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6.1 Càdlàg functions . . . . . . . . . . . . . . . . . . . . . . . . . 91
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Remark from author

The text is under developing and is continuously improving. Its aim is to
give a comprehensive and self-confident description of subject “Convergence
of Random Processes”. Basis of Topology, Product Topology, Topology with
Randomness are starting points of our text. Metric spaces are remembered
as a particular case of topological spaces. After this introduction, several
spaces of real functions are introduced. Particularly, space of all real func-
tions, space of bounded real functions, space of continuous real functions,
Skorokhod space of càdlàg functions are treated. Talk finishes with Sko-
rokhod imbedding and Strong Invariance principle.

May 28, 2017, author

Used notation

P(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all subsets of A

Fin (Λ) . . . . . . . . . . . . . . . . . . . . . . . . . the set of all nonempty finite subsets of Λ

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real numbers

Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integer numbers

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . natural numbers

N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . natural numbers with zero

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . racional numbers

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complex numbers

R+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . positive real numbers

R+,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nonnegative real numbers



6 Konvergence náhodných proces̊u May 28, 2017:1097



Chapter 1

Measures and Topology

1.1 Measures

The text is devoted to real random processes and their convergence in dis-
tribution. It means we have to deal with probability measures on some
convenient topological spaces of real functions and their weak convergence.
Let us begin with recalling notions of σ-algebra and measure.

Definition 1.1 We say Σ = (Σ, X) is a σ-algebra (cz. σ-algebra), if

• X 6= ∅.

• Σ ⊂ P(X).

• ∅, X ∈ Σ.

• X \ A ∈ Σ for each set A ∈ Σ.

•
⋃+∞
i=1 Ai ∈ Σ for each sequence of sets Ai ∈ Σ, i ∈ N.

Definition 1.2 We say µ = (µ,X,Σ) is a measure (cz. mı́ra), if

• X 6= ∅.

• Σ = (Σ, X) is a σ-algebra.

• µ : Σ→ R∗+,0.

• µ
(⋃+∞

i=1 Ai
)

=
∑+∞

i=1 µ (Ai) for each sequence of pairwise disjoint sets
Ai ∈ Σ, i ∈ N.

We say µ = (µ,X,Σ) is a sign measure (cz. znaménková mı́ra), if

7
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• X 6= ∅.

• Σ = (Σ, X) is a σ-algebra.

• µ : Σ→ R∗.

• µ
(⋃+∞

i=1 Ai
)

=
∑+∞

i=1 µ (Ai) for each sequence of pairwise disjoint sets
Ai ∈ Σ, i ∈ N.

Let us recall definitions of outer and inner measures.

Definition 1.3 Let µ = (µ,X,Σ) be a measure. Then, outer measure (cz.
vněǰśı mı́ra) is defined as

µ∗ : P(X)→ R∗+,0 : A ∈ P(X) 7→ inf {µ (B) : A ⊂ B ∈ Σ}

and inner measure (cz. vnitřńı mı́ra) is defined as

µ∗ : P(X)→ R∗+,0 : A ∈ P(X) 7→ sup {µ (B) : A ⊃ B ∈ Σ} .

Definition 1.4 If µ = (µ,X,Σ) is a measure, we denote
σ-algebra of all µ-measurable sets (cz. σ-algebra všech µ-měřitelných množin)
by

MS (µ) = {A ∈ P(X) : µ∗(A) = µ∗(A)} .

Lemma 1.5 MS (µ) is a σ-algebra.

1.2 Topological spaces

Definition 1.6 Space X = (X ,G) is called topological space (cz. topologický
prostor), if X is a nonempty set and G ⊂ P(X ) fulfills

1. ∅,X ∈ G.

2. If G1, G2 ∈ G then G1 ∩G2 ∈ G.

3. If Λ is a nonempty set and Gλ ∈ G for each λ ∈ Λ then
⋃
λ∈ΛGλ ∈ G.

We will use the following standard notation and terminology.

Definition 1.7 Let X = (X ,G) be a topological space. Then

• Any member of G is called an open set of the topological space X and
G itself is called the set of all open sets of the topological space X and
will be denoted by G (X ).
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• F (X ) = {X \G : G ∈ G (X )} is called the set of all closed sets of the
topological space X and its members are called closed sets of the topo-
logical space X .

• B (X ) = σ (G (X )) is called Borel σ-algebra of the topological space X
and its members are called Borel sets of the topological space X .

For real line, we will use a convention B = B (R).

Open sets possesses a nice characterization.

Lemma 1.8 Let X be a topological space and A ⊂ X . Then

A ∈ G (X )⇐⇒ ∀ a ∈ A ∃G ∈ G (X ) s.t. a ∈ G ⊂ A.

Proof:

1. If A ∈ G (X ) the property is trivial, since for a ∈ A we can set G = A.

2. Let ∀ a ∈ A ∃G ∈ G (X ) s.t. a ∈ G ⊂ A.

Choose Ga ∈ G (X ) such that a ∈ Ga ⊂ A for each a ∈ A.

Hence, A =
⋃
a∈AGa ∈ G (X ).

Q.E.D.

Borel sets can be constructed using δ, σ operations.

Definition 1.9 Let X be a topological space. We define

Gδ (X ) =

{
+∞⋂
i=1

Gi : Gi ∈ G (X ) for all i ∈ N

}
,

Gδσ (X ) =

{
+∞⋃
i=1

Gi : Gi ∈ Gδ (X ) for all i ∈ N

}
,

Fσ (X ) =

{
+∞⋃
i=1

Fi : Fi ∈ F (X ) for all i ∈ N

}
,

Fσδ (X ) =

{
+∞⋂
i=1

Fi : Fi ∈ Fσ (X ) for all i ∈ N

}
.

Consequently, sets Gδσδ (X ), Fσδσ (X ), Gδσδσ (X ), Fσδσδ (X ), etc., can be de-
fined.
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Definition 1.10 Let X be a topological space. Then, for each set A ∈ P(X )
we define its

• closure clo (A ; G (X )) =
⋂
A⊂F∈F(X ) F ;

• interior int (A ; G (X )) =
⋃
A⊃G∈G(X ) G;

• boundary ∂ (A ; G (X )) = clo (A ; G (X )) \ int (A ; G (X )).

One can check that the closure of a sets is a closed set and the interior of
a sets is an open set.

Let us recall, that the notion of topology is introduced in [3] in more
general way than we did. Setup is based on a closure operator ϑ : P(X ) →
P(X ), The only requirements are monotonicity and closure of a union of
finite number of sets must be union of their closures.

There are equivalent descriptions of closure, interior and boundary.

Lemma 1.11 Let X be a topological space, A ⊂ X and x ∈ X .

i) x ∈ clo (A ; G (X )) ⇐⇒ ∀G ∈ G (X ) , x ∈ G we have A ∩G 6= ∅.

ii) x 6∈ clo (A ; G (X )) ⇐⇒ ∃G ∈ G (X ) such that x ∈ G, A ∩G = ∅.

iii) x ∈ int (A ; G (X )) ⇐⇒ ∃G ∈ G (X ) such that x ∈ G ⊂ A.

iv) x 6∈ int (A ; G (X )) ⇐⇒ ∀G ∈ G (X ) , x ∈ G we have G \ A 6= ∅.

v) x ∈ ∂ (A ; G (X )) ⇐⇒ ∀G ∈ G (X ) , x ∈ G we have
A ∩G 6= ∅ and G \ clo (A ; G (X )) 6= ∅.

Definition 1.12 Let X be a topological space and H ⊂ X . We say
H is dense in X whenever clo (H) = X .

Compact sets are a specific class of sets in a topological space.

Definition 1.13 Let X be a topological space. A set K ⊂ X is called a
compact whenever the following properties are fulfilled:

1. K ∈ F (X ).

2. If Λ 6= ∅ and Gλ ∈ G (X ), λ ∈ Λ are given such that K ⊂
⋃
λ∈ΛGλ

then there is I ∈ Fin (Λ) with K ⊂
⋃
i∈I Gi.

The set of all compact sets of the topological space X is denoted by K (X ).
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Definition 1.14 Let X be a topological space. A set K ⊂ X is called a
relative compact (cz. relativńı kompakt) whenever clo (K) ∈ K (X ).

Definition 1.15 We say X is a compact topological space if it is a topological
space and X ∈ K (X ).

We have a simple observation

Lemma 1.16 Let X be a topological space. Then, always

B (X ) = σ(G (X )) = σ(F (X )) ⊃ σ(K (X )). (1.1)

Equality B (X ) = σ(K (X )) is in power for X = Rn, for compact topolog-
ical spaces, and, for some other particular cases.

Consider nice and helpful properties of compact sets.

Lemma 1.17 If K ∈ K (X ) and F ∈ F (X ) then K ∩ F ∈ K (X ).

Proof: Intersection of closed sets is a closed set, therefore, K ∩F ∈ F (X ).
Take a system of open sets such that K ∩ F ⊂

⋃
λ∈Λ Gλ.

Then K ⊂
⋃
λ∈ΛGλ ∪ (X \ F ) is an open covering of compact K.

Therefore, there exists I ∈ Fin (Λ) such that K ⊂
⋃
i∈I Gi ∪ (X \ F ).

Thus, K ∩ F ⊂
⋃
i∈I Gi and, consequently, K ∩ F is a compact.

Q.E.D.

Proposition 1.18 Let K ∈ K (X ) and Fλ ∈ F (X ) for each λ ∈ Λ.
Let K ∩

⋂
λ∈Λ Fλ = ∅ then there exists I ∈ Fin (Λ) such that K ∩

⋂
i∈I Fi = ∅.

Proof: We have covering of the compact K by open sets K ⊂
⋃
λ∈Λ(X \Fλ).

Thus, there exists I ∈ Fin (Λ) such that K ⊂
⋃
i∈I(X \ Fi).

In other words, K ∩
⋂
i∈I Fi = ∅.

Q.E.D.

Proposition 1.18 is, actually, equivalent to the definition of compact set.
The following consequence of Proposition 1.18 possesses a great impor-

tance in measure theory.

Proposition 1.19 Let Kn ∈ K (X ), n ∈ N be such that K1 ⊃ K2 ⊃ K3 ⊃
. . . .. Let

⋂+∞
n=1Kn = ∅ then there exists n0 ∈ N such that Kn0 = ∅.
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Proof: We have covering of a compact by open sets K1 ⊂
⋃+∞
n=1(X \Kn).

Thus, there exists n0 ∈ N such that K1 ⊂
⋃n0

n=1(X \Kn) = X \Kn0 .
Hence, Kn0 = ∅. since Kn0 ⊂ K1.

Q.E.D.

According to the definition, topology is determined by a collection of
open sets. Fortunately, there are smaller systems of sets fully describing the
topology.

Definition 1.20 Let X be a topological space and G ⊂ G (X ). Then,

i) G is called a (topological) basis of X , whenever, each open set can be
written as a (possibly uncountable) union of sets from G.

ii) G is called a (topological) subbasis of X , whenever, set of all inter-
sections of finitely many sets from G forms a basis of X .

As an example, let us mention that {(a, b) : a, b ∈ R, a < b} is a ba-
sis and {(−∞, a) : a ∈ R} ∪ {(a,+∞) : a ∈ R} is a subbasis of the natural
topology on R.

Let us introduce a construction of a topology. Assume Y is a nonempty
set and H ⊂ P(Y ) then H uniquely determines a topology on Y . Topology
is constructed in three steps:

1. H0 = H ∪ {∅, Y }.

2. H1 =
{⋂k

i=1Hi : H1, H2, . . . , Hk ∈ H0, k ∈ N
}

.

3. H2 =
{⋃

λ∈ΛHλ : Hλ ∈ H1,∀λ ∈ Λ , Λ 6= ∅
}

.

Proposition 1.21 Let Y be a nonempty set and H ⊂ P(Y ) then (Y,H2) is
a topological space, H1 is its basis and H0 is its subbasis.

We will denote this induced topology by τ(H) := H2.

Proof: We make some observations:

1. ∅, Y ∈ H1 and ∅, Y ∈ H2, since ∅, Y ∈ H0.

2. Let H1, H2 ∈ H1.

Hence, H1 =
⋂I1
i=1 H1,i and H2 =

⋂I2
j=1 H2,j for some sets

H1,1, . . . , H1,I1 , H2,1, . . . , H2,I2 ∈ H0.

Then, H1 ∩H2 =
⋂2
k=1

⋂Ik
i=1Hk,i ∈ H1.

Therefore, H1 is closed on intersection of finite number of sets.
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3. Let H1, H2 ∈ H2.

Hence, H1 =
⋃
λ∈Λ1

H1,λ and H2 =
⋃
ψ∈Λ2

H2,ψ for some sets
H1,λ, H2,ψ ∈ H1, λ ∈ Λ1, ψ ∈ Λ2.

Then, H1 ∩ H2 =
⋃
λ∈Λ1

⋃
ψ∈Λ2

(H1,λ ∩H2,ψ) ∈ H2, since H1 is closed
on intersection of a finite number of sets.

We have shown that H2 is also closed on intersection of a finite number
of sets.

4. Let for each λ ∈ Λ a set Hλ ∈ H2 be given.

Then, Hλ =
⋃
ψ∈Ψλ

Hλ,ψ for some sets Hλ,ψ ∈ H1.

Hence,
⋃
λ∈ΛHλ =

⋃
λ∈Λ

⋃
ψ∈Ψλ

Hλ,ψ ∈ H2.

Thus, H2 is closed on union of an arbitrary number of sets.

We have verified that H2 is a system of open sets on Y , H1 is its basis and
H0 is its subbasis.

Q.E.D.

The construction can be written as

τ(H) =

{⋃
λ∈Λ

Kλ⋂
k=1

Hk,λ : Hk,λ ∈ G, Kλ ∈ N,Λ 6= ∅

}
∪ {∅} ∪ {X}. (1.2)

Examples of a topological basis and a subbasis:

• X = R, G := open intervals of type (a, b), a, b ∈ R, a < b;

• X = R, G := closed intervals of type [a, b], a, b ∈ R, a < b;

• X = R, G := half-closed intervals of type [a, b), a, b ∈ R, a < b;

• X = R, G := open intervals of type (a,+∞), a ∈ R;

• X = R, G := closed intervals of type [a,+∞), a ∈ R.
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1.3 Topology - Local characterization

Topology can be fully described by local properties.

Definition 1.22 Let X be a topological space and Ux ⊂ P(X ) be given for
each x ∈ X . If the following two properties are fulfilled for all x ∈ X :

i) For each U ∈ Ux there exists G ∈ G (X ) such that x ∈ G ⊂ U .

ii) For each G ∈ G (X ), x ∈ G there exists U ∈ Ux such that U ⊂ G.

Then Ux is called (topological) (local) basis of neighborhoods at x (cz. baze
okoĺı bodu x).

Let us emphasis that sets from Ux do not need to be open, even they can
be non-Borel !

Basis of neighborhoods determine topology.

Lemma 1.23 Let X be a topological space, Ux ⊂ P(X ) be basis of neighbor-
hoods at x for each x ∈ X and A ⊂ X . Then

A ∈ G (X )⇐⇒ ∀ a ∈ A ∃U ∈ Ua s.t. U ⊂ A.

Proof:

1. Let A ∈ G (X ).

Take a ∈ A. By definition 1.22, there is U ∈ Ua such that U ⊂ A.

2. Let ∀ a ∈ A ∃U ∈ Ua s.t. U ⊂ A.

Take a ∈ A. Then there is U ∈ Ua such that U ⊂ A.

By definition 1.22, there is G ∈ G (X ) such that a ∈ G ⊂ U ⊂ A.

According to Lemma 1.8, A ∈ G (X ).

Q.E.D.

Now assume, for each x ∈ X systems of sets Sx ⊂ P(X ) are given.
Consider following four properties:

(Neighbor-0) Far all x ∈ X we have Sx 6= ∅.

(Neighbor-1) Far all x ∈ X , U ∈ Sx we have x ∈ U .
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(Neighbor-2) Far all x ∈ X , U, V ∈ Sx there exists Z ∈ Sx such that
Z ⊂ U ∩ V .

(Neighbor-3) Far all x ∈ X , U ∈ Sx there exists Z ∈ Sx and Uy ∈ Sy,
y ∈ Z such that Uy ⊂ U for each y ∈ Z.

These given systems build up a topology

t(Sx, x ∈ X ) = {G ∈ P(X ) : ∀ y ∈ G ∃U ∈ Sy, U ⊂ G} . (1.3)

Proposition 1.24 If properties (Neighbor-0), (Neighbor-2) are fulfilled then
t(Sx, x ∈ X ) forms open sets in X .

Proof: Step by step we check properties of open sets.

1. From definition (1.3) we see ∅ ∈ t(Sx, x ∈ X ).

2. Property (Neighbor-0) is giving X ∈ t(Sx, x ∈ X ).

3. Let G,H ∈ t(Sx, x ∈ X ).

Take x ∈ G ∩H.

Then, there are U, V ∈ Sx such that U ⊂ G and V ⊂ H. Accordingly
to property (Neighbor-2), there exists W ∈ Sx such that W ⊂ G ∩H.

We have checked G ∩H ∈ t(Sx, x ∈ X ).

4. Let Gλ ∈ t(Sx, x ∈ X ) for each λ ∈ Λ.

Take x ∈
⋃
λ∈ΛGλ.

Then, there exists ψ ∈ Λ and U ∈ Sx such that U ⊂ Gψ.

We have checked
⋃
λ∈ΛGλ ∈ t(Sx, x ∈ X ).

Q.E.D.

Proposition 1.25 Requiring (Neighbor-0), (Neighbor-1), (Neighbor-2) and
(Neighbor-3), then t(Sx, x ∈ X ) forms open sets in X and for each x ∈ X
the system Sx is a basis of neighborhoods at point x.

Proof: According to Proposition 1.24, we know t(Sx, x ∈ X ) are open sets
in X . It remains to verify Sx is a basis of neighborhoods at point x.
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1. Take G ∈ t(Sx, x ∈ X ) and x ∈ G.

Directly from Definition (1.3) there exists U ∈ Sx such that U ⊂ G.

2. Take x ∈ X and U ∈ Sx.
Denote G = {y ∈ U : ∃V ∈ Sy such that V ⊂ U}.
Let y ∈ G then there exists V ∈ Sy such that V ⊂ U .

From property (Neighbor-3), there exists W ∈ Sy such that for each
w ∈ W there exists Zw ∈ Sw and Zw ⊂ V .

Therefore, W ⊂ G.

We have checked G ∈ t(Sx, x ∈ X ).

Moreover, G ⊂ U and from property (Neighbor-1) we have x ∈ G.

Q.E.D.

1.4 Classification of topological spaces

Definition 1.26 Topological space X is called

i) T0, if for each x, y ∈ X , x 6= y there exists G ∈ G (X ) such that either
x ∈ G, y 6∈ G or x 6∈ G, y ∈ G.

ii) T1, if for each x, y ∈ X , x 6= y there exists G ∈ G (X ) such that
x ∈ G, y 6∈ G.

iii) Hausdorff, if for each x, y ∈ X , x 6= y there are G,Q ∈ G (X ) such
that x ∈ G, y ∈ Q and G ∩Q = ∅.

iv) regular, if for each x ∈ X , F ∈ F (X ), F 6= ∅, x 6∈ F there are
G,Q ∈ G (X ) such that x ∈ G, F ⊂ Q and G ∩Q = ∅.

v) normal, if for each F,H ∈ F (X ), F 6= ∅, H 6= ∅, F ∩ H = ∅ there
are G,Q ∈ G (X ) such that F ⊂ G, H ⊂ Q and G ∩Q = ∅.

vi) locally compact, if for each x ∈ X there exists G ∈ G (X ) such that
x ∈ G and clo (G ; G (X )) ∈ K (X ).

vii) fulfilling I. axiom of countability, if for each x ∈ X there exists
countable basis of neighborhoods at point x.
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viii) separable (fulfilling II. axiom of countability),
whenever it possesses a countable basis.

Some observations and notes to the classification.

Lemma 1.27 Let X be a topological space and ∼ be a relation defined on X

x ∼ y ⇐⇒ ∀G ∈ G (X ) it is fulfilled (x ∈ G ⇐⇒ y ∈ G) . (1.4)

Then, ∼ is an equivalence on X and X |∼ is T0.
Topology of X |∼ is determined as follows. For x ∈ X we denote

[x] = {y ∈ X : y ∼ x} and for A ⊂ X we set [A] = {[y] : y ∈ A}. Then,
X |∼ = {[x] : x ∈ X} and G (X |∼ ) = {[G] : G ∈ G (X )}.

Proof: Evidently, the relation ∼ is an equivalence on X .
Take v, w ∈ X |∼ and v 6= w. Then, there are x, y ∈ X , v = [x], w = [y]
and there exists G ∈ G (X ) such that either x ∈ G, y 6∈ G or x 6∈ G, y ∈ G.
Therefore either v ∈ [G], w 6∈ [G] or v 6∈ [G], w ∈ [G].
We have checked X |∼ is T0.

Q.E.D.

Space T1 possesses an equivalent characterization.

Lemma 1.28 Let X be a topological space. Then, X is T1 if and only if
{x} ∈ F (X ) for each x ∈ X .

Proof:

1. Let X be T1 and x ∈ X .

Then, for each y ∈ X , y 6= x there exists Gy ∈ G (X ) such that y ∈ Gy

and x 6∈ Gy.

Then,, {x} = X \
⋃
y 6=xGy ∈ F (X ).

2. Let {x} ∈ F (X ) for each x ∈ X .

Each y ∈ X , y 6= x fulfills y ∈ X \ {x} ∈ G (X ).

Therefore X is T1.

Q.E.D.
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Lemma 1.29 Classification of topological spaces fulfills

T0 ⇐= T1 ⇐= Hausdorff⇐= regular ∧ T1 ⇐= normal ∧ T1.

Proof: According to Proposition 1.28, we know that T1 means that points
are closed sets. Then, all implication follows directly Definition 1.26.

Q.E.D.

Also, regular space possesses an equivalent characterization by means of
neighborhoods at points.

Lemma 1.30 Let X be a topological space. Then, the following properties
are equivalent:

i) Space X is regular.

ii) For all x ∈ X we have implication if Ux is a basis of neighborhoods
at x then {clo (U ; G (X )) : U ∈ Ux} is also basis of neighborhoods at x.

iii) For all x ∈ X there exists Ux ⊂ F (X ) basis of neighborhoods at x.

Proof:

1. Assume, X is a regular space and Ux is a basis of neighborhoods at
point x ∈ X .

Denote Sx = {clo (U ; G (X )) : U ∈ Ux}.

(a) System of sets Sx fulfills condition (i) of Definition 1.22, since
always U ⊂ clo (U ; G (X )).

(b) Take G ∈ G (X ), x ∈ G. Then, X \G ∈ F (X ) and x 6∈ X \G.

From regularity of X , there are W,Q ∈ G (X ) such that x ∈ W ,
X \G ⊂ Q and W ∩Q = ∅.
Then, there exists U ∈ Ux such that U ⊂ W .

Hence, clo (U ; G (X )) ⊂ X \Q ⊂ G.

Thus, system of sets Sx fulfills condition (ii) of Definition 1.22.

Therefore, Sx is a basis of neighborhoods at point x.

2. Property (ii) implies (iii).
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3. Assume property (iii) and take x ∈ X , F ∈ F (X ), x 6∈ F .

Then, there exists Ux ⊂ F (X ) basis of neighborhoods at point x.

Then, x ∈ X \F ∈ G (X ) and there exists U ∈ Ux such that U ⊂ X \F .

Moreover, there exists G ∈ G (X ) such that x ∈ G ⊂ U .

Finally, x ∈ G, F ⊂ X \ U ∈ G (X ) a G ∩ X \ U = ∅.
We have shown, the space X is regular.

Q.E.D.

Lemma 1.31 Let X be a topological space. Then, X is separable if and only
if X fulfills I. axiom of separability and there is a countable set H ⊂ X which
is dense in X .

Proof:

1. Let G be a countable basis of X and x ∈ X .

Then, Ux = {G ∈ G : x ∈ G} is a basis of neighborhoods at x.

Moreover, Ux is countable, therefore, X fulfills I. axiom of separability.

Select for each nonempty G ∈ G a point ξG ∈ G.

Hence, H = {ξG : G ∈ G, G 6= ∅} is countable and dense in X , since
otherwise X \ clo (H) ∈ G (X ) is nonempty, therefore, containing a
point from H.

2. Let for each x ∈ X , Ux is a countable basis of neighborhoods at x and
H is a countable dense subset of X .

Hence, G =
⋃
x∈H Ux is a countable basis of X .

Q.E.D.

Definition of compact set become more simple in regular T1 topological
spaces.

Lemma 1.32 Let X be a regular T1 topological space and A ⊂ X . Then, the
following is equivalent:

i) A ∈ K (X ).
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ii) Let Gλ ∈ G (X ), λ ∈ Λ and A ⊂
⋃
λ∈ΛGλ, then one is able to select

I ∈ Fin (Λ) such that A ⊂
⋃
λ∈I Gλ.

Proof: Compact sets fulfill condition (ii). To show reverse implication, we
have only to show that (ii) implies compactness.
Assume, A ∈ P(X ) fulfilling condition (ii) and A 6∈ F (X ).
Then, there exists x ∈ X \ A such that G ∩ A 6= ∅ for each
G ∈ Ux := {U ∈ G (X ) : x ∈ U}.
Since X is regular, for each U ∈ Ux there are GU , HU ∈ G (X ), x ∈ HU ,
GU ⊃ X \ U and GU ∩HU = ∅.
Then,

⋃
U∈Ux GU ⊃ A since X is T1.

According to property (ii), there exists I ∈ Fin (Ux) such that
⋃
U∈I GU ⊃ A.

That is a contradiction since
⋃
U∈I GU ∩

⋂
U∈I HU = ∅ and in the same time⋂

U∈I HU ∩ A 6= ∅, since
⋂
U∈I HU ∈ Ux.

Therefore A ∈ F (X ) and then also A ∈ K (X ).

Q.E.D.

Lemma 1.33 Let X be a topological space. Then, X \K (X ) is a basis X if
and only if F (X ) \ {X} ⊂ K (X ).

Proof:

1. Let X \ K (X ) be basis X and F ∈ F (X ) \ {X}.
Then, there exists x 6∈ F and X \ F ∈ G (X ).

One can find K ∈ K (X ) such that X \K ⊂ X \ F .

Consequently, F ⊂ K and then F ∈ K (X ).

2. Let F (X ) \ {X} ⊂ K (X ), then X \ K (X ) is a basis X .

Q.E.D.

Particularly, if X is compact space then X \ K (X ) is a basis X .
Let us present some examples.

Example 1.34: Consider X = {1, 2} equipped with topology
G (X ) = {∅, {1}, {1, 2}}. Then, X is T0 and is not T1.

4
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Example 1.35: Consider X = N equipped with topology

G (X ) = {A ⊂ N : N \ A ∈ Fin (N)} ∪ {∅}.

Then, X is T1 and is not Hausdorff.
Proof is simple.

1. Let x, y ∈ N, x 6= y then G = N \ {y} fulfills G ∈ G (X ), x ∈ G and
y 6∈ G. Therefore X is T1.

2. Let G,Q ∈ G (X ), G 6= ∅, Q 6= ∅ then G ∩Q 6= ∅.
Therefore X cannot be Hausdorff.

4

Example 1.36: Consider X equipped with topology

G (X ) = {A ⊂ X : X \ A ∈ Fin (X )} ∪ {∅}.

Then, X is T1 Hausdorff if and only if X is a finite set.
Proof is simple.

1. Let x, y ∈ X , x 6= y then G = X \ {y} fulfills G ∈ G (X ), x ∈ G and
y 6∈ G. Therefore X is T1.

2. Let X be a finite set.

Let x ∈ X then {x} = X \ (X \ {x}) ∈ G (X ), since X \ {x} is finite.

Therefore, if x, y ∈ X , x 6= y, then {x}, {y} ∈ G (X ).

3. Let X be at least countable.

Let G,Q ∈ G (X ), G 6= ∅, Q 6= ∅ then G ∩Q 6= ∅. Therefore X cannot
be Hausdorff.

4

Example 1.37: Consider topological space (X , τ) which is T1. We intro-
duce another topology denoted by σ

G (X ;σ) = {X \K : K ∈ K (X ; τ)} ∪ {∅}.

Then, (X , σ) is T1.
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• If X 6∈ K (X ; τ) then (X ;σ) cannot be Hausdorff.

• If X ∈ K (X ; τ) then (X ; τ), (X ;σ) coincide.

Here is a proof:

1. Space (X ; τ) is T1, therefore, its points are compacts.

Take x, y ∈ X , x 6= y.

Then G = X \ {y} ∈ G (X ;σ), x ∈ G and y 6∈ G.

Therefore (X ;σ) is T1.

2. Let x, y ∈ X , x 6= y, G,Q ∈ G (X ;σ), x ∈ G, y ∈ Q and G ∩Q = ∅.
Then, there are K,L ∈ K (X ; τ) such that G = X \K, Q = X \ L.

Consequently, X = K ∪ L ∈ K (X ; τ).

We have derived if X 6∈ K (X ; τ) then (X ;σ) is not Hausdorff.

3. Let X ∈ K (X ; τ).

Then, F (X ; τ) = K (X ; τ) = F (X ;σ).

Consequently, (X ; τ), (X ;σ) coincide.

4

1.5 Relative and product topology

Definition 1.38 Let X be a topological space and Y ⊂ X , Y 6= ∅. Then,
relative topology on Y induced by topology of X is a topology determined by
open sets G (Y ) = G (X ) ∩ Y = {G ∩ Y : G ∈ G (X )}.

Lemma 1.39 Let X be a topological space and Y ⊂ X , Y 6= ∅ be equipped
with relative topology. Then, F (Y ) = F (X ) ∩ Y = {F ∩ Y : F ∈ F (X )}.

Let X be T1 regular topological space then K (Y ) = {K ∈ K (X ) : K ⊂ Y }.

Proof:

1. Take F ∈ F (X ).

Then, X \ F ∈ G (X ). Therefore, (X \ F ) ∩ Y = Y \ F ∩ Y ∈ G (Y )
and, consequently, F ∩ Y ∈ F (Y ).



Petr Lachout May 28, 2017:1097 23

2. Take F ∈ F (Y ).

Then, Y \F ∈ G (Y ) and there existsG ∈ G (X ) such thatG∩Y = Y \F .

Hence, F = (X \G) ∩ Y and (X \G) ∈ F (X ).

3. Let K ∈ K (X ) and K ⊂ Y .

Take Gλ ∈ G (Y ), λ ∈ Λ such that K ⊂
⋃
λ∈ΛGλ.

Then, there are Qλ ∈ G (X ) such that Gλ = Qλ ∩ Y for each λ ∈ Λ.

Hence, K ⊂
⋃
λ∈ΛQλ and one can find I ∈ Fin (Λ) such that K ⊂⋃

λ∈I Qλ.

Then also K ⊂
⋃
λ∈I Gλ and K ∈ K (Y ).

4. Let K ∈ K (Y ).

Then, immediately K ⊂ Y .

Space X is regular T1 then according to lemma 1.32 we have to verify,
that from each open cover we are able to select a finite subcover.

Take Gλ ∈ G (X ), λ ∈ Λ such that K ⊂
⋃
λ∈ΛGλ.

Then, Gλ ∩ Y ∈ G (Y ) for each λ ∈ Λ a K ⊂
⋃
λ∈ΛGλ ∩ Y .

Hence, there is I ∈ Fin (Λ) such that K ⊂
⋃
λ∈I Gλ ∩ Y ⊂

⋃
λ∈I Gλ.

We have shown K ∈ K (X ).

Q.E.D.

Product of topological spaces is equipped with a product topology. We
will use the following notation.

Ψ
ΠΓ projection from X

t∈Ψ
Xt to X

t∈Γ
Xt, where ∅ 6= Γ ⊂ Ψ ⊂ T , (1.5)

Ψ
Π−1

Γ inverse of projection. (1.6)

Definition 1.40 Let T 6= ∅ and Xt, t ∈ T be topological spaces. Then, we
define a product topological space

⊗
t∈T

Xt =
⊗
t∈T

(Xt, τt) =

(
X
t∈T
Xt,
⊗
t∈T

τt

)
,

where X
t∈T
Xt is Cartesian product and product topology

⊗
t∈T τt is determined

by a subbasis

G =
{
T

Π−1
{t} (G) : G ∈ G (Xt) , t ∈ T

}
.
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A basis of neighborhoods at point x ∈ X
t∈T
Xt can be taken as

Ux =

{
T

Π−1
I

(
X
i∈I
Hi

)
:
T

ΠI x ∈ X
i∈I
Hi, ∀i ∈ I Hi ∈ G (Xi) , I ∈ Fin (T )

}
.

An important observation is, Cartesian product of compacts is a compact
in product topology.

Theorem 1.41 (Tikhonov): Let T 6= ∅ and for each t ∈ T a topological
space Xt be given. If Kt ∈ K (Xt) for each t ∈ T then

X
t∈T

Kt ∈ K

(⊗
t∈T

Xt

)
.

Proof: A proof can be found in [3].

Q.E.D.

1.6 Topology and convergence

Topology is inducing a convergence.

Definition 1.42 Set Λ = (Λ,≤) is called directed (or, directed preorder,
filtered set) (cz. usměrněná množina), if

1. Λ 6= ∅.

2. (reflexivity) λ ≤ λ for each λ ∈ Λ.

3. (transitivity) For each λ, ψ, γ ∈ Λ, if λ ≤ ψ and ψ ≤ γ then λ ≤ γ.

4. For each λ, ψ ∈ Λ, there exists ω ∈ Λ such that λ ≤ ω and ψ ≤ ω.

Recall, we speak about preorder if reflexivity and transitivity are fulfilled.

Definition 1.43 Let Λ be directed set and Aλ, λ ∈ Λ be logical expressions.
Then, we say

i) Aλ is true eventually, If there exists λ0 ∈ Λ such that Aλ is true for
of all λ ≥ λ0, λ ∈ Λ.
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ii) Aλ is true confinally, if for each λ ∈ Λ there exists ϕ ∈ Λ, ϕ ≥ λ
such that Aϕ is true.

Definition 1.44 Let Λ, Ψ be directed sets and ω : Ψ→ Λ. We say that

i) ω is monotone, if ω(ψ1) ≤ ω(ψ2) whenever ψ1, ψ2 ∈ Ψ, ψ1 ≤ ψ2.

ii) ω is confinal, if for each λ ∈ Λ there exists ψ ∈ Ψ such that λ ≤ ω(ψ).

iii) ω is eventual, If there exists λ0 ∈ Λ such that for each λ ∈ Λ, λ ≥ λ0

there exists ψ ∈ Ψ such that λ = ω(ψ).

Definition 1.45 Let A be a nonempty set, Λ be an directed set and aλ ∈ A be
given for each λ ∈ Λ. Collection < aλ >λ∈Λ is called net in A (or, generalized
sequence) (cz. net, zobecněná sequence).

Definition 1.46 Let < aλ >λ∈Λ and < bψ >ψ∈Ψ be nets in A. We say that
< bψ >ψ∈Ψ is subnet of < aλ >λ∈Λ, whenever there exists monotone confinal
mapping ω : Ψ→ Λ such that bψ = aω(ψ) for all ψ ∈ Ψ.

Definition 1.47 Let X be a topological space, < aλ >λ∈Λ be a net in X and
a ∈ X . We say that < aλ >λ∈Λ converges to a (cz. konverguje k), whenever
for each G ∈ G (X ), a ∈ G there is aλ ∈ G eventually.

Convergence will be denoted by aλ−−−→
λ∈Λ

a in X .

Limit of a net is not determined uniquely in general topological space.
The set of all limit points of a net (cz. množina všech limitńıch bod̊u) will
be denoted by Liλ∈Λ (aλ ||X ).

Lemma 1.48 Let X be a Hausdorff topological space then limit of a net is
determined uniquely.

Proof: Take x, y ∈ X , x 6= y.
Since the space is Hausdorff, given points can be separated by open sets.
Hence, if a net converges to one of these points, then it cannot converge to
the second one.

Q.E.D.

Definition 1.49 Let X be a topological space and < aλ >λ∈Λ be a net in X .
We say that x ∈ X is a cluster point of < aλ >λ∈Λ (cz. hromadný bod), if
there exists its subnet which converges to x.

The set of all cluster points of the net will be denoted by Lsλ∈Λ (aλ ||X ).
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Lemma 1.50 Let X be a topological space and < aλ >λ∈Λ be a net in X .
Then the set of all cluster points possesses a description

Lsλ∈Λ (aλ ||X ) =

= {x ∈ X : ∀G ∈ G (X ) , x ∈ G we have aλ ∈ G confinally} .

Proof:

1. Let x ∈ Lsλ∈Λ (aλ ||X ).

Then, there is < bψ >ψ∈Ψ subnet of < aλ >λ∈Λ which converges to x.

Hence, bψ ∈ G eventually for each G ∈ G (X ), x ∈ G.

Consequently, aλ ∈ G confinally for each G ∈ G (X ), x ∈ G.

2. Let aλ ∈ G confinally for each G ∈ G (X ), x ∈ G.

Define an index set with a preordering

Ψ = {(λ,G) : G ∈ G (X ) , x ∈ G, aλ ∈ G} ,
(λ1, G1) ≤ (λ2, G2)←→ λ1 ≤ λ2, G1 ⊃ G2.

Take (λ1, G1), (λ2, G2) ∈ Ψ.

Set G = G1 ∩G2, then, G ∈ G (X ) , x ∈ G.

Since Λ is directed, there is γ ∈ Λ such that γ ≥ λ1, γ ≥ λ2.

We know aλ ∈ G confinally.

Hence, there is ψ ∈ Λ such that γ ≤ ψ and aψ ∈ G.

We have constructed (ψ,G) ∈ Ψ with property (ψ,G) ≥ (λ1, G1),
(ψ,G) ≥ (λ2, G2). We have checked, Ψ is a directed set.

Setting b(λ,G) = aλ for (λ,G) ∈ Ψ, we are receiving < bψ >ψ∈Ψ subnet
of < aλ >λ∈Λ. Moreover, < bψ >ψ∈Ψ converges to x.

Thus, x ∈ Lsλ∈Λ (aλ ||X ).

Q.E.D.

Lemma 1.51 Let G be a subbasis of a topological space X , < aλ >λ∈Λ be a
net in X and a ∈ X . Then, < aλ >λ∈Λ converges to a if and only if aλ ∈ G
eventually for each G ∈ G, a ∈ G.

Proof:
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1. Let net < aλ >λ∈Λ converge to a.

Then, aλ ∈ G eventually for each G ∈ G, a ∈ G, because G ⊂ G (X ).

2. Let aλ ∈ G eventually for each G ∈ G, a ∈ G.

Take Q ∈ G (X ), a ∈ Q.

Then, there exist k ∈ N and G1, G2, . . . , Gk ∈ G such that
a ∈ G1 ∩G2 ∩ · · · ∩Gk ⊂ Q.

We know aλ ∈ G1 eventually, aλ ∈ G2 eventually, . . . , aλ ∈ Gk

eventually. Then, aλ ∈ G1 ∩ G2 ∩ · · · ∩ Gk eventually, and therefore,
aλ ∈ Q eventually.

We have checked < aλ >λ∈Λ converges to a.

Q.E.D.

Lemma 1.52 Let X be a topological space, a ∈ X , Ua be a basis of neigh-
borhoods at point a, < aλ >λ∈Λ be a net in X . Then, < aλ >λ∈Λ converges
to a if and only if aλ ∈ U eventually for each U ∈ Ua.

Proof:

1. Let < aλ >λ∈Λ converge to a.

Take U ∈ Ua.
Then, there is G ∈ G (X ), a ∈ G such that G ⊂ U .

Then, aλ ∈ G eventually.

Hence, aλ ∈ U eventually, since G ⊂ U .

2. Let aλ ∈ U eventually for each U ∈ Ua.
Take Q ∈ G (X ), a ∈ Q.

Then, there exists U ∈ Ua such that U ⊂ Q.

Then, aλ ∈ U eventually.

Finally, aλ ∈ Q eventually, since U ⊂ Q.

We have checked < aλ >λ∈Λ converges to a.

Q.E.D.
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Lemma 1.53 Let X be a topological space and A ⊂ X . Then, A ∈ F (X ) if
and only if for each net < aλ >λ∈Λ in A, aλ−−−→

λ∈Λ
a ∈ X we have a ∈ A.

Proof:

1. Let A ∈ F (X ), < aλ >λ∈Λ be a net in A, aλ−−−→
λ∈Λ

a ∈ X and a 6∈ A.

Then, a ∈ X \ A.

But, X \ A ∈ G (X ).

Hence, aλ ∈ X \ A eventually.

That contradicts with assumption aλ ∈ A for each λ ∈ Λ.

2. Let for each net < aλ >λ∈Λ in A, aλ−−−→
λ∈Λ

a ∈ X we have a ∈ A.

Assume, A 6∈ F (X ).

Then, there exists x ∈ X \ A such that for each Q ∈ G (X ), x ∈ Q we
have Q ∩ A 6= ∅.
Define an index set with an ordering

Ψ = {Q ∈ G (X ) : x ∈ Q} ,
Q1 ≤ Q2 ⇐⇒ Q1 ⊃ Q2,

we are receiving a directed set.

Far each G ∈ Ψ we select aG ∈ G ∩ A, since we know G ∩ A 6= ∅.
Then, < aG >G∈Ψ is a net in A and aG−−−→

G∈Ψ
x ∈ X .

According to our assumption x ∈ A. That is a contradiction, since
point was chosen such that x 6∈ A.

Q.E.D.

Lemma 1.54 Let X be a topological space, A ⊂ X and < aλ >λ∈Λ be a net
in A. Then Lsλ∈Λ (aλ ||X ) ⊂ clo (A).

Proof: The observation is a direct consequence of cluster points Definition
1.49 and previous Lemma 1.53.

Q.E.D.
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Lemma 1.55 Let X be a topological space and < aλ >λ∈Λ be a net in X .
Then Lsλ∈Λ (aλ ||X ) ∈ F (X ).

Proof: Take a net < ξγ >γ∈Γ in Lsλ∈Λ (aλ ||X ) with ξγ −−−→
γ∈Γ

η ∈ X .

Consider G ∈ G (X ), η ∈ G.
Then, there is γ ∈ Γ such that ξγ ∈ G.
Accordingly to Lemma 1.50, aλ ∈ G confinally, since ξγ ∈ Lsλ∈Λ (aλ ||X ).
Hence, Lemma 1.50 says η ∈ Lsλ∈Λ (aλ ||X ).
Finally according to Lemma 1.53, Lsλ∈Λ (aλ ||X ) ∈ F (X ).

Q.E.D.

Lemma 1.56 Let X be a topological space and F ∈ F (X ). Then,
F ∈ K (X ) if and only if Lsλ∈Λ (aλ ||X ) 6= ∅ for each net < aλ >λ∈Λ in F .

Proof:

1. Let F ∈ K (X ).

Assume, < fλ >λ∈Λ in F possesses no cluster point.

According to Lemma 1.54, Lsλ∈Λ (fλ ||X ) ⊂ F , since F ∈ F (X ).

Then, for each point g ∈ F there exists Gg ∈ G (X ) and λg ∈ Λ such
that g ∈ Gg and fλ 6∈ Gg for each λ ≥ λg, λ ∈ Λ.

Then, F ⊂
⋃
g∈F Gg.

Since F is a compact, one can select I ∈ Fin (F ) such that F ⊂
⋃
g∈I Gg.

Then, for all λ ∈ Λ, fulfilling λ ≥ λg for of all g ∈ I, we have fλ 6∈⋃
g∈I Gg. Therefore fλ 6∈ F , that is a contradiction.

2. Let each net < fλ >λ∈Λ in F possess a cluster point.

Assume, F 6∈ K (X ).

Then, there exists index set Λ and Gλ ∈ G (X ) for λ ∈ Λ such that
F ⊂

⋃
λ∈ΛGλ and nobody is able to select any finite subcover.

Index set Ψ = Fin (Λ) with ordering

I1 ≤ I2 ⇐⇒ I1 ⊂ I2

is a directed set.

Since there exists no finite subcover, for each I ∈ Ψ we can select a
point fI ∈ F \

⋃
λ∈I Gλ.
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We are receiving a net < fI >I∈Ψ in F . According to our assumption,
there is at least one cluster point of the net, say h.

According to Lemma 1.54, Lsλ∈Λ (fλ ||X ) ⊂ F , since F ∈ F (X ).

Therefore, h ∈ F .

Then, there exists ϕ ∈ Λ such that h ∈ Gϕ.

Then, for each I ∈ Ψ, I ≥ {ϕ}, i.e. ϕ ∈ I, we have fI 6∈ Gϕ.

That is a contradiction because h is a cluster point of < fI >I∈Ψ.

Q.E.D.

Theorem 1.57: Let X be a topological space, < xλ >λ∈Λ be a net in X and
x ∈ X . Then,

xλ−−−→
λ∈Λ

x in X ⇐⇒
from each subnet < yψ >ψ∈Ψ of < xλ >λ∈Λ

one is able to select a subnet < zφ >φ∈Φ

such that zφ−−−→
φ∈Φ

x in X .

Proof:

1. If net converges to x then each its subnet converges to x.

2. Let < xλ >λ∈Λ be a net in X such that from each its subnet one is able
to select a subnet which converges to x ∈ X .

Assume, the net is not converging to x.

Then, there exists G ∈ G (X ), x ∈ G such that xλ 6∈ G confinally.

Define

Ψ = {λ ∈ Λ : xλ 6∈ G} .

The set is directed, if ordering of Λ is considered.

Define a net < bλ >λ∈Ψ in X setting bλ = xλ for all λ ∈ Ψ.

Then, < bλ >λ∈Ψ is a subnet of < xλ >λ∈Λ.

According to our assumption, there is its subnet < ξγ >γ∈Γ such that
ξγ −−−→

γ∈Γ
x. That is a contradiction with selection of < bλ >λ∈Ψ.

Q.E.D.
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This property is typical for convergence induced by a topology.

Convergence induced by product topology is a convergence via coordi-
nates.

Theorem 1.58: Let T 6= ∅ and for each t ∈ T a topological space Xt be
given. Let < xψ >ψ∈Ψ be a net in X

t∈T
Xt and x ∈ X

t∈T
Xt. Then,

xψ−−−→
ψ∈Ψ

x in
⊗
t∈T

Xt ⇐⇒ ∀ t ∈ T : xψ,t−−−→
ψ∈Ψ

xt in Xt.

Proof: Product topology is determined by a subbasis

G =
{
T

Π−1
{t} (G) : G ∈ G (Xt) , t ∈ T

}
.

1. Let xψ−−−→
ψ∈Ψ

x in
⊗

t∈T Xt.

Fix t ∈ T .

Then for each G ∈ G (Xt), xt ∈ G we have xψ ∈ T
Π−1
{t} (G) eventually,

since x ∈
T

Π−1
{t} (G) and

T
Π−1
{t} (G) ∈ G.

That means xψ,t ∈ G eventually.

Thus, ∀ t ∈ T we have xψ,t−−−→
ψ∈Ψ

xt in Xt.

2. Let ∀ t ∈ T we have xψ,t−−−→
ψ∈Ψ

xt in Xt.

Then for each G ∈ G (Xt), t ∈ T , xt ∈ G we have xψ,t ∈ G eventually.

That means xψ ∈ T
Π−1
{t} (G) eventually.

Thus, xψ−−−→
ψ∈Ψ

x in
⊗

t∈T Xt.

Q.E.D.

If a topological space fulfills I.axiom of countability, topology is deter-
mined by convergence of sequences.

Lemma 1.59 Let X be a topological space which fulfills I.axiom of countabil-
ity, and A ⊂ X . Then, A ∈ F (X ) if and only if for each sequence xn ∈ A,
n ∈ N, which converges to a point x ∈ X , we have x ∈ A.
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Proof: Take net < xλ >λ∈Λ in A which converges to x ∈ X .
Space fulfills I.axiom of countability and, thus, there exists countable basis
of neighborhoods at point x. Without any loss of generality we can assume
a basis of neighborhoods with property U1 ⊃ U2 ⊃ U3 ⊃ U4 ⊃ . . . .
Then, there are indexes λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ . . . such that for each k ∈ N
and for all λ ∈ Λ, λ ≥ λk we have xλ ∈ Uk.
Therefore xλk −−−−−→k→+∞

x.

Consequently x ∈ A and A is a closed set.

Q.E.D.

Let us mention, < xλk >k∈N does not have to be a subnet of < xλ >λ∈Λ.

Lemma 1.60 Let T be uncountable and a topological space Xt is given for
each t ∈ T . If for each t ∈ T there is Gt ∈ G (Xt) such that Gt 6= ∅ and
Gt 6= Xt then product topological space ( X

t∈T
Xt,
⊗

t∈T τ(Xt)) does not fulfill

the I. axiom of countability.

Proof: Select for each t ∈ T points 0t ∈ Gt, 1t 6∈ Gt and denote
0 = {0t : t ∈ T}.
Assume U0 is a countable basis of neighborhoods at 0.
Then, members of the basis can be numbered U0 = {Ui : i ∈ N}.

Hence, for each i ∈ N there is Qi ∈ G
(

X
t∈T
Xt
)

such that 0 ∈ Qi ⊂ Ui.

Moreover, for each i ∈ N there is Ii ∈ Fin (T ), Hi,t ∈ G (Xt) for all t ∈ Ii such

that 0 ∈
T

Π−1
Ii

(
X
t∈Ii

Hi,t

)
⊂ Qi ⊂ Ui.

There is τ ∈ T \
⋃
i∈N Ii, since T is uncountable and

⋃
i∈N Ii is at most

countable.
Consider point δ ∈ X

t∈T
Xt, where δτ = 1τ and δt = 0t for all t ∈ T , t 6= τ .

Then, 0 ∈
T

Π−1
{τ} (Gτ ) ∈ G

(
X
t∈T
Xt
)

and δ 6∈
T

Π−1
{τ} (Gτ ) but δ ∈ Ui for all

i ∈ N.
That is a contradiction, because U0 is a basis of neighborhoods at 0.

Q.E.D.

There is a general theory on convergence, i.e. Convergence Spaces. Their
theory lays outside of the concept of the lecture. Convergence almost surely
is a straightforward example of convergence which is induced by no topology.
Even for real random variables we have no topology inducing almost sure
convergence. It is seen because statement of Theorem 1.57 is violated.
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1.7 Continuity of functions

In this section, we introduce definitions and basic properties of continuous
and semicontinuous functions.

Definition 1.61 Let X , Y be topological spaces and f : X → Y be a func-
tion. We say f is continuous (cz. spojitá) whenever for all G ∈ G (Y ) we
have f−1(G) ∈ G (X ).

The set of all continuous functions from X to Y will be denoted by
C (X ,Y). If Y = R we abbreviate notation by C (X ).

Definition 1.62 Let X be a topological space and f : X → R be a function.

• We say that f is lower semicontinuous (cz. zdola polospojitá) whenever
for all r ∈ R we have f−1((r,+∞)) ∈ G (X ).

• We say that f is upper semicontinuous (cz. zhora polospojitá) whenever
for all r ∈ R we have f−1((+∞, r)) ∈ G (X ).

These notions possess equivalent description by convergent nets. For that we
need to explain a notation.

Definition 1.63 Let X be a topological space, A ⊂ X , A 6= ∅, x ∈ clo (A).

• Let Y be a topological space, y ∈ Y and f : X → Y be a mapping. We
say that f(ξ) is tending to y while ξ is tending to x with respect to A
if for each G ∈ G (Y ), y ∈ G there is H ∈ G (X ), x ∈ H such that for
each ξ ∈ H ∩ A, ξ 6= x we have f(ξ) ∈ G. We denote the fact by the
symbol

lim
ξ → x
ξ ∈ A

f(ξ) = y.

• Let f : X → R be a function and y ∈ R. We say that
limes inferior of f(ξ) is y while ξ is tending to x with respect to A if

– For each r ∈ R, r < y there is H ∈ G (X ), x ∈ H such that for
each ξ ∈ H ∩ A, ξ 6= x we have f(ξ) > r.

– For each r ∈ R, r > y, H ∈ G (X ), x ∈ H there is ξ ∈ H ∩ A,
ξ 6= x with f(ξ) < r.

We denote the fact by the symbol

lim inf
ξ → x
ξ ∈ A

f(ξ) = y.
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• Let f : X → R be a function and y ∈ R. We say that
limes superior of f(ξ) is y while ξ is tending to x with respect to A if

– For each r ∈ R, r > y there is H ∈ G (X ), x ∈ H such that for
each ξ ∈ H ∩ A, ξ 6= x we have f(ξ) < r.

– For each r ∈ R, r < y, H ∈ G (X ), x ∈ H there is ξ ∈ H ∩ A,
ξ 6= x with f(ξ) > r.

We denote the fact by the symbol

lim sup
ξ → x
ξ ∈ A

f(ξ) = y.

For A = X we simplify the notation

lim
ξ→x

f(ξ), lim inf
ξ→x

f(ξ), lim sup
ξ→x

f(ξ).

These limits can be explained using nets.

Lemma 1.64 Let X be a topological space, A ⊂ X , A 6= ∅ and x ∈ clo (A).

• Let Y be a topological space, y ∈ Y and f : X → Y be a mapping.
Then

lim
ξ → x
ξ ∈ A

f(ξ) = y

iff

for each net < xλ >λ∈Λ in A with xλ−−−→
λ∈Λ

x in X and xλ 6= x for all

λ ∈ Λ we have f(xλ)−−−→
λ∈Λ

y in Y.

• Let y ∈ R and f : X → R be a mapping. Then

lim inf
ξ → x
ξ ∈ A

f(ξ) = y

iff

– For each net < xλ >λ∈Λ in A with xλ−−−→
λ∈Λ

x in X and xλ 6= x for

all λ ∈ Λ we have η ≥ y for each η ∈ Lsλ∈Λf(xλ).

– There is a net < ξψ >ψ∈Ψ in A with ξψ−−−→
ψ∈Ψ

x in X , ξψ 6= x for

all ψ ∈ Ψ and f(ξψ)−−−→
ψ∈Ψ

y in R.
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• Let y ∈ R and f : X → R be a mapping. Then

lim sup
ξ → x
ξ ∈ A

f(ξ) = y

iff

– For each net < xλ >λ∈Λ in A with xλ−−−→
λ∈Λ

x in X and xλ 6= x for

all λ ∈ Λ we have η ≤ y for each η ∈ Lsλ∈Λf(xλ).

– There is a net < ξψ >ψ∈Ψ in A with ξψ−−−→
ψ∈Ψ

x in X , ξψ 6= x for

all ψ ∈ Ψ and f(ξψ)−−−→
ψ∈Ψ

y in R.

Lemma 1.65

• Let X , Y be topological spaces and f : X → Y be a function. The
function f is continuous iff for all x ∈ X

lim
y→x

f(y) = f(x).

• Let X be a topological space and f : X → R be a function. The function
f is lower semicontinuous iff for each x ∈ X

lim inf
y→x

f(y) ≥ f(x).

• Let X be a topological space and f : X → R be a function. The function
f is upper semicontinuous iff for each x ∈ X

lim sup
y→x

f(y) ≤ f(x).

Continuity of a function can be treated at a single point.

Definition 1.66 Let X , Y be topological spaces, f : X → Y be a function
and x ∈ X .

• We say that f is continuous at x, whenever

lim
y→x

f(y) = f(x).
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• Let A ⊂ X . We say that f is continuous at x on A, whenever

lim
y → x
y ∈ A

f(y) = f(x).

Continuous functions determine an important σ-algebra.

Definition 1.67 Let X be a topological space. The smallest σ-algebra for
which all continuous real functions f : X → R are measurable is called
Baire σ-algebra. We will use notation Baire(X ).

Members of Baire(X ) are called Baire sets of the space X .

Evidently, Baire(X ) ⊂ B (X ).

1.8 Measures on topological spaces

Combining measures with topology presents a very powerful tool.

Definition 1.68 Let X be a topological space. All measures defined on Borel
σ-algebra B (X ) are called Borel measures.

We will consider Borel probability measures, or simply probabilities, in
this text.

Definition 1.69 Let X be a topological space. We denote by M1(X ) the
set of all Borel probability measures, i.e. all probability measures defined on
Borel σ-algebra B (X ).

Definition 1.70 Let X be a topological space. A family of sets

U(X ) =
⋂

µ∈M1(X )

MS (µ)

is called σ-algebra of universally measurable sets of X (cz. σ-algebra uni-
verzálně měřitelných množin).

Direct consequence of the definition is a chain of inclusions
Baire(X ) ⊂ B (X ) ⊂ U(X ).

By definition, probabilities are σ-additive. But they could possess better
and more helpful properties.

Definition 1.71 Let X be a topological space. We say µ ∈M1(X ) is regular
(cz. regulárńı) Borel probability measure if for each A ∈ B (X ) we have

µ (A) = sup {µ (F ) : F ⊂ A, F ∈ F (X )} .
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Definition 1.72 Let X be a topological space. We say µ ∈M1(X ) is Radon
(or, tight) (cz. Radonova, těsná) probability measure if for each A ∈ B (X )
we have

µ (A) = sup {µ (K) : K ⊂ A, K ∈ K (X )} .

The set of all Radon probability measures on X will be denoted by M1,t(X ).

Definition 1.73 Let A be a nonempty set. We say that A ⊂ P(A) is a
filter, (cz. filtr) if A is nonempty and for each B,C ∈ A there exists ω ∈ A
such that B ⊃ ω and C ⊃ ω.

Everybody can notice that A is a filter equivalently means (A,≤) is di-
rected with B ≤ C denoting B ⊃ C.

Definition 1.74 Let X be a topological space. We say µ ∈ M1(X ) is
τ -additive (cz. τ -aditivńı) Borel probability measure if for each filter F ⊂
F (X ) we have

µ

(⋂
F∈F

F

)
= inf {µ (F ) : F ∈ F} .

These properties of Borel probability measures are related. Let us intro-
duce some relations among them.

Lemma 1.75 Let X be a topological space and µ ∈ M1(X ). Then µ is
regular iff for each A ∈ B (X ) we have

µ (A) = inf {µ (G) : G ⊃ A, G ∈ G (X )} .

Lemmas from [8], pp.64-65, 1.7.9, 1.7.10, 1.7.14.

Lemma 1.76 Let X be a regular topological space. If µ ∈ M1(X ) is τ -
additive then µ is regular.

Proof: Consider that for each F ∈ F (X ) we have

µ (F ) = inf {µ (int (H)) : int (H) ⊃ F, H ∈ F (X )} .

Q.E.D.

Lemma 1.77 Let X be a topological space. If µ ∈ M1(X ) is Radon then µ
is τ -additive.
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Lemma 1.78 Let X be a locally compact topological space. If µ ∈ M1(X )
is τ -additive then µ is Radon.

Theorem 1.79: Let X be a compact topological space. If µ : Baire(X ) →
[0, 1] is a probability measure then there is uniquely defined µ̃ ∈ M1(X )
which is regular, τ -additive and enlarging µ, i.e. for all B ∈ Baire(X ) we
have µ̃(B) = µ (B).

Proof: See Theorem II.8.8, p.177 in [8].

Q.E.D.

1.9 Random maps

In this section, we consider a probability space (Ω,A,P), a nonempty set H
and maps from Ω to H.

1.9.1 General definitions

At first, let us recall definitions of outer and inner probabilities.

Definition 1.80 Let (Ω,A,P) be a probability space. Then, outer probability
(cz. vněǰśı pravděpodobnost) is defined as

P∗ : P(Ω)→ [0, 1] : A ∈ P(Ω) 7→ inf {P (B) : A ⊂ B ∈ A}

and inner probability (cz. vnitřńı pravděpodobnost) is defined as

P∗ : P(Ω)→ [0, 1] : A ∈ P(Ω) 7→ sup {P (B) : A ⊃ B ∈ A} .

Definition 1.81 Let (Ω,A,P) be a probability space, H be a nonempty set
and X : Ω → H be a map. We define outer distribution of X (cz. vněǰśı
rozděleńı)

µ∗X : P(H)→ [0, 1] : A ∈ P(H) 7→ P∗ (X ∈ A) ,

inner distribution of X (cz. vnitřńı rozděleńı)

µ∗X : P(H)→ [0, 1] : A ∈ P(H) 7→ P∗ (X ∈ A)

and measurability region of X (cz. oblast měřitelnosti)

ΣX = {A ∈ P(H) : P∗ (X ∈ A) = P∗ (X ∈ A)} .
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Lemma 1.82 Always, ΣX is a σ-algebra and µ∗X is a probability on ΣX .

Definition 1.83 Let (Ω,A,P) be a probability space, H be a nonempty set,
B ⊂ P(H) be a σ-algebra and X : Ω → H be a map. If B ⊂ ΣX , we say,
X is a B-measurable random variable (cz. B-měřitelná náhodná veličina)
and outer distribution of X restricted to B is called distribution of X (cz.
rozděleńı); notation µX = µ∗X |B .

Measurability is usually denoted by X : (Ω,A)→ (H,B) and, often, term
random variable with values in (H,B) is used.

Definition 1.84 Let (Ω,A,P) be a probability space, H be a topological
space and X : Ω → H be a map. We say X is a random variable (or,
Borel random variable) (cz. náhodná veličina, borelovská náhodná veličina)
if B (H) ⊂ ΣX , i.e. map X is B (H)-measurable.

Definition 1.85 Let (Ω,A,P) be a probability space, H be a nonempty set,
B ⊂ P(H) be a σ-algebra X, Y : Ω→ H be maps with B ⊂ ΣX , B ⊂ ΣY . We
say, distributions of X, Y coincide on B (cz. rozděleńı se shoduj́ı) whenever
µX (B) = µY (B) for each B ∈ B.

This fact will be denoted by X
D≡ Y on B.

1.9.2 Topology and randomness

Topology is combined with randomness in this section. We consider a net
of random variables Xλ : (Ω,A) → (X ,B (X )), λ ∈ Λ, where (Ω,A,P) is a
probability space and X is a topological space.

We focus to three most important convergences used for random variables;
i.e. convergence almost surely, in probability, in distribution. Convergence in
distribution of random variables is defined as the weak convergence of distri-
butions of these random variables. Thus, the weak convergence of probability
measures must be also remembered.

Definition 1.86 Let (Ω,A,P) be a probability space, X be a topological
space, < µλ >λ∈Λ be a net of probability measures and µ ∈ M1(X ). We
say < µλ >λ∈Λ converges weakly to µ (cz. konverguje slabě), whenever for
each G ∈ G (X ) it is fulfilled

lim inf
λ∈Λ

µλ(G) ≥ µ (G) .

The convergence will be denoted µλ
w−−−→
λ∈Λ

µ in X .
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Definition 1.87 Let X be a topological space. We consider M1(X ) as a
topological space M1(X ) = (M1(X ) ,w), where topology w is induced by
weak convergence and is called weak topology.

Definition 1.88 Let X be a topological space and M ⊂ M1(X ). We say
M is a weakly relative compact (cz. slabě relativńı kompakt) if from each net
in M we are able to select a subnet convergent in M1(X ).

In other words, clo (M) ∈ K (M1(X )).

Definition 1.89 Let X be a topological space and M ⊂ M1(X ). We say
M is tight (cz. těsná) if for each ε > 0 there exists K ∈ K (X ) such that
µ(K) > 1− ε for each µ ∈M.

We have an immediate simple observation.

Lemma 1.90 Let X be a topological space andM⊂M1(X ). IfM is tight,
then M⊂M1,t(X ).

Definition 1.91 Let (Ω,A,P) be a probability space, X be a topological
space. Consider a net of random variables < Xλ >λ∈Λ with values in X
and a random variable X with values in X .

1. We say that < Xλ >λ∈Λ converges almost surely to X in X , whenever
there exists Ω0 ∈ A, P (Ω0) = 1 such that (cz. konverguje skoro jistě,
konverguje s.j.) for each ω ∈ Ω0 it is fulfilled Xλ(ω)−−−→

λ∈Λ
X(ω) in X .

The convergence will be denoted Xλ
a.s.−−−→
λ∈Λ

X in X .

2. We say that < Xλ >λ∈Λ converges in t-probability to X in X (cz. kon-
verguje v t-pravděpodobnosti), whenever for each G ∈ G (X )

lim
λ∈Λ

P (Xλ 6∈ G,X ∈ G) = 0.

The convergence will be denoted Xλ
t−P−−−→
λ∈Λ

X in X .

3. We say that < Xλ >λ∈Λ converges in distribution to X in X (cz. kon-
verguje v distribuci), whenever for each G ∈ G (X ) it is fulfilled

lim inf
λ∈Λ

P (Xλ ∈ G) ≥ P (X ∈ G) .

The convergence will be denoted Xλ
D−−−→
λ∈Λ

X in X .
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Definition 1.92 We say that a random variable X is Radon (or tight),
whenever its distribution is a Radon probability measure; see Definition 1.72.

Theorem 1.93: Let X be a Radon random variable and G be a subbasis X
then

Xλ
t−P−−−→
λ∈Λ

X in X ⇐⇒ ∀G ∈ G : lim
λ∈Λ

P (Xλ 6∈ G,X ∈ G) = 0 .

Proof: Let G ∈ G (X ).
Then, it can be written as G =

⋃
ψ∈ΨGψ, where Gψ =

⋂
j∈Jψ Qj,ψ for some

Qj,ψ ∈ G and Jψ is a finite set for each ψ ∈ Ψ.
Fix ε > 0.
Since X is a Radon random variable, there is K ∈ K (X ) such that K ⊂ G
and P (X ∈ K) > P (X ∈ G)− ε.
Since K ∈ K (X ) and K ⊂ G =

⋃
ψ∈ΨGψ, there exists I ∈ Fin (Ψ) such that

K ⊂
⋃
ψ∈I Gψ ⊂ G. Therefore,

P

(
X ∈

⋃
ψ∈I

Gψ

)
≥ P (X ∈ K) > P (X ∈ G)− ε,

Then,

lim sup
λ∈Λ

P (Xλ 6∈ G,X ∈ G)

≤ lim sup
λ∈Λ

P

(
Xλ 6∈

⋃
ψ∈I

Gψ, X ∈ G

)

≤ lim sup
λ∈Λ

P

(
Xλ 6∈

⋃
ψ∈I

Gψ, X ∈
⋃
ψ∈I

Gψ

)
+ P (X ∈ G)− P

(
X ∈

⋃
ψ∈I

Gψ

)

≤
∑
ψ∈I

lim sup
λ∈Λ

P

(
Xλ 6∈

⋃
ψ∈I

Gψ, X ∈ Gψ

)
+ ε

≤
∑
ψ∈I

lim sup
λ∈Λ

P (Xλ 6∈ Gψ, X ∈ Gψ) + ε

=
∑
ψ∈I

lim sup
λ∈Λ

P

Xλ 6∈
⋂
j∈Jψ

Qj,ψ, X ∈
⋂
j∈Jψ

Qj,ψ

+ ε

≤
∑
ψ∈I

∑
j∈Jψ

lim sup
λ∈Λ

P

Xλ 6∈ Qj,ψ, X ∈
⋂
j∈Jψ

Qj,ψ

+ ε

≤
∑
ψ∈I

∑
j∈Jψ

lim sup
λ∈Λ

P (Xλ 6∈ Qj,ψ, X ∈ Qj,ψ) + ε = ε.
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Q.E.D.

Theorem 1.94: Let X be Radon random variable and G be a basis X then

Xλ
D−−−→
λ∈Λ

X in X ⇐⇒ lim infλ∈Λ P
(
Xλ ∈

⋃
i∈I Gi

)
≥ P

(
X ∈

⋃
i∈I Gi

)
∀ I finite and Gi ∈ G for i ∈ I.

Proof: Let G ∈ G (X ).
Then, it can be written as G =

⋃
ψ∈Ψ Gψ, where Gψ ∈ G.

Fix ε > 0.
Since X is a Radon random variable, there is K ∈ K (X ) such that K ⊂ G
and P (X ∈ K) > P (X ∈ G)− ε.
Since K ∈ K (X ) and K ⊂ G =

⋃
ψ∈ΨGψ, there exists I ∈ Fin (Ψ) such that

K ⊂
⋃
ψ∈I Gψ ⊂ G. Therefore,

P

(
X ∈

⋃
ψ∈I

Gψ

)
> P (X ∈ G)− ε.

Then,

lim inf
λ∈Λ

P (Xλ ∈ G) ≥ lim inf
λ∈Λ

P

(
Xλ ∈

⋃
ψ∈I

Gψ

)

≥ P

(
X ∈

⋃
ψ∈I

Gψ

)
> P (X ∈ G)− ε.

Q.E.D.

Theorem 1.95 (Portmanteau lemma): Let Xλ, λ ∈ Λ and X be random
variables with values in a topological space X . Then, following statements
are equivalent:

i) Xλ
D−−−→
λ∈Λ

X in X .

ii) µXλ
w−−−→
λ∈Λ

µX in X .

iii) For all G ∈ G (X ) it is fulfilled

lim inf
λ∈Λ

P (Xλ ∈ G) ≥ P (X ∈ G) .
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iv) For all F ∈ F (X ) it is fulfilled

lim sup
λ∈Λ

P (Xλ ∈ F ) ≤ P (X ∈ F ) .

v) For all lower bounded and lower semicontinuous functions f : X → R
it is fulfilled

lim inf
λ∈Λ

E [f(Xλ)] ≥ E [f(X)] .

vi) For all upper bounded and upper semicontinuous functions f : X →
R it is fulfilled

lim sup
λ∈Λ

E [f(Xλ)] ≤ E [f(X)] .

Bounded continuous functions are not giving an equivalent characteriza-
tion in general case. A general topological space can possess only a few of
bounded continuous functions. It can happen that constant functions are the
only bounded continuous functions on the space.

Convergence in distribution is preserved by a mapping with discontinuity
points of probability zero.

Definition 1.96 Let X , Y be topological spaces and F : X → Y. We denote
by

TF = {x ∈ X : F is discontinuous in x}

the set of all discontinuity points of F .

Theorem 1.97 (preserving of convergence in distribution): Let X , Y be
topological spaces, < Xλ >λ∈Λ be a net of random variables with values in X ,
X be a random variable with values in X , and, F : X → Y be a function.

If

Xλ
D−−−→
λ∈Λ

X in X and P (X ∈ TF ) = 0,

then

F (Xλ)
D−−−→
λ∈Λ

F (X) in Y .

Proof: Take H ∈ F (Y).
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1. Take x ∈ clo (F−1(H)).

There are two possibilities:

(a) x ∈ TF .

(b) x 6∈ TF ; i.e. F is continuous at x.

Since x ∈ clo (F−1(H)), there is a net xλ ∈ X , xλ−−−→
λ∈Λ

x with

F (xλ) ∈ H.

Then F (xλ)−−−→
λ∈Λ

F (x), because, F is continuous at x.

Therefore F (x) ∈ H.

Consequently, clo (F−1(H)) ⊂ F−1(H) ∪ TF .

2. Convergence in distribution follows from

lim sup
λ∈Λ

P (F (Xλ) ∈ H) = lim sup
λ∈Λ

P
(
Xλ ∈ F−1(H)

)
≤

≤ lim sup
λ∈Λ

P
(
Xλ ∈ clo

(
F−1(H)

))
≤ P

(
X ∈ clo

(
F−1(H)

))
≤ P

(
X ∈ F−1(H) ∪ TF

)
= P

(
X ∈ F−1(H)

)
= P (F (X) ∈ H) .

Q.E.D.

Let us mention, the classical version of Theorem on weak convergence
preservation by a continuous mapping is a particular case of Theorem 1.97.



Chapter 2

Metric spaces

2.1 Definition and basic properties

Let us start with definition.

Definition 2.1 Let E 6= ∅ and ρ : E × E → R+,0. We say, ρ is a metric on
E (cz. metrika), if

a) ρ (x, y) = 0 if and only if x = y.

b) ∀ x, y ∈ E : ρ (y, x) = ρ (x, y).

c) ∀ x, y, z ∈ E : ρ (x, y) ≤ ρ (x, z) + ρ (z, y)

and it is a pseudometric on E (cz. pseudometrika), if

a) ρ (x, x) = 0.

b) ∀ x, y ∈ E : ρ (y, x) = ρ (x, y).

c) ∀ x, y, z ∈ E : ρ (x, y) ≤ ρ (x, z) + ρ (z, y).

Definition 2.2 Space E = (E, ρ) is called a metric space (pseudometric space)
(cz. metriký prostor, pseudometriký prostor) whenever E 6= ∅ and ρ is a met-
ric (pseudometric) on E.

Definition 2.3 Let (E, ρ) be a metric space. A set

U (x, ε) = {y ∈ E : ρ (y, x) < ε} (2.1)

is called open ball with a center x ∈ E and a radius ε > 0 (cz. otevřené okoĺı
bodu x s poloměrem ε > 0) and a set

V (x, ε) = {y ∈ E : ρ (y, x) ≤ ε} (2.2)

45
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is called closed ball with a center x ∈ E and a radius ε > 0 (cz. uzavřené
okoĺı bodu x s poloměrem ε > 0).

Remark 2.4: Consider, that always clo (U (x, ε)) ⊂ V (x, ε). Unfortu-
nately, equality can be violated.

♠

Each metric space is a topological space.

Lemma 2.5 A metric space (E, ρ) is a topological space with a base

{U (x, ε) : x ∈ E, ε > 0} .

Let us recapitulate basic topological notions for metric spaces.

Remark 2.6: For a metric space (E, ρ) and A ⊂ E we have:

• A ∈ G (E) if and only if for each x ∈ A there exists ε > 0 such that
U (x, ε) ⊂ A.

• A ∈ F (E) if and only if E \ A ∈ G (E).

• Recall Borel σ-algebra B (E) = σ (G (E)).

♠

Topology of metric spaces is nice.

Theorem 2.7: A metric space (E, ρ) fulfills the I.axiom of countability.

Proof: A countable basis of neighborhoods at x can be taken for example
as Ux = {U (x, 2−n) : n ∈ N}.

Q.E.D.

Theorem 2.8: A metric space (E, ρ) is a normal T1 topological space.

Proof:

1. If x, y ∈ E, x 6= y, take an open ball G = U (x, ρ (x, y)) ∈ G (E). Then,
x ∈ G and y 6∈ G. Therefore, E is T1,
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2. Let F,H ∈ F (E) with F ∩H = ∅.
For each f ∈ F and h ∈ H there are εf , ηh > 0 such that
U (f, εf ) ∩H = ∅, U (h, ηh) ∩ F = ∅.
Set G =

⋃
f∈F U

(
f,

εf
2

)
, Q =

⋃
h∈H U

(
h, ηh

2

)
. After that, G,Q ∈ G (E),

F ⊂ G and H ⊂ Q.

Assume f ∈ G ∩Q.

Then there are u ∈ F and v ∈ H such that ρ (u, f) < εu
2

and ρ (v, f) <
ηv
2

.

Consequently,

max {εu, ηv} ≤ ρ (u, v) ≤ ρ (u, f) + ρ (v, f) <
εu + ηv

2
≤ max {εu, ηv} .

This is a contradiction, therefore, G ∩Q = ∅.
Normality of E is verified.

Q.E.D.

Theorem 2.9: Let T 6= ∅ and a metric space Et = (Et, ρt) be given for each
t ∈ T .

• If T is a finite set then product topological space ( X
t∈T

Et,
⊗

t∈T τ(Et))

is metrizable. If Et is complete for each t ∈ T then there is a metric
making the product topological space to be a complete metric space.

A convenient metric is for example

ρ (e, f) =
∑
t∈T

ρt (et, ft) for e, f ∈ X
t∈T

Et.

• If T is a countable set then product topological space ( X
t∈T

Et,
⊗

t∈T τ(Et))

is metrizable. If Et is complete for each t ∈ T then there is a metric
making the product topological space to be a complete metric space.

A convenient metric is for example

ρ (e, f) =
+∞∑
i=1

2−i
ρti (eti , fti)

ρti (eti , fti) + 1
for e, f ∈ X

t∈T
Et,

where we number indexes in T as T = {ti : i ∈ N}.
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• If T is an uncountable set and Et contains at least two different points
for each t ∈ T then product topological space ( X

t∈T
Et,
⊗

t∈T τ(Et)) cannot

be metrized.

Proof:

1. For T at most countable, the statement is evident.

2. If T is uncountable and Et contains at least two different points for
each t ∈ T , then product topological space ( X

t∈T
Et,
⊗

t∈T τ(Et)) does

not fulfill the I. axiom of countability; see Lemma 1.60. Therefore, it
cannot be metrized.

Q.E.D.

2.2 Convergence in metric spaces

According to Theorem 2.7, metric spaces fulfill the I.axiom of countability.
Therefore, we do not need nets to handle with topology of metric spaces.
Sequences are sufficient for that; see Lemma 1.59.

Convergence is determined by topology of metric spaces. But, there is
another description using metric.

Lemma 2.10 Let (E, ρ) be a metric space, Λ be a directed set and xλ, x ∈ E
for λ ∈ Λ. Then,

xλ−−−→
λ∈Λ

x in E ⇐⇒ lim
λ∈Λ

ρ (xλ, x) = 0. (2.3)

Proposition 2.11 If (E, ρ) is a metric space, then metric ρ : E × E → R
is a continuous function. Where (E × E, ψ) is a metric space with metric
ψ((x1, x2), (y1, y2)) = ρ (x1, y1) + ρ (x2, y2).

Proof: Metric space fulfills I. axiom of countability, therefore, continuity
of metric can be shown using sequences, only; see Lemma 1.59.
Let xn, yn, x, y ∈ E and limn→+∞ ψ((xn, yn), (x, y)) = 0.
Then xn → x, yn → y in E and

ρ (xn, yn) ≤ ρ (x, y) + ρ (xn, x) + ρ (yn, y) ,

ρ (x, y) ≤ ρ (xn, yn) + ρ (xn, x) + ρ (yn, y) .

Consequently,

−ρ (xn, x)− ρ (yn, y) ≤ ρ (xn, yn)− ρ (x, y) ≤ ρ (xn, x) + ρ (yn, y)

and, therefore, limn→+∞ ρ (xn, yn) = ρ (x, y).
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Q.E.D.

Consider σ-algebra generated by metric ρ

σ (ρ) = {{(x, y) ∈ E× E : ρ (x, y) ∈ B} : B ∈ B} .

Always σ (ρ) ⊂ B (E× E). A connection to product σ-algebra B (E)2 is a
question.

Theorem 2.12: If (E, ρ) is separable metric space, then σ (ρ) ⊂ B (E)2.

Proof: If is E separable, then there is an at most countable set D ⊂ E
dense in E. Set for ε > 0 and n ∈ N

Qn,ε =
⋃

b, d ∈ D
ρ (b, d) ≤ ε+ 2−n

U
(
b, 2−n

)
× U

(
d, 2−n

)
.

We have Q1,ε ⊃ Q2,ε ⊃ Q3,ε ⊃ . . . . and⋂+∞
n=1Qn,ε = {(x, y) ∈ E× E : ρ (x, y) ≤ ε}.

Consequently, {(x, y) ∈ E× E : ρ (x, y) ≤ ε} ∈ B (E)2 since Qn,ε ∈ B (E)2

∀ n ∈ N.
Finally, σ (ρ) ⊂ B (E)2.

Q.E.D.

Definition 2.13 A sequence xn, n ∈ N in a metric space (E, ρ) is called
Cauchy (cz. Cauchyovská), whenever lim(n,m)∈M ρ (xn, xm) = 0, where M =
N2 is directed by ordering (n1, n2) ≤ (m1,m2) ⇐⇒ n1 ≤ m1, n2 ≤ m2.

Lemma 2.14 A Cauchy sequence xn, n ∈ N in a metric space (E, ρ) pos-
sesses at most one limit in (E, ρ).

Definition 2.15 A metric space (E, ρ) is called complete (cz. úplný), when-
ever all Cauchy sequences possess a limit in (E, ρ).

Definition 2.16 Let (E, ρ), (Ẽ, ρ̃) be metric spaces. We say (Ẽ, ρ̃) is

a completion of (E, ρ) (cz. zúplněńı) if there is an imbedding ι : E→ Ẽ such
that (ι(E), ρ̃) is a complete metric space and ρ (x, y) = ρ̃ (ι(x), ι(y)) for all
x, y ∈ E.

Theorem 2.17: Each metric space possesses a completion.
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Proof: Consider a metric space (E, ρ) and

M =
{

(xn, n ∈ N) ∈ EN : (xn, n ∈ N) is Cauchy in E
}
.

Take (xn, n ∈ N), (yn, n ∈ N) ∈ M. Then ρ (xn, yn), n ∈ N is Cauchy in R,
since

|ρ (xk, yk)− ρ (xn, yn)| ≤ ρ (xk, xn) + ρ (yk, yn) .

Therefore, we can correctly define ψ : M×M→ R as

ψ ((xn, n ∈ N), (yn, n ∈ N)) = lim
n→+∞

ρ (xn, yn) .

ψ is a pseudometric on M.
We define an equivalence ∼ on M by (xn, n ∈ N) ∼ (yn, n ∈ N) whenever
ψ ((xn, n ∈ N), (yn, n ∈ N)) = 0.

Set Ẽ = M|∼ and ρ̃ (u, v) = ψ ((xn, n ∈ N), (yn, n ∈ N)) for each (xn, n ∈
N) ∈ u, (yn, n ∈ N) ∈ v.
Set ux = {(yn, n ∈ N) ∈M : limn→+∞ ρ (yn, x) = 0} for all x ∈ E.

We have a natural imbedding ι : E → Ẽ : x ∈ E 7→ ux and (Ẽ, ρ̃) is a
completion of (E, ρ).

Q.E.D.

Definition 2.18 A topological space X is called Polish (cz. Polský prostor),
whenever there is a metric ρ : X × X → R such that (X , ρ) is a complete
separable metric space and both topologies coincide.

“To be Polish” is a topological notion. A topological space can be equipped
with two different metrics such that topologies coincide and the space is com-
plete in one of them and non-complete in the other one.

Example 2.19: Consider open interval (0, 1) and two metrics ρ1, ρ2 defined
for x, y ∈ (0, 1) by

ρ1(x, y) = |x− y|,

ρ2(x, y) =

∣∣∣∣ 2x− 1

x(1− x)
− 2y − 1

y(1− y)

∣∣∣∣ .
ρ2 is also metric, since function

ψ(x) =
2x− 1

x(1− x)
=

1

1− x
− 1

x
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is increasing bijection between (0, 1) and R.
Space ((0, 1), ρ1) is a separable metric, but, non-complete, since a se-

quence 1
n
, n ∈ N is Cauchy and does not converge. Its limit “lays outside of”

the interval (0, 1).
Space ((0, 1), ρ2) is a complete separable metric space, since it is isomorfic

with Euclidean space R.

4

Construction in example leads to a general characterization of Polish
spaces.

Theorem 2.20: A topological space is Polish if and only if it is isomorphic
with a Gδσ-subset of some complete separable metric space.

Definition 2.21 Let (E, ρ) be a metric space and A ⊂ E. We say,
A is totally bounded (cz. totálně omezená) if for each ε > 0 there is a finite
set Hε ⊂ E such that for each x ∈ E one can find y ∈ Hε with property
ρ (x, y) < ε.

Lemma 2.22 Let (E, ρ) be a metric space and A ⊂ E.

A ∈ K (E) =⇒ A ∈ F (E) and A is a totally bounded set. (2.4)

Lemma 2.23 Let (E, ρ) be a complete metric space and A ⊂ E.

A ∈ K (E) ⇐⇒ A ∈ F (E) and A is a totally bounded set. (2.5)

2.3 Metric space and randomness

This chapter combines metric spaces and randomness. We will consider a
net of random variables < Xλ >λ∈Λ with values in a metric space and its
convergence almost surely, in probability and in distribution will be studied.

Lemma 2.24 If E is a metric space, then each µ ∈M1(E) is regular.

Lemma 2.25 If E is a Polish space, then each µ ∈ M1(E) is Radon and
τ -additive.

Convergence almost surely possesses no new relation in a metric space.
But, there is another natural notion of convergence in probability.
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Definition 2.26 Let E be a metric space, Λ be a directed set, Xλ, λ ∈ Λ be
random variables in E and X be a a random variable in E. We say,
< Xλ >λ∈Λ converges in probability to X in E
(cz. konverguje v pravděpodobnosti), whenever for each ε > 0 it is fulfilled

lim
λ∈Λ

P (ρ (Xλ, X) > ε) = 0.

The convergence will be denoted Xλ
P−−−→
λ∈Λ

X in E.

Theorem 2.27: Let E be a metric space, Λ be a directed set, Xλ, λ ∈ Λ be
random variables in E and X be a random variable in E. Then

Xλ
P−−−→
λ∈Λ

X in E =⇒ Xλ
t−P−−−→
λ∈Λ

X in E .

Proof: Let Xλ
P−−−→
λ∈Λ

X in E.

Fix x ∈ E and ε > 0.
Take 0 < δ < ε.
We can estimate

lim sup
λ∈Λ

P (Xλ 6∈ U (x, ε) , X ∈ U (x, ε))

≤ lim sup
λ∈Λ

P (Xλ 6∈ U (x, ε) , X ∈ U (x, δ)) + P (X ∈ U (x, ε) \ U (x, δ))

≤ lim sup
λ∈Λ

P (ρ (Xλ, X) > ε− δ) + P (X ∈ U (x, ε) \ U (x, δ))

= P (X ∈ U (x, ε) \ U (x, δ)) ,

since Xλ
P−−−→
λ∈Λ

X in E.

We have shown Xλ
t−P−−−→
λ∈Λ

X in E, since

lim
δ→ε−

P (X ∈ U (x, ε) \ U (x, δ)) = 0 .

Q.E.D.

Theorem 2.28: Let E be a metric space, Λ be a directed set, Xλ, λ ∈ Λ be
random variables in E and X be a a random variable in E. If X is Radon
then

Xλ
t−P−−−→
λ∈Λ

X in E⇐⇒ Xλ
P−−−→
λ∈Λ

X in E .
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Proof: Let Xλ
t−P−−−→
λ∈Λ

X in E.

Fix ε > 0.
Take δ > 0.
There is a K ∈ K (E) such that P (X ∈ K) ≥ 1− δ; since X is Radon.
According to Lemma 2.22, there is a finite set H ⊂ E such that K ⊂⋃
x∈H U

(
x, ε

2

)
.

Hence, we can estimate

lim sup
λ∈Λ

P (ρ (Xλ, X) > ε) ≤ lim sup
λ∈Λ

P (ρ (Xλ, X) > ε, X ∈ K) + δ

≤ lim sup
λ∈Λ

P

(
ρ (Xλ, X) > ε, X ∈

⋃
x∈H

U
(
x,
ε

2

))
+ δ

≤
∑
x∈H

lim sup
λ∈Λ

P
(
ρ (Xλ, X) > ε, X ∈ U

(
x,
ε

2

))
+ δ

≤
∑
x∈H

lim sup
λ∈Λ

P
(
Xλ 6∈ U

(
x,
ε

2

)
, X ∈ U

(
x,
ε

2

))
+ δ

= δ,

since Xλ
t−P−−−→
λ∈Λ

X in E.

We have shown Xλ
P−−−→
λ∈Λ

X in E.

Q.E.D.

List of equivalent descriptions of convergence in distribution is a bit larger
than in general topological space.

Theorem 2.29 (Portmanteau lemma): Let Λ be a directed set, Xλ, λ ∈ Λ
and X be random variables with values in a metric space E = (E, ρ). Then
the following statements are equivalent:

i) Xλ
D−−−→
λ∈Λ

X in E.

ii) For each G ∈ G (E) we have

lim inf
λ∈Λ

P (Xλ ∈ G) ≥ P (X ∈ G) .

iii) For each F ∈ F (E) we have

lim sup
λ∈Λ

P (Xλ ∈ F ) ≤ P (X ∈ F ) .
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iv) For each lower bounded and lower semicontinuous function f : E→
R it is fulfilled

lim inf
λ∈Λ

E [f(Xλ)] ≥ E [f(X)] .

v) For each upper bounded and upper semicontinuous function f : E→
R it is fulfilled

lim sup
λ∈Λ

E [f(Xλ)] ≤ E [f(X)] .

vi) For each continuous bounded function f : E→ R we have

lim
λ∈Λ

E [f(Xλ)] = E [f(X)] .

vii) For each B ∈ B (E) with P (X ∈ ∂ (B)) = 0 we have

lim
λ∈Λ

P (Xλ ∈ B) = P (X ∈ B) .

Proof:

1. From Theorem 1.95 we know (i)⇔ (ii)⇔ (iii)⇔ (iv)⇔ (v).

2. Immediately (iv), (v)⇒ (vi),

3. We have (ii), (iii)⇒ (vii), since for B ∈ B (E), P (X ∈ ∂ (B)) = 0

P (X ∈ B) = P (X ∈ int (B))

≤ lim inf
λ∈Λ

P (Xλ ∈ int (B)) ≤ lim inf
λ∈Λ

P (Xλ ∈ B)

≤ lim sup
λ∈Λ

P (Xλ ∈ clo (B))

≤ P (X ∈ clo (B)) = P (X ∈ B) .

4. It remains to show (iv), (v)⇐ (vi) and (ii), (iii)⇐ (vii).

Q.E.D.

Theorem 2.30 (Prochorovova věta): Let E be a Polish space and M ⊂
M1(E). Then it is equivalent:

i) M is a weak relative compact.
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ii) M is tight.

(Recall Definitions 1.88 and 1.89)

Proof: See textbook [5].

Q.E.D.

Example 2.31: Consider a metric space (E, ρ) and define a topology τ
generated by a subbasis

G = {E \ V (x, ε) : x ∈ E, ε > 0} .

Then, (E, τ) is T1. Let be sup {ρ (x, y) : x, y ∈ E} = +∞, then (E, τ) cannot
be Hausdorff.

Topology τ is called ball topology.

Let us give a short proof.

1. Let x, y ∈ E, x 6= y then G = E \ V
(
y, 1

2
ρ (x, y)

)
fulfills G ∈ G (E, τ),

x ∈ G and y 6∈ G. Therefore (E, τ) is T1.

2. Let x, y ∈ E, x 6= y, G,Q ∈ G (E), x ∈ G, x ∈ Q and G ∩Q = ∅.
Then, there are I, J ∈ N, x1, x2, . . . , xI ∈ E, ε1, ε2, . . . , εI ∈ R+,0,
y1, y2, . . . , yJ ∈ E, ϕ1, ϕ2, . . . , ϕJ ∈ R+,0 such that

x ∈ E \
I⋃
i=1

V (xi, εi) ⊂ G,

y ∈ E \
J⋃
j=1

V (yj, ϕj) ⊂ Q.

We assume G ∩Q = ∅, therefore,

E ⊂
I⋃
i=1

V (xi, εi) ∪
J⋃
j=1

V (yj, ϕj) .

Hence, sup {ρ (x, y) : x, y ∈ E} ≤ 2
(∑I

i=1 εi +
∑J

j=1 ϕj

)
< +∞.

Therefore, if diameter of E is infinite then E cannot be Hausdorff.

4
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2.4 Normed spaces

Consider normed spaces a particular case of metric spaces.

Definition 2.32 A space E = (E, ‖·‖) is called a normed space (or, a space
with norm) (cz. normovaný prostor, nebo prostor s normou) if E is a linear
vector space and ‖·‖ is a norm.

Lemma 2.33 Let E = (E, ‖·‖) be a normed space. Then, ρ : E × E → R
defined by ρ (x, y) = ‖x− y‖ is a metric.

Definition 2.34 A normed space E = (E, ‖·‖) is considered as a topological
space with topology of the metric space E = (E, ρ), where
ρ : E× E→ R : (x, y) ∈ E× E→ ‖x− y‖.

Lemma 2.35 Let E = (E, ‖·‖) be a normed space. Then, ‖·‖ is continuous.

Proof: Statement follows an estimate |‖x‖ − ‖y‖| ≤ ‖x− y‖.

Q.E.D.

Definition 2.36 A space E = (E, ‖·‖) is called a Banach space (cz. Ba-
nach̊uv prostor) if (E, ‖·‖) is a complete normed space.

Theorem 2.37: Let T 6= ∅ and a normed space Et = (Et, ‖·‖t) be given for
each t ∈ T .

• If T is a finite set then product topological space ( X
t∈T

Et,
⊗

t∈T τ(Et))

can be equipped with a norm to be a normed space. If moreover Et is a
Banach space for each t ∈ T then there is a norm making the product
topological space to be a Banach space.

A convenient norm is for example

‖f‖ =
∑
t∈T

‖ft‖t for f ∈ X
t∈T

Et

or

‖f‖ =

√∑
t∈T

‖ft‖2
t for f ∈ X

t∈T
Et.
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• If T is a countable set and Et contains at least two different points
for each t ∈ T then there is no norm making product topological space
( X
t∈T

Et,
⊗

t∈T τ(Et)) to be a normed space. Nevertheless, product topo-

logical space ( X
t∈T

Et,
⊗

t∈T τ(Et)) is metrizable. If moreover Et is a Ba-

nach space for each t ∈ T then there is a metric making the product
topological space to be a complete metric space.

Such a convenient metric is

ρ (e, f) =
+∞∑
i=1

2−i
‖eti − fti‖ti
‖eti − fti‖ti + 1

for e, f ∈ X
t∈T

Et,

where we number members of T as T = {ti : i ∈ N}.

• If T is an uncountable set and Et contains at least two different points
for each t ∈ T then product topological space ( X

t∈T
Et,
⊗

t∈T τ(Et)) cannot

be metrized.

Proof:

1. If T is a finite set, the statement is evident.

2. Let T be a countable set and Et contains at least two different points
for each t ∈ T .

Assume ( X
t∈T

Et, ‖ · ‖) is a normed space.

Without any loss of generality we can expect T = N.

Take some ei ∈ Ei, ei 6= 0, i ∈ N.

Now, one can recursively construct αi > 0, i ∈ N such that ‖xk‖ = k
for each k ∈ N, where xk,i = αiei for i = 1, 2, . . . , k and xk,i = 0 for
i = k + 1, k + 2, . . . .

Then, xk → ξ in product topology, where ξi = αiei for all i ∈ N.

Hence, ξ ∈ X
t∈T

Et would have ‖ξ‖ = +∞, because we should have

limk→+∞ ‖xk‖ = ‖ξ‖ in the normed space.

That is a contradiction, since norm must be real-valued.

3. If T is countable the product space is metrizable with a metric

ρ (e, f) =
+∞∑
i=1

2−i
‖eti − fti‖ti
‖eti − fti‖ti + 1

for e, f ∈ X
t∈T

Et .
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If Et is a Banach space for each t ∈ T then the metric is making the
product space to be a complete metric.

4. If T is uncountable, product space cannot be metrized, see Theorem
2.9.

Q.E.D.



Chapter 3

Space of all functions

3.1 RT - topology

We consider the space of all real functions RT equipped with product topol-
ogy; i.e. RT = (RT , τ(R)⊗T ). Therefore convergence in this space is a con-
vergence via coordinates.

Theorem 3.1: Let T 6= ∅.

• If T is a finite set then product topological space (RT , τ(R)⊗T ) can be
equipped with a norm to be Banach. A convenient norm is for example

‖f‖ =
∑
t∈T

|ft| for f ∈ RT

or

‖f‖ =

√∑
t∈T

|ft|2 for f ∈ RT .

• If T is a countable set then there is no norm making product topological
space (RT , τ(R)⊗T ) to be a normed space. Nevertheless, the product
topological space is a Polish space. A suitable metric is

ρ (e, f) =
+∞∑
i=1

2−i
|eti − fti |
|eti − fti |+ 1

for e, f ∈ RT ,

where we numbered members of T as T = {ti : i ∈ N}.

• If T is an uncountable set then product topological space (RT , τ(R)⊗T )
cannot be metrized.
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Proof: Theorem is a straightforward application of Theorem 2.37 for the
case Et = R for all t ∈ T .

Q.E.D.

Convergence via coordinates is inducing a product topology; see Section
1.5. Product topology is determined by a subbase{

T
Π−1
{t} (a, b) : t ∈ T, a < b, a, b ∈ R

}
.

Upper index −1 denotes inverse mapping; i.e. preimage of a given set.
Also, other subbases are available, for example{

T
Π−1
{t} (G) : t ∈ T, G ∈ G (R)

}
,{

T
Π−1
I (G) : I ∈ Fin (T ) , G ∈ G

(
RI
)}
,{

T
Π−1
I

(
X
i∈I

(ai, bi)

)
: I ∈ Fin (T ) , ai < bi for i ∈ I

}
.

Definition 3.2 For I ∈ Fin (T ) and B ∈ BI , a set
T

Π−1
I (B) is called

cylinder with a finite base (cz. válec s konečněrozměrnou podstavou).
A σ-algebra generated by all cylinders with a finite base is called

cylindric σ-algebra (cz. válcová σ-algebra) and will be denoted by Cylindric (T )
in this text.

It is interesting that cylindric σ-algebra coincides with Baire σ-algebra.

Theorem 3.3: We have a relation

B
(
RT
)
⊃ Cylindric (T ) = BT = Baire

(
RT
)
.

Proof: Inclusion is trivial, the first equality follows definition of cylindric
σ-algebra and last equality follows [6].

Q.E.D.

In later sections, we will need open sets and the other topological notions
with a base restricted to a given index set.

Definition 3.4 Let S ⊂ T , S 6= ∅. We will denote

TGS =
T

Π−1
S

(
G
(
RS
))
, TFS =

T
Π−1
S

(
F
(
RS
))
, TBS =

T
Π−1
S

(
B
(
RS
))
,

TKS =
T

Π−1
S

(
K
(
RS
))
, TGS;δσ =

T
Π−1
S

(
Gδσ
(
RS
))
.
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Closed, open and compact sets in RT possess nice helpful characteriza-
tions by means of finite number of coordinates.

Lemma 3.5 Let A ⊂ RT and x ∈ A. Then,

x ∈
⋂

I∈Fin(T )
T

Π−1
I

(
T

ΠI (A)
)
. (3.1)

Proof: The statement is evident.

Q.E.D.

Lemma 3.6 Let F ∈ F
(
RT
)

and x ∈ RT . Then,

x ∈ F ⇐⇒ x ∈
⋂

I∈Fin(T )
T

Π−1
I

(
T

ΠI (F )
)
. (3.2)

Proof: We will show separately each of both implication.

1. For x ∈ F we immediately have x ∈
⋂
I∈Fin(T ) T

Π−1
I

(
T

ΠI (F )
)
; see

Lemma 3.5.

2. Assume x ∈
⋂
I∈Fin(T ) T

Π−1
I

(
T

ΠI (F )
)
.

Then, for each I ∈ Fin (T ) there is ξI ∈ F such that ξII = xI .

Index set Fin (T ) is directed by preorder

I ≤ J ⇐⇒ I ⊂ J.

Then, < ξI >I∈Fin(T ) is a net in F .

For t ∈ T and for each I ∈ Fin (T ) such that t ∈ I, we have ξIt = xt.

We have verified convergence ξI −−−−−−→
I∈Fin(T )

x in RT .

We know ξI ∈ F and F ∈ F
(
RT
)

therefore x ∈ F .

Q.E.D.

Lemma 3.7 Let F ∈ F
(
RT
)

and x ∈ RT . Then,

x ∈ F ⇐⇒ x ∈
⋂

I∈Fin(T )
T

Π−1
I

(
clo
(
T

ΠI (F )
))
. (3.3)
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Proof: We will show separately each of both implication.

1. If x ∈ F , then immediately x ∈
⋂
I∈Fin(T ) T

Π−1
I

(
clo
(
T

ΠI (F )
))

.

2. Take x ∈
⋂
I∈Fin(T ) T

Π−1
I

(
clo
(
T

ΠI (F )
))

.

Then, for each I ∈ Fin (T ) and ε > 0 there is ξI,ε ∈ F such that

∀ t ∈ I we have |ξI,εt − xt| < ε.

Denote Λ = {(I, ε) : I ∈ Fin (T ) , ε > 0} and consider a preorder

(I, ε) ≤ (J, η) ⇐⇒ I ⊂ J, ε ≥ η.

Then, Λ = (Λ,≤) is directed and < ξI,ε >(I,ε)∈Λ is a net in F .

For t ∈ T , ε > 0 and for each I ∈ Fin (T ) such that t ∈ I,
we have |ξI,εt − xt| < ε.

That is ξI,ε−−−−−→
(I,ε)∈Λ

x.

We know ξI,ε ∈ F and F ∈ F
(
RT
)
.

Consequently, x ∈ F .

Q.E.D.

Theorem 3.8: Let A ⊂ RT . Then, A ∈ F
(
RT
)

if and only if

A =
⋂

I∈Fin(T )
T

Π−1
I (clo

(
T

ΠI (A)
)
). (3.4)

Proof:

1. The right-hand side of (3.4) is a closed set being an intersection of
closed sets. Therefore (3.4) implies A ∈ F

(
RT
)
.

2. Assume A ∈ F
(
RT
)
. According to Lemma 3.7, (3.4) is fulfilled.

Q.E.D.

Theorem 3.9: Let A ⊂ RT . Then, A ∈ G
(
RT
)

if and only if

A =
⋃

I∈Fin(T )
T

Π−1
I (int

(
T

ΠI (A)
)
). (3.5)
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Proof: Characterization is a consequence of Theorem 3.8 and of the fact
that open set is complement of a closed set.

Q.E.D.

Theorem 3.10: Let A ⊂ RT . Then, A ∈ K
(
RT
)

if and only if

∀ I ∈ Fin (T ) we have
T

ΠI (A) ∈ K
(
RI
)
, (3.6)

A =
⋂

I∈Fin(T )
T

Π−1
I (

T
ΠI (A)). (3.7)

Proof:

1. Let A ∈ K
(
RT
)
.

(a) Take I ∈ Fin (T ) and consider a sequence xn ∈
T

ΠI (A), n ∈ N.

Then, for each n ∈ N there is an ∈ A such that anI = xn.

Since A is a compact, there is a subnet such that

aφ(ψ)−−−→
ψ∈Ψ

b ∈ A.

Then,

xφ(ψ) = a
φ(ψ)
I −−−→

ψ∈Ψ
bI ∈ T

ΠI (A) .

Now, we can select a subsequence xφ(ψk), k ∈ N such that

‖xφ(ψk) − bI‖ <
1

k
, φ(ψk) < φ(ψk+1).

We have found a convergent subsequence of the sequence xn, n ∈ N
with limit in

T
ΠI (A).

Thus we have verified
T

ΠI (A) ∈ K
(
RI
)
.

(b) Now, we have verified
T

ΠI (A) ∈ K
(
RI
)

for each I ∈ Fin (T ).

Therefore according to Theorem 3.8, we have description (3.7).

2. Assume (3.6) and (3.7).

Then according to Theorem 3.8, A ∈ F
(
RT
)
.

Evidently,

A ⊂ X
t∈T T

Π{t} (A) .

Product of compacts is a compact in RT , according to Theorem 1.41
(Tikhonov Theorem).

Therefore, A ∈ K
(
RT
)
.
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Q.E.D.

3.2 RT and randomness

Before proceeding to the subject, we have to fix terminology on random
processes. We assume a probability space (Ω,A,P) and we will deal with
collections of mappings X = (X (t) , t ∈ T ), where T is a nonempty index
set and X (t) : Ω→ R is a map for all t ∈ T .

In accordance to Definitions 1.81, 1.83, 1.84, we will say.

Definition 3.11 We call X = (X (t) , t ∈ T ):

• a random process if X (t) is a real random variable for all t ∈ T ; i.e.
X (t) : (Ω,A)→ (R,B (R)), or equivalently, Cylindric (T ) ⊂ ΣX .

• a B-measurable random process if H ⊂ RT is a nonempty set, B ⊂
P(H) is a σ-algebra and B ⊂ ΣX .

• a Borel random process in C if C ⊂ RT is a topological space and
B (C) ⊂ ΣX .

Theorem 3.12 (Daniell-Kolmogoroff): Let for each I ∈ Fin (T ) a probabil-
ity µI ∈M1

(
RI
)

is given and {µI : I ∈ Fin (T )} forms a consistent system,

i.e. for each I, J ∈ Fin (T ), I ⊂ J we have µI = µJ ◦ JΠ−1
I .

Then, there is a probability ν defined on Cylindric (T ) such that for each
I ∈ Fin (T ) we have ν = µI ◦ TΠ−1

I .

Proof: A proof is an application of Hopf’s Theorem on measure extension
from an algebra to σ-algebra.

Q.E.D.

Definition 3.13 Let X and Y be a couple of random processes. We say
finite dimensional distributions of X and Y coincide (cz. konečněrozměrné

distribuce se shoduj́ı) if for each I ∈ Fin (T ), B ∈ B
(
RI
)

we have

P (Y (I) ∈ B) = P (X (I) ∈ B) .

The fact will be denoted by X
fidi
≡ Y in RT .
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Lemma 3.14 If X
fidi
≡ Y in RT then X

D≡ Y on Cylindric (T ).

Definition 3.15 We say finite dimensional distributions of a net of random
processes < Xλ >λ∈Λ converge to a random process X (cz. konvergence
konečněrozměrných distribućı) if for each I ∈ Fin (T ) we have

Xλ (I)
D−−−→
λ∈Λ

X (I) in RI .

The convergence will be denoted by Xλ
fidi−−−→
λ∈Λ

X in RT .

Lemma 3.16 Let < Xλ >λ∈Λ be a net of random processes in RT and Y , Z
be random processes in RT .

If Xλ
fidi−−−→
λ∈Λ

Y in RT and Xλ
fidi−−−→
λ∈Λ

Z in RT then Y
fidi
≡ Z.

Immediately, convergence in distribution and convergence of finite dimen-
sional distributions are connected.

Theorem 3.17: Whenever, Xλ
D−−−→
λ∈Λ

X in RT , then Xλ
fidi−−−→
λ∈Λ

X in RT .

Proof: The argument is
T

Π−1
I (G) ∈ G

(
RT
)

for all G ∈ G
(
RI
)
.

Q.E.D.

Theorem 3.18: Let < Xλ >λ∈Λ be a net of random processes. If for each

I ∈ Fin (T ) there is a random vector YI ∈ RI such that Xλ (I)
D−−−→
λ∈Λ

YI in

RI , then there is a random process X such that Xλ
fidi−−−→
λ∈Λ

X in RT .

Moreover, for each I ∈ Fin (T ) distributions of random vectors YI and
X (I) coincide.

Proof: For each I ∈ Fin (T ) we denote µI the distribution of random vector
YI . Consider I, J ∈ Fin (T ), I ⊂ J and G ∈ G

(
RI
)
. Then

lim inf
λ∈Λ

P (Xλ (I) ∈ G) = lim inf
λ∈Λ

P
(
Xλ (J) ∈

J
Π−1
I (G)

)
≥ P

(
YJ ∈ J

Π−1
I (G)

)
= µJ

(
J
Π−1
I (G)

)
= µJ ◦ JΠ−1

I (G) .

Distribution of the limit is uniquely determined, therefore, µI = µJ ◦ JΠ−1
I .

Hence, {µI : I ∈ Fin (T )} forms a consistent system.
According Theorem 3.12, there is a probability ν defined on Cylindric (T )
such that for each I ∈ Fin (T ) we have ν = µI ◦ TΠ−1

I .
Then, there is a random process X such that µX = ν on Cylindric (T ) and

Xλ
fidi−−−→
λ∈Λ

X in RT .

Moreover, for each I ∈ Fin (T ) distributions of random vectors YI and X (I)
coincide.
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Q.E.D.



Chapter 4

Space of bounded functions

Largeness of a real function f ∈ RT can be measured by its supremum

‖f‖T = sup {|f (t)| : t ∈ T} . (4.1)

Supremum exhibits properties of a norm except real-values. More precisely,
‖·‖T is a norm for T finite, only. If T is infinite ‖·‖T attains value +∞.

Consider the set of all bounded functions

l+∞ (T ) =
{
f ∈ RT : ‖f‖T < +∞

}
. (4.2)

Lemma 4.1

i) If T is a finite set, then l+∞ (T ) = RT .

ii) If T is an infinite set, then l+∞ (T ) 6= RT .

Proof: The case T is a finite set is clear.
If T is an infinite set, then without any loss of generality we assume N ⊂ T .
Hence ‖f‖T = +∞ for f ∈ RT , where f (s) = s for s ∈ N and f (s) = 0 for
s ∈ T \ N.

Q.E.D.

Theorem 4.2: Space l+∞ (T ) = (l+∞ (T ) , ‖·‖T ) is a Banach space which is
separable only if T is a finite set.

Proof: Space (l+∞ (T ) , ‖·‖T ) is normed. We have to show completeness
and discuss separability.
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1. Let fn ∈ l+∞ (T ), n ∈ N is a Cauchy sequence.

Fix t ∈ T .

Hence, fn(t), n ∈ N is a Cauchy sequence of reals, therefore, possessing
a limit, say g (t) ∈ R.

Thus, we are receiving g ∈ RT . It remains to show convergence in
l+∞ (T ).

Take ε > 0.

Then there is n0 ∈ N such that for each n ≥ n0, m ≥ n0, n,m ∈ N we
have ‖fn − fm‖T < ε.

For t ∈ T and m > n ≥ n0 we have

|fn(t)− g(t)| = |(fn(t)− fm(t)) + (fm(t)− g(t))|
≤ |fn(t)− fm(t)|+ |fm(t)− g(t)|
≤ ‖fn − fm‖T + |fm(t)− g(t)|
< ε+ |fm(t)− g(t)|.

Letting m→ +∞ we are receiving

∀t ∈ T |fn(t)− g(t)| ≤ ε.

We have shown lim
n→+∞

‖fn − g‖T = 0 and g ∈ l+∞ (T ), since for n large

enough

‖g‖T ≤ ‖fn − g‖T + ‖fn‖T < +∞.

2. (a) If T is a finite set, then l+∞ (T ) = RT . Thus, it is separable.

(b) If T is an infinite set, then for S ⊂ T consider functions

ψS(t) = 1 if t ∈ S,
= 0 if t 6∈ S.

For S, U ⊂ T , S 6= U , we have ‖ψS − ψU‖T = 1.

Family of functions ψS, S ⊂ T is uncountable.
Consequently, space l+∞ (T ) cannot be separable.

Q.E.D.

Lemma 4.3 If fλ−−−→
λ∈Λ

f in l+∞ (T ), then fλ−−−→
λ∈Λ

f in RT .
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Proof: Statement is straightforward.

Q.E.D.

The opposite implication is true, only, for T being a finite set.

Example 4.4: Let T be an infinite set, i.e. N ⊂ T . Consider a sequence
fn ∈ l+∞ (T ), n ∈ N, where fn (n) = 1 and fn (t) = 0 otherwise.

The sequence fn ∈ l+∞ (T ), n ∈ N is not Cauchy in l+∞ (T ), but,
fn−−−→

n∈N
0 in RT , where 0 denotes zero function.

4

Example 4.5: Let T be an infinite set, i.e. N ⊂ T . Consider a sequence
fn ∈ l+∞ (T ), n ∈ N, where fn (n) = n and fn (t) = 0 otherwise.

The sequence fn ∈ l+∞ (T ), n ∈ N is not Cauchy in l+∞ (T ), even,
‖fn‖T = n↗ +∞. But, fn−−−→

n∈N
0 in RT , where 0 denotes zero function.

4
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Chapter 5

Spaces of continuous functions

5.1 C ([0, 1])

We consider C ([0, 1]) the set of all continuous real functions defined on the
interval [0, 1]. The space is naturally equipped with the supremal norm.

Theorem 5.1: Topology of (C ([0, 1]) , ‖·‖[0,1]) coincides with relative topol-

ogy on C ([0, 1]) induced by topology of l+∞ ([0, 1]).

Proof:

1. For any f ∈ C ([0, 1]) and ε > 0, we observe

U (f ; ε|C ([0, 1])) = U
(
f ; ε| l+∞ ([0, 1])

)
∩ C ([0, 1])

Thus, G (C ([0, 1])) ⊂ G (l+∞ ([0, 1])) ∩ C ([0, 1]).

2. Take G ∈ G (l+∞ ([0, 1])) and g ∈ G ∩ C ([0, 1]).

Then, there is δ > 0 such that

U
(
g; δ| l+∞ ([0, 1])

)
⊂ G.

Hence,

U (g; δ|C ([0, 1])) = U
(
g; δ| l+∞ ([0, 1])

)
∩ C ([0, 1]) ⊂ G ∩ C ([0, 1]) .

Thus, G (C ([0, 1])) ⊃ G (l+∞ ([0, 1])) ∩ C ([0, 1]).

We have shown topology of C ([0, 1]) coincides with relative topology on
C ([0, 1]) induced by topology of l+∞ ([0, 1]).

Q.E.D.
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Theorem 5.2: Space (C ([0, 1]) , ‖·‖[0,1]) is a separable Banach space.

Proof: Space (C ([0, 1]) , ‖·‖[0,1]) is a normed subspace of Banach space

(l+∞ ([0, 1]) , ‖·‖[0,1]). We have to show completeness and recall separability.

1. Let fn ∈ C ([0, 1]), n ∈ N is a Cauchy sequence.

Sequence is also Cauchy in l+∞ ([0, 1]). Therefore according to Theorem
4.2, there is g ∈ l+∞ ([0, 1]) such that lim

n→+∞
‖fn − g‖[0,1] = 0.

Fix ε > 0.

Then, there is n ∈ N such that ‖fn − g‖[0,1] < ε.

Since fn ∈ C ([0, 1]), one can find δ > 0 such that for all t, s ∈ [0, 1],
|t− s| < δ is |fn(t)− fn(s)| < ε.

Then, for all t, s ∈ [0, 1], |t− s| < δ we can estimate

|g(t)− g(s)| ≤ |fn(t)− g(t)|+ |fn(s)− g(s)|+ |fn(t)− fn(s)| < 3ε.

Hence, g ∈ C ([0, 1]) and (C ([0, 1]) , ‖·‖[0,1]) is complete, thus a Banach
space.

2. Space (C ([0, 1]) , ‖·‖[0,1]) is separable, since polynomials with rational
coefficients are dense in it.

Q.E.D.

To be able properly describe continuous functions, we introduce a conti-
nuity modulus.

Definition 5.3 We define continuity modulus w : R[0,1] × R+ → R+,0 such

that for x ∈ R[0,1], δ > 0 we set

w (x, δ) = sup {|x(t)− x(s)| : |t− s| < δ, t, s ∈ [0, 1]} . (5.1)

The continuity modulus characterizes continuous functions.

Theorem 5.4: Let f ∈ R[0,1]. Then,
f ∈ C ([0, 1]) if and only if limδ→0+ w (f, δ) = 0.

Since [0, 1] is a compact, each continuous function defined on it is uni-
formly continuous. That enables to characterize compacts of C ([0, 1]).

Theorem 5.5 (Ascela-Ascolli): Let A ⊂ C ([0, 1]). Then,
clo (A) ∈ K (C ([0, 1])) if and only if

sup
f∈A
|f(0)| < +∞, lim

δ→0+
sup
f∈A

w (f, δ) = 0 .

Or in short, A ⊂ C ([0, 1]) is relatively compact in C ([0, 1]) if and only if
functions from A are equicontinuous and uniformly bounded at 0.
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5.1.1 Relation between topologies of C ([0, 1]) and R[0,1]

Theorem 5.6: We have G
(
R[0,1]

)
∩ C ([0, 1]) ⊂ G (C ([0, 1])).

Proof: It is sufficient to show the property for sets from a topological
subbasis of R[0,1], only.
Take −∞ < a < b < +∞, 0 ≤ t ≤ 1 and consider set

G =
{
x ∈ R[0,1] : a < x(t) < b

}
.

For y ∈ G ∩ C ([0, 1]) and ε = min {b− y(t), y(t)− a} is U (y; ε|C ([0, 1])) ⊂
G.
We have verified that G ∩ C ([0, 1]) is an open set in C ([0, 1]).

Q.E.D.

The inclusion is sharp.

Lemma 5.7 Let x ∈ C ([0, 1]) and ε > 0 then
U (x; ε|C ([0, 1])) 6∈ G

(
R[0,1]

)
∩ C ([0, 1]).

Proof: It is sufficient to consider a set from a topological basis of R[0,1].
Take I ∈ Fin ([0, 1]), Q ∈ G

(
RI
)

and Q 6= ∅.
We consider H =

[0,1]
Π−1
I (Q) ∩ C ([0, 1]).

Since H controls values of continuous functions in a finite number of argu-
ments, we have supx∈H ‖x‖[0,1] = +∞.
Therefore, H cannot be contained in any ball in C ([0, 1]).

Q.E.D.

Recall a notation introduced in Definition 3.4.

Theorem 5.8: Let T ⊂ [0, 1] be countable and dense in [0, 1]. Then, we
have [0,1]GT ;δσ ∩ C ([0, 1]) ⊃ G (C ([0, 1])).

Proof: The space C ([0, 1]) is separable. Therefore, it is sufficient to show
the property only for open balls, since general open set is an union of count-
able many open balls.
Then for x ∈ C ([0, 1]) and ε > 0, we have

U (x; ε|C ([0, 1]))

=
+∞⋃
k=1

⋂
t∈T

{
y ∈ R[0,1] : x(t)− ε+

1

k
< y(t) < x(t) + ε− 1

k

}
∩ C ([0, 1])

∈ [0,1]GT ;δσ ∩ C ([0, 1]) .
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Q.E.D.

Lemma 5.9 For all x ∈ C ([0, 1]) and ε > 0 we have

V (x; ε|C ([0, 1])) ∈ F
(
R[0,1]

)
∩ C ([0, 1]) . (5.2)

Proof:

V (x; ε|C ([0, 1]))

=
⋂
t∈[0,1]

{
y ∈ R[0,1] : x(t)− ε ≤ y(t) ≤ x(t) + ε

}
∩ C ([0, 1])

∈ F
(
R[0,1]

)
∩ C ([0, 1]) .

Q.E.D.

Theorem 5.10: We have K (C ([0, 1])) ⊂
{
K ∈ K

(
R[0,1]

)
: K ⊂ C ([0, 1])

}
.

Proof: Let K ∈ K (C ([0, 1])).
Assume an covering K ⊂

⋃
λ∈ΛGλ, where Gλ ∈ G

(
R[0,1]

)
.

Then, K ⊂
⋃
λ∈Λ (Gλ ∩ C ([0, 1])).

We know Gλ ∩ C ([0, 1]) ∈ G (C ([0, 1])) according to Theorem 5.6.
Hence, we can select I ∈ Fin (Λ) such that

K ⊂
⋃
λ∈i

(Gλ ∩ C ([0, 1])) ⊂
⋃
λ∈i

Gλ.

We have selected a finite covering of K, thus, we have verified K ∈ K
(
R[0,1]

)
;

we employ Lemma 1.32 and Theorem 2.8.

Q.E.D.

Lemma 5.11 Consider real functions on [0, 1], f0 ≡ 0 and for n ∈ N
piecewise linear continuous function fn determined by values fn (0) = 0,
fn
(

1
n+2

)
= 1, fn

(
2

n+2

)
= 0, fn (1) = 0.

Then, {fn, n ∈ N} is a compact in R[0,1], but, it is no compact neither in
C ([0, 1]) nor in l+∞ ([0, 1]).

Theorem 5.12: We have

Cylindric ([0, 1]) ∩ C ([0, 1]) = B
(
R[0,1]

)
∩ C ([0, 1]) = B (C ([0, 1])) . (5.3)

Proof: Theorem is a consequence of theorems 3.3, 5.6 and 5.8.

Q.E.D.
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5.1.2 C ([0, 1]) and randomness

This part is taken from [2], Chapter 2.8. Let us start with a theorem from
[2], T8.2, p.83.

Lemma 5.13 Let T ⊂ [0, 1] then
[0,1]

ΠT : C ([0, 1])→ RT is continuous.

Proof: Consider a sequence fn ∈ C ([0, 1]), n ∈ N such that fn−−−−−→
n→+∞

f

in C ([0, 1]). Then for any t ∈ T ,∣∣∣
[0,1]

ΠT (fn) (t)−
[0,1]

ΠT (f) (t)
∣∣∣ = |fn (t)− f (t)| ≤ ‖fn − f‖[0,1] .

It means
[0,1]

ΠT : C ([0, 1])→ RT is continuous.

Even, we proved
[0,1]

ΠT : C ([0, 1])→ l+∞ (T ) is continuous.

Q.E.D.

Theorem 5.14: Let Xn, n ∈ N be a sequence of random processes in
C ([0, 1]) and X be a random process in C ([0, 1]). Then,

Xn
D−−−−−→

n→+∞
X in C ([0, 1]) implies Xn

fidi−−−−−→
n→+∞

X in R[0,1].

Proof: Take I ∈ Fin ([0, 1]).

Hence,
[0,1]

ΠI : C ([0, 1])→ RI is continuous, according to Lemma 5.13.

Applying Theorem 1.97, we have

[0,1]
ΠI (Xn)

D−−−−−→
n→+∞ [0,1]

ΠI (X) in RI .

Thus, convergence of finite distributions is proved.

Q.E.D.

Lemma 5.15 Let X, Y be random processes in C ([0, 1]). If X
fidi
≡ Y in

R[0,1] then X
D≡ Y on B (C ([0, 1])).
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Proof: Space C ([0, 1]) is a Polish space. Hence, distributions µX , µY on
B (C ([0, 1])) are Radon τ -additive probabilities; see Theorem 2.25.
Take, K ∈ K (C ([0, 1])).
According to Theorem 5.10,

∀ I ∈ Fin ([0, 1]) we have
[0,1]

ΠI (K) ∈ K
(
RI
)
,

K =
⋂

I∈Fin([0,1])
[0,1]

Π−1
I (

[0,1]
ΠI (K)).

Hence,

µX (K) = µX (K ∩ C ([0, 1]))

= µX

 ⋂
I∈Fin([0,1])

[0,1]
Π−1
I (

[0,1]
ΠI (K)) ∩ C ([0, 1])


= inf

{
µX

(
[0,1]

Π−1
I (

[0,1]
ΠI (K)) ∩ C ([0, 1])

)
: I ∈ Fin ([0, 1])

}
= inf

{
P
(
X ∈

[0,1]
Π−1
I (

[0,1]
ΠI (K)) ∩ C ([0, 1])

)
: I ∈ Fin ([0, 1])

}
= inf

{
P
(
X ∈

[0,1]
Π−1
I (

[0,1]
ΠI (K))

)
: I ∈ Fin ([0, 1])

}
= inf

{
P
(
X(I) ∈

[0,1]
ΠI (K)

)
: I ∈ Fin ([0, 1])

}
.

Similarly, we receive

µY (K) = inf
{
P
(
Y (I) ∈

[0,1]
ΠI (K)

)
: I ∈ Fin ([0, 1])

}
.

We have derived µX , µY coincide on K (C ([0, 1])), since X
fidi
≡ Y in R[0,1].

We know µX , µY are Radon in C ([0, 1]). Therefore, X
D≡ Y on B (C ([0, 1])).

Q.E.D.

Theorem 5.16: Let Xn, n ∈ N be a sequence of random processes in
C ([0, 1]) and X be a random process in R[0,1]. Suppose

i) Xn
fidi−−−−−→

n→+∞
X in R[0,1].

ii) The sequence Xn, n ∈ N is tight in C ([0, 1]).
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Then there is X̃ a random process in C ([0, 1]) such that

Xn
D−−−−−→

n→+∞
X̃ in C ([0, 1]) .

The distribution µX̃ on B (C ([0, 1])) is a Radon τ -additive probability uniquely

determined by coincidence X̃
fidi
≡ X in R[0,1].

Proof: The sequence is tight in C ([0, 1]), therefore according to Prochoroff
theorem 2.30, it is relatively weakly compact. This means that each subse-
quence possesses at least one weak cluster point. We have to show that all
weak cluster points of the given sequence possess the same distribution on
B (C ([0, 1])).

Let Z be a weak cluster point of the sequence Xn, n ∈ N in C ([0, 1]). Thus,
we have a subsequence such that

Xnk

D−−−−−→
k→+∞

Z in C ([0, 1]) .

Take I ∈ Fin ([0, 1]) and G ∈ G
(
RI
)
.

According to Theorem 5.6 we have
[0,1]

Π−1
I (G) ∩ C ([0, 1]) ∈ G (C ([0, 1])).

Therefore,

lim inf
k→+∞

P (Xnk (I) ∈ G) = lim inf
k→+∞

P
(
Xnk ∈ [0,1]

Π−1
I (G)

)
=

= lim inf
k→+∞

P
(
Xnk ∈ [0,1]

Π−1
I (G) ∩ C ([0, 1])

)
≥ P

(
Z ∈

[0,1]
Π−1
I (G) ∩ C ([0, 1])

)
=

= P
(
Z ∈

[0,1]
Π−1
I (G)

)
= P (Z(I) ∈ G) .

We have shown Xnk

fidi−−−−−→
k→+∞

Z in R[0,1], we also know Xnk

fidi−−−−−→
n→+∞

X in R[0,1].

According to Lemma 3.16, Z
fidi
≡ X in RT .

According to Lemma 5.15, all cluster points of our sequence possesses the
same distribution uniquely determined by finite dimensional distributions of
X.

Q.E.D.
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Theorem 5.17: Sequence Xn = (Xn (t) , t ∈ [0, 1]) of random processes in
C ([0, 1]) is tight in C ([0, 1]) if and only if for all ε > 0, η > 0 there are
α ≥ 0, δ > 0 and n0 ∈ N such that for all n ∈ N, n ≥ n0 we have

P (|Xn (0) | > α) < ε, (5.4)

P (w (Xn, δ) > η) < ε. (5.5)

Proof:

1. Let the sequence is tight in C ([0, 1]) and ε > 0, η > 0.

Then, there exists a compact K ∈ K (C ([0, 1])) such that for all n ∈ N
we have P (Xn 6∈ K) < ε.

According to Theorem 5.5,

sup
f∈K
|f(0)| < +∞, lim

δ→0+
sup
f∈K

w (f, δ) = 0 .

We denote α = supf∈K |f(0)| and find δ > 0 such that w (f, δ) < η.

Then, we receive for all n ∈ N

P (|Xn (0) | > α) ≤ P (Xn 6∈ K) < ε,

P (w (Xn, δ) > η) ≤ P (Xn 6∈ K) < ε .

Thus, the property is shown, even with n0 = 1.

2. Let the property holds and ε > 0 is given.

(a) Space C ([0, 1]) is Polish, therefore, each Borel probability on
C ([0, 1]) is Radon; see Theorem 2.25.

Hence for ε > 0, η > 0, n ∈ {1, 2, . . . , n0 − 1} we are able to find
αn ≥ 0, δn > 0 such that

i) P (|Xn (0) | > αn) < ε;

ii) P (w (Xn, δn) > η) < ε.

Set α̃ = max {α1, α2, . . . , αn0−1, α}, δ̃ = max {δ1, δ2, . . . , δn0−1, δ}.
Then α̃ > 0, δ̃ > 0 and for all n ∈ N we have

i) P (|Xn (0) | > α̃) < ε;

ii) P
(
w
(
Xn, δ̃

)
> η
)
< ε.

Thus, we can assume n0 = 1.
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(b) As shown above we can assume n0 = 1.

Then, we can find α ≥ 0 and δk > 0, k ∈ N such that for all n ∈ N

P (|Xn (0) | > a) < ε,

P
(
w (Xn, δk) > 2−k

)
< ε2−k.

We set

K =
{
x ∈ C ([0, 1]) : |x(0)| ≤ a, ∀k ∈ N w (x, δk) ≤ 2−k

}
.

Evidently K ∈ F (C ([0, 1])).

Therefore according to Theorem 5.5, K ∈ K (C ([0, 1])).

We have to estimate the probability

P (Xn 6∈ K) ≤ P (|Xn (0) | > a) +
+∞∑
k=1

P
(
w (Xn, δk) > 2−k

)
< ε+ ε

+∞∑
k=1

2−k = 2ε.

Q.E.D.

Theorem 5.18: Let sequence Xn = (Xn (t) , t ∈ [0, 1]), n ∈ N of random
processes in C ([0, 1]) fulfill:

i) Sequence Xn (0), n ∈ N is tight in R.

ii) For each ε > 0, η > 0 there are δ ∈ (0, 1
2
) and n0 ∈ N such that for

all n ∈ N, n ≥ n0 and for all t ∈ [0, 1− δ] it is fulfilled

P (sup {|Xn (t)−Xn (s) | : s ∈ [t, t+ δ]} > η) < εδ. (5.6)

Then the sequence is tight in C ([0, 1]).

Proof: We have to verify assumptions of Theorem 5.17.
Tightness of the sequence Xn (0) is equivalent with i) of Theorem 5.17.
We have to verify the assumption ii) of Theorem 5.17, only.
Take η > 0 and ε > 0.
According to (5.6), there are δ ∈ (0, 1

2
) and n0 ∈ N such that for all n ∈ N,

n ≥ n0 and t ∈ [0, 1− δ] we have

P (sup {|Xn (t)−Xn (s) | : s ∈ [t, t+ δ]} > η) < εδ.
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Take M ∈ N, M ≥ 3 such that 1
M
≤ δ < 1

M−1
. Then for all n ∈ N, n ≥ n0

and t ∈ [0, 1− 1
M

] we have

P

(
sup

{
|Xn (t)−Xn (s) | : s ∈

[
t, t+

1

M

]}
> η

)
≤ P (sup {|Xn (t)−Xn (s) | : s ∈ [t, t+ δ]} > η)

< εδ < ε
1

M − 1
=

M

M − 1

ε

M
<

2ε

M
.

Let us estimate the probability

P

(
w

(
Xn,

1

M

)
> 3η

)
= P

(
sup

{
|Xn (t)−Xn (s) | : |t− s| < 1

M
, t, s ∈ [0, 1]

}
> 3η

)
≤ P

(
sup

{∣∣∣∣Xn (t)−Xn

(
btMc
M

)∣∣∣∣+

∣∣∣∣Xn (s)−Xn

(
bsMc
M

)∣∣∣∣+
+

∣∣∣∣Xn

(
btMc
M

)
−Xn

(
bsMc
M

)∣∣∣∣} : |t− s| < 1

M
, t, s ∈ [0, 1]

}
> 3η

)
≤

M−1∑
k=0

P

(
sup

{∣∣∣∣Xn (s)−Xn

(
k

M

)∣∣∣∣ :
k

M
≤ s ≤ k + 1

M

}
> η

)
< M

2ε

M
= 2ε.

Assumptions of Theorem 5.17 are fulfilled, then, the sequence is tight in
C ([0, 1]).

Q.E.D.

Theorem 5.19: Let sequence Xn = (Xn (t) , t ∈ [0, 1]) of random processes
in C ([0, 1]) fulfill:

i) Sequence Xn (0), n ∈ N is tight in R.

ii) There are α > 0, β ≥ 0 and nondecreasing continuous function
F : [0, 1]→ R such that for all n ∈ N, 0 ≤ t < s ≤ 1, λ > 0 we have

P (sup {|Xn (u)−Xn (t) | : u ∈ [t, s]} > λ) ≤ λ−β(F (s)− F (t))1+α.(5.7)

Then, the sequence is tight in C ([0, 1]).
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Proof: We have to verify assumptions of Theorem 5.17.

We know tightness of the sequence Xn (0) is equivalent with assumption i)
of Theorem 5.17.

We have to verify the second property, only.

Take η > 0 and M ∈ N.

Then, for all n ∈ N we have

P

(
w

(
Xn,

1

M

)
> 3η

)
= P

(
sup

{
|Xn (t)−Xn (s) | : |t− s| < 1

M
, t, s ∈ [0, 1]

}
< 3η

)
≤ P

(
sup

{∣∣∣∣Xn (t)−Xn

(
btMc
M

)∣∣∣∣+

∣∣∣∣Xn (s)−Xn

(
bsMc
M

)∣∣∣∣+
+

∣∣∣∣Xn

(
btMc
M

)
−Xn

(
bsMc
M

)∣∣∣∣ : |t− s| < 1

M
, t, s ∈ [0, 1]

}
> 3η

)
≤

M−1∑
k=0

P

(
sup

{∣∣∣∣Xn (s)−Xn

(
k

M

)∣∣∣∣ :
k

M
≤ s ≤ k + 1

M

}
> η

)

≤ η−β
M−1∑
k=0

(
F

(
k + 1

M

)
− F

(
k

M

))1+α

≤ η−βw

(
F,

1

M

)α
(F (1)− F (0)) .

Increasing M , the estimate can be made arbitrary small, since function F is
continuous.

Assumptions of Theorem 5.17 are verified. Therefore, the sequence is tight
in C ([0, 1]).

Q.E.D.

Now, we are approaching to a criterion for tightness of a sequence of
random processes in C ([0, 1]) which can be easily checked. Theorem is intro-
duced in [2], Th 12.3, p. 136.

Theorem 5.20: Let sequence Xn = (Xn (t) , t ∈ [0, 1]) of random processes
in C ([0, 1]) fulfill:

i) Sequence Xn (0), n ∈ N is tight in R.
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ii) There are α > 0, β ≥ 0 and nondecreasing continuous function
F : [0, 1]→ R such that for all n ∈ N, t, s ∈ [0, 1], λ > 0 we have

P (|Xn (t)−Xn (s) | ≥ λ) ≤ λ−β|F (t)− F (s)|1+α. (5.8)

Then, the sequence is tight in C ([0, 1]).

Proof: We have to verify assumptions of Theorem 5.19.
The first condition is identical with the assumption i) of Theorem 5.19.
We have to verify the second condition, only.
Take δ > 0, η > 0, t ∈ [0, 1− δ] and n ∈ N.
Processes are continuous and, thus, we have

lim
m→+∞

max

{∣∣∣∣Xn (t)−Xn

(
t+

k

m
δ

)∣∣∣∣ : k = 1, 2, . . . ,m

}
= sup {|Xn (t)−Xn (s)| : s ∈ [t, t+ δ]} .

Now, we apply Theorem 7.7 for choice for k = 1, 2, . . . ,m

ξk = Xn

(
t+

k

m
δ;−

)
Xn

(
t+

k − 1

m
δ; ,

)
uk = F

(
t+

k

m
δ

)
− F

(
t+

k − 1

m
δ

)

According to (5.8), we have for all i, j = 1, 2, . . . ,m, i ≤ j and λ > 0 an
estimate

P

(∣∣∣∣∣
j∑
k=i

ξk

∣∣∣∣∣ ≥ λ

)
= P

(∣∣∣∣Xn

(
t+

j

m
δ

)
−Xn

(
t+

i− 1

m
δ

)∣∣∣∣ ≥ λ

)

≤ λ−β
(
F

(
t+

j

m
δ

)
− F

(
t+

i− 1

m
δ

))1+α

= λ−β

(
j∑
k=i

uk

)1+α

.

Then according to Theorem 7.7, we have

P

(
max

{∣∣∣∣Xn (t)−Xn

(
t+

k

m
δ

)∣∣∣∣ : k = 1, 2, . . . ,m

}
≥ η

)
≤ K(α, β) η−β

(
m∑
k=1

(
F

(
t+

k

m
δ

)
− F

(
t+

k − 1

m
δ

)))1+α

= K(α, β) η−β (F (t+ δ)− F (t))1+α .
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Letting m→ +∞, we are receiving

P (sup {|Xn (t)−Xn (s) | : s ∈ [t, t+ δ]} ≥ η)

≤ K(α, β) η−β (F (t+ δ)− F (t))1+α .

All assumptions of Theorem 5.19 are verified. Therefore, the sequence is
tight in C ([0, 1]).

Q.E.D.

5.2 Interpolated random walk

I this section, we present an application of the weak convergence in C ([0, 1]).
Random processes arising by interpolation of partial sums of random walks
will be treated here.

A sequence of real random variables ξi, i ∈ N and a positive real constant
σ are assumed. Partial sums are denoted Sk =

∑k
i=1 ξi, k ∈ N, where S0 = 0.

Partial sums determine a sequence of random processes with jumps
(Vn (t) , 0 ≤ t ≤ 1), n ∈ N given by

Vn (t) =
1

σ
√
n
Sbntc for n ∈ N, 0 ≤ t ≤ 1, (5.9)

and, a sequence of continuous processes (Zn (t) , 0 ≤ t ≤ 1), n ∈ N given by

Zn (t) =
1

σ
√
n

(
Sk + n

(
t− k

n

)
(Sk+1 − Sk)

)
(5.10)

for n ∈ N, k = 0, 1, . . . , n− 1,
k

n
≤ t ≤ k + 1

n
.

Finite-dimensional distributions of these random processes are close each
to the other.

Lemma 5.21 There is a simple estimate

∀t ∈ [0, 1] |Vn (t)− Zn (t) | ≤ 1

σ
√
n

∣∣ξbntc+1

∣∣ . (5.11)

Let us begin with measurability.

Lemma 5.22 Always, Zn, n ∈ N are random processes in C ([0, 1]) and Vn,
n ∈ N are random processes in l+∞ ([0, 1]).
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Proof: Fix n ∈ N and consider mappings κ1 : Rn → l+∞ ([0, 1]) and
κ2 : Rn → C ([0, 1]) given by

κ1 (x1, x2, . . . , xn) (t) =
1

σ
√
n

k∑
i=1

xi,

κ2 (x1, x2, . . . , xn) (t) =
1

σ
√
n

(
k∑
i=1

xi + n

(
t− k

n

)
xk+1

)

for k = 0, 1, . . . , n− 1,
k

n
≤ t ≤ k + 1

n
.

Both mappings κ1 : Rn → l+∞ ([0, 1]) and κ2 : Rn → C ([0, 1]) are continu-
ous, but, in different spaces.
Therefore, Vn = κ1 (ξ1, ξ2, . . . , ξn) is a random process in l+∞ ([0, 1]) and
Zn = κ2 (ξ1, ξ2, . . . , ξn) is a random process in C ([0, 1]).

Q.E.D.

Theorem 5.23: If for all ε > 0 there is λ > 1 and n0 ∈ N such that for all
n ∈ N, n ≥ n0 and for all k ∈ N it is fulfilled

P
(
max {|Sk+i − Sk| : i = 1, 2, . . . , n} ≥ λσ

√
n
)
≤ λ−2ε, (5.12)

then the sequence Zn, n ∈ N is tight in C ([0, 1]).

Proof: We will verify assumptions of Theorem 5.18. Tightness of the
sequence Zn (0), n ∈ N is evident, since it is a sequence of zeros. We have to
verify the second assumption, only.

1. For δ ∈ (0, 1
2
), t ∈ [0, 1 − δ], s ∈ [t, t + δ] and n ∈ N we prepare an

estimate

btnc
n
≤ t ≤ s ≤ t+ δ ≤ btnc+ 1

n
+
bδnc+ 1

n
=
btnc+ bδnc+ 2

n
.

2. Fix δ ∈ (0, 1
2
), t ∈ [0, 1− δ] and n ∈ N. Using previous estimate we are

receiving

sup {|Zn (s)− Zn (t) | : s ∈ [t, t+ δ]}

≤ sup

{∣∣∣∣Zn (s)− Zn
(
btnc
n

)∣∣∣∣+

∣∣∣∣Zn (t)− Zn
(
btnc
n

)∣∣∣∣ : s ∈ [t, t+ δ]

}
≤ 2

σ
√
n

max
{∣∣Sbtnc+j − Sbtnc

∣∣ : j = 1, 2, . . . , bδnc+ 2
}
.
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3. For ε > 0, η > 0 there is λ > 1 and n0 ∈ N such that for all n ∈ N,
n ≥ n0 and for all k ∈ N it is fulfilled

P
(
max {|Sk+i − Sk| : i = 1, 2, . . . , n} ≥ λσ

√
n
)
≤ 1

8
λ−2η2ε,

Let us denote δ = η2

8λ2 . Then for all t ∈ [0, 1− δ] and n ≥ max
{
n0,

2
δ

}
we have

P (sup {|Zn (s)− Zn (t) | : s ∈ [t, t+ δ]} ≥ η)

≤ P

(
2

σ
√
n

max
{∣∣Sbtnc+j − Sbtnc

∣∣ : j = 1, 2, . . . , bδnc+ 2
}
≥ η

)
≤ P

(
max

{∣∣Sbtnc+j − Sbtnc
∣∣ : j = 1, 2, . . . , bnδc+ 2

}
≥ η

2
σ
√
n
)

≤ P
(
max

{∣∣Sbtnc+j − Sbtnc
∣∣ : j = 1, 2, . . . , bnδc+ 2

}
≥ η

2

√
n

bnδc+ 2
σ
√
bnδc+ 2

)
≤ P

(
max

{∣∣Sbtnc+j − Sbtnc
∣∣ : j = 1, 2, . . . , bnδc+ 2

}
≥ η

2
√

2δ
σ
√
bnδc+ 2

)
≤ P

(
max

{∣∣Sbtnc+j − Sbtnc
∣∣ : j = 1, 2, . . . , bnδc+ 2

}
≥ λσ

√
bnδc+ 2

)
≤ 1

8
λ−2η2ε = δε.

Assumptions of Theorem 5.18 are fulfilled, thus, the sequence of processes is
tight in C ([0, 1]).

Q.E.D.

5.2.1 Donsker invariance principle

We start with convergence of finite dimensional distributions.

Definition 5.24 A random process W = (W (t) , 0 ≤ t ≤ 1) with continuous
sample paths and finite dimensional distributions W (I) ∼ N (0,ΣI) for all
I ∈ Fin ([0, 1]), where ΣI = (i ∧ j)i,j∈I is called Wiener process.

A random process W̃ =
(
W̃ (t) , 0 ≤ t ≤ 1

)
with finite dimensional dis-

tributions W̃ (I) ∼ N (0,ΣI) for all I ∈ Fin ([0, 1]), where ΣI = (i ∧ j)i,j∈I is
called pre-Wiener process.
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Lemma 5.25 A pre-Wiener process W̃ =
(
W̃ (t) , 0 ≤ t ≤ 1

)
exists and its

distribution µW̃ on Cylindric ([0, 1]) is a probability and is uniquely defined.

Proof: Existence of the process follows Theorem 3.12.

Q.E.D.

Theorem 5.26: Let ξi, i ∈ N be i.i.d. real random variables with E [ξ1] = 0

and var (ξ1) = σ2 ∈ R+. Then Zn
fidi−−−−−→

n→+∞
W̃ in R[0,1], Vn

fidi−−−−−→
n→+∞

W̃ in R[0,1].

Proof: Consider step process at first.

1. Vn (0) ≡ 0 and W̃ (0) = 0 almost surely. Therefore, convergence

Vn (0)
D−−−−−→

n→+∞
W̃ (0) is trivial.

2. Take 0 ≤ t < s ≤ 1. Then,

Vn (s)− Vn (t) =
1

σ
√
n

(
Sbnsc − Sbntc

)
=

1

σ
√
n

bnsc∑
i=bntc+1

ξi

=

√
bnsc − bntc

n

1

σ
√
bnsc − bntc

bnsc∑
i=bntc+1

ξi.

According to CLT for i.i.d. real random variables, we have

Vn (s)− Vn (t)
D−−−−−→

n→+∞

√
s− t W̃ (1) ∼ W̃ (s)− W̃ (t) .

3. Fix K ∈ N and 0 = t0 < t1 < · · · < tK ≤ 1.

Then, Vn (tk)− Vn (tk−1), k ∈ {1, 2, . . . , K} are independent. Hence,

(Vn (tk)− Vn (tk−1) , k ∈ {1, 2, . . . , K})>

D−−−−−→
n→+∞

(
W̃ (tk)− W̃ (tk−1) , k ∈ {1, 2, . . . , K}

)>
.

Multiplying by a matrix M ∈ RK×K , where Mi,j = 1 if i ≤ j and
Mi,j = 0 if i > j, we are receiving

(Vn (tk) , k ∈ {1, 2, . . . , K})>
D−−−−−→

n→+∞

(
W̃ (tk) , k ∈ {1, 2, . . . , K}

)>
.

We have shown Vn
fidi−−−−−→

n→+∞
W̃ in R[0,1].
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4. Because of the estimate (5.11), we observe Vn
fidi−−−−−→

n→+∞
W̃ in R[0,1] im-

plies Zn
fidi−−−−−→

n→+∞
W̃ in R[0,1].

Q.E.D.

Theorem 5.27: Let ξ1, ξ2, . . . , ξN are independent real random variables and
for all i = 1, 2, . . . ,N we have E [ξi] = 0, var (ξi) = σ2

i < +∞.

Denoting s2
N =

∑N
i=1 σ

2
i and sN =

√
s2
N, following estimate take place for

all λ > 0:

P (max{|S1|, |S2|, . . . , |SN|} ≥ λsN) ≤ 2P
(
|SN| ≥ (λ−

√
2)sN

)
. (5.13)

Proof: Let us denote

Mk = max{|S1|, |S2|, . . . , |Sk|} for all k ∈ N.

If λ ≤
√

2 or sN = 0 the estimate is trivial, since its right-hand side of (5.13)
is equal to 2. Thus, it is sufficient to consider the case λ >

√
2, sN > 0, only.

For all i = 1, 2, . . . ,N, we denote

Ei = [Mi−1 < λsN ≤ |Si|] .

Evidently,

N⋃
i=1

Ei = [MN ≥ λsN] .

Therefore, we can write

P (MN ≥ λsN)

≤ P
(
|SN| ≥ (λ−

√
2)sN

)
+ P

(
[MN ≥ λsN] ∩

[
|SN| < (λ−

√
2)sN

])
≤ P

(
|SN| ≥ (λ−

√
2)sN

)
+

N−1∑
i=1

P
(
Ei ∩

[
|SN| < (λ−

√
2)sN

])
.
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Let us estimate the second term
N−1∑
i=1

P
(
Ei ∩

[
|SN| < (λ−

√
2)sN

])
≤

≤
N−1∑
i=1

P
(
Ei ∩

[
|Si| − |SN − Si| < (λ−

√
2)sN

])
≤

≤
N−1∑
i=1

P
(
Ei ∩

[
|SN − Si| >

√
2sN

])
=

=
N−1∑
i=1

P (Ei)P
([
|SN − Si| >

√
2sN

])
≤

≤
N−1∑
i=1

P (Ei)
1

2s2
N

N∑
k=i+1

σ2
i ≤

≤ 1

2

N−1∑
i=1

P (Ei) ≤
1

2
P (MN ≥ λsN) .

We have derived

P (MN ≥ λsN) ≤ P
(
|SN| ≥ (λ−

√
2)sN

)
+

1

2
P (MN ≥ λsN) .

This is precisely (5.13).

Q.E.D.

Theorem 5.28 (Donsker): Let ξi, i ∈ N be i.i.d. real random variables with
E [ξ1] = 0 and var (ξ1) = σ2 ∈ R+. Then a Wiener process W = (W (t) , t ∈
[0, 1]) exists and Zn

D−−−−−→
n→+∞

W in C ([0, 1]).

Proof: In Theorem 5.26 we have shown Zn
fidi−−−−−→

n→+∞
W̃ in R[0,1].

Take k ∈ N and λ > 2
√

2. Summands are i.i.d. and, thus, the statement of
Theorem 5.27 is in power. Therefore, we have

P
(
max {|Sk+i − Sk| : i = 1, 2, . . . , n} ≥ λσ

√
n
)

= P
(
max {|Si| : i = 1, 2, . . . , n} ≥ λσ

√
n
)
≤

≤ 2P
(
|Sn| ≥ (λ−

√
2)σ
√
n
)
≤

≤ 2P
(
|Zn (1) | ≥ (λ−

√
2)
)
≤

≤ 2P

(
|Zn (1) | ≥ λ

2

)
.
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According to Theorem 5.26, we have

lim
n→+∞

P

(
|Zn (1) | ≥ λ

2

)
= P

(
|W̃ (1) | ≥ λ

2

)
.

Using Tchebisheff inequality, we are receiving a rough estimate

P

(
|W̃ (1) | ≥ λ

2

)
≤ 8E

[
|W (1) |3

]
λ−3 = λ−2 8E [|W (1) |3]

λ
.

Let ε > 0 be given.

Take λ > 2
√

2 such that λ >
16E[|W (1)|3]

ε
. Then,

lim sup
n→+∞

sup
k∈N

{
P
(
max {|Sk+i − Sk| : i = 1, 2, . . . , n} ≥ λσ

√
n
)}

≤ λ−2 16E [|W (1) |3]

λ
< λ−2ε.

Then, there is a n0 ∈ N such that for all n ∈ N, n ≥ n0 and all k ∈ N we
have

P
(
max {|Sk+i − Sk| : i = 1, 2, . . . , n} ≥ λσ

√
n
)
< λ−2ε.

Assumptions of Theorem 5.23 are fulfilled. Therefore, the sequence Zn, n ∈ N
is tight in C ([0, 1]). From Theorem 5.26 we know Zn

fidi−−−−−→
n→+∞

W̃ in R[0,1].

Assumptions of Theorem 5.16 are fulfilled, hence, there is a continuous
version of W̃ , i.e. a Wiener process W = (W (t) , t ∈ [0, 1]) exists, and

Zn
D−−−−−→

n→+∞
W in C ([0, 1]).

Q.E.D.

5.3 Space C ([a, b])

Consider compact intervals given by a couple of points −∞ ≤ a < b ≤
+∞ and C ([a, b]) a set of all continuous functions defined on a segment
[a, b]. Since [a, b] is a compact, each continuous function defined on it is
uniformly continuous. Then, we consider the space naturally equipped with
the supremal norm C ([a, b]) = (C ([a, b]) , ‖·‖[a,b]).

Theorem 5.29: C ([a, b]) = (C ([a, b]) , ‖·‖[a,b]) is a separable Banach space.
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Proof: Take an increasing bijection ι : [0, 1] → [a, b] and consider a
mapping ζ : C ([a, b]) → C ([0, 1]) : f ∈ C ([a, b]) → f ◦ ι. Maps ζ, ζ−1 are
continuous, hence, topological spaces C ([a, b]), C ([0, 1]) are isomorphic.
Therefore, C ([a, b]) is a separable Banach space, as C ([0, 1]) is.

Q.E.D.

5.4 Space C ([0,+∞))

Continuous functions defined on [0,+∞) are typically not uniformly contin-
uous, e.g. t 7→ t2. Let us introduce a natural topology on C ([0,+∞)).

Definition 5.30 A natural topology on C ([0,+∞)) is introduced by a sub-
basis

G = {U (x, k, ε) : x ∈ C ([0,+∞)) , k ∈ N, ε > 0} , (5.14)

where U (x, k, ε) =
{
y ∈ C ([0,+∞)) : ‖y − x‖[k,k+1] < ε

}
.

Consider metrics defined for x, y ∈ C ([0,+∞)) by

ρ1 (x, y) =
+∞∑
k=0

2−k
‖y − x‖[k,k+1]

1 + ‖y − x‖[k,k+1]

, (5.15)

ρ2 (x, y) =
+∞∑
k=1

2−k
‖y − x‖[0,k]

1 + ‖y − x‖[0,k]

, (5.16)

ρ3 (x, y) =

∫ +∞

1

2−t
‖y − x‖[0,t]

1 + ‖y − x‖[0,t]

dt. (5.17)

Theorem 5.31: Topological space C ([0,+∞)) is Polish.

Proof: For example each of the above defined metrics ρ1, ρ2, ρ3 is making
C ([0,+∞)) to be a complete separable metric space.

Q.E.D.



Chapter 6

Skorokhod space of
discontinuous functions

6.1 Càdlàg functions

This chapter is devoted to a particular space of discontunious functions.

Definition 6.1 A set of all real functions defined on the interval [0, 1], which
are continuous from right at each point of [0, 1) and with a limit from left at
each point of (0, 1], are called càdlàg functions on [0, 1] and will be denoted
by cadlag([0, 1]).

These functions are traditionally called càdlàg, due to Bourbaki as an
abbreviation from French. Having introduced a particular topology on them,
incurred topological space is called Skorokhod space, see section 6.3.

6.1.1 Properties of càdlàg functions

At first, consider basic properties of càdlàg functions.

Lemma 6.2 We have inclusion cadlag([0, 1]) ⊂ l+∞ ([0, 1]).

Proof: Take f ∈ cadlag([0, 1]) and assume it is unbounded.
Take a sequence tn ∈ [0, 1], n ∈ N such that

lim
n→+∞

|f(tn)| = +∞.

Interval [0, 1] is a compact, then, there is a convergent subsequence

lim
k→+∞

tnk = ξ ∈ [0, 1].

91
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Denote

E = {k ∈ N : tnk = ξ} ,
L = {k ∈ N : tnk > ξ} ,
S = {k ∈ N : tnk < ξ} .

Set E is either empty or finite because limk→+∞ |f(tnk)| = +∞. Hence, at
least one of sets L, S must be countable.

1. Let L be countable. Then,

lim
k∈L

tnk = ξ, lim
k∈L
|f(tnk)| = +∞.

Function f is right continuous at ξ, hence

lim
k∈L

f(tnk) = f(ξ) ∈ R.

It is a contradiction.

2. Let S be countable. Then,

lim
k∈S

tnk = ξ, lim
k∈S
|f(tnk)| = +∞.

Function f possesses a left limit at ξ, hence

lim
k∈S

f(tnk) = f(ξ−) ∈ R.

It is a contradiction.

Our assumption on unboundness led to a contradiction. Therefore, ‖f‖[0,1] ∈
R for each càdlàg function.

Q.E.D.

Let us investigate jumps of càdlàg functions. For f ∈ cadlag([0, 1]), let us
consider sets of its jumps

D (f, ε) = {t ∈ (0, 1] : |f(t)− f(t−)| > ε} for ε > 0,

D (f) = {t ∈ (0, 1] : f(t) 6= f(t−)} .

Lemma 6.3 If f ∈ cadlag([0, 1]) and ε > 0 then D (f, ε) is finite and D (f)
is at most countable.
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Proof: Assume D (f, ε) is infinite.
Take a sequence tn ∈ D (f, ε), n ∈ N such that no point is repeated.
Interval [0, 1] is a compact, then, there is a convergent subsequence

lim
k→+∞

tnk = ξ ∈ [0, 1].

Denote

E = {k ∈ N : tnk = ξ} ,
L = {k ∈ N : tnk > ξ} ,
S = {k ∈ N : tnk < ξ} .

At least one of the sets L, S must be countable, since E can contain at most
one point.

1. Let L be countable.

Then, for each k ∈ L there is a point uk ∈ [0, 1] such that

ξ < uk < tnk , |f(tnk)− f(uk)| > ε.

Function f is right continuous at ξ, hence

lim
k∈L

f(tnk) = lim
k∈L

f(uk) = f(ξ) ∈ R.

It is a contradiction.

2. Let S be countable.

Then, for each k ∈ L there is a point vk ∈ [0, 1] such that

tnk − 2−k < vk < tnk < ξ, |f(tnk)− f(vk)| > ε.

Function f possesses a finite limit from left, hence

lim
k∈S

f(tnk) = lim
k∈S

f(vk) = f(ξ−) ∈ R.

It is a contradiction.

We reached a contradiction and, therefore, D (f, ε) is finite. Consequently,
D (f) is at most countable, since

D (f) =
+∞⋃
n=1

D
(
f, 2−n

)
.
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Q.E.D.

Example 6.4: Consider function f : [0, 1]→ R defined by

f (t) = (D + 1)

(
t− 1 +

1

D

)
for 1− 1

D
≤ t < 1− 1

D + 1
, D ∈ N,

= 0 for t = 1.

Function f belongs to cadlag([0, 1]).
Their jumps are f

(
1− 1

D+1

)
− f

(
1− 1

D+1
−
)

= − 1
D

for all D ∈ N.
All jumps are down and their sum is infinite, therefore, the function f

cannot be expressed as a sum of a continuous function and a step function.

4

6.1.2 Characterization of càdlàg functions

Denote ∆(δ) a set of all partitions 0 = t0 < t1 < · · · < tk = 1 such that
ti − ti−1 > δ for all i = 1, 2, . . . , k. For a partition D ∈ ∆(δ) we denote
by ti(D) its points, K(D) number of its points and Ii(D) = [ti−1(D), ti(D))
intervals determined by the partition.

For x ∈ R[0,1], we define moduli

w̃ (x,A) = sup {|x(t)− x(s)| : t, s ∈ A} for A ⊂ [0, 1], (6.1)

w′ (x, δ) = inf {max {w̃ (x, Ii(D)) : i = 1, 2, . . . , K(D)} : (6.2)

: D ∈ ∆(δ)} ,
w′′ (x, δ) = sup {min {|x(t)− x(u)| , |x(s)− x(u)|} : (6.3)

: 0 ≤ t < u < s ≤ 1, s− t ≤ δ} ,
w̃′′ (x,A) = sup {min {|x(t)− x(u)| , |x(s)− x(u)|} : (6.4)

: t < u < s, t, u, s ∈ A} for A ⊂ [0, 1].

Introduced moduli are related.

Lemma 6.5 For x ∈ R[0,1] and δ > 0 we have w′′ (x, δ) ≤ w′ (x, δ).

Proof: For ε > 0 we find a partition D ∈ ∆(δ) such that for all i =
1, 2, . . . K(D) we have w̃ (x, Ii(D)) < w′ (x, δ) + ε.
Take 0 ≤ t < s ≤ 1, s− t ≤ δ. Then, there are only two possibilities:
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1. There is i such that ti−1(D) ≤ t < s ≤ ti(D).

Then, for all t < u < s we have

|x(t)− x(u)| < w′ (x, δ) + ε.

2. There is i such that ti−1(D) < t < ti(D) < s < ti+1(D).

Then, for all t < u < ti(D), we have

|x(t)− x(u)| < w′ (x, δ) + ε,

and, for all ti(D) ≤ u < s we have

|x(s)− x(u)| < w′ (x, δ) + ε.

We have checked w′′ (x, δ) ≤ w′ (x, δ).

Q.E.D.

Introduced moduli are able to characterize functions from cadlag([0, 1]).

Theorem 6.6: Let f ∈ R[0,1]. Then,

f ∈ cadlag([0, 1]) ⇐⇒ lim
δ→0+

w′ (f, δ) = 0. (6.5)

Proof:

1. Let f ∈ cadlag([0, 1]) and ε > 0.

For each t ∈ [0, 1] there exists δt > 0 such that

w̃ (f, (t− δt, t) ∩ [0, 1]) ≤ ε, w̃ (f, [t, t+ δt) ∩ [0, 1]) ≤ ε.

Then,

[0, 1] ⊂
⋃
t∈[0,1]

(t− δt, t+ δt).

Interval [0, 1] is a compact and, therefore, there exists I ∈ Fin ([0, 1])
such that

[0, 1] ⊂
⋃
t∈I

(t− δt, t+ δt).
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Take a partition D ⊂ I∪{0, 1} with the smallest number of points such
that

[0, 1] ⊂
⋃
t∈D

(t− δt, t+ δt).

Now for an interval of the partition we have

[ti−1(D), ti(D)] ⊂ (ti−1(D)− δti−1(D), ti−1(D) + δti−1(D)) ∪
∪(ti(D)− δti(D), ti(D) + δti(D)).

Take δ > 0 such that D ∈ ∆(δ). Hence,

w′ (f, δ) ≤ max {w̃ (f, [ti−1(D), ti(D))) : i = 1, 2, . . . , K(D)}
≤ max

{
w̃
(
f, [ti−1(D), ti−1(D) + δti−1(D))

)
: i = 1, 2, . . . , K(D)

}
+ max

{
w̃
(
f, (ti(D)− δti(D), ti(D))

)
: i = 1, 2, . . . , K(D)

}
≤ 2ε.

It is because for u, v ∈ [ti−1(D), ti(D)), u < v just one case from the
following three is possible

• u, v ∈ [ti−1(D), ti−1(D) + δti−1(D));

• u, v ∈ (ti(D)− δti(D), ti(D));

• u ∈ [ti−1(D), ti−1(D) + δti−1(D)), v ∈ (ti(D)− δti(D), ti(D)).

Then, for s ∈ (ti(D)−δti(D), ti−1(D)+δti−1(D)), we have an estimate

|f(u)− f(v)| ≤ |f(u)− f(s)|+ |f(s)− f(v)| ,

since u, s ∈ [ti−1(D), ti−1(D)+δti−1(D)), v, s ∈ (ti(D)−δti(D), ti(D)).

Thus, we have shown

lim
δ→0+

w′ (f, δ) = 0.

2. Let limδ→0+ w′ (f, δ) = 0 and ε > 0.

Then, there exists a partition D such that

max {w̃ (f, [ti−1(D), ti(D))) : i = 1, 2, . . . , K(D)} ≤ ε.

(a) Take t ∈ [0, 1).

Then, there is a point of the partition such that ti−1(D) ≤ t <
ti(D).

Hence, for all t < s < ti(D) we have |f(t)− f(s)| ≤ ε.

It means f is continuous from right at t.
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(b) Take t ∈ (0, 1].

Then, there is a point of the partition such that ti−1(D) < t ≤
ti(D).

Hence, for all ti−1(D) < s < u < t we have |f(s)− f(u)| ≤ ε.

It means f possesses limit from left at t.

Finally, f ∈ cadlag([0, 1]).

Q.E.D.

Theorem 6.7: Let f ∈ R[0,1]. Then,

limδ→0+ w′′ (f, δ) = 0

m
f possesses a limit from right at each point of [0, 1),

possesses a limit from left at each point of (0, 1],
is continuous from one side at each point of (0, 1).

Proof:

1. Let f possesses a limit from right at each point of [0, 1), a limit from
left at each point of (0, 1], is continuous from one side at each point of
(0, 1) and let ε > 0.

For each t ∈ [0, 1] there exists δt > 0 such that either

w̃ (f, (t− δt, t) ∩ [0, 1]) ≤ ε, w̃ (f, [t, t+ δt) ∩ [0, 1]) ≤ ε

or

w̃ (f, (t− δt, t] ∩ [0, 1]) ≤ ε, w̃ (f, (t, t+ δt) ∩ [0, 1]) ≤ ε.

Then,

[0, 1] ⊂
⋃
t∈[0,1]

(t− δt, t+ δt).

Interval [0, 1] is a compact and, therefore, there exists I ∈ Fin ([0, 1])
such that

[0, 1] ⊂
⋃
t∈I

(t− δt, t+ δt).
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Set δ = min {δt : t ∈ I}.
Then, for 0 ≤ s < u < t ≤ 1, t−s < δ, we have either |f(t)− f(u)| ≤ ε
or |f(u)− f(s)| ≤ ε.

Finally, w′′ (f, δ) ≤ ε.

Thus, we have shown

lim
δ→0+

w′′ (f, δ) = 0.

2. Let limδ→0+ w′′ (f, δ) = 0.

(a) Let f possess no limit from right at t ∈ [0, 1).

Then, there exists ε > 0 such that
lim sups→t f(s)− lim infs→t f(s) > ε, and there are points
1 ≥ h1 > d1 > h2 > d2 > · · · > t such that

lim
n→+∞

hn = lim
n→+∞

dn = t,

lim
n→+∞

f(hn) = lim sup
s→t

f(s), lim
n→+∞

f(dn) = lim inf
s→t

f(s).

Then, for n sufficiently large, we have

f(hn)− f(dn) > ε, f(hn+1)− f(dn) > ε.

That is a contradiction, since modulus should vanish.

Finally, f possesses a limit from right at t.

(b) Similar arguments are giving f possesses a limit from left at each
t ∈ (0, 1].

(c) Let f be discontinuous from both sides at t ∈ (0, 1).

Then, there exists ε > 0 such that
|f(t−)− f(t)| > ε, |f(t+)− f(t)| > ε,
and there are points hn > t > dn, n ∈ N such that

lim
n→+∞

hn = lim
n→+∞

dn = t,

lim
n→+∞

f(hn) = f(t+), lim
n→+∞

f(dn) = f(t−).

Then, for n sufficiently large, we have

f(hn)− f(t) > ε, f(t)− f(dn) > ε,

That is a contradiction, since modulus should vanish.

Finally, f must be continuous either from right or from left at t.
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All required properties of f are checked.

Q.E.D.

Consequence: Let f ∈ R[0,1] be continuous from right at each point of
[0, 1). Then,

f ∈ cadlag([0, 1]) ⇐⇒ lim
δ→0+

w′′ (f, δ) = 0. (6.6)

♣

Proof: The statement is a consequence of Theorem 6.7.

Q.E.D.

6.2 Càdlàg functions with supremal norm

Theorem 6.8: (cadlag([0, 1]), ‖·‖[0,1]) is a non-separable Banach space.

Proof: Normed space (cadlag([0, 1]), ‖·‖[0,1]) is a subspace of Banach space

(l+∞ ([0, 1]) , ‖·‖[0,1]). We have to show its completeness and discuss separa-
bility.

1. Let fn ∈ cadlag([0, 1]), n ∈ N be a Cauchy sequence at ‖·‖[0,1].

The sequence is also Cauchy in l+∞ ([0, 1]) and, therefore accordingly
to Theorem 4.2, there exists g ∈ l+∞ ([0, 1]) such that
lim

n→+∞
‖fn − g‖[0,1] = 0.

For ε > 0 there exists n ∈ N such that ‖fn − g‖[0,1] < ε.

Now there exists δ > 0 and a partition D ∈ ∆(δ) such that for all
i = 1, 2, . . . , K(D) and each t, s ∈ Ii(D) we have |fn(t)− fn(s)| < ε.

Then, for all i = 1, 2, . . . , K(D) and each t, s ∈ Ii(D) we have

|g(t)− g(s)| ≤ |fn(t)− g(t)|+ |fn(s)− g(s)|+ |fn(t)− fn(s)| < 3ε.

Thus, g ∈ cadlag([0, 1]) and (cadlag([0, 1]), ‖·‖[0,1]) is complete, so it is
a Banach space.
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2. For all s ∈ [0, 1], we introduce a function

δs(t) = 0 if 0 ≤ t < s,

= 1 if s ≤ t ≤ 1.

For s, u ∈ [0, 1], s 6= u is ‖δs − δu‖[0,1] = 1.

A collection of functions δs, s ∈ [0, 1] is uncountable. Therefore, the
space (cadlag([0, 1]), ‖·‖[0,1]) is non-separable.

Q.E.D.

A random jump can be non-measurable in (cadlag([0, 1]), ‖·‖[0,1]).

Example 6.9: Consider ξ a random variable uniformly distributed on (0, 1)
and define

S(t) = 1 if ξ ≤ t ≤ 1,

= 0 if 0 ≤ t < ξ.

Let us denote δs a jump at s ∈ [0, 1]; i.e.

δs(t) = 1 if s ≤ t ≤ 1,

= 0 if 0 ≤ t < s.

Evidently, jumps are càdlàg functions.
Take U ⊂ [0, 1]. Then,[
S ∈

⋃
u∈U

U
(
δu;

1

3

∣∣∣∣ (cadlag([0, 1]), ‖·‖[0,1])

)]
=

⋃
u∈U

[ξ = u] = [ξ ∈ U ].

Moreover, always⋃
u∈U

U
(
δu;

1

3

∣∣∣∣ (cadlag([0, 1]), ‖·‖[0,1])

)
∈ G

(
(cadlag([0, 1]), ‖·‖[0,1])

)
.

But,

P∗ (ξ ∈ U) = λ∗ (U) < λ∗ (U) = P∗ (ξ ∈ U)

for any U Lebesgue non-measurable set. Therefore, [ξ ∈ U ] 6∈ A.

4
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Weak convergence of random processes with values in bounded real func-
tions is well defined and can be helpful in some cases. Unfortunately, there
is a limit. Empirical processes are typically non-measurable in topology of
bounded real functions, see Example 6.9. Therefore, we would have to relax
the assumption on measurablity of treated processes. Appropriate theory is
introduced and explained in [9]. We will not follow this stream in the lec-
ture. We will overcome the problem with measurablity establishing a finer
topology on càdlàg functions.

6.3 Skorokhod space

In this section, we introduce step by step a topology on càdlàg functions
defined by Skorokhod in [7].

6.3.1 Time transformations

Denote by Λ a set of all nondecreasing bijections from [0, 1] to [0, 1]. Con-
sequently, λ ∈ Λ must fulfill λ(0) = 0, λ(1) = 1 and λ is an increasing
continuous function. The set Λ contains two important subsets:

ΛL =
{
λ ∈ Λ : λ, λ−1 ∈ C0,1

}
, (6.7)

ΛD =
{
λ ∈ Λ : λ, λ−1 ∈ C1,0

}
. (6.8)

We need to measure deformation of [0, 1] made by a particular bijection. Two
measures will be employed for that:

‖λ‖Λ = ‖λ− Id‖[0,1] = sup {|λ(t)− t| : t ∈ [0, 1]} , (6.9)

〈〈λ〉〉Λ = sup

{∣∣∣∣log

(
λ(s)− λ(t)

s− t

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
. (6.10)

These measures possess some properties required for a norm. Unfortunately,
they cannot be norms, because, Λ is not a vector space. We will call them
half-norms.

At first, we investigate basic properties of above defined half-norms.

Lemma 6.10 For λ ∈ Λ we always have 0 ≤ ‖λ‖Λ ≤ 1.

Proof: The statement is evident, since for all 0 ≤ t ≤ 1 we have

−t ≤ λ(t)− t ≤ λ(t).

Q.E.D.
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The second half-norm can attain infinite values.
For example, the half-norm for a transformation λ(t) = t2 is

〈〈λ〉〉Λ = |log(λ′(0))| = +∞.

Lemma 6.11 Let λ ∈ Λ. Then

〈〈λ〉〉Λ = max
{

log(Lip (λ)), log(Lip
(
λ−1
)
)
}

and hence

〈〈λ〉〉Λ < +∞ ⇐⇒ λ ∈ ΛL.

Proof: We know, if λ ∈ Λ then also λ−1 ∈ Λ. Remember a definition of
Lipschitz constant for λ and λ−1. We have an estimate:

Lip (λ) = sup

{
λ(s)− λ(t)

s− t
: 0 ≤ t < s ≤ 1

}
≥ inf

{
λ(s)− λ(t)

s− t
: 0 ≤ t < s ≤ 1

}
= inf

{
λ(s)− λ(t)

λ−1 ◦ λ(s)− λ−1 ◦ λ(t)
: 0 ≤ t < s ≤ 1

}
=

(
Lip
(
λ−1
))−1

.

Always λ(0) = 0, λ(1) = 1, therefore we have Lip (λ) ≥ 1, Lip (λ−1) ≥ 1.
These observations are giving required relation

〈〈λ〉〉Λ = max
{

log(Lip (λ)), log(Lip
(
λ−1
)
)
}
.

Q.E.D.

Introduced half-norms possess nice and useful properties.

Lemma 6.12 We have:

i) For λ ∈ Λ, it is ‖λ‖Λ = 0 if and only if λ = Id.

ii) For λ ∈ Λ, we have ‖λ−1‖Λ = ‖λ‖Λ.

iii) For λ, ϕ ∈ Λ, we have ‖λ ◦ ϕ‖Λ ≤ ‖λ‖Λ + ‖ϕ‖Λ.

Proof:

1. Evidently, ‖λ‖Λ = 0 if and only if λ = Id.
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2. For λ ∈ Λ,∥∥λ−1
∥∥

Λ
=
∥∥λ−1 − Id

∥∥
[0,1]

=
∥∥λ−1 ◦ λ− Id ◦ λ

∥∥
[0,1]

= ‖Id − λ‖[0,1] = ‖λ‖Λ .

3. For λ, ϕ ∈ Λ,

‖λ ◦ ϕ‖Λ = ‖λ ◦ ϕ− Id‖[0,1] = ‖(λ ◦ ϕ− ϕ) + (ϕ− Id)‖[0,1]

≤ ‖λ ◦ ϕ− ϕ‖[0,1] + ‖ϕ− Id‖[0,1] = ‖λ− Id‖[0,1] + ‖ϕ− Id‖[0,1]

= ‖λ‖Λ + ‖ϕ‖Λ .

Q.E.D.

Lemma 6.13 For λ ∈ Λ we have an estimate

‖λ‖Λ ≤ exp {〈〈λ〉〉Λ} − 1. (6.11)

Proof:

‖λ‖Λ = sup {|λ(t)− t| : t ∈ [0, 1]} . = sup {|λ(t)− t| : t ∈ (0, 1]} .

= sup

{
t

∣∣∣∣λ(t)

t
− 1

∣∣∣∣ : t ∈ (0, 1]

}
≤ sup

{∣∣∣∣exp{log(λ(t)

t

)}
− 1

∣∣∣∣ : t ∈ (0, 1]

}
≤ sup

{
exp

{∣∣∣∣log(λ(t)

t

)∣∣∣∣}− 1 : t ∈ (0, 1]

}
≤ exp {〈〈λ〉〉Λ} − 1.

Q.E.D.

Lemma 6.14 We have:

i) For λ ∈ Λ is 〈〈λ〉〉Λ = 0 if and only if λ = Id.

ii) For λ ∈ ΛL is 〈〈λ−1〉〉Λ = 〈〈λ〉〉Λ.

iii) For λ, ϕ ∈ ΛL is 〈〈λ ◦ ϕ〉〉Λ ≤ 〈〈λ〉〉Λ + 〈〈ϕ〉〉Λ.

Proof:
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1. Evidently, 〈〈Id〉〉Λ = 0

According to Lemma 6.13, 〈〈λ〉〉Λ = 0 implies ‖λ‖Λ = 0. Thus, λ = Id.

2. According to Lemma 6.11, 〈〈λ−1〉〉Λ = 〈〈λ〉〉Λ.

3. For λ, ϕ ∈ Λ,

‖λ ◦ ϕ‖Λ = sup

{∣∣∣∣log

(
λ ◦ ϕ(s)− λ ◦ ϕ(t)

s− t

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
= sup

{∣∣∣∣log

(
λ ◦ ϕ(s)− λ ◦ ϕ(t)

ϕ(s)− ϕ(t)
· ϕ(s)− ϕ(t)

s− t

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
≤ sup

{∣∣∣∣log

(
λ ◦ ϕ(s)− λ ◦ ϕ(t)

ϕ(s)− ϕ(t)

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
+ sup

{∣∣∣∣log

(
ϕ(s)− ϕ(t)

s− t

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
= 〈〈λ〉〉Λ + 〈〈ϕ〉〉Λ .

Q.E.D.

6.3.2 Metrics

For a couple of real functions x, y ∈ R[0,1], we will consider two distances:

d (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
: λ ∈ Λ

}
, (6.12)

d0 (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ Λ

}
. (6.13)

For càdlàg functions these distances can be expressed equivalently.

Lemma 6.15 For x, y ∈ cadlag([0, 1]), we have:

d (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
: λ ∈ Λ

}
= inf

{
max

{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
: λ ∈ ΛL

}
= inf

{
max

{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
: λ ∈ ΛD

}
,

d0 (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ Λ

}
= inf

{
max

{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ ΛL

}
= inf

{
max

{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ ΛD

}
.
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Proof: These expressions are true, since ΛD ⊂ ΛL ⊂ Λ and ΛD is dense in
Λ in supremal norm.

Q.E.D.

Distances d, d0 are metrics on cadlag([0, 1]).

Theorem 6.16: Distance d is a metric on cadlag([0, 1]).

Proof: We have to verify properties of a metric.

1. Finiteness

Let x, y ∈ cadlag([0, 1]). Then,

d (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
: λ ∈ Λ

}
≤ max

{
‖x ◦ Id − y‖[0,1] , ‖Id‖Λ

}
= max

{
‖x− y‖[0,1] , 0

}
≤ ‖x‖[0,1] + ‖y‖[0,1] < +∞.

Finally, d : cadlag([0, 1])× cadlag([0, 1])→ R+,0.

2. Symmetry

Let x, y ∈ cadlag([0, 1]). Then,

d (y, x) = inf
{

max
{
‖y ◦ λ− x‖[0,1] , ‖λ‖Λ

}
: λ ∈ Λ

}
= inf

{
max

{∥∥y − x ◦ λ−1
∥∥

[0,1]
,
∥∥λ−1

∥∥
Λ

}
: λ ∈ Λ

}
= inf

{
max

{
‖x ◦ µ− y‖[0,1] , ‖µ‖Λ

}
: µ ∈ Λ

}
= d (x, y) .

3. Reflexivity

(a) For x ∈ cadlag([0, 1]), d (x, x) = 0, evidently.

(b) Let x, y ∈ cadlag([0, 1]) such that d (x, y) = 0.

Then, there exists a sequence of bijections λn ∈ Λ, n ∈ N such
that

lim
n→+∞

‖x ◦ λn − y‖[0,1] = 0, lim
n→+∞

‖λn‖Λ = 0.

Take t ∈ [0, 1].
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i. If t = 1, then

0 = lim
n→+∞

|x ◦ λn(1)− y(1)| = |x(1)− y(1)| .

Thus, x(1) = y(1).

ii. If 0 ≤ t < 1, then there is a sequence of numbers sk, k ∈ N
such that t < sk < 1 for all k ∈ N and limk→+∞ sk = t.
Then, there is a subsequence nk, k ∈ N such that

t < λnk(sk) < sk +
1

k
for all k ∈ N.

Hence, limk→+∞ λnk(sk) = t. Since both x, y are continuous
from right at t, we have

0 = lim
k→+∞

|x ◦ λnk(sk)− y(sk)| = |x(t)− y(t)| .

Thus, x(t) = y(t).

We have shown, that x = y.

4. Triangular inequality

Let x, y, z ∈ cadlag([0, 1]).

For ε > 0 we find transformation λ, ϕ ∈ Λ such that

max
{
‖y ◦ λ− x‖[0,1] , ‖λ‖Λ

}
< d (x, y) + ε,

max
{
‖z ◦ ϕ− y‖[0,1] , ‖ϕ‖Λ

}
< d (y, z) + ε.

There are two cases:

(a) If ‖z ◦ ϕ ◦ λ− x‖[0,1] ≥ ‖ϕ ◦ λ‖Λ, then

d (x, z) ≤ ‖z ◦ ϕ ◦ λ− x‖[0,1]

= ‖(z ◦ ϕ ◦ λ− y ◦ λ) + (y ◦ λ− x)‖[0,1]

≤ ‖z ◦ ϕ− y‖[0,1] + ‖y ◦ λ− x‖[0,1]

< d (x, y) + d (y, z) + 2ε.

(b) If ‖z ◦ ϕ ◦ λ− x‖[0,1] < ‖ϕ ◦ λ‖Λ, then

d (x, z) ≤ ‖ϕ ◦ λ‖Λ

≤ ‖λ‖Λ + ‖ϕ‖Λ

< d (x, y) + d (y, z) + 2ε.
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Since ε is an arbitrary small positive number, the triangular inequality
d (x, z) ≤ d (x, y) + d (y, z) is checked.

We have verified d is a metric on cadlag([0, 1]).

Q.E.D.

To deal with d0, we need an estimate.

Lemma 6.17 For x, y ∈ cadlag([0, 1]), we have an estimate

d (x, y) ≤ exp {d0 (x, y)} − 1.

Proof: Since exponential function is convex, we have an estimate et ≥ t+1
for all t ∈ R. Therefore,

‖x ◦ λ− y‖[0,1] ≤ exp
{
‖x ◦ λ− y‖[0,1]

}
− 1.

Accordingly to Lemma 6.13,

‖λ‖Λ ≤ exp {〈〈λ〉〉Λ} − 1.

These two estimates together imply

max
{
‖x ◦ λ− y‖[0,1] , ‖λ‖Λ

}
≤ exp

{
max

{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}}
− 1.

That is the required estimate.

Q.E.D.

Theorem 6.18: Distance d0 is a metric on cadlag([0, 1]).

Proof: We have to verify properties of a metric.

1. Finiteness

Let x, y ∈ cadlag([0, 1]). Then,

d0 (x, y) = inf
{

max
{
‖x ◦ λ− y‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ Λ

}
≤ max

{
‖x ◦ Id − y‖[0,1] , 〈〈Id〉〉Λ

}
= max

{
‖x− y‖[0,1] , 0

}
≤ ‖x‖[0,1] + ‖y‖[0,1] < +∞.

Finally, d0 : cadlag([0, 1])× cadlag([0, 1])→ R+,0.
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2. Symmetry

Let x, y ∈ cadlag([0, 1]). Then,

d0 (y, x) = inf
{

max
{
‖y ◦ λ− x‖[0,1] , 〈〈λ〉〉Λ

}
: λ ∈ ΛL

}
= inf

{
max

{∥∥y − x ◦ λ−1
∥∥

[0,1]
,
〈〈
λ−1
〉〉

Λ

}
: λ ∈ ΛL

}
= inf

{
max

{
‖x ◦ µ− y‖[0,1] , 〈〈µ〉〉Λ

}
: µ ∈ ΛL

}
= d0 (x, y) .

3. Reflexivity

(a) For x ∈ cadlag([0, 1]), d0 (x, x) = 0 is evident.

(b) Let x, y ∈ cadlag([0, 1]) such that d0 (x, y) = 0.

According to Lemma 6.17, d (x, y) = 0, too.

From Theorem 6.16 we know that d is a metric, therefore x = y.

4. Triangular inequality

Let x, y, z ∈ cadlag([0, 1]).

For ε > 0 we find transformation λ, ϕ ∈ Λ such that

max
{
‖y ◦ λ− x‖[0,1] , 〈〈λ〉〉Λ

}
< d0 (x, y) + ε,

max
{
‖z ◦ ϕ− y‖[0,1] , 〈〈ϕ〉〉Λ

}
< d0 (y, z) + ε.

There are two cases:

(a) If ‖z ◦ ϕ ◦ λ− x‖[0,1] ≥ 〈〈ϕ ◦ λ〉〉Λ, then

d0 (x, z) ≤ ‖z ◦ ϕ ◦ λ− x‖[0,1]

= ‖(z ◦ ϕ ◦ λ− y ◦ λ) + (y ◦ λ− x)‖[0,1]

≤ ‖z ◦ ϕ− y‖[0,1] + ‖y ◦ λ− x‖[0,1]

< d0 (x, y) + d0 (y, z) + 2ε.

(b) If ‖z ◦ ϕ ◦ λ− x‖[0,1] < 〈〈ϕ ◦ λ〉〉Λ, then

d0 (x, z) ≤ 〈〈ϕ ◦ λ〉〉Λ
≤ 〈〈λ〉〉Λ + 〈〈ϕ〉〉Λ
< d0 (x, y) + d0 (y, z) + 2ε.
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Since, ε is an arbitrary small positive number and, therefore, the tri-
angular inequality d0 (x, z) ≤ d0 (x, y) + d0 (y, z) is checked.

We have verified d0 is a metric on cadlag([0, 1]).

Q.E.D.

Lemma 6.19 Let f, g ∈ cadlag([0, 1]) and 0 < δ < 1
2
. If d (f, g) < δ2, then

d0 (f, g) < w′ (g, δ) + |log(1− 2δ)| .

Proof: Because g ∈ cadlag([0, 1]), there exists a partition D ∈ ∆(δ) such
that w̃ (g, Ii(D)) < w′ (g, δ) + δ for all i = 1, 2, . . . , K(D).
Then, there is a transformation λ ∈ Λ such that

max
{
‖f ◦ λ− g‖[0,1] , ‖λ‖Λ

}
< δ2.

We define a new transformation ρ ∈ Λ such that ρ(ti(D)) = λ(ti(D)) for
all i = 0, 1, 2, . . . , K(D). Between neighbors of the partition, we define ρ
continuously linear.
Then, for i = 1, 2, . . . , K(D), we have

ρ(ti(D))− ρ(ti−1(D))

ti(D)− ti−1(D)
=

= 1 +
(λ(ti(D))− ti(D))− (λ(ti−1(D))− ti−1(D))

ti(D)− ti−1(D)

≤ 1 +
2 ‖λ‖Λ

ti(D)− ti−1(D)
< 1 +

2δ2

δ
= 1 + 2δ,

ρ(ti(D))− ρ(ti−1(D))

ti(D)− ti−1(D)
≥ 1− 2 ‖λ‖Λ

ti(D)− ti−1(D)
> 1− 2δ2

δ
= 1− 2δ.

Consequently,

〈〈ρ〉〉Λ = sup

{∣∣∣∣log

(
λ(s)− λ(t)

s− t

)∣∣∣∣ : 0 ≤ t < s ≤ 1

}
= max

{∣∣∣∣log

(
ρ(ti(D))− ρ(ti−1(D))

ti(D)− ti−1(D)

)∣∣∣∣ : i = 1, 2, . . . , K(D)

}
< max {log(1 + 2δ), |log(1− 2δ)|} = |log(1− 2δ)| .
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According to Lemma 6.11, ρ ∈ ΛL. Hence,

‖f ◦ ρ− g‖[0,1] =
∥∥f ◦ λ− g ◦ ρ−1 ◦ λ

∥∥
[0,1]

=
∥∥(f ◦ λ− g)− (g ◦ ρ−1 ◦ λ− g)

∥∥
[0,1]

≤ ‖f ◦ λ− g‖[0,1] +
∥∥(g ◦ ρ−1 ◦ λ− g)

∥∥
[0,1]

≤ ‖f ◦ λ− g‖[0,1] + max {w̃ (g, Ii(D)) : i = 1, 2, . . . , K(D)}
< δ2 + w′ (g, δ) + δ.

We have shown that for each n ≥ m, n ∈ N, it is fulfilled

d0 (f, g) < w′ (g, δ) + max
{
δ2 + δ, |log(1− 2δ)|

}
= w′ (g, δ) + |log(1− 2δ)| .

Q.E.D.

Lemma 6.20 Let x, xn ∈ cadlag([0, 1]) for n ∈ N. Hence,

lim
n→+∞

d (xn, x) = 0 ⇐⇒ lim
n→+∞

d0 (xn, x) = 0.

Proof:

1. If limn→+∞ d0 (xn, x) = 0, then limn→+∞ d (xn, x) = 0, accordingly to
Lemma 6.17.

2. Let limn→+∞ d (xn, x) = 0.

Take ε > 0.

Then, there exists m ∈ N such that for all n ≥ m, n ∈ N is
d (xn, x) < ε2.

According to Lemma 6.19, for all n ≥ m, we have an estimate

d0 (xn, x) < w′ (x, ε) + |log(1− 2ε)| .

It means lim
n→+∞

d0 (xn, x) = 0.

Q.E.D.

Consider also continuity of the modulus w′ with respect to introduced
metrics.
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Lemma 6.21 Let x, y ∈ cadlag([0, 1]), δ > 0 and λ ∈ Λ. Then,

|w′ (y, δ)− w′ (x, δ)| ≤ 2 ‖y − x‖[0,1] , (6.14)

w′ (x, δ − 2 ‖λ‖Λ) ≤ w′ (x ◦ λ, δ) ≤ w′ (x, δ + 2 ‖λ‖Λ) . (6.15)

Proof:

1. For t, s ∈ [0, 1] we have estimates

|x(t)− x(s)| ≤ |y(t)− y(s)|+ 2 ‖y − x‖[0,1] ,

|y(t)− y(s)| ≤ |x(t)− x(s)|+ 2 ‖y − x‖[0,1] .

Then, for each set A ⊂ [0, 1] we have estimates

w̃ (x,A) ≤ w̃ (y, A) + 2 ‖y − x‖[0,1] ,

w̃ (y, A) ≤ w̃ (x,A) + 2 ‖y − x‖[0,1] .

Consequently, we are receiving (6.14).

2. It is sufficient to observe that points of partition D ∈ ∆(δ) are not ef-
fected by transformation λ; i.e. λ◦D ∈ ∆(δ−2 ‖λ‖Λ). Hence, suprema
over corresponding intervals coincide and, therefore, contributions to
moduli is the same.

Q.E.D.

Lemma 6.22 Let x, xn ∈ cadlag([0, 1]) for n ∈ N. If lim
n→+∞

‖xn − x‖[0,1] = 0,

hence for all δ > 0,

lim
n→+∞

w′ (xn, δ) = w′ (x, δ) .

Proof: The statement is a direct consequence of the estimate (6.14).

Q.E.D.

Lemma 6.23 Let x, xn ∈ cadlag([0, 1]) for n ∈ N. If lim
n→+∞

d (xn, x) = 0,

hence for all 0 < η < δ < ζ, we have

lim sup
n→+∞

w′ (xn, η) ≤ w′ (x, δ) ≤ lim inf
n→+∞

w′ (xn, ζ) .
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Proof: We know, there is a sequence of transformations λn ∈ Λ, n ∈ N
such that

lim
n→+∞

‖xn ◦ λn − x‖[0,1] = 0, lim
n→+∞

‖λn‖Λ = 0.

According to Lemma 6.22, for all δ > 0,

lim
n→+∞

w′ (xn ◦ λn, δ) = w′ (x, δ) .

According to the estimate (6.15) we have

w′ (xn, δ) ≤ w′ (xn ◦ λn, δ + 2 ‖λn‖Λ) ,

w′ (xn ◦ λn, δ) ≤ w′ (xn, δ + 2 ‖λn‖Λ) .

Consequently, the statement is shown.

Q.E.D.

6.3.3 Topology

Definition 6.24 Metric space (cadlag([0, 1]), d) induces a topology on
cadlag([0, 1]). The topology is called Skorokhod topology and will be denoted by
τS. A topological space D ([0, 1]) = (cadlag([0, 1]), τS) is called Skorokhod space;
or simply “space D”. (“D” comes from “discontinuous”)

Theorem 6.25: Metric space (cadlag([0, 1]), d0) also induces the Skorokhod
topology on cadlag([0, 1]).

Proof: Both metrics d, d0 induce the same convergence on cadlag([0, 1]); see
Lemma 6.20. Consequently, they induce the same topology on cadlag([0, 1]);
i.e. Skorokhod topology.

Q.E.D.

Theorem 6.26: Space (cadlag([0, 1]), d) is a separable metric space, but,
incomplete.

Proof: According to Theorem 6.16, (cadlag([0, 1]), d) is a metric space. We
have to show separability and discuss completeness.
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1. Set of functions
K(D)∑
i=1

αiI [Ii(D)] + βI [{1}] :

: αi, β are rational, D is a partition with rational points}

is countable and dense in (cadlag([0, 1]), d). It can be shown in two
steps. The set is dense in

K(D)∑
i=1

αiI [Ii(D)] + βI [{1}] : αi, β ∈ R, D is a partition

 ,

which is dense in (cadlag([0, 1]), d), accordingly to Theorem 6.6.

2. Consider a sequence of functions fn = I
[[

0, 1
n

)]
, n ∈ N.

For n,m ∈ N, we construct a transformation λmn such that λmn (0) = 0,
λmn (1) = 1, λmn ( 1

m
) = 1

n
, and, linear continuous on intervals

[
0, 1

m

]
,[

1
m
, 1
]
.

Hence, fm = fn ◦ λmn and ‖λmn ‖Λ =
∣∣ 1
m
− 1

n

∣∣.
Finally, d (fn, fm) ≤

∣∣ 1
m
− 1

n

∣∣ and the sequence is Cauchy.

Assume, the sequence possesses a limit in (cadlag([0, 1]), d), say g ∈
cadlag([0, 1]).

Then, there would be transformations ρn ∈ Λ, n ∈ N such that

‖ρn‖Λ → 0, ‖fn ◦ ρn − g‖[0,1] → 0.

Then,

(a) g(1) = lim
n→+∞

fn ◦ ρn(1) = lim
n→+∞

fn(1) = 0.

(b) For 0 < t < 1 there exists n0 ∈ N such that ρn(t) ≥ 1
n

for all
n ∈ N, n ≥ n0.

Consequently, g(t) = lim
n→+∞

fn ◦ ρn(t) = 0.

(c) We assume, g ∈ cadlag([0, 1]), therefore, g is continuous at zero
from right, and therefore, g(0) = 0.

(d) But hence,

‖fn ◦ ρn − g‖[0,1] = ‖fn ◦ ρn‖[0,1] = ‖fn‖[0,1] = 1.

It is a contradiction.
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Finally, the sequence possesses no limit in (cadlag([0, 1]), d). It means,
(cadlag([0, 1]), d) is incomplete.

Q.E.D.

Theorem 6.27: Space (cadlag([0, 1]), d0) is a complete separable metric space.

Proof: According to Theorem 6.18, (cadlag([0, 1]), d0) is a metric space.
We have to show its separability and completeness.

1. According to Lemma 6.20, topologies of spaces (cadlag([0, 1]), d0) and
(cadlag([0, 1]), d) coincide. According to Theorem 6.26, (cadlag([0, 1]), d)
is separable, consequently, (cadlag([0, 1]), d0) is separable, too.

2. Let fn, n ∈ N be a Cauchy sequence in (cadlag([0, 1]), d0). Without
any loss of generality we assume d0 (fn, fn+1) < 2−n for all n ∈ N.

Then for each n ∈ N, there is a transformation λn ∈ ΛL such that

‖fn − fn+1 ◦ λn‖[0,1] < 2−n, 〈〈λn〉〉Λ < 2−n.

For n,m ∈ N, n < m, we define a transformation

ρmn = λm ◦ λm−1 ◦ · · · ◦ λn+1 ◦ λn.

Estimate its half-norm

〈〈ρmn 〉〉Λ =
〈〈
λm ◦ λm−1 ◦ · · · ◦ λn

〉〉
Λ
≤

m∑
j=n

〈〈
λj
〉〉

Λ
<

m∑
j=n

2−j < 21−n.

Then for n,m, k ∈ N, n < m < k, we have an estimate∥∥ρkn − ρmn ∥∥[0,1]
=

∥∥ρkm+1 − Id
∥∥

[0,1]
=
∥∥ρkm+1

∥∥
Λ

≤ exp
{〈〈

ρkm+1

〉〉
Λ

}
− 1

< exp
{

2−m
}
− 1.

We have shown, that for fixed n ∈ N the sequence ρmn , m ∈ N is Cauchy
in C ([0, 1]). Thus, it possesses a limit in C ([0, 1]). Let us denote the
limit by ψn. We know, that ψn ∈ C ([0, 1]), ψn(0) = 0. ψn(1) = 1.

We have to estimate its half-norm.
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For 0 ≤ t < s ≤ 1, we observe

ψn(s)− ψn(t)

s− t
= lim

m→+∞

ρmn (s)− ρmn (t)

s− t
≤ lim inf

m→+∞
Lip (ρmn )

≤ lim inf
m→+∞

exp {〈〈ρmn 〉〉Λ} ≤ exp
{

21−n} ,
ψn(s)− ψn(t)

s− t
≥ lim sup

m→+∞

(
Lip
(
(ρmn )−1))−1

≥ lim sup
m→+∞

exp {− 〈〈ρmn 〉〉Λ} ≥ exp
{
−21−n} .

These estimates are giving 〈〈ψn〉〉Λ ≤ 21−n. Hence, ψn ∈ ΛL.

The construction is also giving ψn = ψn+1 ◦ λn. Consequently,∥∥∥fn ◦ (ψn)−1 − fn+1 ◦
(
ψn+1

)−1
∥∥∥

[0,1]
= ‖fn − fn+1 ◦ λn‖[0,1] < 2−n.

The sequence fn ◦ (ψn)−1, n ∈ N is Cauchy in (cadlag([0, 1]), ‖·‖[0,1]),
which is Banach, according to Theorem 6.8. Therefore, the sequence
possesses a limit in (cadlag([0, 1]), ‖·‖[0,1]), say g ∈ cadlag([0, 1]). More-
over, we have d0 (fn, g)→ 0, since∥∥fn ◦ (ψn)−1 − g

∥∥
[0,1]
→ 0, 〈〈ψn〉〉Λ → 0.

Thus, (cadlag([0, 1]), d0) is a complete separable metric space.

Q.E.D.

Convergence is connected with topology, which is the same if metric d or
d0 is used. From now, we will be writing D ([0, 1]) and we will consider it as
a topological space with topology induced by metric d. We know, the space
is Polish and we know two metrics d, d0 metrizing the topology.

Now, we introduce two characterizations of compacts.

Theorem 6.28: Let A ⊂ D ([0, 1]). Then, A is relatively compact in D ([0, 1])
if and only if

sup
{
‖f‖[0,1] : f ∈ A

}
< +∞,

lim
δ→0+

sup {w′ (f, δ) : f ∈ A} = 0.

Proof:
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1. Sufficiency

Metric space (cadlag([0, 1]), d0) is complete and, therefore, we have to
show total boundedness of A in (cadlag([0, 1]), d0), only.

Start with total boundedness of A in (cadlag([0, 1]), d).

Take ε > 0.

Then, there is k ∈ N such that k > 1
ε

and sup
{
w′
(
f, 1

k

)
: f ∈ A

}
< ε.

Let us denote M =
⌈
k sup

{
‖f‖[0,1] : f ∈ A

}⌉
and consider a set of

functions

E =

{
k∑
j=1

αj
k
I
[[
j − 1

k
,
j

k

)]
+
β

k
I [{1}] :

: αi, β ∈ {−M, . . . ,−1, 0, 1, . . . ,M}} .

For f ∈ A, there exists a partition D ∈ ∆( 1
k
) such that for all i =

1, 2, . . . , K(D) we have w̃ (f, [ti−1(D), ti(D))) < ε.

Let us denote j0 = 0, jK(D) = k and for i = 1, 2, . . . , K(D)− 1 we find

ji such that ji
k
≤ ti(D) < ji+1

k
. This correspondence is uniquely defined

and none of the points is repeated, since distance between neighbors of
the partition is larger than 1

k
.

Take a transformation λ ∈ Λ such that λ( ji
k

) = ti(D), and, it is contin-
uous linear between neighboring points. Then,

‖λ‖Λ = max

{∣∣∣∣jik − ti(D)

∣∣∣∣ : i = 1, 2, . . . , K(D)− 1

}
<

1

k
< ε .

Set

g =
k∑
j=1

αj
k
I
[[
j − 1

k
,
j

k

)]
+
β

k
I [{1}] ,

where αi =

⌊
k · f ◦ λ

(
j − 1

k

)⌋
, β = bk · f(1)c .

Hence,

‖f ◦ λ− g‖[0,1] <
1

k
+ ε < 2ε .

Thus, d (f, g) < 2ε and E is 2ε-net for A in (cadlag([0, 1]), d).
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If 0 < ε < 1
8

we can set δ =
√

2ε. Then 0 < δ < 1
2

and d (f, g) < δ2.
We can apply Lemma 6.19 and receive

d0 (f, g) < w′ (f, δ) + |log(1− 2δ)|
≤ sup

h∈A
w′ (h, δ) + |log(1− 2δ)| .

Denoting η = suph∈A w
′ (h, δ) + |log(1− 2δ)|, we see E is an η-net for

A in (cadlag([0, 1]), d0).

Metric space (cadlag([0, 1]), d0) is complete and η can be adjusted to be
arbitrary small. It means, A is relatively compact in (cadlag([0, 1]), d0).

2. Necessity

Let A be relatively compact in (cadlag([0, 1]), d0).

(a) Assume fn ∈ A, n ∈ N with a property lim
n→+∞

‖fn‖[0,1] = +∞.

A is relatively compact in (cadlag([0, 1]), d0), therefore, the se-
quence possesses a cluster point, say g ∈ D ([0, 1]).

Thus for a subsequence and convenient transformations λk ∈ ΛL,
we have lim

k→+∞
‖fnk ◦ λk − g‖[0,1] = 0 and lim

k→+∞
〈〈λk〉〉Λ = 0.

Consequently, ‖fnk‖[0,1] ≤ ‖fnk ◦ λk − g‖[0,1] + ‖g‖[0,1].

We received, functions of the subsequence are uniquely bounded.
It is a contradiction. Finally,

sup
{
‖f‖[0,1] : f ∈ A

}
< +∞ .

(b) Assume

∆ = lim
δ→0+

sup {w′ (f, δ) : f ∈ A} > 0.

Then, there exists a sequence of functions fn ∈ A such that

lim
n→+∞

w′
(
fn,

1

n

)
= ∆.

The set A is relatively compact and, therefore, there exists at least
one cluster point of the sequence, say g ∈ D ([0, 1]).

Hence according to Lemma 6.23, w′ (g, δ) ≥ ∆ > 0 for all δ > 0.

Accordingly to Lemma 6.6, g 6∈ D ([0, 1]).

It is a contradiction.
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Therefore, the condition is necessary.

Q.E.D.

Theorem 6.29: Let A ⊂ D ([0, 1]). Then, A is relatively compact in D ([0, 1])
if and only if

sup
{
‖f‖[0,1] : f ∈ A

}
< +∞,

lim
δ→0+

sup {w′′ (f, δ) : f ∈ A} = 0,

lim
δ→0+

sup {w̃ (f, [0, δ)) : f ∈ A} = 0,

lim
δ→0+

sup {w̃ (f, [1− δ, 1)) : f ∈ A} = 0.

Proof: For a proof see [2], Theorem 14.4, pp.166-8.

Q.E.D.

6.3.4 Relation between topologies of D ([0, 1]) and R[0,1]

This section is taken from [2], chapter 3. Let us begin with Theorem 15.1
from [2], p.174.

Theorem 6.30: Let T = {tk, k ∈ N} ⊂ [0, 1] be countable dense in [0, 1] and
1 ∈ T . Then, for all x ∈ D ([0, 1]) and ε > 0 we have

U (x; ε| d0) = (6.16)

= D ([0, 1]) ∩
+∞⋃
k=1

+∞⋂
m=1

⋃
〈〈λ〉〉Λ<ε−

1
k

m⋂
i=1{

y ∈ R[0,1] : x(λ(ti))− ε+
1

k
< y(ti) < x(λ(ti)) + ε− 1

k

}
.

Proof: Expression (6.16) is evident, since T is dense in [0, 1].

∀i = 1, 2, . . . ,m x(λm(ti))− ε+
1

k
< y(ti) < x(λm(ti)) + ε− 1

k
.

Then, there exists a subsequence such that

∀i ∈ N lim
n→+∞

λmn(ti) = λ(ti).

Function λ is non-decreasing on T , therefore, we can enlarge its definition

λ(t) = inf {λ(s) : t ≤ s, s ∈ T} for all 0 ≤ t ≤ 1.

Then, limn→+∞ 〈〈λmn〉〉Λ = 〈〈λ〉〉Λ, and consequently, λ ∈ ΛL.
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Q.E.D.

Theorem 6.31: Let T ⊂ [0, 1] be dense in [0, 1] and 1 ∈ T . Then for all G ∈
G (D ([0, 1])), there are Gi,j ∈ G [0,1]

T ∩D ([0, 1]) such that G =
⋃+∞
i=1

⋂+∞
j=1 Gi,j.

Proof: The space D ([0, 1]) is separable, therefore, each G ∈ G (D ([0, 1])) is
a countable union of open balls. Accordingly to Theorem 6.30, each of these
balls possesses a representation (6.16).
Consequently, proposition of the theorem is shown.

Q.E.D.

Theorem 6.32: If T ⊂ [0, 1] is dense in [0, 1] and 1 ∈ T , then we have

σ
(
F [0,1]
T ∩ D ([0, 1])

)
= B (D ([0, 1])) . (6.17)

Proof: The statement is a consequence of Theorem 6.31.

Q.E.D.

6.4 D ([0, 1]) and randomness

Definition 6.33 We define for each 0 < t ≤ 1

Jt = {x ∈ cadlag([0, 1]) : x (t) 6= x (t−)} (6.18)

and for T ⊂ (0, 1]

cadlagT = cadlag([0, 1]) \
⋃
t∈T

Jt. (6.19)

Particularly, cadlag(0,1] = C ([0, 1]).

Definition 6.34 For X random process in D ([0, 1]) we introduce

SX = {t ∈ (0, 1) : P (X (t) = X (t−)) = 1} , (6.20)

S̄X = SX ∪ {0, 1}, (6.21)

TX = {t ∈ (0, 1) : P (X (t) 6= X (t−)) > 0} . (6.22)

SX is a set of all points from (0, 1) in which X is stochasticaly continuous,
TX is a set of all points from (0, 1) in which X is stochasticaly discontinuous.
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Lemma 6.35 For X random process in D ([0, 1]) the set TX is at most count-
able.

Proof: For ε > 0 and t ∈ (0, 1), we define sets

Jt (ε) = {ω ∈ Ω : |X (t;ω)−X (t−;ω)| ≥ ε} .

For ε > 0 and η > 0, we define sets

S (ε, η) = {t ∈ (0, 1) : P (Jt (ε)) ≥ η} .

Assume S (ε, η) is infinite.
Then, it possesses a cluster point s ∈ [0, 1], i.e. there is tn → s and tn 6= s.
Take ω ∈ lim supn→+∞ Jtn (ε).
Then, we have a subsequence with property ω ∈ Jtnk (ε), k ∈ N.
Now, we have two possibilities.

1. There is a subsequence tnkj , j ∈ N with tnkj > s and ω ∈ Jtnkj (ε).

Then, we have

ε ≤ lim
j→+∞

∣∣∣X (tnkj ;ω)−X (tnkj−;ω
)∣∣∣ = |X (s;ω)−X (s;ω)| = 0.

It is a contradiction.

2. There is a subsequence tnkj , j ∈ N with tnkj < s and ω ∈ Jtnkj (ε).

Then, we have

ε ≤ lim
j→+∞

∣∣∣X (tnkj ;ω)−X (tnkj−;ω
)∣∣∣ = |X (s−;ω)−X (s−;ω)| = 0.

It is a contradiction.

We have shown, that lim supn→+∞ Jtn (ε) = ∅, but, continuity of probability
measure is giving P

(
lim supn→+∞ Jtn (ε)

)
≥ η.

It is a contradiction. Therefore, S (ε, η) must be finite.
Consequently, TX =

⋃
ε>0,η>0 S (ε, η) =

⋃+∞
m,n=0 S (2−m, 2−n) is at most count-

able.

Q.E.D.

Lemma 6.36 Let T ⊂ [0, 1] then
[0,1]

ΠT : D ([0, 1]) → RT is continuous at

cadlagT∩(0,1).
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Proof: Consider a sequence fn ∈ cadlag([0, 1]), n ∈ N and f ∈ cadlagT∩(0,1)

such that fn−−−−−→
n→+∞

f in D ([0, 1]). Then, there are λn, n ∈ N such that

‖fn − f ◦ λn‖[0,1] → 0 and ‖λn‖Λ → 0. Take t ∈ T and consider three cases:

1. t = 0 ∣∣∣
[0,1]

ΠT (fn) (0)−
[0,1]

ΠT (f) (0)
∣∣∣ = |fn (0)− f (0)|

= |fn (0)− f ◦ λn(0)| ≤ ‖fn − f ◦ λn‖[0,1] → 0.

2. 0 < t < 1∣∣∣
[0,1]

ΠT (fn) (t)−
[0,1]

ΠT (f) (t)
∣∣∣ = |fn (t)− f (t)|

≤ |fn (t)− f ◦ λn(t)|+ |f ◦ λn(t)− f (t)|
≤ ‖fn − f ◦ λn‖[0,1] + |f ◦ λn(t)− f (t)| → 0,

since λn(t)→ t and f is continuous at t.

3. t = 1 ∣∣∣
[0,1]

ΠT (fn) (1)−
[0,1]

ΠT (f) (1)
∣∣∣ = |fn (1)− f (1)|

= |fn (1)− f ◦ λn(1)| ≤ ‖fn − f ◦ λn‖[0,1] → 0.

It means
[0,1]

ΠT : D ([0, 1])→ RT is continuous at cadlagT∩(0,1).

Q.E.D.

Theorem 6.37: Let Xn, n ∈ N and X be random processes in D ([0, 1]). If

Xn
D−−−−−→

n→+∞
X in D ([0, 1]), then

(Xn (t) , t ∈ S̄X)
fidi−−−−−→

n→+∞
(X (t) , t ∈ S̄X). (6.23)

Proof: The statement immediately follows from Theorem 1.97, since for
each I ∈ Fin ([0, 1]) projection

[0,1]
ΠI : D ([0, 1]) → RI is continuous at

cadlagI∩(0,1) and P
(
X ∈ cadlagSX

)
= 1.

Q.E.D.
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Theorem 6.38: Let Xn, n ∈ N be random processes in D ([0, 1]) and X be
a random processes in D ([0, 1]). If

i) (Xn (t) , t ∈ S̄X)
fidi−−−−−→

n→+∞
(X (t) , t ∈ S̄X);

ii) the sequence Xn, n ∈ N is tight in D ([0, 1]);

hence Xn
D−−−−−→

n→+∞
X in D ([0, 1]).

Proof: See Theorem 15.1, p.174 in [2].

Q.E.D.

Theorem 6.39: The sequence Xn = (Xn (t) , t ∈ [0, 1]) random processes in
D ([0, 1]) is tight in D ([0, 1]) if and only if for all ε > 0, η > 0, there exist
δ > 0, α > 0 and n0 ∈ N such that for all n ∈ N, n ≥ n0 we have

i) P (|sup {Xn (t) : 0 ≤ t ≤ 1}| > α) < ε;

ii) P (w′ (Xn, δ) > η) < ε.

Proof: See Theorem 15.2, p.174 in [2].

Q.E.D.

Theorem 6.40: The sequence Xn = (Xn (t) , t ∈ [0, 1]) random processes in
D ([0, 1]) is tight in D ([0, 1]) if and only if for all ε > 0, η > 0, there exist
δ > 0, α > 0 and n0 ∈ N such that for all n ∈ N, n ≥ n0 we have

i) P (|sup {Xn (t) : 0 ≤ t ≤ 1}| > α) < ε;

ii) P (w′′ (Xn, δ) > η) < ε.

iii) P (w̃ (Xn, [0, δ)) > η) < ε.

iv) P (w̃ (Xn, [1− δ, 1)) > η) < ε.

Proof: See Theorem 15.3, p.175 in [2].

Q.E.D.
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Theorem 6.41: Let Xn, n ∈ N and X be random processes in D ([0, 1]). If

i) (Xn (t) , t ∈ S̄X)
fidi−−−−−→

n→+∞
(X (t) , t ∈ S̄X);

ii) P (X ∈ J1) = 0;

iii) For each ε > 0, η > 0, there exist δ > 0 and n0 ∈ N such that for
all n ∈ N, n ≥ n0 we have P (w′′ (Xn, δ) > η) < ε.

Then, Xn
D−−−−−→

n→+∞
X in D ([0, 1]).

Proof: See Theorem 15.4, p.175 in [2].

Q.E.D.

Theorem 6.42: If a sequence Xn = (Xn (t) , t ∈ [0, 1]) of random processes
in D ([0, 1]) fulfills:

i) The sequence ‖Xn‖[0,1], n ∈ N is tight.

ii) There are α > 0, β ≥ 0 and a non-decreasing continuous functions
F : [0, 1]→ R such that for all n ∈ N, 0 ≤ t < s ≤ 1, λ > 0 we have

P
(
w̃′′ (Xn, [t, s]) ≥ λ

)
≤ λ−β(F (s)− F (t))1+α. (6.24)

Then the sequence is tight in D ([0, 1]).

Proof: It is a part of Theorem 15.6, p.179 in [2].

Q.E.D.

Now, we can introduce a condition for tightness of random processes in
D ([0, 1]), which is easily verifiable.

Theorem 6.43: If a sequence Xn = (Xn (t) , t ∈ [0, 1]) random processes in
D ([0, 1]) fulfills:

i) The sequence ‖Xn‖[0,1], n ∈ N is tight.

ii) (Xn (t) , t ∈ S̄X)
fidi−−−−−→

n→+∞
(X (t) , t ∈ S̄X);
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iii) P (X ∈ J1) = 0;

iv) There are α > 0, β ≥ 0 and non-decreasing continuous functions
F : [0, 1] → R such that for all n ∈ N, 0 ≤ s < u < t ≤ 1, λ > 0 we
have

P (|Xn (t)−Xn (u)|≥λ, |Xn (u)−Xn (s)|≥λ) ≤ λ−β|F (t)−F (s)|1+α(6.25)

Then, Xn
D−−−−−→

n→+∞
X in D ([0, 1]).

Proof: See Theorem 15.6, p.179 in [2].

Q.E.D.

6.4.1 Donsker invariance principle

Theorem 6.44: If ξi, i ∈ N are i.i.d. random variables with E [ξ1] = 0 and

var (ξ1) = σ2 ∈ R+, then V (n) D−−−−−→
n→+∞

W in D ([0, 1]), where W = (Wt, t ∈
[0, 1]) is a Wiener process.

Proof: In Theorem 5.26, we have proved V (n) fidi−−−−−→
n→+∞

W .

We intend to verify assumptions of Theorem 6.43.
For n ∈ N, 0 ≤ s < u < t ≤ 1 and λ > 0 we have:

P (|Vn (t)− Vn (u)| ≥ λ, |Vn (u)− Vn (s)| ≥ λ) =

= P
(∣∣Sbntc − Sbnuc

∣∣ ≥ σλ
√
n,
∣∣Sbnuc − Sbnsc

∣∣ ≥ σλ
√
n
)

=

= P
(∣∣Sbntc − Sbnuc

∣∣ ≥ σλ
√
n
)
P
(∣∣Sbnuc − Sbnsc

∣∣ ≥ σλ
√
n
)
≤

≤ 1

σ4λ4n2
E
[∣∣Sbntc − Sbnuc

∣∣2]E [∣∣Sbnuc − Sbnsc
∣∣2] =

=
1

σ4λ4n2
σ2(bntc − bnuc)σ2(bnuc − bnsc) ≤

≤ 4

λ4
(t− s)2.

Final estimation employes following observations:

• If nt− ns < 1, then either bntc = bnuc or bnsc = bnuc.

• If nt− ns ≥ 1, then

(bntc − bnuc)(bnuc − bnsc) ≤ (bntc − bnsc)2 ≤ (nt− ns+ 1)2

≤ (2(nt− ns))2 ≤ 4n2(t− s)2.
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Assumptions of Theorem 6.43 are in power. Therefore, required weak con-
vergence is proved.

Q.E.D.

6.5 Space D ([a, b])

Consider a compact interval given by a couple of points −∞ ≤ a < b ≤ +∞
and cadlag ([a, b]) the set of all càdlàg functions defined on a segment [a, b].
Since [a, b] is a compact, we are able to develop a metric d̃ on cadlag ([a, b]) em-
ulating construction of metric d on cadlag([0, 1]). Metric d̃ is giving a topology
on cadlag ([a, b]), and, arisen topological space is denoted by D ([a, b]).

Theorem 6.45: D ([a, b]) is a Polish space, moreover, if ι : [0, 1] → [a, b]
is an increasing bijection then a mapping ζ : cadlag ([a, b])→ cadlag([0, 1]) :
f ∈ cadlag ([a, b])→ f ◦ ι is an isomorphism between D ([a, b]) and D ([0, 1]).

Proof: Both maps ζ : D ([a, b])→ D ([0, 1]) and ζ−1 : D ([0, 1])→ D ([a, b])
are continuous, hence, topological spaces D ([a, b]), D ([0, 1]) are isomorphic.
Therefore, D ([a, b]) is a Polish space, as D ([0, 1]) is.

Q.E.D.

6.6 Space D ([0,+∞))

Construction of a Skorokhod topology on cadlag ([0,+∞)) is a bit delicate.
Consider a metric ρ1 defined for x, y ∈ cadlag ([0,+∞)) by

ρ1 (x, y) =
+∞∑
k=0

2−k
d0 (y, x|[k, k + 1])

1 + d0 (y, x|[k, k + 1])
, (6.26)

where d0 (y, x|[k, k + 1]) = d0 ((y(t+ k), 0 ≤ t ≤ 1), (x(t+ k), 0 ≤ t ≤ 1)).

Theorem 6.46: (cadlag ([0,+∞)) , ρ1) is a complete separable metric space.

Definition 6.47 A topological space of cadlag ([0,+∞)) equipped with topol-
ogy induced by the metric ρ1 will be denote by D ([0,+∞)).
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Lemma 6.48 Topology of D ([0,+∞)) is determined by a subbasis

G = {U (x, k, ε) : x ∈ cadlag ([0,+∞)) , k ∈ N, ε > 0} , (6.27)

where U (x, k, ε) = {y ∈ cadlag ([0,+∞)) : d (y, x|[k, k + 1]) < ε},
d (y, x|[k, k + 1]) = d ((y(t+ k), 0 ≤ t ≤ 1), (x(t+ k), 0 ≤ t ≤ 1)) .

Unfortunately, this topology fixes jumps in natural numbers. If a limit
function possesses a jump in a natural number whole sequence must jump in
the same point eventually. That is inconvenient for applications.

A possibility to overcome the obstacle is to reduce our consideration to
cadlag1([0, 1]) the set of all càdlàg functions continuous at 1.

Definition 6.49 We define a topological space D1 ([0, 1]) as cadlag1([0, 1])
equipped with a relative topology induced by D ([0, 1]).

Theorem 6.50: Topological space D1 ([0, 1]) is a Polish space.

Proof: For example metric d0 is making D1 ([0, 1]) to be a complete sepa-
rable metric space.

Q.E.D.

We will consider cadlagN ([0,+∞)) the set of all càdlàg functions contin-
uous at each natural number.

Definition 6.51 We define a topological space DN ([0,+∞)) as
cadlagN ([0,+∞)) equipped with a relative topology induced by D ([0,+∞)).

Lemma 6.52 Topology of DN ([0,+∞)) is determined by a subbasis

G = {U (x, k, ε) : x ∈ cadlagN ([0,+∞)) , k ∈ N, ε > 0} , (6.28)

where U (x, k, ε) = {y ∈ cadlagN ([0,+∞)) : d (y, x|[k, k + 1]) < ε}.

Theorem 6.53: Topological space DN ([0,+∞)) is a Polish space.

Proof: For example metric ρ1 is making DN ([0,+∞)) to be a complete
separable metric space.

Q.E.D.



Chapter 7

General maximal inequalities

Dealing with weak convergence of random processes requires some convenient
maximal inequalities. We must be able to estimate tails of distributions of
maxims of partial sums of real random variables. Propositions in this chapter
together with proofs are taken from the monograph [2].

Consider N ∈ N, real random variables ξ1, ξ2, . . . , ξN and their partial
sums S1, S2, . . . , SN, where Sk =

∑k
i=1 ξi. For more clear formulations, we set

S0 = 0.
We will investigate tails of distribution of maxims

MN = max{|S1|, |S2|, . . . , |SN|}, (7.1)

M′N = max {min{|Sk|, |SN − Sk|} : k = 0, 1, 2, . . . ,N− 1} , (7.2)

M′′N = max {min{|Sj − Si|, |Sk − Sj|} : i, j, k = 0, 1, 2, . . . ,N, i < j < k} .
(7.3)

To abbreviate formulations, we are introducing auxiliary variables

Mj
i = max {|Sk − Si| : k = i, i+ 1, . . . , j} , (7.4)

NN = max
{

min{Mk
0,M

N
k } : k = 0, 1, 2, . . . ,N− 1

}
. (7.5)

We begin with simple basic relations introduced as (12.3) and (12.6) in
[2], pp.126-127.

Lemma 7.1 Without any additional assumption we have

M′N ≤ M′′N ≤ 2NN. (7.6)

Proof:

Q.E.D.

127



128 Konvergence náhodných proces̊u May 28, 2017:1097

Lemma 7.2 Without any additional assumption we have

M′N ≤ MN ≤ M′N + |SN|. (7.7)

Proof: For each k = 1, 2, . . . ,N− 1 we have a simple estimate

min{|Sk|, |SN − Sk|} ≤ |Sk|,

which implies immediately

M′N ≤ MN. (7.8)

Moreover for all k = 1, 2, . . . ,N− 1, we have an estimate

|Sk| ≤ min{|SN|+ |Sk|, |SN|+ |SN − Sk|} ≤ |SN|+ min{|Sk|, |SN − Sk|},

which implies

MN ≤ M′N + |SN|. (7.9)

Q.E.D.

Lemma 7.3 Without any additional assumption we have an estimate

|SN| ≤ 2M′N + max {|ξk| : k = 1, 2, . . . ,N} . (7.10)

For N = 5 and ξ1 = ξ2 = ξ3 = ξ4 = −ξ5 the estimate is an equality.

Proof: Fix ω ∈ Ω.

1. If |S1(ω)| ≥ |SN(ω)− S1(ω)|, then

|SN(ω)| ≤ |S1(ω)|+ |SN(ω)− S1(ω)| ≤ |ξ1(ω)|+ M′N(ω) ≤
≤ M′N(ω) + max {|ξk(ω)| : k = 1, 2, . . . ,N} .

2. If |SN−1(ω)| < |SN(ω)− SN−1(ω)|, then

|SN(ω)| ≤ |SN−1(ω)|+ |ξN(ω)| ≤ M′N(ω) + max {|ξk(ω)| : k = 1, 2, . . . ,N} .

3. If |S1(ω)| < |SN(ω) − S1(ω)| and |SN−1(ω)| ≥ |SN(ω) − SN−1(ω)|, then
there is k = 2, 3, . . . ,N−1 such that |Sk−1(ω)| < |SN(ω)−Sk−1(ω)| and
|Sk(ω)| ≥ |SN(ω)− Sk(ω)|. After that we receive

|SN(ω)| ≤ |Sk−1(ω)|+ |ξk(ω)|+ |SN(ω)− Sk(ω)| ≤
≤ 2M′N(ω) + max {|ξk(ω)| : k = 1, 2, . . . ,N} .
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Q.E.D.

Lemma 7.4 Without any additional assumption we have an estimate

MN ≤ 3M′N + max {|ξk| : k = 1, 2, . . . ,N} . (7.11)

For N = 5 and ξ1 = ξ2 = ξ3 = ξ4 = −ξ5 the estimate is an equality.

Proof: Estimate follows previous lemmas 7.2 and 7.3.

Q.E.D.

Now we introduce a theorem for distribution tails of M′N due to [2], The-
orem 12.1., pp.128-134.

Theorem 7.5: Let u1, u2, . . . , uN be nonnegative real numbers, α > 0 and
β > 0 such that for all 1 ≤ i ≤ h < j ≤ N and λ > 0 we have

P

(∣∣∣∣∣
h∑
k=i

ξk

∣∣∣∣∣ ≥ λ,

∣∣∣∣∣
j∑

k=h+1

ξk

∣∣∣∣∣ ≥ λ

)
≤ λ−β

(
j∑
k=i

uk

)1+α

, (7.12)

hence for all λ > 0 we have

P (M′N ≥ λ) ≤ K(α, β) λ−β

(
N∑
k=1

uk

)1+α

, (7.13)

where

K(α, β) =

[
1

2
1

β+1

−
(

1

2
1

β+1

)α+1
]−(β+1)

. (7.14)

For example K(1, 4)
.
= 55021.088.

Proof: Let us denote u =
∑N

k=1 uk, δ = 1
β+1

and take K ≥ 1 such that

1

2δα
+

(
2

K

)δ
≤ 1. (7.15)

1. Let u = 0, then condition (7.12) implies min{|Sk|, |SN − Sk|} = 0 a.s.
for all k = 1, 2, . . . ,N. Therefore, M′N = 0 a.s. and proposition is in
power.
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2. Let u > 0.

Proposition will be shown by induction over N.

(a) For N = 1 the statement is trivial.

(b) For N = 2 we have

P (M′N ≥ λ) = P (min{|S1|, |S2 − S1|} ≥ λ) ≤ λ−β (u1 + u2)1+α ≤
≤ Kλ−β (u1 + u2)1+α

(c) Let statement is in power for all N = 1, 2, . . . ,m. We will show it
for N = m+ 1.

Fix h = min
{
i ∈ {1, 2, . . . ,m+ 1} : u1 + u2 + · · ·+ ui ≥ u

2

}
.

We define

U1 = max {min{|Sk|, |Sh−1 − Sk|} : k = 0, 1, . . . , h− 1} ,
U2 = max {min{|Sk − Sh|, |Sm+1 − Sk|} : k = h, h+ 1, . . . ,m+ 1} ,
D1 = min{|Sh−1|, |Sm+1 − Sh−1|},
D2 = min{|Sh|, |Sm+1 − Sh|}.

i. Fix ω ∈ Ω and i = 1, 2, . . . , h− 1.

A. If |Si(ω)| ≤ U1(ω), then

min{|Si(ω)|, |Sm+1(ω)− Si(ω)|} ≤ |Si(ω)| ≤
≤ U1(ω) ≤ U1(ω) +D1(ω).

B. If |Sh−1(ω)− Si(ω)| ≤ U1(ω) and |Sh−1(ω)| = D1(ω), then

min{|Si(ω)|, |Sm+1(ω)− Si(ω)|} ≤ |Si(ω)| ≤
≤ |Sh−1(ω)− Si(ω)|+ |Sh−1(ω)| ≤ U1(ω) +D1(ω).

C. If |Sh−1(ω)− Si(ω)| ≤ U1(ω) and
|Sm+1(ω)− Sh−1(ω)| = D1(ω), then

min{|Si(ω)|, |Sm+1(ω)− Si(ω)|} ≤ |Sm+1(ω)− Si(ω)| ≤
≤ |Sm+1(ω)− Sh−1(ω)|+ |Sh−1(ω)− Si(ω)| ≤
≤ U1(ω) +D1(ω).

For all i = 1, 2, . . . , h− 1 we have shown

min{|Si|, |Sm+1 − Si|} ≤ U1 +D1.
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ii. In a similar way for all i = h, h+ 1, . . . ,m+ 1 one can show

min{|Si|, |Sm+1 − Si|} ≤ U2 +D2.

iii. Sums U1, U2 possess at most m non-vanishing summands.
Therefore according to induction assumption for all λ > 0 we
have

P (U1 ≥ λ) ≤ Kλ−β

(
h−1∑
k=1

uk

)1+α

≤ Kλ−β
(u

2

)1+α

=
K

21+α
λ−βu1+α,

P (U2 ≥ λ) ≤ Kλ−β

(
m+1∑
k=h+1

uk

)1+α

≤ Kλ−β
(u

2

)1+α

=
K

21+α
λ−βu1+α.

iv. According to the assumption (7.12) for all λ > 0 we have

P (D1 ≥ λ) ≤ λ−βu1+α,

P (D2 ≥ λ) ≤ λ−βu1+α.

Hence for all λ > 0 we have

P
(
M′m+1 ≥ λ

)
≤ P (max{U1 +D1, U2 +D2} ≥ λ) ≤

≤ P (U1 ≥ λU) + P (U2 ≥ λU) + P (D1 ≥ λD) + P (D2 ≥ λD)

≤ 2

(
K

21+α
λ−βU + λ−βD

)
u1+α,

where λU + λD = λ, λU > 0, λD > 0 are arbitrary chosen. Their
optimal choice is a solution of optimization program

min

{
K

21+α
λ−βU + λ−βD : λU + λD = λ, λU > 0, λD > 0

}
=

= λ−β

((
K

21+α

)δ
+ 1

) 1
δ

.

Accordingly to (7.15) we know that for all λ > 0 we have

P
(
M′m+1 ≥ λ

)
≤ 2

((
K

21+α

)δ
+ 1

) 1
δ

λ−βu1+α =

= K

(
1

2δα
+

(
2

K

)δ) 1
δ

λ−βu1+α = Kλ−βu1+α.
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Optimal choice of K is a solution of (7.15) considered as an equality. It is
given by the formula (7.14).

Q.E.D.

Now we introduce a theorem for distribution tails of M′′N due to [2], The-
orem 12.5., pp.140-143.

Theorem 7.6: Let u1, u2, . . . , uN be nonnegative real numbers, α > 0 and
β > 0 such that for all 1 ≤ i ≤ h < j ≤ N and λ > 0 we have

P

(∣∣∣∣∣
h∑
k=i

ξk

∣∣∣∣∣ ≥ λ,

∣∣∣∣∣
j∑

k=h+1

ξk

∣∣∣∣∣ ≥ λ

)
≤ λ−β

(
j∑
k=i

uk

)1+α

, (7.16)

hence for all λ > 0 we have

P (M′′N ≥ λ) ≤ K′′(α, β) λ−β

(
N∑
k=1

uk

)1+α

, (7.17)

where K′′(α, β) is a convenient constant depending only on α and β.

Proof: For a proof see [2], Theorem 12.5., pp.140-143.

Q.E.D.

Now we introduce a theorem for distribution tails of MN due to [2], The-
orem 12.2., pp.134-135.

Theorem 7.7: Let u1, u2, . . . , uN be nonnegative real numbers, α > 0 and
β > 0 such that for all 1 ≤ i < j ≤ N and λ > 0 we have

P

(∣∣∣∣∣
j∑
k=i

ξk

∣∣∣∣∣ ≥ λ

)
≤ λ−β

(
j∑
k=i

uk

)1+α

, (7.18)

hence for all λ > 0 we have

P (MN ≥ λ) ≤ C(α, β)λ−β

(
N∑
k=1

uk

)1+α

, (7.19)

where

C(α, β) = 2β (1 + K(α, β)) . (7.20)

For example C(1, 4)
.
= 880353.402.
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Proof: Applying Schwartz’s inequality and assumption (7.18) we are re-
ceiving

P

(∣∣∣∣∣
h∑
k=i

ξk

∣∣∣∣∣ ≥ λ,

∣∣∣∣∣
j∑

k=h+1

ξk

∣∣∣∣∣ ≥ λ

)
≤

√√√√P

(∣∣∣∣∣
h∑
k=i

ξk

∣∣∣∣∣ ≥ λ

)
P

(∣∣∣∣∣
j∑

k=h+1

ξk

∣∣∣∣∣ ≥ λ

)
≤

≤

√√√√λ−β

(
h∑
k=i

uk

)1+α

λ−β

(
j∑

k=h+1

uk

)1+α

≤ λ−β

(
j∑
k=i

uk

)1+α

.

Assumptions of Theorem 7.5 are fulfilled, therefore, for all λ > 0 we have

P (M′N ≥ λ) ≤ K(α, β) λ−β

(
N∑
k=1

uk

)1+α

.

Moreover according to assumption (7.18), we have

P (|SN| ≥ λ) ≤ λ−β

(
N∑
k=1

uk

)1+α

.

Hence we are receiving according to Lemma 7.2 an estimate

P (MN ≥ λ) ≤ P (M′N + |SN| ≥ λ) ≤

≤ P

(
M′N ≥

λ

2

)
+ P

(
|SN| ≥

λ

2

)
≤

≤ K(α, β)

(
λ

2

)−β ( N∑
k=1

uk

)1+α

+

(
λ

2

)−β ( N∑
k=1

uk

)1+α

=

= 2β(K(α, β) + 1)λ−β

(
N∑
k=1

uk

)1+α

.

Q.E.D.

Having independent real random variables, more accurate and efficient
maximal inequalities are known. We already presented one of them in The-
orem 5.27.



134 Konvergence náhodných proces̊u May 28, 2017:1097



Bibliography

[1] Beer, G.: Topologies on Closed a Closed Convex Sets. Kluwer Academic
Publishers, Dordrecht, 1993.

[2] Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons,
New York, 1968.
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random process, 64
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