventually.

Thus, V¢t € T we have x, ﬁxt in X;.
S

2. Let Vt € T we have ﬁxt in X;.
S

Then for each G € G (X}), t € T, x, € G we have z,,; € G eventually.
That means x,, € TH{’& (G) eventually.

ThUS, Ty ﬁl’ in ®tET Xt-
€

If a topological space fulfills I.axiom of countability, topology is deter-
mined by convergence of sequences.

Lemma 1.59 Let X be a topological space which fulfills I.axiom of countabil-
ity, and A C X. Then, A € F(X) if and only if for each sequence z, € A,
n € N, which converges to a point x € X, we have x € A.
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Take net < x) >xea in A which converges to z € X.
Space fulfills [.axiom of countability and, thus, there exists countable basis
of neighborhoods at point . Without any loss of generality we can assume
a basis of neighborhoods with property Uy D U; D U3 DUy D ...
Then, there are indexes A\ < Ay < A3 < Ay < ... such that for each £ € N
and for all A € A, A > \; we have z, € Uj.

Therefore z, —— .
ok
—+o00

Consequently x € A and A is a closed set.

Let us mention, < ), >ken does not have to be a subnet of < x) >jca.

Lemma 1.60 Let T' be uncountable and a topological space X; is given for

each t € T. If for each t € T there is Gy € G(X;) such that Gy # 0 and

Gy # X, then product topological space ( X Xy, Q,cr T(X:)) does not fulfill
teT

the I. axiom of countability.

Select for each t € T points 0; € Gy, 1; € G; and denote
Assume Uy is a countable basis of neighborhoods at 0.
Then, members of the basis can be numbered Uy = {U; : i € N}.

Hence, for each i € N there is Q; € G < X Xt> such that 0 € Q; C U;.

teT
Moreover, for each i € N there is I; € Fin (T'), H;; € G (X,) for all ¢t € I, such
that O S THI:I (té Hi,t> C QZ C Uz

There is 7 € T \ ey 1is since T is uncountable and (J,cy [; is at most

countable.

Consider point § € X A}, where 6, =1, and §; =0, for all t € T', t # 7.
teT

Then, 0 € I} (G,) € G ( X Xt) and § & TH{_Tl} (G;) but § € U; for all
teT

T {7}
1€ N.
That is a contradiction, because Uy is a basis of neighborhoods at 0.

There is a general theory on convergence, i.e. Convergence Spaces. Their
theory lays outside of the concept of the lecture. Convergence almost surely
is a straightforward example of convergence which is induced by no topology.
Even for real random variables we have no topology inducing almost sure
convergence. It is seen because statement of Theorem 1.57 is violated.
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1.7 Continuity of functions

In this section, we introduce definitions and basic properties of continuous
and semicontinuous functions.

Definition 1.61 Let X', ) be topological spaces and f : X — Y be a func-
tion. We say f is continuous (cz. spojitd) whenever for all G € G (Y) we
have f~1(G) € G (X).

The set of all continuous functions from X to ) will be denoted by
C(X,Y). If ¥ = R we abbreviate notation by C(X).

Definition 1.62 Let X be a topological space and f : X — R be a function.

o We say that f is lower semicontinuous (cz. zdola polospojitd) whenever
for all r € R we have f~*((r,+o0)) € G (X).

o We say that f is upper semicontinuous (cz. zhora polospojitd) whenever
for all r € R we have f~((+o00,7)) € G (X).

These notions possess equivalent description by convergent nets. For that we
need to explain a notation.

Definition 1.63 Let X be a topological space, A C X, A# D, x € clo (A).

o Let Y be a topological space, y € Y and f: X — Y be a mapping. We
say that f(&) is tending to y while & is tending to x with respect to A
if for each G € G(Y), y € G there is H € G(X), x € H such that for
each £ € HNA, £ # x we have f(§) € G. We denote the fact by the
symbol

lim f(§) =y.

E—x
EeA

o Let f: X — R be a function and y € R. We say that
limes inferior of f(§) is y while £ is tending to x with respect to A if

— For each r € R, r <y there is H € G(X), x € H such that for
each & € HN A, £ # x we have f(§) > r.

— For eachr € R, r >y, He€ G(X), x € H thereis £ € HN A,
€ # x with f(§) <.

We denote the fact by the symbol

liminf f(&) = v.
E—x
Ee€A



34

o Let f: X — R be a function and y € R. We say that
limes superior of f(&) is y while & is tending to x with respect to A if

— For each r € R, r > y there is H € G(X), x € H such that for
each & € HN A, £ # x we have f(§) <.

— Foreachr € R, r <y, H € G(X), x € H thereis £ € HN A,
& # x with f(§) > r.

We denote the fact by the symbol

limsup (€) = y.
E—x
EeA

For A = X we simplify the notation

lim £(€), liminf £(¢), limsup £(¢).

E—a
These limits can be explained using nets.
Lemma 1.64 Let X be a topological space, A C X, A () and x € clo (A).

o Let Y be a topological space, y € Y and f : X — Y be a mapping.

Then
lim f(§) =y
E—x
Ee A

iff

for each net < x\ >\ep in A with x) ﬁx in X and x) # x for all
€

A € A we have f(xk)ﬁy in).

e LetyeR and f: X — R be a mapping. Then
liminf f(§) =y
E—x
EcA
uf
— For each net < x) >y\cp tn A with x ﬁx in X and x\ # x for
S
all X € A we have n >y for each n € Lsyep f(x).
— There is a net < &y >ypew in A with &, ﬁx in X, & # x for
S
all Y € U and f(&) ﬁy in R.
S
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o Letye R and f: X = R be a mapping. Then

limsup f(£) =y

>z
tecA
uf
— For each net < x) >\cp in A with x), ﬁx in X and x)\ # x for
S
all X € A we have n <y for each n € Lsyea f(xy).
— There is a net < & >yev n A with &pﬁx in X, & # x for
€
all p € ¥ and f(&y) Wy in R.
S
Lemma 1.65

o Let X, Y be topological spaces and f : X — Y be a function. The
function f is continuous iff for all x € X

lim f(y) = f(z).

Yy—x

o Let X be a topological space and f : X — R be a function. The function
f s lower semicontinuous iff for each x € X

lim inf f(y) > f(z).

Yy—x

o Let X be a topological space and f : X — R be a function. The function
f is upper semicontinuous iff for each x € X

limsup f(y) < f(x).

Yy—x
Continuity of a function can be treated at a single point.

Definition 1.66 Let X, Y be topological spaces, f: X — Y be a function
and v € X.

o We say that f is continuous at x, whenever

lim f(y) = f(z).

Yy—x
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o Let AC X. We say that [ is continuous at x on A, whenever

lim f(y) = f(z).

Yy—x
yeA

Continuous functions determine an important o-algebra.

Definition 1.67 Let X be a topological space. The smallest o-algebra for
which all continuous real functions f : X — R are measurable is called
Baire o-algebra. We will use notation Baire(X).

Members of Baire(X') are called Baire sets of the space X.

Evidently, Baire(X) C B (&X).

1.8 Measures on topological spaces

Combining measures with topology presents a very powerful tool.

Definition 1.68 Let X be a topological space. All measures defined on Borel
o-algebra B (X) are called Borel measures.

We will consider Borel probability measures, or simply probabilities, in
this text.

Definition 1.69 Let X be a topological space. We denote by M;(X) the
set of all Borel probability measures, i.e. all probability measures defined on
Borel o-algebra B (X).

Definition 1.70 Let X be a topological space. A family of sets
ux) = [ MSw

HEM(X)

is called o-algebra of universally measurable sets of X (cz. o-algebra uni-
verzdlné méritelngch mnozin).

Direct consequence of the definition is a chain of inclusions
Baire(X) C B(X) Cc U(X).

By definition, probabilities are o-additive. But they could possess better
and more helpful properties.

Definition 1.71 Let X be a topological space. We say u € My(X) is reqular
(cz. reguldarni) Borel probability measure if for each A € B(X) we have

p(A) = sup{u(F): FCA FeF((X)}.
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Definition 1.72 Let X be a topological space. We say p € M (X) is Radon
(or, tight) (cz. Radonova, tésnd) probability measure if for each A € B (X)
we have

p(A) = sup{u(K): KCA KeK(X)}.
The set of all Radon probability measures on X will be denoted by My (X).

Definition 1.73 Let A be a nonempty set. We say that A C P(A) is a
filter, (cz. filtr) if A is nonempty and for each B,C € A there erists w € A
such that B D w and C D w.

Everybody can notice that A is a filter equivalently means (A, <) is di-
rected with B < C' denoting B D C.

Definition 1.74 Let X be a topological space. We say p € My(X) is
T-additive (cz. T-aditivni) Borel probability measure if for each filter F C
F (X) we have

u(ﬂ F) = inf{u(F): FeF}.

FeF

These properties of Borel probability measures are related. Let us intro-
duce some relations among them.

Lemma 1.75 Let X be a topological space and p € My(X). Then p is
reqular iff for each A € B(X) we have

p(A) = inf{u(G): GDA GeG(X)}.
Lemmas from [8], pp.64-65, 1.7.9, 1.7.10, 1.7.14.

Lemma 1.76 Let X be a reqular topological space. If pn € My(X) is -
additive then i 1s reqular.

Consider that for each F' € F (X) we have

p(F) = inf{u(nt(H)) :int(H)DF, He F(X)}.

Lemma 1.77 Let X be a topological space. If p € My(X) is Radon then p
15 T-additive.
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Lemma 1.78 Let X be a locally compact topological space. If n € M;(X)
18 T-additive then p is Radon.

Theorem 1.79: Let X be a compact topological space. If p : Baire(X) —
0,1] is a probability measure then there is uniquely defined i € M;(X)
which is reqular, T-additive and enlarging p, i.e. for all B € Baire(X) we
have i(B) = u (B).

Proof:  See Theorem I1.8.8, p.177 in [§].

Q.E.D.

1.9 Random maps

In this section, we consider a probability space (€2, .4, P), a nonempty set H
and maps from €2 to H.

1.9.1 General definitions

At first, let us recall definitions of outer and inner probabilities.

Definition 1.80 Let (€2, A, P) be a probability space. Then, outer probability
(cz. wnéjsi pravdépodobnost) is defined as

P . P(Q) = [0,1]: A€ P(Q) —inf{P(B): AC Be A}

and inner probability (cz. vnitini pravdépodobnost) is defined as

P.: P(Q) —[0,1]: Aec P(Q)—sup{P(B): ADBec A}.

Definition 1.81 Let (2, A, P) be a probability space, H be a nonempty set
and X : Q — H be a map. We define outer distribution of X (cz. wvnéjsi
rozdélent)

px: P(H)—=[0,1]: Ae P(H)— P (X € A),

inner distribution of X (cz. vnitrni rozdélend)

pix : P(H) = [0,1]: Ae P(H)— P, (X € A)

and measurability region of X (cz. oblast méritelnosti)

Yx = {A€eP(H):P"(XeA=P.(XeA}.
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Lemma 1.82 Always, ¥x is a o-algebra and % is a probability on ¥x.

Definition 1.83 Let (2,.A,P) be a probability space, H be a nonempty set,
B C P(H) be a o-algebra and X : Q — H be a map. If B C Yx, we say,
X is a B-measurable random variable (cz. B-meéritelnd ndhodnd wvelic¢ina)
and outer distribution of X restricted to B is called distribution of X (cz.
rozdéleni); notation ux = p |s-

Measurability is usually denoted by X : (Q, A) — (H,B) and, often, term
random variable with values in (H,B) is used.

Definition 1.84 Let (£2,.A,P) be a probability space, H be a topological
space and X : Q — H be a map. We say X is a random variable (or,
Borel random variable) (cz. ndhodnd velic¢ina, borelovskd ndhodnd velic¢ina)
if B(H) C Xx, i.e. map X is B(H)-measurable.

Definition 1.85 Let (Q2,.A,P) be a probability space, H be a nonempty set,

B C P(H) be ao-algebra X, Y : Q — H be maps with B C Xx, B C Xy. We
say, distributions of X, Y coincide on B (cz. rozdélent se shoduji) whenever
px (B) = py (B) for each B € B.

This fact will be denoted by X 2y on B.

1.9.2 Topology and randomness

Topology is combined with randomness in this section. We consider a net
of random variables X : (2, 4) — (X,B (X)), A € A, where (2, 4,P) is a
probability space and & is a topological space.

We focus to three most important convergences used for random variables;
i.e. convergence almost surely, in probability, in distribution. Convergence in
distribution of random variables is defined as the weak convergence of distri-
butions of these random variables. Thus, the weak convergence of probability
measures must be also remembered.

Definition 1.86 Let (£2,.A,P) be a probability space, X be a topological
space, < px >aen be a net of probability measures and p € My(X). We

say < px >xea converges weakly to p (cz. konverguje slabé), whenever for
each G € G (X) it is fulfilled

liminf A (G) 2 1 (G).

The convergence will be denoted pu) )\—WA>,u n X.
5
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Definition 1.87 Let X be a topological space. We consider My(X) as a
topological space My(X) = (My(X),w), where topology w is induced by
weak convergence and is called weak topology.

Definition 1.88 Let X' be a topological space and M C My(X). We say
M is a weakly relative compact (cz. slabé relativni kompakt) if from each net

in M we are able to select a subnet convergent in My (X).
In other words, clo (M) € K (My(X)).

Definition 1.89 Let X' be a topological space and M C My(X). We say
M is tight (cz. tésna) if for each € > 0 there exists K € K (X) such that
w(K) >1—c¢ for each p € M.

We have an immediate simple observation.

Lemma 1.90 Let X be a topological space and M C My (X). If M is tight,
then M C My, (X).

Definition 1.91 Let (2,A,P) be a probability space, X be a topological
space. Consider a net of random wvariables < X, >xcpx with values in X
and a random variable X with values in X .

1. We say that < X, >,cn converges almost surely to X in X, whenever
there exists Qg € A, P (Qo) = 1 such that (cz. konverquje skoro jiste,
konverguje s.j.) for each w € Q it is fulfilled Xy (w) = X(w) in X.

€

The convergence will be denoted X %X in X.
<

2. We say that < X >xep converges in t-probability to X in X (cz. kon-
verquje v t-pravdépodobnosti), whenever for each G € G (X))

}\1€IR1P(XA¢G,X€G):0.

The convergence will be denoted X %)X n X.
S

3. We say that < X >,ca converges in distribution to X in X (cz. kon-
verquje v distribuci), whenever for each G € G (X) it is fulfilled

liminfP (X, € G) > P(X € G).
AEA

The convergence will be denoted Xy A—DA> X in X.
€
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Definition 1.92 We say that a random variable X is Radon (or tight),
whenever its distribution is a Radon probability measure; see Definition 1.72.

Theorem 1.93: Let X be a Radon random variable and G be a subbasis X
then

XA X inXd = VGeG: lImP(X,€G,XeG)=0.
AEA AEA

Let G € G (X).
Then, it can be written as G = Uwe\p Gy, where Gy =)
Qj € G and Jy, is a finite set for each ¢ € V.
Fix ¢ > 0.
Since X is a Radon random variable, there is K € K (X) such that K C G
and P(X € K)>P(X €G) —e.
Since K € K(X) and K C G = {J,cy Gy, there exists I € Fin (¥) such that
K C Uyes Gy C G. Therefore,

ey Qj . for some

P(XE UGw>2P(X6K)>P(XeG)—5,

pel
Then,
limsupP (X, ¢ G, X € G)
AeA
<limsupP | X, & UGva eG
AEA el
glimsupP<XA€UGw,X€ UG¢) +P(X6G)—P<Xe Uad,)
ACA el el wel
< ZlimsupP (X)\ ¢ UG¢,X €G¢> +e
pel A vel
SZlimsupP(XAgGw,XEGw)%-s
RO

= Zlir?esAupP X\ ¢ ﬂ Qjy, X € ﬂ Qjw | T¢

pel = JETy

SZZlimsupP X0 € Qjy, X € ﬂ Qjw | te

vel jed, A jESy

< Z Z limsupP (X € Qju, X € Q) +=¢.

vel jed, A
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Theorem 1.94: Let X be Radon random variable and G be a basis X then

liminf)\eA P (XA € Uie] Gz) >P (X S UiEI Gz)

D .
Xh—X X
A T xen " vV I finite and G; € G fori € 1.

Let G € G (X).
Then, it can be written as G = Uwe\p Gy, where Gy, € G.
Fix e > 0.
Since X is a Radon random variable, there is K € K (X) such that K C G
and P(X e K)>P (X €G)—e.
Since K € K (&) and K C G =,y Gy, there exists I € Fin (V) such that
K C Uye; Gy C G. Therefore,

P(XGUG¢) >P(XeqG)—ce.

Yel

Then,

. S T
lllﬁkan(XAeG)_lnglekan(XAGHGIb)

2P<X€UG¢> >P(XeG)-c

Yel

Theorem 1.95 (Portmanteau lemma): Let Xy,A € A and X be random
variables with values in a topological space X. Then, following statements
are equivalent:

i) Xx——=X in X.
AeA
i) IUX/\?WA>IUX in X.
i) For all G € G (X) it is fulfilled

. S
hrglekan(X,\GG) >P(X €q).
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i) For all F € F(X) it is fulfilled

limsupP (X, € F) <P (X € F).
AEA

v) For all lower bounded and lower semicontinuous functions f : X — R

it 1s fulfilled

liminf E [f(X))] = E[f(X)].

AEA

vi) For all upper bounded and upper semicontinuous functions f : X —

R it is fulfilled

lim sup & [f(X0)] < E[f(X)].

Bounded continuous functions are not giving an equivalent characteriza-
tion in general case. A general topological space can possess only a few of
bounded continuous functions. It can happen that constant functions are the
only bounded continuous functions on the space.

Convergence in distribution is preserved by a mapping with discontinuity
points of probability zero.

Definition 1.96 Let X', Y be topological spaces and F': X — Y. We denote
by

Tp ={x € X : F is discontinuous in x}

the set of all discontinuity points of F'.

Theorem 1.97 (preserving of convergence in distribution): Let X, Y be
topological spaces, < X\ > cp be a net of random variables with values in X,
X be a random variable with values in X, and, ' : X — Y be a function.

If
XAA—DA>X inX and P(X €Tp)=0,
€

then

D ,
F(XA)FF(X) in .

Take H € F ().
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1. Take x € clo (F~'(H)).

There are two possibilities:

(a) z € Tp.

(b) @ € Tp; i.e. F is continuous at x.
Since = € clo (F~!(H)), there is a net =) € X, x) 7 with
F(z)) € H.

Then F(x)) = F(z), because, F' is continuous at z.
€

Therefore F(z) € H.
Consequently, clo (F~'(H)) C F7Y(H) U Tk.
2. Convergence in distribution follows from

limsup P (F (X)) € H) = limsupP (X, € F~'(H)) <
AeA AeA

< limsupP (X, € clo (F'(H))) <P (X € clo (F'(H)))
AEA

<P(XeF Y(H)UTy) =P (X € F"'(H)) =P(F(X) € H).

Let us mention, the classical version of Theorem on weak convergence
preservation by a continuous mapping is a particular case of Theorem 1.97.



Chapter 2

Metric spaces

2.1 Definition and basic properties

Let us start with definition.

Definition 2.1 Let E # () and p: EXE — Ry . We say, p is a metric on
E (cz. metrika), if

a) p(z,y) =0 if and only if x = y.
b)Va,yek: py.z)=p(zy).
c)Vayz€E: p(zy) <p(z,2)+p(zy)

and it is a pseudometric on E (cz. pseudometrika), if
a) p(z,z)=0.
b) Va,ycE: p(y,z)=p(z,y).
c)Va,y,z€E: p(z,y) <p(z,2)+p(2,9)

Definition 2.2 Space E = (E, p) is called a metric space (pseudometric space)
(cz. metriky prostor, pseudometriky prostor) whenever E # 0 and p is a met-
ric (pseudometric) on E.

Definition 2.3 Let (E, p) be a metric space. A set

U(z,e)={yeE: pyx)<e} (2.1)

is called open ball with a center x € E and a radius € > 0 (cz. oteviené okoli
bodu x s polomérem ¢ > 0) and a set

V(r,e)={y€E:pyz)<e} (2.2)

45



46

is called closed ball with a center x € E and a radius € > 0 (cz. uzaviené
okoli bodu x s polomérem ¢ > 0).

Remark 2.4:  Consider, that always clo (U (z,¢)) C V(x,e). Unfortu-
nately, equality can be violated.

Each metric space is a topological space.
Lemma 2.5 A metric space (E, p) is a topological space with a base
{U(z,e) : x € E, €¢>0}.
Let us recapitulate basic topological notions for metric spaces.
Remark 2.6: For a metric space (E, p) and A C E we have:

e A € G(E) if and only if for each x € A there exists € > 0 such that
U (z,e) C A

e Ac F(E)if and only if E\ A € G (E).

e Recall Borel o-algebra B (E) = o (G (E)).

Topology of metric spaces is nice.
Theorem 2.7: A metric space (E, p) fulfills the I.aziom of countability.

: A countable basis of neighborhoods at = can be taken for example
as U, = {U (x,27") : n € N}

Theorem 2.8: A metric space (E, p) is a normal Ty topological space.

1. If z,y € E, x # y, take an open ball G = U (z,p (z,y)) € G (E). Then,
x € G and y € G. Therefore, E is T},
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2. Let F,H € F(E) with FNH = 0.
For each f € F' and h € H there are €g,n, > 0 such that
U(fef) NH=0,U(h,n,) NF =0.

Set G = U;erU (f, %f), Q=UpenU (h,%h). After that, G,Q € G (E),
FcGand HCQ.

Assume f € GNQ.

Then there are u € F' and v € H such that p (u, f) < % and p (v, f) <

o
5

Consequently,

EU+77U
2

max {ey, n} < p (u,v) <p(u, f)+p (v, f) < < max {&y, v} -

This is a contradiction, therefore, G N Q = (.
Normality of E is verified.

Theorem 2.9: Let T # () and a metric space E; = (Ey, p;) be given for each
teT.
o If T is a finite set then product topological space ( X By, Q,er T(Er))
teT

is metrizable. If E; is complete for each t € T then there is a metric
making the product topological space to be a complete metric space.

A convenient metric is for example

p (e Zpt e, fi) fore, f € X =

teT

o [fT is a countable set then product topological space ( X E¢, @),cr T(Et))
teT

is metrizable. If E; is complete for each t € T then there is a metric
making the product topological space to be a complete metric space.

A convenient metric is for ezample

22 i Pt 6t17ft) f0r€7f€ X Eta
i1 pr. (x5 fr,) + teT

where we number indezes in T as T = {t; : i € N}.
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o [fT is an uncountable set and E; contains at least two different points
for eacht € T then product topological space ( X Ei, @),cr 7(Et)) cannot
teT

be metrized.

1. For T at most countable, the statement is evident.

2. If T is uncountable and E; contains at least two different points for
each ¢ € T, then product topological space ( X E;, @), 7(E¢)) does
teT

not fulfill the 1. axiom of countability; see Lemma 1.60. Therefore, it
cannot be metrized.

2.2 Convergence in metric spaces

According to Theorem 2.7, metric spaces fulfill the I.axiom of countability.
Therefore, we do not need nets to handle with topology of metric spaces.
Sequences are sufficient for that; see Lemma 1.59.

Convergence is determined by topology of metric spaces. But, there is
another description using metric.

Lemma 2.10 Let (E, p) be a metric space, A be a directed set and xy,x € E
for A€ A. Then,

Ty @ an E = }\1€mAp(:c>\,x) = 0. (2.3)

Proposition 2.11 If (E, p) is a metric space, then metric p : E X E — R
is a continuous function. Where (E x E ) is a metric space with metric

V(w1 22), (Y1, 42)) = p (21, 91) + p (T2, Y2)-

Metric space fulfills 1. axiom of countability, therefore, continuity
of metric can be shown using sequences, only; see Lemma 1.59.

Let x,, yn,z,y € E and lim,, o ¥ (2, yn), (z,y)) = 0.
Then z,, = x, y, — y in E and

P (Tnyn) < p(2,y) +p (X0, ) + 0 (Un,Y),
p(r,y) < p(Tnyn) +p (X0, 2) +p (Yn,y) -
Consequently,
—p (Xn, ) = P Yy y) < p (@, yn) — p (2,9) < p(@n, ) + p (Yn,y)

and, therefore, lim,, ., p (Tn,yn) = p (2,7).
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Consider o-algebra generated by metric p

o(p)={{(z,y) eEXE : p(x,y) € B} : BeB}.

Always o (p) € B(E x E). A connection to product o-algebra B(E)* is a
question.

Theorem 2.12: If (E, p) is separable metric space, then o (p) C B(E)*.

If is E separable, then there is an at most countable set D C E
dense in E. Set for e > 0 and n e N

Qn,s = U U (b, 2—n) x U (d, 2—n> .
bde D
p(bd) <e+27"

We have Q1. D Q2. D Q3. D .... and
23 Qne ={(z,y) EEXE : p(x,y) <e}.
Consequently, {(z,y) € ExE : p(z,y) <e} € B(E)® since Q,. € B(E)
VnelN
Finally, o (p) C B(E)*.

2

Definition 2.13 A sequence x,, n € N in a metric space (E,p) is called
Cauchy (cz. Cauchyovskad), whenever img, myepm p (Tn, Tm) = 0, where M =
N? is directed by ordering (ny,ng) < (m1,mp) <= ny < my,ny < mo.

Lemma 2.14 A Cauchy sequence z,, n € N in a metric space (E, p) pos-
sesses at most one limit in (E, p).

Definition 2.15 A metric space (E, p) is called complete (cz. uplny), when-
ever all Cauchy sequences possess a limit in (E, p).

Definition 2.16 Let (E, p), (E, ) be metric spaces. We say (E, p) is

a completion of (E, p) (cz. ziplnéni) if there is an imbedding ¢ : E — E such
that (L(E), p) is a complete metric space and p (z,y) = p (t(x),c(y)) for all
xz,y € E.

Theorem 2.17: Each metric space possesses a completion.
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Consider a metric space (E, p) and
M = {(z,,n € N) € E" : (2,,n € N) is Cauchy in E} .

Take (z,,n € N), (y,,n € N) € M. Then p (z,,y,), n € N is Cauchy in R,
since

P (ks k) — P (Tns Yn)| < P (T, 20) + P (Yks Yn) -

Therefore, we can correctly define ¢ : M x M — R as

Y ((xn,n €N), (yo,n € N)) = lim p (z,,y,) -

n—-+oo

1 is a pseudometric on M.

We define an equivalence ~ on M by (z,,n € N) ~ (y,,n € N) whenever
¥ ((xn,n € N), (yn,n € N)) = 0.

Set E = M|. and p (u,v) = ¢ ((2n,n € N), (yn,n € N)) for each (z,,n €
N) € u, (yn,n € N) € v.

Set uy = {(yn,n € N) € M : lim,, 10 p (yn,x) = 0} for all z € E.

We have a natural imbedding ¢ : E — E : 2 € E — u, and (E,p) is a
completion of (E, p).

Definition 2.18 A topological space X is called Polish (cz. Polsky prostor),
whenever there is a metric p : X x X — R such that (X, p) is a complete
separable metric space and both topologies coincide.

“To be Polish” is a topological notion. A topological space can be equipped
with two different metrics such that topologies coincide and the space is com-
plete in one of them and non-complete in the other one.

Example 2.19: Consider open interval (0, 1) and two metrics p;, ps defined
for z,y € (0,1) by

pi(z,y) = [z —yl,
2z —1 2y — 1

z(l—2) y(l—y)|

PZ(ZU, y)

po is also metric, since function




o1

is increasing bijection between (0,1) and R.

Space ((0,1),p1) is a separable metric, but, non-complete, since a se-
quence %, n € N is Cauchy and does not converge. Its limit “lays outside of”
the interval (0,1).

Space ((0,1), p2) is a complete separable metric space, since it is isomorfic
with Euclidean space R.

Construction in example leads to a general characterization of Polish
spaces.

Theorem 2.20: A topological space is Polish if and only if it is isomorphic
with a Gs,-subset of some complete separable metric space.

Definition 2.21 Let (E, p) be a metric space and A C E. We say,
A is totally bounded (cz. totdlné omezend) if for each € > 0 there is a finite
set H. C E such that for each x € E one can find y € H. with property

p(z,y) <e.

Lemma 2.22 Let (E, p) be a metric space and A C E.
AeK(E)= Aec F(E) and A is a totally bounded set. (2.4)

Lemma 2.23 Let (E, p) be a complete metric space and A C E.

AeK(E) <= A€ F(E) and A is a totally bounded set. (2.5)

2.3 Metric space and randomness

This chapter combines metric spaces and randomness. We will consider a
net of random variables < X, >,ca with values in a metric space and its
convergence almost surely, in probability and in distribution will be studied.

Lemma 2.24 IfE is a metric space, then each p € My (E) is regular.

Lemma 2.25 If E is a Polish space, then each u € M;(E) is Radon and
T-additive.

Convergence almost surely possesses no new relation in a metric space.
But, there is another natural notion of convergence in probability.



52

Definition 2.26 Let E be a metric space, A be a directed set, Xy, A € A be
random variables in E and X be a a random variable in E. We say,

< X\ >xea converges in probability to X in E

(cz. konverguje v pravdépodobnosti), whenever for each € > 0 it is fulfilled

gler%P(p (X, X)>¢e)=0.
The convergence will be denoted X /\—PA>X i E.
€

Theorem 2.27: Let E be a metric space, A be a directed set, Xy, A € A be
random variables in E and X be a random variable in E. Then

P . t—P .
Xy,—XinE= X, — X inE.
AEA AEA

Let X\ —— X in E.
AEA

Fix £ € E and € > 0.
Take 0 < § < e.
We can estimate

limsupP (X, €U (x,e), X €U (z,¢))
AEA

§lir§1€sAupP(X,\ EU (x,e), X eU(x,9))+P(X el (x,e)\U(x,0))
glir?s/\upP(p(X,\,X) >e—0)+P(X el (x,e)\U (z,9))
=P(X el (x,e)\U(x,0)),

. P .
since X, —— X in E.
AEA

{—P . }
We have shown X, —>A X in E, since
A

lim P (X €U (z,¢) \ U (2,6)) = 0.

d—e—

Theorem 2.28: Let E be a metric space, A be a directed set, Xy, A € A be
random variables in E and X be a a random variable in E. If X is Radon
then

t—P . P .
Xy—XinkE<—= X, — X inkE.
A€A AEA
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Let X) —— X in E.
AEA
Fix ¢ > 0.
Take 6 > 0.
There is a K € K (E) such that P (X € K) > 1 — J; since X is Radon.
According to Lemma 2.22, there is a finite set H C E such that K C
U:cEHu (.T, %) :

Hence, we can estimate

limsup P (p (X, X) >¢) <limsupP (p (X, X)>¢e, X € K)+0
AEA AEA
<limsupP [ p (X0, X) > 2, X e | Ju a:—) +6

AeA it

+0
Soir AeA

< thsupp<p(XmX) > &, XEZ/{(SC E))
<thSUPP<X>\¢u< 2) XEU( %)

A€A

)+o
_ 5,
since X P X in E.
AEA

We have shown X /\—PA>X in E.
€

List of equivalent descriptions of convergence in distribution is a bit larger
than in general topological space.

Theorem 2.29 (Portmanteau lemma): Let A be a directed set, X, A € A
and X be random variables with values in a metric space E = (E, p). Then
the following statements are equivalent:

Z) X,\—>X m  E.
AEA

ii) For each G € G (E) we have

. S
111)1(161Aan(X>\€G)_P(X€G).

iii) For each F € F (E) we have

limsupP (X, € F') <P (X € F).
AEA
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iv) For each lower bounded and lower semicontinuous function f: E —

R it is fulfilled

liminf E[f(X))] = E[f(X)].

AEA

v) For each upper bounded and upper semicontinuous function f: E —
R it is fulfilled

limsup E[£(X,)] < E[f(X)].
AEA

vi) For each continuous bounded function f:E — R we have

i [(X,)] = E[(X)].

vii) For each B € B(E) with P (X € 0(B)) = 0 we have

glemAP(X,\GB):P(XEB).

1. From Theorem 1.95 we know (i) < (i) < (iii) < (iv) < (v).

2. Immediately (iv), (v) = (vi),

3. We have (i), (i1i) = (vii), since for B € B(E), P(X € 9(B)) =0
P(X e B)=P(X €int(B))
< liminf P (X, € int (B)) < liminf P (X, € B)

A€ e
<limsup P (X € clo(B))

AEA
<P(X eclo(B))=P(X € B).

4. It remains to show (iv), (v) <= (vi) and (i7), (i17) < (vii).

Theorem 2.30 (Prochorovova véta): Let E be a Polish space and M C
M (E). Then it is equivalent:

i) M is a weak relative compact.
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ii) M is tight.
(Recall Definitions 1.88 and 1.89)

See textbook [5].

Example 2.31: Consider a metric space (E,p) and define a topology 7
generated by a subbasis

G = {E\V(zr,e) : x €E, e¢>0}.

Then, (E,7) is Ti. Let be sup{p (z,y) : =,y € E} = 400, then (E, 7) cannot
be Hausdorff.
Topology T is called ball topology.

Let us give a short proof.

1. Let 2,y € E, # # y then G = E\ V (y, 3p (z,y)) fulfills G € G (E,7),
z € G and y € G. Therefore (E, 7) is 7.
2. Let v,ye E o #£y, G,QeG((E),ze€G z€Qand GNQ = 0.

Then, there are I,J € N, z1,29,...,271 €E, €1,62,...,61 € Ry,
Y1, Y2,---,Y7 €E, p1,00,...,05 € Ry such that

I
T € E\UV(SL’“&) C G,

i=1
J
yeE\ UV(yj,goj) C Q.
j=1
We assume G N Q = (), therefore,

J

EC UV(wi,ei)UUV(yja%)-

i=1 j=1

Hence, sup{p (z,y) : z,y € E} <2 (Zi[:l g + Z}]=1 <,0j> < +00.

Therefore, if diameter of E is infinite then E cannot be Hausdorff.
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2.4 Normed spaces

Consider normed spaces a particular case of metric spaces.

Definition 2.32 A space E = (E,||||) is called a normed space (or, a space
with norm) (cz. mormovany prostor, nebo prostor s normou) if E is a linear
vector space and ||-|| is a norm.

Lemma 2.33 Let E = (E, ||||) be a normed space. Then, p: ExE — R
defined by p (z,y) = ||z — yl|| is a metric.

Definition 2.34 A normed space E = (E, ||||) is considered as a topological
space with topology of the metric space E = (E, p), where
p: EXE—=R: (r,y) €cEXE— |lz—y].

Lemma 2.35 Let E = (E, ||||) be a normed space. Then, ||-|| is continuous.

Statement follows an estimate |||z|| — ||y||| < ||z — y]|.

Definition 2.36 A space E = (E, ||-||) is called a Banach space (cz. Ba-
nachiv prostor) if (E, ||-||) is a complete normed space.

Theorem 2.37: Let T # () and a normed space E; = (Ey, ||-||,) be given for
eacht € T.
o If T is a finite set then product topological space ( X By, @),cr T(Er))
teT

can be equipped with a norm to be a normed space. If moreover E; is a
Banach space for each t € T then there is a norm making the product
topological space to be a Banach space.

A convenient norm is for example

171 = S Usl for £ € X E.

teT

17 = D IANE for £ € X Ee
teT

or
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o If T is a countable set and E; contains at least two different points
for each t € T then there is no norm making product topological space
(X Et,@,er 7(Er)) to be a normed space. Nevertheless, product topo-
teT

logical space ( X Ey, @Q,cq T(Et)) is metrizable. If moreover E, is a Ba-
teT

nach space for each t € T then there is a metric making the product
topological space to be a complete metric space.

Such a convenient metric s

X ey — £y,
e, = 27 - Lt ore, f € E,,
p( f) ; Heti - fti R _'_ 1 f f té<T t

where we number members of T as T'= {t; : i € N}.

o IfT is an uncountable set and E; contains at least two different points
for eacht € T then product topological space ( X E, @Q,cq 7(Et)) cannot
teT

be metrized.

1. If T is a finite set, the statement is evident.

2. Let T be a countable set and E; contains at least two different points
for each t € T'.

Assume ( X Ey, || - ||) is a normed space.
teT

Without any loss of generality we can expect T' = N.
Take some e; € E;, e; # 0, 7 € N.

Now, one can recursively construct o;; > 0, i € N such that x| = k

for each k € N, where x,; = aye; for i = 1,2,...,k and z3,; = 0 for

i=k+1,k+2,. ...

Then, z; — £ in product topology, where &; = «;e; for all i € N.

Hence, £ € X E; would have [|£|| = +oo, because we should have
teT

limg sy oo ||zx]| = ||€]| in the normed space.

That is a contradiction, since norm must be real-valued.

3. If T is countable the product space is metrizable with a metric

22 ’ |€tz ftl

t;

€,f€ X Et.

teT
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If E; is a Banach space for each ¢t € T then the metric is making the
product space to be a complete metric.

4. If T is uncountable, product space cannot be metrized, see Theorem
2.9.



Chapter 3

Space of all functions

3.1 R’ - topology

We consider the space of all real functions R equipped with product topol-
ogy; i.e. RT = (R”,7(R)®"). Therefore convergence in this space is a con-
vergence via coordinates.

Theorem 3.1: Let T # (.
o If T is a finite set then product topological space (RT,7(R)*") can be
equipped with a norm to be Banach. A convenient norm is for example

£l = D _If] for f €RT

teT

Il = D IR for f R
teT

o [fT is a countable set then there is no norm making product topological
space (R, 7(R)*T) to be a normed space. Nevertheless, the product
topological space is a Polish space. A suitable metric is

+o0
p(e f) _ 22—1' |6ti _fti
’ =1 |€t1_ftz|+]'

or

fore, f e RT,

where we numbered members of T as T = {t; : i € N}.

e IfT is an uncountable set then product topological space (RT,T(R)®T)
cannot be metrized.

29
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Theorem is a straightforward application of Theorem 2.37 for the
case B, =R forallt € T.

Convergence via coordinates is inducing a product topology; see Section
1.5. Product topology is determined by a subbase

{Tﬂa(a,b) cteT, a<b, a,bER}.

Upper index —1 denotes inverse mapping; i.e. preimage of a given set.
Also, other subbases are available, for example

{4 (G)teT, Geg®)},
{ I (G) : T€Fin(T), GeG (RN},

{Tﬂl_l (i)e(l(ai,bi)) : I €Fin(T), a; <b; forie I} )
Definition 3.2 For I € Fin(T) and B € B', a set 11" (B) is called
cylinder with a finite base (cz. wvdlec s koneénérozmérnou podstavou,).

A o-algebra generated by all cylinders with a finite base is called
cylindric o-algebra (cz. vdlcovd o-algebra) and will be denoted by Cylindric (T')
in this text.

It is interesting that cylindric o-algebra coincides with Baire o-algebra.
Theorem 3.3: We have a relation
B (R") > Cylindric (T') = B" = Baire(R").

Inclusion is trivial, the first equality follows definition of cylindric
o-algebra and last equality follows [6].

In later sections, we will need open sets and the other topological notions
with a base restricted to a given index set.

Definition 3.4 Let S C T, S # 0. We will denote

1Gs = g (9 (R)), #Fs = Mg (F (R%)), 7Bs = ,TI5" (B (R?)),
ks = 15" (K (R%)) s 1Gs60 = 115" (Gor (RY)) -
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Closed, open and compact sets in R” possess nice helpful characteriza-
tions by means of finite number of coordinates.

Lemma 3.5 Let AC RT and x € A. Then,

T € AL (I (4)) (3.1)

I€Fin(T)

The statement is evident.

Lemma 3.6 Let F € F (R”) and v € RT. Then,
reF = ze (| ;' (I, (F). (3.2)
I€Fin(T)
We will show separately each of both implication.

1. For z € F we immediately have z € (;crin(r) THI_1 (TH] (F)); see
Lemma 3.5.

THI_1 (THI (F))
Then, for each I € Fin (T) there is ¢/ € F such that ¢ = ;.
Index set Fin (T) is directed by preorder

2. Assume = € (\;cpin(r)

I1<J «<— IcC.J

Then, < &7 > cFin(T) 1S @ net in F.
For t € T and for each I € Fin (T) such that ¢ € I, we have &/ = z,.

We have verified convergence ¢! ﬁ r in RT.
I€Fin(T

We know ¢/ € F and F € F (RT) therefore z € F.

Lemma 3.7 Let F € F (R”) and v € RT. Then,

reF <« we (] " (co (I, (F)). (3.3)
I€Fin(T)
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We will show separately each of both implication.
L. If z € F, then immediately = € (\;cgin(r A1 (clo (LI, (F))).
2. Take @ € (\repiner) o117 ! (clo (I, (F))).
Then, for each I € Fin(T) and ¢ > 0 there is £/* € F such that
Vt e I we have |£° —z,| < e.
Denote A = {(I,e) : I € Fin(T"),e > 0} and consider a preorder
(I,e) < (J,m) <= ICJ, e>n.

Then, A = (A, <) is directed and < £/° >(;.)cp is a net in F.

For t € T, e > 0 and for each I € Fin (T) such that ¢t € I,
we have |¢° — z,| < .

That is £ —— .
(I,e)eA

We know ¢1¢ € Fand F € F (RT).
Consequently, x € F.

Theorem 3.8: Let A C RT. Then, Ac F (RT) if and only if

A = () J7'(clo (10, (A))). (3.4)

IeFin(T)

1. The right-hand side of (3.4) is a closed set being an intersection of
closed sets. Therefore (3.4) implies A € F (RT).

2. Assume A € F (RT). According to Lemma 3.7, (3.4) is fulfilled.

Theorem 3.9: Let A C RT. Then, A € G (R") if and only if

A = | It (01, (A))). (3.5)
IeFin(T)
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Characterization is a consequence of Theorem 3.8 and of the fact
that open set is complement of a closed set.

Theorem 3.10: Let A C R”. Then, A € K (RT) if and only if

V I €Fin(T) we have II; (A) € K (RY), (3.6)
A= () 070 (), (3.7
I€Fin(T)

1. Let Ae K (RT).

(a) Take I € Fin(T) and consider a sequence z" € I, (A), n € N.
Then, for each n € N there is a” € A such that a} = 2.
Since A is a compact, there is a subnet such that

a®®) —_sphe A
Pew

Then,
o) _ )
z?W = aj —>¢€\P by € I (A).

Now, we can select a subsequence z?¥¥) k € N such that

1
|22 — b, < o P(r) < P(Yry1)-
We have found a convergent subsequence of the sequence ™, n € N
with limit in IT; (4).
Thus we have verified II, (A) € K (R”).
(b) Now, we have verified 11, (4) € K (R”) for each I € Fin (T').
Therefore according to Theorem 3.8, we have description (3.7).
2. Assume (3.6) and (3.7).
Then according to Theorem 3.8, A € F (R”).
Evidently,

AcC X gy (A).

ter T

Product of compacts is a compact in RT, according to Theorem 1.41
(Tikhonov Theorem).

Therefore, A € (]RT).
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Q.E.D.

3.2 R! and randomness

Before proceeding to the subject, we have to fix terminology on random
processes. We assume a probability space (£2,.4,P) and we will deal with
collections of mappings X = (X (¢),t € T), where T' is a nonempty index
set and X (¢): © - Risamap forallt € T.

In accordance to Definitions 1.81, 1.83, 1.84, we will say.

Definition 3.11 We call X = (X (¢),t € T):

e a random process if X (t) is a real random variable for all t € T'; i.e.
X (t): (2,4) — (R,B(R)), or equivalently, Cylindric (T') C Xx.

e a B-measurable random process if H C RT is a nonempty set, B C
P(H) is a o-algebra and B C Y.

e a Borel random process in C if C C RT is a topological space and

B(C) C Xx.

Theorem 3.12 (Daniell-Kolmogoroff): Let for each I € Fin(T) a probabil-
iy 1y € Ml(RI) is given and {py : I € Fin(T)} forms a consistent system,
i.e. for each I,J € Fin(T), I C J we have pu; = ,uJoJHI_l.

Then, there is a probability v defined on Cylindric (T) such that for each
I € Fin(T) we have v = pyo I}

Proof: A proof is an application of Hopf’s Theorem on measure extension
from an algebra to o-algebra.

Q.E.D.

Definition 3.13 Let X and Y be a couple of random processes. We say
finite dimensional distributions of X andY coincide (cz. konecnérozmérné

distribuce se shoduji) if for each I € Fin(T), B € B (RI) we have

P(Y(I)e B)=P(X (I) € B).

The fact will be denoted by X 2y inRT.
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Lemma 3.14 If X 2'Y in RT then X 2V on Cylindric (T).

Definition 3.15 We say finite dimensional distributions of a net of random
processes < X\ >xen converge to a random process X (cz. konvergence
konecnérozmernych distribuct) if for each I € Fin (T) we have

D . I

The convergence will be denoted by X %X in RT.
€
Lemma 3.16 Let < Xy >,ca be a net of random processes in RT and Y, Z
be random processes in RT.

]fXA%Y in RT and XA%Z inRT thenY ‘= 7.
€ €

Immediately, convergence in distribution and convergence of finite dimen-
sional distributions are connected.

Theorem 3.17: Whenever, X /\—DA>X in RT, then X, %)X in RT.
S S

The argument is  II;" (G) € G (RT) for all G € G (RY).

Theorem 3.18: Let < X >)ca be a net of random processes. If for each
I € Fin(T) there is a random vector Y; € R such that Xy (I) /\—DA>YI in
€

R’, then there is a random process X such that X %X in RT.
€

Moreover, for each I € Fin(T) distributions of random vectors Y; and
X (I) coincide.

For each I € Fin (T") we denote p; the distribution of random vector
Y;. Consider I,J € Fin(T), I C J and G € G (R'). Then

lirileiAnf P(X,\(I)e@G)= lir/\neknf P(X\(J) € JHI_1 (@)
> P (Y; e JI;1(G) = ps (II7(G) = pyo T (G).

Distribution of the limit is uniquely determined, therefore, py = py o Jﬂjl.
Hence, {u; : I € Fin(T')} forms a consistent system.
According Theorem 3.12, there is a probability v defined on Cylindric (T")
such that for each I € Fin (T') we have v = pjy o THI_1.
Then, there is a random process X such that uy = v on Cylindric (T") and
Xy~ X in R

S
Moreover, for each I € Fin (T) distributions of random vectors Y7 and X (I)
coincide.



66

Konvergence nahodnych procesi

May 28, 2017:1097

Q.E.D.



Chapter 4

Space of bounded functions

Largeness of a real function f € RT can be measured by its supremum

[/l =sup{lf ()| : €T} (4.1)

Supremum exhibits properties of a norm except real-values. More precisely,
|-l is & norm for 7" finite, only. If 7" is infinite ||-||;- attains value +oo0.
Consider the set of all bounded functions

[(T) = {feRT - |flly < tool. (12)
Lemma 4.1
i) If T is a finite set, then 7> (T) = RT.
ii) If T is an infinite set, then 17°° (T') # RT.

The case T is a finite set is clear.
If T is an infinite set, then without any loss of generality we assume N C 7.
Hence || f||; = +oo for f € RT, where f(s) = s for s € N and f (s) = 0 for
se€T\N.

Theorem 4.2: Space 17 (T) = (I (T),||-|;) is a Banach space which is
separable only if T is a finite set.

Space (17 (T'), ||-|l) is normed. We have to show completeness
and discuss separability.

67
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1.

2.

Let f, € 1™ (T), n € N is a Cauchy sequence.
FixteT.

Hence, f,(t), n € N is a Cauchy sequence of reals, therefore, possessing
a limit, say ¢ (¢) € R.

Thus, we are receiving ¢ € R?. It remains to show convergence in
[t (T).
Take € > 0.

Then there is ng € N such that for each n > ng, m > ng, n,m € N we
have || — fully < <.

For t € T and m > n > ng we have

|[fn(t) = g(#)] |(fn(®) = Fin() + (fm(t) = g(1))]
[fa(t) = Fin ()] + [ () = 9(t)]
[fn = Fnllz + | fn(8) = 9(2)]
e+ |fm(t) = g(t)]

Letting m — +o00 we are receiving

VAN VARVAN

VieT |fu(t)—gt) < e

We have shown lir+n | fr —glly =0 and g € 17> (T), since for n large
n—-+0oo

enough

19l < W = gllz + [ fully < +oo.

(a) If T is a finite set, then [7°° (T') = R. Thus, it is separable.
(b) If T is an infinite set, then for S C T' consider functions
ws(t) =1 if tes,
= 0 if t¢S.

For S,U C T, S # U, we have ||[¢g — ¥yl = 1.

Family of functions vg, S C T is uncountable.
Consequently, space [T (T') cannot be separable.

Lemma 4.3 If f\ —— f in [T°(T), then fy—— f in RT.
AEA AEA
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Statement is straightforward.

The opposite implication is true, only, for 7" being a finite set.

Example 4.4: Let T be an infinite set, i.e. N C T. Consider a sequence
fn €1T°(T), n € N, where f,, (n) =1 and f, (t) = 0 otherwise.

The sequence f, € [7°(T), n € N is not Cauchy in [T (T), but,
fn W 0 in R”, where 0 denotes zero function.

Example 4.5: Let T be an infinite set, i.e. N C T. Consider a sequence
fn € 17°°(T), n € N, where f,, (n) =n and f, (t) = 0 otherwise.

The sequence f, € [T (T), n € N is not Cauchy in [T (T'), even,
| fullp =n 7 4o00. But, f, — 0 in R”, where 0 denotes zero function.
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Chapter 5

Spaces of continuous functions

5.1 C([0,1))

We consider C ([0, 1]) the set of all continuous real functions defined on the
interval [0, 1]. The space is naturally equipped with the supremal norm.

Theorem 5.1: Topology of (C([0,1]), ||| p)) coincides with relative topol-
ogy on C([0,1]) induced by topology of 17> ([0, 1]).

1. For any f € C(]0,1]) and £ > 0, we observe
U(frelC([0.1])) =U (fiel 17 ([0,1])) N C([0,1])

Thus, G (C([0,1])) € G (I** ([0,1])) N C ([0, 1]).

2. Take G € G (17 ([0,1])) and g € G N C([0,1]).
Then, there is 0 > 0 such that

U (g;6]1([0,1])) C G.
Hence,
U (g;6] C([0,1])) = U (g;6[ 17> ([0,1])) N C([0,1]) € G N C([0,1]).
Thus, G (C([0,1])) > G (17> ([0,1])) N C([0, 1]).

We have shown topology of C([0,1]) coincides with relative topology on
C ([0, 1]) induced by topology of T ([0, 1]).

71
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Theorem 5.2: Space (C([0,1]), |||l p.y) is @ separable Banach space.
Space (C([0,1]),[][[;g;)) is a normed subspace of Banach space
(77 ([0,1]), [[ll;9.1))- We have to show completeness and recall separability.
1. Let f, € C([0,1]), n € N is a Cauchy sequence.
Sequence is also Cauchy in [T ([0, 1]). Therefore according to Theorem
4.2, there is g € 17> ([0, 1]) such that nl_1>r+noO 1fn = gl = 0-
Fix e > 0.
Then, there is n € N such that || f, — gl[;, <&
Since f, € C([0,1]), one can find § > 0 such that for all ¢,s € [0, 1],
[t —s| < dis |fu(t) — fuls)] <e.
Then, for all t,s € [0,1], |t — s| < § we can estimate
) — 9] < 1u®) — 9O + 1uls) — 9()] + 1£u(8) — Fu(s)] < 32
Hence, g € C([0,1]) and (C([0,1]), [-[[;g ;) is complete, thus a Banach

space.

2. Space (C([0,1]), |[-[[jg,1]) is separable, since polynomials with rational
coefficients are dense in it.

To be able properly describe continuous functions, we introduce a conti-
nuity modulus.

Definition 5.3 We define continuity modulus w : RO x R, — Ry o such
that for x € ROY § > 0 we set

w(z,0) =sup {|z(t) —x(s)| : |t —s| <4, t,s€[0,1]}. (5.1)

The continuity modulus characterizes continuous functions.

Theorem 5.4: Let f € ROY. Then,
f € C([0,1]) if and only if lims_or w (f,0) = 0.

Since [0,1] is a compact, each continuous function defined on it is uni-
formly continuous. That enables to characterize compacts of C ([0, 1]).

Theorem 5.5 (Ascela-Ascolli): Let A C C([0,1]). Then,
clo (A) € K(C([0,1])) if and only if
sup | f(0)| < 400, lim supw (f,d) =0.
feA 6—0+ feA
Or in short, A C C([0,1]) is relatively compact in C([0,1]) if and only if
functions from A are equicontinuous and uniformly bounded at 0.
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5.1.1 Relation between topologies of C([0,1]) and R
Theorem 5.6: We have G (RY) N C([0,1]) € G (C([0,1])).

It is sufficient to show the property for sets from a topological
subbasis of R%Y only.
Take —oco < a < b < 400, 0 <t <1 and consider set

Gz{xER[O’” ta<az(t) <b}.

For y € GNC([0,1]) and e = min {b — y(t),y(t) —a} is U (y; | C(]0,1])) C
G.
We have verified that G N C([0,1]) is an open set in C ([0, 1]).

The inclusion is sharp.

Lemma 5.7 Let x € C([0,1]) and € > 0 then
U (z;e]C([0,1))) ¢ G (RO nC([0,1]).

: Tt is sufficient to consider a set from a topological basis of R,
Take I € Fin ([0,1]), @ € G (RY) and Q # 0.
We consider H = [o,l]HI_I (Q)NC([0,1)).
Since H controls values of continuous functions in a finite number of argu-
ments, we have sup,ey ||z ) = +o0.
Therefore, H cannot be contained in any ball in C ([0, 1]).

Recall a notation introduced in Definition 3.4.

Theorem 5.8: Let T' C [0,1] be countable and dense in [0,1]. Then, we
have 1011G7.50 N C([0,1]) D G (C([0,1])).

The space C([0, 1]) is separable. Therefore, it is sufficient to show
the property only for open balls, since general open set is an union of count-
able many open balls.

Then for 2 € C([0,1]) and € > 0, we have

U (z;2[ C([0,1]))

= Uﬂ{yeRM ; x(t)—s+%<y(t)<x(t)+5—%}ﬂC([0,1])

k=1teT

€ 0,197.50 N C([0,1]) .
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Lemma 5.9 For all x € C([0,1]) and € > 0 we have
Y (wiel € ([0, 1)) € F (RO1) 1€ (0,1)) (52)

V (z;¢| C([0,1]))
_ ﬂ {y e ROU : 2(t) —e < y(t) < a(t) + e} NC([0,1])
te(0,1]

e F (ROY)ync(fo,1]).

Theorem 5.10: We have K (C (|0, C{KeK(R"): K cC([0,1])}.

Let K € K (C(]0,1])).
Assume an covering K C (J,c, G, where G\ € G (R[O’”).
Then, K C U,y (GAN C([0,1])).
We know G, N C([0,1]) € G(C([0,1])) according to Theorem 5.6.
Hence, we can select I € Fin (A) such that

K clJ@inc(o,1) cl s
A€t A€i

We have selected a finite covering of K, thus, we have verified K € K (R®1);
we employ Lemma 1.32 and Theorem 2.8.

Lemma 5.11 Consider real functions on [0,1], fo = 0 and for n
piecewise linear continuous function f, determined by values f, (0)
fo(z) =1 fa(333) =0, fu(1) =0.

Then, {f.,n € N} is a compact in RO, but, it is no compact neither in

C ([0, 1]) mor in It ([0, 1]).
Theorem 5.12: We have
Cylindric ([0,1]) N C ([0,1]) = B (RO nC([0,1]) = B(C([0,1])). (5.3)

€ N
=0

Theorem is a consequence of theorems 3.3, 5.6 and 5.8.
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5.1.2 C([0,1]) and randomness

This part is taken from [2], Chapter 2.8. Let us start with a theorem from
2], T8.2, p.83.

Lemma 5.13 Let T C [0, 1] then otz : C([0,1]) — RT is continuous.

Consider a sequence f, € C([0,1]), n € N such that f, — f
n—-+0oo
in C([0,1]). Then for any t € T,

0T (52) () = T (F) (] = 152 () = £ O < 12 = -

It means | | [T, = C([0,1]) — R” is continuous.

Even, we proved [071]HT : C([0,1]) — I*>°(T) is continuous.

Theorem 5.14: Let X,,, n € N be a sequence of random processes in
C([0,1]) and X be a random process in C([0,1]). Then,

X, —2 X inC ([0,1]) implies X, — 5 X in RO,
n——+o0o n—-+00

Take I € Fin ([0, 1]).

Hence, : ]HI : C(]0,1]) = R! is continuous, according to Lemma 5.13.

0,1
Applying Theorem 1.97, we have

I, (X,) ——  T,(X) in R

[0,1] I n—-+oo [0,1}

Thus, convergence of finite distributions is proved.

Lemma 5.15 Let X, Y be random processes in C([0,1]). If X =y in

RO then X 2V on B(C([0,1])).
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Space C([0,1]) is a Polish space. Hence, distributions px, py on
B (C([0,1])) are Radon 7-additive probabilities; see Theorem 2.25.
Take, K € K (C([0,1])).
According to Theorem 5.10,

VIe€Fin(0,1) wehave I, (K)eK(R),

— -1
K= ﬂ [071]HI ([071]1_[1 (K>>

I€Fin([0,1])

Hence,

px () = ox (K 1 C([0,1]))
— x ( N o (o T () N C ([0, 1)

— inf { jix ([o,uﬂfl([o,uﬂf (K))nc (o, 1])) . 1 € Fin ([0, 1])}

{
—inf {P (X € o, 1,1 (K)) N C([0,1])) : 1 € Fin ([0, 1))}
{p

[0,1] [0,1] 1

(T (K))) . [ € Fin ([0, 1])}

(X c oulls

(0,1]

— inf {P (X(I) S (K)) . 1€ Fin ([0, 1])}.

Similarly, we receive
py (K) = inf{P (yu) € ouli (K)> . I € Fin ([0, 1])}.

We have derived px, py coincide on K (C ([0, 1])), since X 2y in RO,
We know px, py are Radon in C ([0, 1]). Therefore, X ZY on B (C([0,1])).

Theorem 5.16: Let X,,, n € N be a sequence of random processes in
C([0,1]) and X be a random process in RN, Suppose

i) X, I X in RO,

n—-+4o0o

ii) The sequence X, n € N is tight in C([0,1]).
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Then there is X a random process in C([0,1]) such that

X, —2 X inC([0,1]).

n—-4o0o

The distribution 15 on B (C([0,1])) is a Radon T-additive probability uniquely
determined by coincidence X 2 X in RO,

The sequence is tight in C ([0, 1]), therefore according to Prochoroff
theorem 2.30, it is relatively weakly compact. This means that each subse-
quence possesses at least one weak cluster point. We have to show that all
weak cluster points of the given sequence possess the same distribution on
B(C([0,1])).

Let Z be a weak cluster point of the sequence X,,, n € N in C ([0, 1]). Thus,
we have a subsequence such that

X, —2— 7 in C([0,1]).

k—4o00

Take I € Fin ([0, 1]) and G € G (RY).
According to Theorem 5.6 we have

I (G) N C([0,1]) € G(C([0,1])).

[0,1]
Therefore,

liminf P (X,, (I) € G) = liminf P (Xnk € o1l (G)) -

= liminf P <Xnk € oI (G) N, 1]))

k—+o0

> p (Z e IH(@) NC(o, 1])) -

(0,11

_p (z e I (G)) —P(Z(I)€G).

.11
We have shown X,,, ——— Z in R, we also know X,,, ——— X in R,
k—+00 n—+00

i
According to Lemma 3.16, Z 2 X in RT.

According to Lemma 5.15, all cluster points of our sequence possesses the
same distribution uniquely determined by finite dimensional distributions of

X.
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Theorem 5.17: Sequence X,, = (X, (t),t € [0,1]) of random processes in

C([0,1]) is tight in C([0,1]) if and only if for all e > 0, n > 0 there are

a>0,0>0 and ng € N such that for alln € N, n > ng we have
P(X,(0)]>a)<e, (5.4)
P(w(X,,d)>n) <e. (5.5)

1. Let the sequence is tight in C ([0, 1]) and € > 0, n > 0.

Then, there exists a compact K € I (C (][0, 1])) such that for all n € N
we have P (X, € K) < e.

According to Theorem 5.5,

sup |f(0)| < 400, lim supw (f,d) =0.

fek 6—0+ fex
We denote a = sup ¢ |f(0)| and find § > 0 such that w (f,d) < n.
Then, we receive for all n € N

P(|X,(0)]>a) <P(X, ¢K)<e,
Pw(X,,0)>n) <PX,¢g€K)<e.

Thus, the property is shown, even with ng = 1.

2. Let the property holds and ¢ > 0 is given.

(a) Space C([0,1]) is Polish, therefore, each Borel probability on
C([0,1]) is Radon; see Theorem 2.25.

Hence for e > 0,7 >0, n € {1,2,...,n9 — 1} we are able to find
a, >0, 9, > 0 such that

1) P(X,(0)] > a,) <

i) P(w(X,,d,) >n) <e.
Set & = max {a,ag,...,an, 1,0}, § = max {61,02,...,0p,-1,0}.
Then & > 0, § > 0 and for all n € N we have

i) P(|X.(0)| >a) <g;
i) P <w (Xn,5> > n) <e

Thus, we can assume ng = 1.
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(b) As shown above we can assume ng = 1.
Then, we can find o > 0 and 9§, > 0, k € N such that for alln € N

P(Xn(0)]>a) <e,
P (w (X, &) >27%) <e27".
We set
K={zeC([0,1]) : [z(0)] <a, VkEN w(z,d)<27"}.

Evidently K € F (C([0,1])).
Therefore according to Theorem 5.5, K € K (C ([0, 1])).
We have to estimate the probability

P(X, ¢ K)<P(X,( ]>a+ZP (X, 0%) > 27F)

“+o00
<€+522_’“:2
=1

Theorem 5.18: Let sequence X,, = (X, (t),t € [0,1]), n € N of random
processes in C ([0, 1]) fulfill:

i) Sequence X, (0), n € N is tight in R.

it) For each e >0, 1> 0 there are § € (0,3) and ng € N such that for
alln € N, n>ng and for allt € [0,1 — ] it is fulfilled

P(sup{|X,(t) — X, (s)]| : s€[t,t+0]} >n) < b  (5.6)

Then the sequence is tight in C([0,1]).

We have to verify assumptions of Theorem 5.17.
Tightness of the sequence X, (0) is equivalent with i) of Theorem 5.17.
We have to verify the assumption ii) of Theorem 5.17, only.

Take n > 0 and € > 0.
According to (5.6), there are 0 € (0,%) and ng € N such that for all n € N,

n >ng and t € [0,1 — §] we have

P(sup {|X, (t) — X, ()| : s €[t,t+ ]} >n) <&l
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TakeMEN,MZBsuChthat <6<— Then for all n € N, n > nyg
and t € [0,1 — 55] we have
1
P sup{]Xn(t)—Xn(s)] NS {t,t—l—ﬁ }>7))

<P (sup{|X, (t) = X ()| : s € [t,t+0]} > )
B M 5<2€
M—-1 M-1M ~ M

<ed<e

Let us estimate the probability

)

(Sup{ _ X, ()] : Jt—s| < % Lse [0,1]} >3n>
e (30 (20
(8 (B} ot o))

-1

S (mfp-n (5] o<t

+

g

ol

Assumptions of Theorem 5.17 are fulfilled, then, the sequence is tight in
C([0,1)).

Theorem 5.19: Let sequence X, = (X, (t),t € [0,1]) of random processes
in C([0,1]) fulfill:

i) Sequence X, (0), n € N is tight in R.

ii) There are « > 0, f > 0 and nondecreasing continuous function
F :[0,1] = R such that for alln e N, 0 <t < s <1, A >0 we have

P (sup {|Xs (u) = X (1) | = w€ [t, 8]} > X) < XNTO(F(s) = F(£)'".(5.7)

Then, the sequence is tight in C ([0, 1]).
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We have to verify assumptions of Theorem 5.17.

We know tightness of the sequence X, (0) is equivalent with assumption i)
of Theorem 5.17.

We have to verify the second property, only.

Take n > 0 and M € N.

Then, for all n € N we have

(o)

:P<sup{|Xn(t)—Xn(s)| - <%, Lse [0,1]} <3n>
el (5 - (30
‘Xn (%) _x, <%>‘ lt— s <%, bse [0,1]} >3n)

+

Increasing M, the estimate can be made arbitrary small, since function F is
continuous.
Assumptions of Theorem 5.17 are verified. Therefore, the sequence is tight

in C ([0, 1]).

Now, we are approaching to a criterion for tightness of a sequence of
random processes in C ([0, 1]) which can be easily checked. Theorem is intro-
duced in [2], Th 12.3, p. 136.

Theorem 5.20: Let sequence X,, = (X, (t),t € [0,1]) of random processes
in C([0,1]) fulfill:

i) Sequence X, (0), n € N is tight in R.
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ii) There are « > 0, f > 0 and nondecreasing continuous function
F :[0,1] — R such that for alln € N, t,s € [0,1], A > 0 we have

P (X (£) = Xo ()] = A) < APIE(t) — F(s)|"+. (5.8)

Then, the sequence is tight in C ([0, 1]).

We have to verify assumptions of Theorem 5.19.
The first condition is identical with the assumption i) of Theorem 5.19.
We have to verify the second condition, only.
Take 6 > 0,7 >0,t€[0,1 —0] and n € N,
Processes are continuous and, thus, we have

lim max{‘Xn(t)—Xn(t—l—ﬁ(S)’ :k:zl,?,...,m}
m—-+oo m
=sup{|X,(t) — X, (s)| : s€[t,t+]}.

Now, we apply Theorem 7.7 for choice for k =1,2,...,m

6 (o Ea ) (i)
m
wp = F(t+£5> —F(tJrEé)
m m

According to (5.8), we have for all 4,7 = 1,2,...,m, i < j and A > 0 an
estimate
,— 1
(z@>g_qp@+5)w4HLﬂwzg
m
] i—1 14« J 1+a
g)\B(F(HE(S)—F( )) =27 ;uk

Then according to Theorem 7.7, we have

P (max{'Xn(t)—Xn (t+%5)’ : k:1,2,...,m} Zn)
B e

= K(a, B) ™7 (F (t+0) — F ().
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Letting m — 400, we are receiving

P(sup{|X, (t) — X, ()] : s€[t,t+I]} >n)
< K(a, B)n ? (F(t+06) — F (1),

All assumptions of Theorem 5.19 are verified. Therefore, the sequence is
tight in C ([0, 1]).

5.2 Interpolated random walk

I this section, we present an application of the weak convergence in C ([0, 1]).
Random processes arising by interpolation of partial sums of random walks
will be treated here.
A sequence of real random variables §;, i € N and a positive real constant
o are assumed. Partial sums are denoted S;, = Zle &, k € N, where Sg = 0.
Partial sums determine a sequence of random processes with jumps
(Vo (t),0<t<1),n €N given by

Vo (%) for neN, 0<t<1, (5.9)

1
-5,
U\/ﬁ LtJ

and, a sequence of continuous processes (Z, (t),0 <t < 1), n € N given by

Z,(t) = % (sk +n (t - %) (Spst — sk)> (5.10)

k+1
for neN, k=0,1,....n—1, — <t< i .

n

S|

Finite-dimensional distributions of these random processes are close each
to the other.

Lemma 5.21 There is a simple estimate
1
Vie |0,1] |V,(t)—Z,1)| < —= &0 ) 5.11
01 Val®) = Ze)] < 1l (511)

Let us begin with measurability.

Lemma 5.22 Always, Z,, n € N are random processes in C([0,1]) and V,,,
n € N are random processes in 17> ([0, 1]).
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Fix n € N and consider mappings 1 : R" — [T*°([0,1]) and
Ky @ R™ — C([0,1]) given by

k
1
e n t - = 19
K/l(‘r17x27 Jx)() O’\/HZZII
1 (< k
Ko (1, T2, ..., 2y) () = m (;% +n (t - 5) -Tk+1>
k k+1
for k=0,1,....n—1, —<t< + .
n n
Both mappings k1 : R™ — [t°° ([0, 1]) and ko : R® — C([0, 1]) are continu-
ous, but, in different spaces.
Therefore, V,, = k1 (&1,&,...,&,) is a random process in [T ([0, 1]) and

Zn = ko (&1, &, ..., &) is a random process in C ([0, 1]).

Theorem 5.23: If for all ¢ > 0 there is A > 1 and ng € N such that for all
n € N, n > nqg and for all k € N it is fulfilled

P (max {|Spts — Skl : i =1,2,...,n} > Aov/n) < X%, (5.12)
then the sequence Z,, n € N is tight in C([0,1]).

We will verify assumptions of Theorem 5.18. Tightness of the
sequence Z, (0), n € N is evident, since it is a sequence of zeros. We have to
verify the second assumption, only.

1. For 6 € (0,3), t € [0,1 0], s € [t,t + 6] and n € N we prepare an

estimate
1 1 2
Lth§t§8§t+5§Lth+ _I_Ldnj—i- :Lth—i-L(SnJ—l— '
n n n n

2. Fix 0 € (0,3),t € [0,1—¢] and n € N. Using previous estimate we are
receiving

sup {|Z, (s) — t)| - set,t+ 4]}

conffcr (B 5 ()] et

0\/_max{|SLtn SLth‘ :j:1,2,...,L5nJ+2}.
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3. For € > 0, n > 0 there is A > 1 and ny € N such that for all n € N,
n > ng and for all k£ € N it is fulfilled

1
P(max{]SkH—Sk] D= ..,n} > Aoy/n) Sg g,
Let us denote § = gkz. Then for all ¢ € [0,1 — 6] and n > max {ng, 2}
we have

P(sup{|Z,(s) — Z,(t)| : s€[t,t+0]} >n)
<P (U\/_max{’SLmJﬂ —Spny| 15 =1,2,...,[6n] +2} > n)
<P (max{|SLm '—SLth‘ s j=1,2,...,|nd| —1—2} > ga\/ﬁ>
(max{|SLm 45 — SLth‘ =1,2,...,|nd| + 2}
n
2 Lné +2 [no] + )
P (maX{|SLmHJ~ — SU”J‘ 1 =1,2,..., |_n5J + 2}

Ui
> 0| +2
= _260\/ |no| + )
P (maX{|SLth+J‘ — SLth‘ . j = 172, ceey Lnéj + 2}

SNTES)

A\ "2ne = de.

| /\

IN

IA

I
0|

Assumptions of Theorem 5.18 are fulfilled, thus, the sequence of processes is

tight in C ([0, 1)).

5.2.1 Donsker invariance principle
We start with convergence of finite dimensional distributions.

Definition 5.24 A random process W = (W (t),0 <t < 1) with continuous
sample paths and finite dimensional distributions W (I) ~ N(0,%;) for all
I € Fin([0,1]), where X1 = (i A j); jc; is called Wiener process.

A random process W = (W (t),0<t< 1) with finite dimensional dis-

tributions W (1) ~N(0,%;) for all I € Fin([0,1]), where X = (i \j); jer i
called pre- Wiener process.
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Lemma 5.25 A pre-Wiener process W= (W (t),0<t< 1) exists and its
distribution pg; on Cylindric ([0, 1]) 4s a probability and is uniquely defined.

Existence of the process follows Theorem 3.12.

Theorem 5.26: Let &;, i € N be i.i.d. real random variables with E[£;] = 0

andvar (§;) = 0> € Ry. Then Z, fl—ffl/v in ROY v, ﬂf W in RO,

Consider step process at first.

1. V,(0) = 0 and W (0) = 0 almost surely. Therefore, convergence
v, (0) % W (0) is trivial.
n—-—+0oo

2. Take 0 <t < s < 1. Then,

1 [ns)

Vo ls) =V (t) = m(sw—sw)zﬁ' S o«

i=|nt]+1

|ns| — |[nt] 1 Z 3

n o\/|ns| — [nt] ._

According to CLT for i.i.d. real random variables, we have

—~

Vi (s) = Vi, (1) —2— Vs —tW (1) ~ W (s) = W (¢).

n—-4o00

3. FiXKENaDdO:t0<t1<"'<tKS1.
Then, V, (tx) — Vi, (tx—1), k € {1,2,..., K} are independent. Hence,

(Vi (tr) = Vi (ts—1) k€ {1,2,..., K}

—D—></I/I7(tk)—W(tk_1),k€{1,2,...,K}>T.

n—-+00
Multiplying by a matrix M € R¥*K where M;; = 1 if i < j and
M;; = 0if ¢ > j, we are receiving
— T
(Vn (tk)7k S {17277K})T—D_> <W(tk)7k S {17277K}>

n—-+o0o

We have shown V,, ﬂ—) W in RO,

n—-+o0o
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4. Because of the estimate (5.11), we observe V, LW in RO i

n—-4o0o

plies Z, W i RO,

n—-+o0o

Theorem 5.27: Let &1,&s, ..., &N are independent real random variables and

foralli=1,2,... N we have E[§;] = 0, var (&) = 0? < +o0.

Denoting 5% = S°N 02 and sy = /%, following estimate take place for

i=1"1
all A > 0:

P (max{|S1],[Sa|, ..., S|} > Asn) < 2P (|sN| > (A — \/é)sN) . (5.13)

Let us denote
My, = max{|Si|, [Sa|,...,|Sk|} for all k € N.
If A < /2 or sy = 0 the estimate is trivial, since its right-hand side of (5.13)
is equal to 2. Thus, it is sufficient to consider the case A > v/2, sy > 0, only.
Forallz=1,2,...,N, we denote

E;, = [Mi—l < Asy < |Sz|] .

Evidently,
N
UEZ = [MN Z /\SN] .
i=1

Therefore, we can write

_U
Z

|/\
/\
|\/

2)3N) +P ([MN > sy N [\SN\ <(\— \/§>SND
( 1> (A —v2)s )+ZIP(Em[ysN|<(A—\/§)sND.

=1
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Let us estimate the second term

> P (Em [|SN| <(A- \/i)sND <

i=1

=2
—

<SP (En (sl —Isv-Sl < (- VD)) <

=2
L
—_

™

~
Il
—_

P <E N [\SN _S > \/ESN]) -

T

™

@
Il
—

P(E;)P <[|SN — S| > \/§sND <

z
L

I

I
[N}
»

2N

=

i

+

£

IN

.

5

=
M =

sqw

IA

2
|
—_

IN

N —
)
=
INA

P (MN Z )\SN) .

o
Il
—
DO =

We have derived
1
P(My>Asy) <P <’SN’ > (A — \/§)SN) + §P(|\/|N > Asn) -
This is precisely (5.13).

Theorem 5.28 (Donsker): Let &;, i € N be i.i.d. real random variables with
E[&] = 0 and var (&) = 0® € R,. Then a Wiener process W = (W (t) ,t €
0,1]) exists and Z, % W in C([0,1]).

n—-+0o0
In Theorem 5.26 we have shown Z,, ﬂi——) W in RO,

n—-+o0o
Take k € N and A > 2v/2. Summands are i.i.d. and, thus, the statement of
Theorem 5.27 is in power. Therefore, we have

P(max{]SkH—Sk] ci=1,2,...,n} > )\a\/ﬁ)
=P (max{|S;| : i=1,2,...,n} > Aoy/n) <

<P (IS:] = (A= V2)ovn) <
<P (12,0 (0 -v)) <

<op <|Zn<1>|z§).
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According to Theorem 5.26, we have

i P (12,012 3) =P (W) 23).

n—-+00
Using Tchebisheff inequality, we are receiving a rough estimate

P (17 )12 5) <58 [w ) as = x0T,

Let € > 0 be given.

3
Take A > 24/2 such that \ > m

. Then,

lim sup sup {P (max{|5k+i =S| i=1,2,...,n} > Aa\/ﬁ)}

n—+oo keN
16E [[W (1) |°]

3 <\ %

<A
Then, there is a ng € N such that for all n € N, n > ng and all £k € N we
have

P (max {|Sgs — Skl : i =1,2,...,n} > Aov/n) < X 7%c.

Assumptions of Theorem 5.23 are fulfilled. Therefore, the sequence Z,,, n € N
is tight in C ([0, 1]). From Theorem 5.26 we know Z, S W in RO,

n—-+00
Assumptions of Theorem 5.16 are fulfilled, hence, there is a continuous

version of W, i.e. a Wiener process W = (W (t),t € [0,1]) exists, and
Z, %W in C ([0, 1]).
n——+0o0

5.3 Space C([a,?])

Consider compact intervals given by a couple of points —oco < a < b <
+oo and C([a,b]) a set of all continuous functions defined on a segment
[a,b]. Since [a,b] is a compact, each continuous function defined on it is

uniformly continuous. Then, we consider the space naturally equipped with
the supremal norm C ([a, b]) = (C([a, b)), [|[l44)-

Theorem 5.29: C([a,b]) = (C([a,b]), ||l ,4) is a separable Banach space.
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:  Take an increasing bijection ¢ : [0, 1]
mapping ¢ : C([a,b]) — C([0,1]) : fEECGabD
continuous, hence, topological spaces C ([a, b]), C ([0, 1]) are 1somorphlc
Therefore, C([a, b]) is a separable Banach space, as C ([0, 1]) is

— [a,b] and Consider a
— fou. Maps ¢, (1

5.4 Space C([0,+0))

Continuous functions defined on [0, +00) are typically not uniformly contin-
uous, e.g. t — t%. Let us introduce a natural topology on C ([0, +00)).

Definition 5.30 A natural topology on C ([0, +00)) is introduced by a sub-
basis

G={U(x,k,e) : € C([0,+0)),k € N,e > 0}, (5.14)
where U (z,k,e) = {y € C([0,+00)) : [ly =zl 41y < 5}.

Consider metrics defined for x,y € C ([0, +00)) by

+oo

ly — 95H[k k+1]
P1 (‘Tu y) = 2_k 7 ) (515>
% L+ [ly = @l gy
= ly — =]
_ [0,k]
P2 (33, y) = 2 g ) (516>
; L+ ly — 2o 4
oo ly =zl
p3 (z,y) = / 27" —— dt. (5.17)
1 1+ ”3/_37”[0,t}

Theorem 5.31: Topological space C([0,400)) is Polish.

For example each of the above defined metrics p;, po, p3 is making
C ([0, +00)) to be a complete separable metric space.



Chapter 6

Skorokhod space of
discontinuous functions

6.1 Cadlag functions
This chapter is devoted to a particular space of discontunious functions.

Definition 6.1 A set of all real functions defined on the interval [0, 1], which
are continuous from right at each point of [0,1) and with a limit from left at
each point of (0,1], are called cadlag functions on [0,1] and will be denoted
by cadlag([0, 1]).

These functions are traditionally called cadlag, due to Bourbaki as an
abbreviation from French. Having introduced a particular topology on them,
incurred topological space is called Skorokhod space, see section 6.3.

6.1.1 Properties of cadlag functions
At first, consider basic properties of cadlag functions.
Lemma 6.2 We have inclusion cadlag([0,1]) C {7 ([0, 1]).

Take f € cadlag(]0, 1]) and assume it is unbounded.
Take a sequence t,, € [0,1], n € N such that

lim |f(t,)] = +o0.

n—-+o0o

Interval [0, 1] is a compact, then, there is a convergent subsequence

lim ¢, =¢&€[0,1].

k—4o00

91
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Denote

E = {keN:t, =¢},
L = {keN:t, >¢},
S = {keN:t, <&}.

Set E is either empty or finite because limy_, ;oo | f(tn, )| = +00. Hence, at
least one of sets L, .S must be countable.

1. Let L be countable. Then,

fiz o = & Tm | ()] = oo

Function f is right continuous at &, hence

lim f(tn,) = f(£) € R.

kel
It is a contradiction.

2. Let S be countable. Then,
lim o, = &, lim|£(t,)] = +oo.
Function f possesses a left limit at &, hence

lim f(tn,) = f(£—) € R.

kesS

It is a contradiction.

Our assumption on unboundness led to a contradiction. Therefore, || f{|,) €
R for each cadlag function.

Let us investigate jumps of cadlag functions. For f € cadlag([0, 1]), let us
consider sets of its jumps

D(f.e) = {te (0,1 :|f(t) - f(t=) >} for >0,
D(f) = {te(0,1] : f(t) # f(-)}.

Lemma 6.3 If f € cadlag([0,1]) and € > 0 then D (f,¢) is finite and D (f)
s at most countable.
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Assume D (f,¢) is infinite.
Take a sequence t,, € D (f,e), n € N such that no point is repeated.
Interval [0, 1] is a compact, then, there is a convergent subsequence

lim ¢, =¢&€][0,1].

k—4o0
Denote
E = {keN:t, =¢},

L {keN:t, >¢&},
S = {keN:t, <¢}.

At least one of the sets L, S must be countable, since E can contain at most
one point.

1. Let L be countable.
Then, for each k € L there is a point uy € [0, 1] such that

§ <up <tuy, |f(tny) = flug)| > €.

Function f is right continuous at &, hence
lim f(tn,) = lim f(ux) = £(€) € R.
It is a contradiction.

2. Let S be countable.
Then, for each k € L there is a point v; € [0, 1] such that

tnk — 2_k < < tnk < 57 |f(tnk) - f('Uk:)l > &

Function f possesses a finite limit from left, hence

It is a contradiction.

We reached a contradiction and, therefore, D (f,¢) is finite. Consequently,
D (f) is at most countable, since

D(f)=JD(r27).
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Example 6.4: Consider function f: [0,1] — R defined by

1 1 1
= (D+1 — 14+ = f 1—=<< 1—— D
I () (D + )(t +D> or D_t< Drl €N,

= 0 for t=1.

Function f belongs to cadlag(][0, 1]).
Their jumps are f (1 — DLH) — f (1 — DLH—) = —% for all D € N.
All jumps are down and their sum is infinite, therefore, the function f

cannot be expressed as a sum of a continuous function and a step function.

6.1.2 Characterization of cadlag functions

Denote A(J) a set of all partitions 0 = ¢y < ¢; < --- < tx = 1 such that
t; —tioy > d forall i = 1,2,... k. For a partition D € A(J) we denote
by t;(D) its points, K (D) number of its points and |;(D) = [t;_1(D), t;(D))
intervals determined by the partition.

For z € RO, we define moduli

w(z,A) = sup{lz(t) —x(s)| : t,s € A} for A C [0,1], (6.1)

w (z,0) = inf{max{w(z,1;(D)) :i=1,2,...,K(D)} : (6.2)
:DeAd)},

w” (z,0) = sup{min{|z(t) = z(u)|,[z(s) — z(u)|} : (6.3)
0<t<u<s<l1, s—t <4},

W' (2, A) = sup {min {|z(t) — ()|, |2(s) — z(u)]} : (6.4)

ct<u<s, t,u,s € A} for A C [0,1].
Introduced moduli are related.
Lemma 6.5 For v € R and § > 0 we have w" (z,6) < w' (z,9).

For ¢ > 0 we find a partition D € A(J) such that for all ¢ =
1,2,... K(D) we have w (z,1;(D)) < W' (z,6) + .
Take 0 <t < s <1, s—t<4. Then, there are only two possibilities:



95
1. There is i such that ¢t;_1(D) <t < s < t;(D).
Then, for all t < u < s we have
lz(t) — z(u)| < W (2,0) + ¢
2. There is i such that tlfl(p) <t< tl(D> <8 <t (D)
Then, for all t < u < t;(D), we have
lz(t) — z(u)| < W (2,0) + ¢
and, for all t;(D) < u < s we have

|z(s) — z(u)| < W (z,0) + ¢

We have checked w” (z,0) < w' (z,0).

Introduced moduli are able to characterize functions from cadlag([0, 1]).
Theorem 6.6: Let f € ROU. Then,

[ €cadlag([0,1]) <= lim W (f,0) =0. (6.5)

0—0+

1. Let f € cadlag([0,1]) and £ > 0.
For each ¢ € [0, 1] there exists d; > 0 such that

w(f,(t=0,t)N[0,1]) <e, w(f,[t,t+0)N[0,1]) <e

Then,

0.1 c | (t—dnt+d)

tel0,1]

Interval [0,1] is a compact and, therefore, there exists I € Fin ([0, 1])
such that

[0.1] € | J(t = 61, + 61).
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Take a partition D C TU{0, 1} with the smallest number of points such
that

0.1] [ Jt =6t +6).
teD
Now for an interval of the partition we have
[ti-1(D), t:(D)] C (ti-1(D) = 6t,_y(p), ti-1(D) + b,y (p)) U
U(ti(D) = 6t,p), £i(D) + 01,(p))-
Take 0 > 0 such that D € A(J). Hence,
w (f,0) <max{w (f,[ti.1(D),t;(D))) : i=1,2,...,K(D)}
< max {\TV (f7 [tifl(D)v tlfl(D) + 5ti—1(D)>) S 17 27 ) K<D)}
< 2e.

It is because for u,v € [t;—1(D),t;(D)), u < v just one case from the
following three is possible
o u,v €[t 1(D),ti ( )+ 0y (D));
e u,v € (t(D) = 0yp), t:(D));
e u€[tia(D),tin(D )+5t11(D)U€(( ) = 0t(p), ti(D)).
Then, for s € (t;(D)—0 ~1(D)+6s,_,(p)), we have an estimate
160 1601 < 1960 S+ 0 O,
since u, s € [t;i—1(D), ti_1(D)+01, (), v, 5 € (t:;(D) =04, (p), t:(D)).

Thus, we have shown

hmw(f5)—0

§—0+

2. Let lims o, W (f,0) =0 and € > 0.
Then, there exists a partition D such that

max {W (f, [ti1(D), (D)) : i =1,2,..., K(D)} <e.

(a) Take t € [0,1).
Then, there is a point of the partition such that ¢, (D) <t <
t:(D).
Hence, for all t < s < ¢;(D) we have |f(t) — f(s)| <e.
It means f is continuous from right at ¢.
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(b) Take t € (0, 1].
Then, there is a point of the partition such that ¢; (D) < t <
t:(D).
Hence, for all t;_1(D) < s < u < t we have |f(s) — f(u)| <e.
It means f possesses limit from left at ¢.

Finally, f € cadlag([0, 1]).

Theorem 6.7: Let f € ROY. Then,

lims o W’ (f,6) =0

0

f possesses a limit from right at each point of [0, 1),
possesses a limit from left at each point of (0,1],
is continuous from one side at each point of (0,1).

1. Let f possesses a limit from right at each point of [0, 1), a limit from
left at each point of (0, 1], is continuous from one side at each point of
(0,1) and let € > 0.

For each t € [0, 1] there exists d; > 0 such that either
w(f,(t—0n,t)N[0,1]) <e, w(f, [t,t+0)N[0,1]) <e
or
w(f, (t—0,t]N[0,1]) <e, w(f,(t,t+0,)N[0,1]) <e
Then,

0.1]c | (t=di,t+d)

te(0,1]

Interval [0,1] is a compact and, therefore, there exists I € Fin ([0, 1])
such that

[0.1] € | J(t = 61, + 61).
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Set 6 =min{d, : t € I}.

Then, for 0 <s <u <t <1, t—s <4, we have either |f(t) — f(u)| < e
or [f(u) = f(s)] <e.

Finally, w” (f,0) < e.

Thus, we have shown

lim w” (f,0) = 0.

o0—0+

2. Let lims_,or w” (f,0) = 0.

(a) Let f possess no limit from right at ¢ € [0, 1).

Then, there exists € > 0 such that
limsup,_,, f(s) — liminfs; f(s) > ¢, and there are points
1> hy>dy > hy >dy > -+ >t such that

n—-+00 n—-+00
Jm f(hn) =limsup f(s), N f(d,) = lim inf f(s).

Then, for n sufficiently large, we have

f(hn) = f(d) > €, f(hnt1) — f(dn) > €.

That is a contradiction, since modulus should vanish.
Finally, f possesses a limit from right at t.
(b) Similar arguments are giving f possesses a limit from left at each
t e (0,1].
(c) Let f be discontinuous from both sides at t € (0, 1).
Then, there exists € > 0 such that

[f(t=) = FO)] > &, [f(t+) = f()] > &,

and there are points h, >t > d,, n € N such that
lim h, = lim d, =t,

n—-+o0o n—-+o0o

Then, for n sufficiently large, we have

flha) = f(t) > &, f(t) = f(dn) > €,

That is a contradiction, since modulus should vanish.
Finally, f must be continuous either from right or from left at ¢.
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All required properties of f are checked.

Let f € R%U be continuous from right at each point of
[0,1). Then,

f € cadlag([0,1]) <= lim W' (f,0) =0. (6.6)

0—0+

The statement is a consequence of Theorem 6.7.

6.2 Cadlag functions with supremal norm

Theorem 6.8: (cadlag([0,1]), [|[|p,,;) is a non-separable Banach space.

Normed space (cadlag([0, 1]), ||-[|o.,;) is a subspace of Banach space
(710, 1]) , [Illj9.1))- We have to show its completeness and discuss separa-

bility.
1. Let f, € cadlag([0,1]), n € N be a Cauchy sequence at |||, -

The sequence is also Cauchy in [T ([0,1]) and, therefore accordingly
to Theorem 4.2, there exists g € 17> ([0, 1]) such that

i fu = gllgy =0
For € > 0 there exists n € N such that || f, — g||[071] <e.

Now there exists § > 0 and a partition D € A(d) such that for all
i=1,2,...,K(D) and each t, s € |;(D) we have |f,,(t) — f.(s)] <e.

Then, for all i = 1,2,..., K(D) and each ¢, s € |;(D) we have
9(t) = g(s)| < | fult) — g(O)] + | fuls) — ()| + [ fult) — fuls)] < 3e.

Thus7 g€ cadIag([O, 1]) and (Cadlag([oa 1])7 ||||[0,1]) 18 Completea so it is
a Banach space.
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2. For all s € [0, 1], we introduce a function

5,(1) = 0 if 0<t<s,
=1 if s<t<l.

For s,u € [0,1], s # wis |65 — dull o ) = 1-

A collection of functions ds, s € [0, 1] is uncountable. Therefore, the
space (cadlag([0,1]), [,y ,)) is non-separable.

A random jump can be non-measurable in (cadlag([0, 1]), |[-[[g 1))-

Example 6.9: Consider £ a random variable uniformly distributed on (0, 1)
and define

St) = 1ife<t<l,
= 0ifo<t<c.

Let us denote &5 a jump at s € [0, 1]; i.e.

0(t) = 1 ifs<t<1,
= 0 if0<t<s.

Evidently, jumps are cadlag functions.
Take U C [0,1]. Then,

1

uelU

(Cadbg(K%1D>HWhQu))] = Jl=u=kcU]

uelU

Moreover, always

1
Uu<%§

uelU

(cadiag([0, 1)), H-Hw) € g ((cadlag([0, 1), Il 0.,)) -

But,
P.(elU)=ANU) <X (U)=P(£€U)

for any U Lebesgue non-measurable set. Therefore, [§ € U] ¢ A.
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Weak convergence of random processes with values in bounded real func-
tions is well defined and can be helpful in some cases. Unfortunately, there
is a limit. Empirical processes are typically non-measurable in topology of
bounded real functions, see Example 6.9. Therefore, we would have to relax
the assumption on measurablity of treated processes. Appropriate theory is
introduced and explained in [9]. We will not follow this stream in the lec-
ture. We will overcome the problem with measurablity establishing a finer
topology on cadlag functions.

6.3 Skorokhod space

In this section, we introduce step by step a topology on cadlag functions
defined by Skorokhod in [7].

6.3.1 Time transformations

Denote by A a set of all nondecreasing bijections from [0, 1] to [0,1]. Con-
sequently, A € A must fulfill A(0) = 0, A(1) = 1 and A is an increasing
continuous function. The set A contains two important subsets:

A = {deA:xated™y, (6.7)
Ap = {AeA: A2 Ted}. (6.8)

We need to measure deformation of [0, 1] made by a particular bijection. Two
measures will be employed for that:

My = IA=Tdllgy = sup {|A(t) —¢[ - t € [0,1]}, (6.9)
(M = sup{log(M)‘ :O§t<s§1}. (6.10)

s—t

These measures possess some properties required for a norm. Unfortunately,
they cannot be norms, because, A is not a vector space. We will call them
half-norms.

At first, we investigate basic properties of above defined half-norms.

Lemma 6.10 For A € A we always have 0 < ||Al|, < 1.

The statement is evident, since for all 0 <t < 1 we have

—t < A(t) —t < A(t).
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The second half-norm can attain infinite values.
For example, the half-norm for a transformation A(t) = ¢

(AN = [log(N(0))] = +oo.
Lemma 6.11 Let A € A. Then

(A, = max {log(Lip(\)),log(Lip (\™"))}

2 is

and hence
(A <400 = XeAy.

We know, if A\ € A then also A™! € A. Remember a definition of
Lipschitz constant for A and A~!. We have an estimate:

Lip(A) = sup {%

> inf{M:0§t<sgl}

:O§t<5§1}

s—1

- inf{ Als) = M) :O§t<s§1}

ATto A(s) — A7t o A(?)
~ )

Always A(0) = 0, A(1) = 1, therefore we have Lip(\) > 1, Lip(A™1) > 1.
These observations are giving required relation

(M), = max{log(Lip(\)), log(Lip (A™"))}.

Introduced half-norms possess nice and useful properties.
Lemma 6.12 We have:
i) For A€ A, it is |||, = 0 if and only if A =1d.
i) For X € A, we have |A71|, = ||All,-

iti) For A, p € A, we have [ Ao o]l < 1AL, + Il

1. Evidently, ||A||, = 0 if and only if A = Id.



103

2. For A € A,

VL = (A = 1d gy = [N o A =Td o Aflg 1y = ITd = Allg 1y = Al -
3. For \,p € A,

Aeoelly = lxhee—1Idlgy =I[(Aew—w)+(@—Td)[,

< e =9l +lle =1dllgy = 1A =Tdllg) + lle = ]|,
= Al +lllls -

Lemma 6.13 For A € A we have an estimate

RV

VAN

IN

IN

My < exp {{A)s} — 1. (6.11)

sup{|\(t) —¢| : t € [0,1]}. =sup{|A\(t) —¢t| : t € (0,1]}.
sup{t‘%—l' cte (0,1]}

o o fog (20)} 1] 0]
oo {or (M0) ) -1 0]

exp {{(A)pt — 1.

~
N~— |

~—

- ‘

Lemma 6.14 We have:

i) For A€ Ais (A\), =0 if and only if A = 1d.

ii) For A€ Ap is (A"1), = (A\) .

iii) For M\, € Ay is (Ao @), < (A, + (@),
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1. Evidently, (Id)), =0
According to Lemma 6.13, ((A\)), = 0 implies |||, = 0. Thus, A = Id.

2. According to Lemma 6.11, (A7), = (A\),.

3. For A\, p € A,

||Ao<p||A:sup{ log(Ao‘p(si:jW(t))’ : 0§t<s§1}
(S )] i)
oo ()
oo (P00 ez}

= (Aha + (-

6.3.2 Metrics

For a couple of real functions z,y € RU we will consider two distances:

d(z,y) = inf {maX{on/\—yH[QH,||/\||A} : )\EA}, (6.12)
do (z,y) = inf {max{”:vo)\—yn[o,u ,<<>\>>A} A€ A} . (6.13)
For cadlag functions these distances can be expressed equivalently.

Lemma 6.15 For x,y € cadlag([0,1]), we have:

d(z,y) = inf {max{Jlwo X =yl AL} Ae A

}
= inf {max { [z o A~y ||/\||A} /\EAL}
fiaeand

= inf ymaxq[[zoA =y, Al : A€ Ap

(e q
ey
do (z,y) = inf {max{[lz oA = yllgy, (M)
(e
(s

A) } )\eA}
= inf{max{flzoA =yl ( >A} )\EAL}
Ma

/\EAD}.

= inf<max ||ZL‘O)\_?J||[0,1] A
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These expressions are true, since Ap C Ay C A and Ap is dense in
A in supremal norm.

Distances d, dy are metrics on cadlag([0, 1]).
Theorem 6.16: Distance d is a metric on cadlag([0,1]).

We have to verify properties of a metric.

1. Finiteness

Let x,y € cadlag([0, 1]). Then,

d(z,y) = inf{maX{H:UO)\—Z/H[OJ]a”)\HA} : )‘EA}
< maX{onId—yH[O,l]a||1d||A}

= max { [l — gl 0}
< llipy + Nyl < 400
Finally, d : cadlag([0, 1]) x cadlag([0,1]) — R .

2. Symmetry
Let x,y € cadlag([0,1]). Then,

d(y.z) = mf{m {Hyo)\ :z:H[Ol],H)\HA} : )\EA}
= f{maX{Hy—xo/\ 71”/\} : )\GA}
{

= inf fmax {Jwop =yl Il } - we A

).

= d(z,

<

3. Reflexivity

(a) For x € cadlag([0,1]), d (z,z) = 0, evidently.
(b) Let z,y € cadlag([0,1]) such that d (z,y) = 0.

Then, there exists a sequence of bijections A\, € A, n € N such
that

Jm Jlzo A, =yl =0, Hm [[A.[l, = 0.

Take ¢ € [0, 1].
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i. If t =1, then

0= lim |roX, (1) —y(1)] = [¢(1) = y(1)].

n—-+o00

Thus, z(1) = y(1).

ii. If 0 <t < 1, then there is a sequence of numbers si, k € N
such that ¢t < sp < 1 for all £ € N and limy_, o, s, = t.
Then, there is a subsequence ny, k € N such that

1
t < )\nk(sk) < S + E for all £k € N.

Hence, limg_, 40 An, (Sk) = t. Since both z, y are continuous
from right at ¢, we have

0= lim |20, (se) —y(si)] = 2(t) — y(0)].

k—4o0
Thus, z(t) = y(t).
We have shown, that z = y.
4. Triangular inequality

Let z,y, z € cadlag([0, 1]).
For € > 0 we find transformation A\, € A such that

maxc { [}y o A = 2l Al | < d(@,9) +e,
max { |12 09 =yl Iella } < d . 2) +e.
There are two cases:
(a) If [[zo@ oA =gy = [l o Ally, then

d(z,2) < ||ZOSOO)\—$||[0,1]
[(zopod—yod)+(yor—1)jy
< llzoe =yl +llyo A=zl
< d(z,y) +d(y,2) + 2.

(b) It [zop o =zl < lp oA, then

d(z,z) < |leoAl,
< Al + llells
< d(z,y)+d(y,z) + 2e.
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Since € is an arbitrary small positive number, the triangular inequality
d(z,2) <d(z,y) +d(y, 2) is checked.

We have verified d is a metric on cadlag([0, 1]).

To deal with dy, we need an estimate.

Lemma 6.17 For x,y € cadlag([0,1]), we have an estimate

d(z,y) <exp{do(z,y)} — 1.

Since exponential function is convex, we have an estimate et > ¢t +1
for all t € R. Therefore,

lwo X = yllpy < exp {llzoX = yllgy } ~ 1.
Accordingly to Lemma 6.13,
ALy < exp{{A)p) — 1.
These two estimates together imply
max {170 A =yl INa } < exp fmax {lzor—yllgy. (Wa}} -1

That is the required estimate.

Theorem 6.18: Distance dy is a metric on cadlag([0,1]).

We have to verify properties of a metric.

1. Finiteness
Let x,y € cadlag([0, 1]). Then,

do (z,y) = inf {max{”x o\— yH[(m , (()\))A} S AE A}
< max {Jlzold —y|g, (1), }

= max {|lz = yll 0}
< ]

o1 T H?JH[OJ] < +00.
Finally, dy : cadlag([0,1]) x cadlag([0, 1]) — R .
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2. Symmetry
Let z,y € cadlag([0,1]). Then,
do (y,z) = inf {max {||y oA =g <</\>>A} CAE AL}
— inf fmax {|ly =2 o X, (AN} A AL

= inf {max {fleop—ylgy (uha} : pe )
= do(z,y).

3. Reflexivity

(a) For = € cadlag([0,1]), do (z,z) = 0 is evident.

(b) Let z,y € cadlag([0, 1]) such that do (z,y) = 0.
According to Lemma 6.17, d (z,y) = 0, too.
From Theorem 6.16 we know that d is a metric, therefore x = y.

4. Triangular inequality

Let z,y, z € cadlag([0, 1]).

For € > 0 we find transformation A\, € A such that

max { ly o A =l (A)a | < do(,9) + e,
maxc {[|z0 ¢ =yl (£ha } < do(y,2) +=
There are two cases:
(a) Tf 2000 A —afl g > (0 Ay, then

do(z,2) < flzopo A=,
= [[(zopod—yoA)+ (yoA—a)y,
< lzee=yllpy+lyo A==l y
< do(x,y) +do(y,2) + 2¢.

(b) I flz0 @0 A =zl < (o A),, then

{(poDa
(ADa + (s

do (z,y) + do (y, 2) + 2¢.

do (, 2)

AR VANRVAY
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Since, € is an arbitrary small positive number and, therefore, the tri-
angular inequality dg (z, 2z) < dg (z,y) + do (y, 2) is checked.

We have verified dy is a metric on cadlag([0, 1]).

Lemma 6.19 Let f, g € cadlag([0,1]) and 0 <6 < 5. Ifd(f,g) < 6%, then
do (f,9) <w'(g,0) +[log(1 — 26)] .

Because g € cadlag([0, 1]), there exists a partition D € A(d) such
that w (g, 1;(D)) <w' (g,0) + 0 foralli =1,2,..., K(D).
Then, there is a transformation A € A such that

mac {1 © A= gl AL < 6.

We define a new transformation p € A such that p(t;(D)) = A(t;(D)) for
all i = 0,1,2,..., K(D). Between neighbors of the partition, we define p
continuously linear.

Then, for i = 1,2,..., K(D), we have

p(ti(D)) — p(ti1(D)) _
t;(D) — t;_1(D)
(A(ti(D)) — t:(D)) — (A(ti-1(D)) — t;i1(D))

=1+
t(D) — t;_1(D)
2 || Al 26°
<1 1+—=1+2
< +ti(D)—ti_1(D) <1+ 5 + 20,
p(t:(D)) — p(ti-1(D)) 2[[Alla 20°
>1-— >1——=1-20.

t;(D) — t;_1(D) - t(D) — t;_1(D) )

Consequently,

kg(iﬁtlﬁﬁ>':ogt<sg1}

R T
_ p(t:(D)) — p(ti-1(D))
= wax{Jos (B0
< max {log(1 + 26), [log(1 — 26)|} = |log(1 — 29)] .

:i:1,2,...,K(D)}
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According to Lemma 6.11, p € Ap. Hence,

1fop—glioy=[for=gop™ oA,
=[[(forx—=g)—(gorox=9)|4y
<lfor—glpy+lgor™or=g),
< foA—gllpy +max{w(g,l:(D)) : i=1,2,..., K(D)}
< 6%+ w (g,0) +4.

We have shown that for each n > m, n € N, it is fulfilled

do(f,9) < w(g,0)+ max {52 + 4, |log(1 — 25)|}
= w'(g,0) + |log(1l — 20)].

Lemma 6.20 Let z,z, € cadlag([0,1]) for n € N. Hence,

lim d(z,,2) =0 <= lim dy(x,,z)=0.

n—-+o00 n—-+o00

1. If lim, 4 o0 do (2, ) = 0, then lim, , . d(x,,z) = 0, accordingly to
Lemma 6.17.

2. Let lim, ;o d(z,,2) =0.
Take € > 0.

Then, there exists m € N such that for all n > m, n € N is
d(z,,x) <&

According to Lemma 6.19, for all n > m, we have an estimate

do (Tp, ) < W (z,e)+ [log(l —2¢)].
It means lim do (z,,z) = 0.

n—-+00

Consider also continuity of the modulus w’ with respect to introduced
metrics.



111

Lemma 6.21 Let z,y € cadlag([0,1]), d > 0 and A € A. Then,

W (3,6) — W (2,8)] < 2[ly —all . (6.14)
W (2,6 = 2|\l S W (@oA,8) <w (2,54 2Al).  (6.15)

1. For t,s € [0, 1] we have estimates

() —x(s)] < [y(t) —y(s)[ +2[ly = 2l
< fx(t) = z(s)[ + 2y = llg -

Then, for each set A C [0, 1] we have estimates

w(z, A)
w (y, A)

W (y, A) +2ly =zl
w (2, A) + 2y = oy -

IAIA

Consequently, we are receiving (6.14).

2. It is sufficient to observe that points of partition D € A(4) are not ef-
fected by transformation X; i.e. AoD € A(6—2||A||,). Hence, suprema
over corresponding intervals coincide and, therefore, contributions to
moduli is the same.

Lemma 6.22 Let x, x, € cadlag([0,1]) forn € N. If lirjra |2n — ][ =0,
n—+o0o ’
hence for all 6 > 0,

lirf W (2,,0) =w (z,0).

The statement is a direct consequence of the estimate (6.14).

Lemma 6.23 Let x,x, € cadlag([0,1]) for n € N. If lim d(z,,z) = 0,

n—-+00

hence for all 0 <n < < (, we have

limsupw’ (z,,,n) < W (z,0) < liminfw (z,,().

n—-+oo n—-+00
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We know, there is a sequence of transformations A\, € A, n € N
such that

n1—1>1—|1—100 Hxn % )‘n - 'TH[O,I} = 07 nl_l)l_’l_loo H)\nHA =0.

According to Lemma 6.22, for all 6 > 0,

. / o
nl_l)r_floow (xn0AN,,0) =W (z,0).

According to the estimate (6.15) we have

W,<£Cn,5) S W,<xno)\n75+2”)\nHA)7
W (zp00,,0) < W (0 +2[A,,)-

Consequently, the statement is shown.

6.3.3 Topology

Definition 6.24 Metric space (cadlag([0, 1]),d) induces a topology on
cadlag([0, 1]). The topology is called Skorokhod topology and will be denoted by
Ts. A topological space D ([0,1]) = (cadlag([0, 1]), 7s) is called Skorokhod space;
or simply “space D”. (“D” comes from “discontinuous”)

Theorem 6.25: Metric space (cadlag([0,1]),dg) also induces the Skorokhod
topology on cadlag([0, 1]).

Both metrics d, dy induce the same convergence on cadlag([0, 1]); see
Lemma 6.20. Consequently, they induce the same topology on cadlag([0, 1});
i.e. Skorokhod topology.

Theorem 6.26: Space (cadlag(]0,1]),d) is a separable metric space, but,
imcomplete.

According to Theorem 6.16, (cadlag([0, 1]),d) is a metric space. We
have to show separability and discuss completeness.
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1. Set of functions

Zau ]+ BI[{1}] :

. «;, [ are rational, D is a partition with rational points}

is countable and dense in (cadlag([0,1]),d). It can be shown in two
steps. The set is dense in

Z a1l |+ BI[{1}] : i, B € R, D is a partition ) ,

which is dense in (cadlag([0, 1]),d), accordingly to Theorem 6.6.

2. Consider a sequence of functions f,, =1 HO )} n € N.

Am(1) = 1, AP(£) = %, and, linear continuous on intervals

[ 1]
Hence, fo, = fn 0 A7 and ||A7[|, = |+ — 1.
Finally, d (f,, fim) < |% — %| and the sequence is Cauchy.

For n,m € N, we construct a transformation A" such that A”(0) = 0,
(0,51,
m

Assume, the sequence possesses a limit in (cadlag([0,1]),d), say g €
cadlag([0, 1]).

Then, there would be transformations p,, € A, n € N such that

1onlla = 0, [[fn o p, — 9”[0,1] — 0.

(2) g(1) = lim fyop,(1) = lim fu(1)=0.

n—-+00
(b) For 0 < ¢ < 1 there exists ng € N such that p,(f) > % for all
n € N, n > ny.
Consequently, ¢g(t) = lim f, 0p,(t) =0.

n—-+0o

(c) We assume, g € cadlag([0, 1]), therefore, g is continuous at zero
from right, and therefore, ¢g(0) = 0.

(d) But hence,

|fr 0 pp — 9”[0,1] = || fn Opn“[O,l] = ||fn||[0,1] =1

It is a contradiction.
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Finally, the sequence possesses no limit in (cadlag([0, 1]),d). It means,
(cadlag([0,1]),d) is incomplete.

Theorem 6.27: Space (cadlag([0, 1]),do) is a complete separable metric space.

According to Theorem 6.18, (cadlag([0, 1]),dy) is a metric space.
We have to show its separability and completeness.

nd

1. According to Lemma 6.20, topologies of spaces (cadlag([0,1]),do) a
1]),d)

(cadlag([0, 1]),d) coincide. According to Theorem 6.26, (cadlag([0, 1]
is separable, consequently, (cadlag([0,1]),do) is separable, too.

2. Let f,, n € N be a Cauchy sequence in (cadlag([0,1]),dy). Without
any loss of generality we assume dg (fy,, fnir1) < 27" for all n € N.

Then for each n € N, there is a transformation A\, € Ay such that
1fn = frer 0 Aalligay <277 (Aaha <277
For n,m € N, n < m, we define a transformation
p;n:)\mo/\m—lo'uo)\n—‘rlo)\n‘

Estimate its half-norm
(s = (Omodmroron ), < SN, <3 27 < 2ion,
j=n j=n

Then for n,m,k € N, n <m < k, we have an estimate

ok = P?H[o,u = |lphss — IdH[m] = Hp:wrlHA

< exp {<<an+1>>/\} -1
< ep{27"} -1

We have shown, that for fixed n € N the sequence p', m € N is Cauchy
in C([0,1]). Thus, it possesses a limit in C([0,1]). Let us denote the
limit by ,,. We know, that v,, € C([0,1]), ¢,,(0) =0. ¢, (1) = 1.

We have to estimate its half-norm.
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For 0 <t < s <1, we observe

G () AR )

s—1t m—+o00 s—1 m—+o00

. . m 1-n
lim inf exp {{(p)) 1} < exp {27},

M lim sup (Lip ((an)il))

s—t m—+00

limsup exp {— (o), } > exp {—2'7"}.

m—+00

IN

-1

v

These estimates are giving (¢,,)), < 2'~". Hence, ¢, € Ay.

The construction is also giving 1, = v, ., o A,. Consequently,

The sequence f, o (¢,) ", n € N is Cauchy in (cadlag([0, 1]), M10,17)>
which is Banach, according to Theorem 6.8. Therefore, the sequence
possesses a limit in (cadlag([0, 1]), [|-|| p.1), say g € cadlag([0, 1]). More-
over, we have dg (f,,, g) — 0, since

an o (?/)n)fl - gH[O,l] — 0, <<¢n>>1\ — 0.

Fao W)™ = furr 0 ($par) ™

0.1] = | fo = fag10 )\nH[O,l} <27

Thus, (cadlag([0,1]),do) is a complete separable metric space.

Convergence is connected with topology, which is the same if metric d or
do is used. From now, we will be writing D ([0, 1]) and we will consider it as
a topological space with topology induced by metric d. We know, the space
is Polish and we know two metrics d, dy metrizing the topology.

Now, we introduce two characterizations of compacts.

Theorem 6.28: Let A C D ([0,1]). Then, A is relatively compact in D ([0, 1])
if and only if
sup { £l * £ € A < +o0,
3 / . R
52%1+sup{w (f,0) - fe A} =0.
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1. Sufficiency

Metric space (cadlag([0,1]),do) is complete and, therefore, we have to
show total boundedness of A in (cadlag(|0, 1]),do), only.

Start with total boundedness of A in (cadlag(([0, 1]),d).

Take ¢ > 0.

Then, there is k € N such that k& > % and sup {W’ (f, %) e A} <e.
Let us denote M = [k: sup {||f||[0’1} c fe A}-‘ and consider a set of

functions

E = {i%ﬂ“‘%%)} +§]1[{1}] :

cay, fe{—-M,...,—1,0,1,... . M}}.

For f € A, there exists a partition D € A(3) such that for all i =
1,2,...,K(D) we have w (f, [t;_1(D), t;(D))) < e.

Let us denote jo =0, jgp) = k and for i = 1,2,..., K(D) — 1 we find
Ji such that % < t;(D) < “T“ This correspondence is uniquely defined
and none of the points is repeated, since distance between neighbors of
the partition is larger than %

Take a transformation A € A such that A\(£) = ¢;(D), and, it is contin-
uous linear between neighboring points. Then,

Ji : 1
E—tl(p) ZZ:1,2,...,K(D)—]_ <E<5.

Al = max{

Set

where ai:{k-fo)\(%>J,5:%']0(1”-
Hence,
1
1foX—glloy < S te<2.

Thus, d (f,g) < 2¢ and E is 2e-net for A in (cadlag((0, 1]),d).
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If0<e<?iwecanset § =2 Then0 <4 < 1andd(fg) <.
We can apply Lemma 6.19 and receive

do (f,9) < W' (f,0)+ [log(1 —20)]

< supw (h,0) + |log(1 — 24)]| .
heA

Denoting n = sup,c4 W' (h,d) + |log(1 — 2J)|, we see E is an n-net for
A in (cadlag([0, 1]), do).

Metric space (cadlag([0, 1]),d) is complete and 7 can be adjusted to be
arbitrary small. It means, A is relatively compact in (cadlag([0, 1]), do).
. Necessity

Let A be relatively compact in (cadlag([0, 1]), do).

(a) Assume f, € A, n € N with a property lirf ||fn||[0 ) = +oo.
n——+0oo ’

A is relatively compact in (cadlag(]0,1]),do), therefore, the se-
quence possesses a cluster point, say g € D ([0, 1]).

Thus for a subsequence and convenient transformations A\, € Ay,
we have k1—1>I-Poo 1w © A = gl = 0 and kEI—Poo (Aeh s = 0.

Consequently, ankH[O,l] < [ far 0 Ak — 9“[0,1] + HgH[O,l]‘
We received, functions of the subsequence are uniquely bounded.
It is a contradiction. Finally,

SUP{Hf||[o,1] c fe A} < +00.

(b) Assume

A = lim sup{w'(f,0) : fe A} >0,
6—0+

Then, there exists a sequence of functions f,, € A such that

1
lim w' (fn,—> = A.
n—+oo n

The set A is relatively compact and, therefore, there exists at least
one cluster point of the sequence, say g € D ([0, 1]).

Hence according to Lemma 6.23, w’ (g,6) > A > 0 for all § > 0.
Accordingly to Lemma 6.6, g & D ([0, 1]).
It is a contradiction.
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Therefore, the condition is necessary.

Theorem 6.29: Let A C D ([0, 1]). Then, A is relatively compact in D ([0, 1])
if and only iof

sup {1 £l : /€ A} < +ov,

Jm sup {w" (f,8) : f €A} =0,

lim sup (@ (1.[0.8)) : f € A} =0,

0—0+

61im sup{w (f,[1—=4,1)) : fe A} =0.

—0+

For a proof see [2], Theorem 14.4, pp.166-8.

6.3.4 Relation between topologies of D ([0, 1]) and R

This section is taken from [2], chapter 3. Let us begin with Theorem 15.1
from [2], p.174.

Theorem 6.30: Let T = {t;, k € N} C [0, 1] be countable dense in [0, 1] and
1e€T. Then, for all x € D([0,1]) and € > 0 we have

U (z;¢eldg) = (6.16)

{y c RO - a(\t) —e+ — < y(ty) < z(\(t;)) + ¢ — %} .

Expression (6.16) is evident, since T is dense in [0, 1].

1 1
Vi=1,2,....m  x(A\,(t;)) —e+ 7 < y(ti) <z(Am(ts)) +¢e— T

Then, there exists a subsequence such that

Vie N Hm A, (t:) = A().

n—-4o0o

Function A is non-decreasing on T, therefore, we can enlarge its definition
At) =1inf{A\(s) : t<s, s€T} forall 0<t<1.
Then, lim,, o (Am, )4 = ()5, and consequently, A € Ay,
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Theorem 6.31: LetT C [0,1] be dense in [0,1] and 1 € T'. Then for all G €
G (D ([0,1))), there are G;; € G N D ([0,1]) such that G = U/ jzoi Gi;.

The space D ([0, 1]) is separable, therefore, each G € G (D ([0, 1])) is
a countable union of open balls. Accordingly to Theorem 6.30, each of these
balls possesses a representation (6.16).
Consequently, proposition of the theorem is shown.

Theorem 6.32: [fT C [0,1] is dense in [0,1] and 1 € T', then we have
o (FPU D (0.1))) = B (0. 1)). (6.17)

The statement is a consequence of Theorem 6.31.

6.4 D([0,1]) and randomness

Definition 6.33 We define for each 0 <t <1
Jy = {z €cadlag([0,1]) : x (t) #x(t—)} (6.18)
and for T C (0,1]

cadlag, = cadlag([0,1])\ U Jy. (6.19)

teT

Particularly, cadlag ;) = C([0,1]).

Definition 6.34 For X random process in D ([0, 1]) we introduce

Sy = {t€(0,1): P(X(t)=X(t—)) =1}, (6.20)
Sy = Syu{o0,1}, (6.21)
Ty = {te(0,1): P(X(t)#X(t=))>0}. (6.22)

Sx is a set of all points from (0,1) in which X is stochasticaly continuous,
Tx is a set of all points from (0,1) in which X is stochasticaly discontinuous.
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Lemma 6.35 For X random process in D ([0, 1]) the set T'x is at most count-
able.

For e > 0 and ¢ € (0,1), we define sets
Ji(e) ={w e | X (tw)— X (t—w)| >¢€}.
For ¢ > 0 and n > 0, we define sets

S(e,n) ={te(0,1) : P(Ji(e)) = n}.

Assume S (e,n) is infinite.

Then, it possesses a cluster point s € [0,1], i.e. there is t, — s and t,, # s.
Take w € limsup,,_,, . J;, (€).

Then, we have a subsequence with property w € J;, (¢), k € N.

Now, we have two possibilities.

1. There is a subsequence ¢y, , j € Nwith £, >sandw € J;, ().
J

Then, we have

e < lim ‘X (tnkj;w> - X (tnkj—;w>) =X (s;w) — X (s;w)| =0.

Jj——+oo
It is a contradiction.

2. There is a subsequence tny,s J € N with tny, <8 and w € J;,, (e).
J

Then, we have

e < lim ‘X (tnkj;w) - X (tnkj—;wﬂ =|X (s—w) — X (s—;w)| = 0.

Jj—+o00o
It is a contradiction.

We have shown, that limsup,,_,, . J:, (¢) = 0, but, continuity of probability
measure is giving P (limsup,_,, . J;, (¢)) > n.

It is a contradiction. Therefore, S (e,7) must be finite.

Consequently, Ty = U€>Om>0 S(e,n) = ;‘?ZZO S (27™,27") is at most count-
able.

Lemma 6.36 Let T' C [0,1] then 01

’ }HT : D([0,1]) — R is continuous at
cadlagyno1)-
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Consider a sequence f,, € cadlag([0,1]), n € N and f € cadlagyqq 1
such that fn—+—>f in D([0,1]). Then, there are A,, n € N such that
n—-—+0o0

1fn = f o Aully — 0 and [[An[[, — 0. Take ¢ € T and consider three cases:

1.t=0

ol () 0) = o T17- (1) (0)] = 1 (0) — £ ()]
= [£ (0) = f o Xu(0)] <[ f = foAulligy — 0.

2. 0<t<«1

oy () (8) = oyl (F) ()] = Lfu (8) = £ (1)
< 1fu(t) = o M(®)] 4 f 0 Aalt) — £ (8)
<= £ 0 Mallpy + 1F 0 Aalt) = £ (B)] =0,

since A, (t) — ¢ and f is continuous at ¢.

3.t=1

o e (Fa) (1) = o (T (F) (D)] = [ £ (1) = £ (1)]
= £ (1) = fo XD < [fu — £ 0 Mallgy) = 0.

It means | Il D ([0, 1]) = R” is continuous at cadlagyn -

Theorem 6.37: Let X,,, n € N and X be random processes in D ([0, 1]). If
X, %X in D ([0,1]), then
n—-—+0o0

(X, (t),t € Sx) —LL (X (1), € Sy). (6.23)

n—-+0o0o

The statement immediately follows from Theorem 1.97, since for

each I € Fin([0,1]) projection oallr D ([0,1]) — R’ is continuous at

cadlag;q ;) and P (X € cadlagg, ) = 1.
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Theorem 6.38: Let X,,, n € N be random processes in D ([0,1]) and X be
a random processes in D ([0,1]). If

(X (1)t € Sy);

n—-+40o

Z) (Xn (t> S gX)
ii) the sequence X,, n € N is tight in D ([0, 1]);

hence X, ———+ X in D ([0,1)).

n—-4o00

See Theorem 15.1, p.174 in [2].

Theorem 6.39: The sequence X, = (X, (t),t € [0,1]) random processes in
D ([0,1]) s tight in D ([0, 1]) if and only if for all e > 0, n > 0, there exist
0 >0, a>0 and ny € N such that for alln € N, n > ng we have

i) P(Jsup{X,(t) : 0<t<1}| >a)<e;
i) P(wW (X,,0) >n) <e.

See Theorem 15.2, p.174 in [2].

Theorem 6.40: The sequence X, = (X, (t),t € [0,1]) random processes in
D ([0, 1]) is tight in D ([0, 1]) if and only if for alle > 0, n > 0, there exist
0 >0, a>0 and ng € N such that for alln € N, n > ny we have

i) P(Jsup{X,(t) : 0<t <1} >a)<e;
i) P (W (X,,0) >n) <e.

iii) P (w(X,,[0,0)) >n) <e.

w) P(wW(X,,[1-0,1)) >n) <e.

See Theorem 15.3, p.175 in [2].
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Theorem 6.41: Let X,,, n € N and X be random processes in D ([0, 1]). If

(X (1)t € Sx);

n——+o00

i) (X, (t),t € Sx)

iii) For each e > 0, n > 0, there exist 6 > 0 and ng € N such that for
alln € N, n > ny we have P (W" (X,,,0) >n) < e.

Then, X, ——— X in D ([0,1]).

n——+o00

See Theorem 15.4, p.175 in [2].

Theorem 6.42: If a sequence X,, = (X, (t),t € [0,1]) of random processes
in D ([0, 1]) fulfills:

i) The sequence || X[y, n € N is tight.

i1) There are a« > 0, f > 0 and a non-decreasing continuous functions
F :]0,1] = R such that for alln € N, 0 <t <s <1, A >0 we have

P (VT (X0, [t 5]) > >\> < A B(F(s) — F(t))+, (6.24)

Then the sequence is tight in D ([0, 1]).

It is a part of Theorem 15.6, p.179 in [2].

Now, we can introduce a condition for tightness of random processes in
D ([0,1]), which is easily verifiable.

Theorem 6.43: If a sequence X,, = (X, (t),t € [0,1]) random processes in
D ([0, 1]) fulfills:

i) The sequence ||XnH[0’1}; n € N is tight.

T (X (1)t € Sx);

n—-+oo

i) (X, (t),t € Sx)
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iii) P(X € J;) =0;

i) There are a > 0, B > 0 and non-decreasing continuous functions
F :[0,1] — R such that for alln e N, 0 <s<u<t<1, A >0 we
have

P (1X0 (8)=X0 ()| 2, | X, () =X, (8)|2A) < A7 F(1)=F (s)](6.25)

Then, X, —=— X in D ([0, 1]).

n—-+400

See Theorem 15.6, p.179 in [2].

6.4.1 Donsker invariance principle

Theorem 6.44: [f¢;, i € N are i.i.d. random variables with E[{] = 0 and

var (&) = o € Ry, then V(™ %W in D([0,1]), where W = (Wy,t €
n—-+0oo

0,1]) s a Wiener process.

In Theorem 5.26, we have proved V) Ty

n—-+00
We intend to verify assumptions of Theorem 6.43.

ForneN, 0<s<u<t<1and A >0 we have:
P(Va(@) = Vo) Z A [Va(u) = Va(s)| 2 A) =

=P (|Sint) = Spna)| = oM, Sy — Sins)| = oM/n) =
=P (|Sit) = Stnu| = oAVR) P (|Sp) — Sinsl| = oM/n) <

1
< i (1S = Stoua ] E [[Strus = S| =
1
= 04)\4n202([nﬂ — |nu))o?([nu] — |ns]) <
4
< F(t—S)Q.

Final estimation employes following observations:
o If nt —ns < 1, then either |nt| = |nu| or |ns| = |nu].
o If nt —ns > 1, then

(Int] = [nu])([nu] — [ns]) < (|nt] = [ns])* < (nt —ns +1)°
< (2(nt —ns))* < 4n’(t —s)*.
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Assumptions of Theorem 6.43 are in power. Therefore, required weak con-
vergence is proved.

6.5 Space D (|a,b])

Consider a compact interval given by a couple of points —oo < a < b < +00
and cadlag ([a, b]) the set of all cadlag functions defined on a segment [a, b].
Since [a, b] is a compact, we are able to develop a metric d on cadlag ([a, b]) em-
ulating construction of metric d on cadlag([0, 1]). Metric d is giving a topology
on cadlag ([a, b]), and, arisen topological space is denoted by D ([a, b]).

Theorem 6.45: D ([a,b]) is a Polish space, moreover, if v : [0,1] — [a,b]
is an increasing bijection then a mapping ¢ : cadlag ([a,b]) — cadlag([0, 1]) :
f € cadlag ([a,b]) — f o is an isomorphism between D ([a, b]) and D ([0, 1]).

Both maps ¢ : D ([a,b]) = D ([0,1]) and ¢~': D ([0,1]) — D ([a, b])
are continuous, hence, topological spaces D (]a, b]), D ([0, 1]) are isomorphic.
Therefore, D ([a, b]) is a Polish space, as D ([0, 1]) is.

6.6 Space D ([0, +0))

Construction of a Skorokhod topology on cadlag ([0, +00)) is a bit delicate.
Consider a metric p; defined for z,y € cadlag ([0, +00)) by

—+00

L&, delallb k1)
p1(iU,Z/)—kZ:02 1+do (y, x|[k, k + 1))’ (6.26)

where do (y, z|[k, k +1]) =do ((y(t + k),0 <t < 1), (x(t + k),0 <t < 1)),

Theorem 6.46: (cadlag ([0, +00)), p1) is a complete separable metric space.

Definition 6.47 A topological space of cadlag ([0, +00)) equipped with topol-
ogy induced by the metric p; will be denote by D ([0, +00)).
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Lemma 6.48 Topology of D ([0, 4+00)) is determined by a subbasis

G={U(x,k,e) : x € cadlag ([0,4+00)) ,k € N,e > 0}, (6.27)
where U (z,k,e) = {y € cadlag ([0, +00)) : d(y,z|[k,k +1]) < e},
d(oollbk+ 1) = d ((y(t 4 8).0 < ¢ < 1), (x(t + k)0 <1 < 1))

Unfortunately, this topology fixes jumps in natural numbers. If a limit
function possesses a jump in a natural number whole sequence must jump in
the same point eventually. That is inconvenient for applications.

A possibility to overcome the obstacle is to reduce our consideration to
cadlag; ([0, 1]) the set of all cadlag functions continuous at 1.

Definition 6.49 We define a topological space D1 ([0, 1]) as cadlagy([0,1])
equipped with a relative topology induced by D ([0, 1]).

Theorem 6.50: Topological space Dy ([0,1]) is a Polish space.

For example metric dy is making D; ([0, 1]) to be a complete sepa-
rable metric space.

We will consider cadlagy ([0, +00)) the set of all cadlag functions contin-
uous at each natural number.

Definition 6.51 We define a topological space Dy ([0, +00)) as
cadlagy ([0, +00)) equipped with a relative topology induced by D ([0, +00)).

Lemma 6.52 Topology of Dy ([0, +00)) is determined by a subbasis

G={U(z,k,e) : x € cadlagy ([0,400)),k € N,e > 0}, (6.28)
where U (z,k,e) = {y € cadlagy ([0, +00)) : d(y,z|[k,k +1]) < e}.

Theorem 6.53: Topological space Dy ([0, 400)) is a Polish space.

For example metric p; is making Dy ([0, +00)) to be a complete
separable metric space.



Chapter 7

General maximal inequalities

Dealing with weak convergence of random processes requires some convenient
maximal inequalities. We must be able to estimate tails of distributions of
maxims of partial sums of real random variables. Propositions in this chapter
together with proofs are taken from the monograph [2].

Consider N € N, real random variables &, &,,...,&y and their partial
sums S, So, ..., Sn, where S;, = Zle &;. For more clear formulations, we set
Sp = 0.

We will investigate tails of distribution of maxims

My = max{|S1], |Sa], - -, |Sn|}, (7.1)

My = max {min{|Sk|,|Sn — Sk|} : £=0,1,2,...,N—1}, (7.2)

My = max {min{|S; — S;|,|Sx — S;|} : 4,5,k =0,1,2,...,N, i < j < k}.

(7.3)

To abbreviate formulations, we are introducing auxiliary variables

M/ =max {|Sy —S;| : k=4,54+1,...,j}, :
Ny = max {min{M§,M}} : k=0,1,2,... ,N—1}. (7.5)

We begin with simple basic relations introduced as (12.3) and (12.6) in
2], pp.126-127.

Lemma 7.1 Without any additional assumption we have

My < My < 2Ny. (7.6)
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Lemma 7.2 Without any additional assumption we have

My < My < My + [Snl. (7.7)

For each £k =1,2,...,N — 1 we have a simple estimate
min{[Sk|, |Sn — Skl} < [Skl,
which implies immediately
My < My. (7.8)

Moreover for all k =1,2,...,N — 1, we have an estimate
Sk < min{[Sn| 4 [Skl, [Sn| + [Sn = Skl} < |Sn| + min{|Sl, [Sn — Skl},
which implies

My < My + [Snl- (7.9)

Lemma 7.3 Without any additional assumption we have an estimate
ISn| < 2My + max {|&] : k=1,2,...,N}. (7.10)
For N=5 and & = & = & = & = —& the estimate is an equality.
Fix w € Q.
1. If |Sy(w)] > |Sn(w) — S1(w)], then

Sn(@)] < [S1(@)]+ [Sn(w) = Si(w)| < [ (W) + My(w) <
< Mp(w) + max{[&(w)| : k=1,2,...,N}.

2. If [Sno1(w)] < |Sn(w) — Sn—1(w)]|, then

[Sn(w)] < [Sn-1(W)] + [én(w)] < My(w) + max {|&(w)] + k=1,2,...,N}.

3. If |S1(w)| < |Sn(w) — Sq(w)| and |Sy_1(w)| > [Sn(w) — Sn—1(w)], then
there is k = 2,3,...,N—1 such that |S;_1(w)| < |Sn(w) — Sk—1(w)| and
ISk(w)| > |Sn(w) — Sg(w)]. After that we receive

ISn)l < [Ska (@) + [8k(w)] + [Sn(w) = Sk(w)| <
< 2My(w) + max {|&(w)] : k=1,2,...,N}.
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Lemma 7.4 Without any additional assumption we have an estimate
My < 3My + max {|&| : k=1,2,...,N}. (7.11)
For N=5 and & = & = & = & = —&5 the estimate is an equality.

Estimate follows previous lemmas 7.2 and 7.3.

Now we introduce a theorem for distribution tails of My, due to [2], The-
orem 12.1., pp.128-134.

Theorem 7.5: Let uy,us,...,uny be nonnegative real numbers, o > 0 and
B >0 such that for all1 <1< h <7 <N and X\ > 0 we have

P ( Zh:gk XJ: k| > A) <AP (ZJ: uk) : (7.12)

k=h+1
hence for all A > 0 we have

2)\7

N 1+a
P(My > ) < K(a, 8) A™° (Z uk> 7 (7.13)

where

Ko, B) = [ L (Ll)a+1](ﬁ+l). (7.14)

For example K(1,4) = 55021.088.

Let us denote u = Z,’:‘Zl U, 0 = ﬁ and take K > 1 such that

1 2\°
5t <E) <1 (7.15)

1. Let u = 0, then condition (7.12) implies min{|Sx|, |Sn — S|} = 0 a.s.
for all £ = 1,2,...,N. Therefore, M = 0 a.s. and proposition is in
power.
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2. Let u > 0.

Proposition will be shown by induction over N.

(a) For N =1 the statement is trivial.

(b) For N = 2 we have

P(My>2X) = P(min{|Si], [S2—S1|} > A) < A7 (ug +up)' ™ <
S K)\_ﬂ <U1+U2)1+a

(c) Let statement is in power for all N =1,2,... m. We will show it
for N=m + 1.
Fixh:min{ie{l,Q,...,m+1} : u1+u2—|—---+ui2%}.
We define

Uy = max{min{|Sg|, |Sn—1 —Sk|} : £=0,1,...,h— 1},
U, = max{min{|Sx —Su|, |Sms1 —Sk|} : k=hh+1,... . m+ 1},
Dy = min{|Sp_1|, |Sm+1 — Sn-1l},
Dy = min{|S.|, |Sm+1 — Sul}-

i. FixweQandi=1,2,...,h—1.
A I |S;(w)] < Up(w), then

min{[S; (W), [Sm+1(w) = Si(w)[} < [Si(w)] <
< Uy(w) < Up(w) 4+ Dy (w).

B. If |Sp-1(w) — Si(w)| < Uy(w) and |Sp—1(w)| = D1(w), then

min{[S; ()|, [Smir(w) = Si(w)[} < [Si(w)] <
< [Sh-1(w) = Si(W)] + [Sh-1(w)| < Ur(w) + Di(w).

C. If [Sp1(w) = Si(w)|
[Smi1(w) = Sh-1(w)]

min{[S; (W)], [Smi1(w) = Si(w)[} < [Smpr(w) = Si(w)| <
< Smir(w) = Sha (@) + [Sha(w) = Siw)| <
S Ul(CU) + Dl(w).

<U ( ) and
= D;(w), then

Forall2=1,2,...,h — 1 we have shown

mln{]Sl], ’Sm+1 — Sl‘} S Ul + Dl'
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ii. In a similar way for all : = h,h + 1,...,m + 1 one can show
m1n{|SZ|, |Sm+1 - S,L|} S U2 + DQ.

iii. Sums U;, U, possess at most m non-vanishing summands.
Therefore according to induction assumption for all A > 0 we
have

k=1
< K)\NP <E It — i/\—ﬁul—&-a
- 2 l+a ’

m+1 1+«

P(U,>)\) < KA5< uk>
k=h+1
-8 E e — K -8, 1+a

< KNO(5) =g e

iv. According to the assumption (7.12) for all A > 0 we have
P(D; > \) < A\ Pulte
P(Dy > \) < A Pulte,

Hence for all A > 0 we have

P(M,, >A) <P(max{U; + Dy,Us+ Dy} > \) <
<PU > Ay) +P Uy > Ay) +P (D1 > Ap) +P (D2 > Ap)

K _ _
<2 (21+a )‘U/B + )‘Dﬂ> ul—i—a’

where A\ + Ap = A\, A\y > 0, Ap > 0 are arbitrary chosen. Their
optimal choice is a solution of optimization program

K
min{21+a)\(‘]5+)\55 CAu+Ap =\ Ay >0, /\D>0}:

K\° 3
_\—B
=\ ((21+a> —I—l) .

Accordingly to (7.15) we know that for all A > 0 we have

1
K 0 5
P (M;nJrl Z )\) S 2 ((21+a> + 1> )\fﬁulJra =

1 9\ 3
- (27 * (?> ) AUl = KaPutte
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Optimal choice of K is a solution of (7.15) considered as an equality. It is
given by the formula (7.14).

Now we introduce a theorem for distribution tails of My, due to [2], The-
orem 12.5.; pp.140-143.

Theorem 7.6: Let uy,us,...,uy be nonnegative real numbers, o > 0 and
B >0 such that for all1 <1< h <7 <N and XA > 0 we have

h j J e
p ( S 6 > &l > /\> <\ <Z uk> 7 (7.16)
k=i k=i

k=h+1
hence for all A\ > 0 we have

> A,

N 1+o
P (MY > \) < K'(, ) A7 (Z uk> , (7.17)
k=1

where K" (a, B) is a convenient constant depending only on o and 3.

For a proof see [2], Theorem 12.5., pp.140-143.

Now we introduce a theorem for distribution tails of My due to [2], The-
orem 12.2., pp.134-135.

Theorem 7.7: Let uy,us,...,uny be nonnegative real numbers, o > 0 and
£ >0 such that for all 1 <1< 7 <N and X\ > 0 we have

P ( zjjgk > A) <A (i: uk> : (7.18)

hence for all A > 0 we have

N 14+a
P(My > ) < C(a, B~ (Z uk> , (7.19)

where
Cle, B) =2° (1 + K(a, B)) - (7.20)
For example C(1,4) = 880353.402.
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Applying Schwartz’s inequality and assumption (7.18) we are re-

h h
> zA)g P(ZSkZA>P< 2A>
k=i k=i
h 1+a j 14+« j 14«
< A8 <§£:uk) AP ( j{: uk) < A_B <§£:uk> .
k=i k=1

k=h+1

ceiving

d

> &

k=h+1

> &

k=h+1

> A,

IN

Assumptions of Theorem 7.5 are fulfilled, therefore, for all A\ > 0 we have

N 1+«
P(My > )) <K(a, 8) A7 (Z uk> .
k=1

Moreover according to assumption (7.18), we have

N 1+a
P(ISn|>)) <A77 (Zuk> .
k=1

Hence we are receiving according to Lemma 7.2 an estimate

P(My > A) < P (Mj +[Sy| > \) <

SP(M’Nzg)wQSerg) <
o ()08

=2°(K(a, B) + DA™ (Z uk> :

Having independent real random variables, more accurate and efficient
maximal inequalities are known. We already presented one of them in The-
orem 9.27.
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