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Preface

¢ Basic literature: Khuri (2010); Zvara (2008).

* Supplementary literature: Seber and Lee (2003); Draper and Smith (1998); Sun (2003); Weisberg
(2005); Andél (2007); Cipra (2008); Zvara (1989).

e Principal computational environment: R software (R Core Team, 2016).



Notation and general
conventions

General conventions

e Vectors are understood as column vectors (matrices with one column).

¢ Statements concerning equalities between two random quantities are understood as equalities
almost surely even if “almost surely” is not explicitely stated.

® Measurability is understood with respect to the Borel o-algebra on the Euclidean space.

General notation

* Y ~ (,u, 02) means that the random variable Y follows a distribution satisfying
E(Y) = U, var(Y) =02,
Y ~ (u, E) means that the random vector Y follows a distribution satisfying

E(Y)=p, var(Y)=23.

Notation related to the linear model

* Generic response random variable: covariate random vector (length p), regressor random
vector (length k, elements indexed from 0):

T T

Y, Z:(Zl,...,Zp) , X:(XO,...,Xk_l)

* Response vector (length n): ¥ = (Yl, ey Yn)T.
e Covariates (p covariates):

T ,.
‘Zi:(Zi,la--wZi,p) (z:l,...,n):
vector of covariates for observation ¢;

; T, .
- ZV=(Z1j, ..., Zn;) (j=0,....p):
values of the jth covariate for n observations.
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e Covariate matrix (dimension n X p):

Zi1 ... Ziy z!
Z=1 : : =
Znt oo Znp zZ)

* Regressors (k regressors indexed from 0):

T,
- Xz: (XZ"(), ...,Xi7k_1) (Zzl, ...,n):
vector of regressors for observation i;

- XI = (X4, o, Xng) (=0, ..., k—1):

values of the jth regressor for n observations.

¢ Model matrix (dimension n x k):

X0 ... Xigp X/
X=1: : : =| :
Xpo -0 Xnko1 X,

) n

e Rank of the model: » = rank(X) (< k < n) (almost
e Error terms: € = (51, ey en)T = (Y1 — XITB,

* Regression space: M(X) (linear span of columns of

e vector dimension r (almost surely);

¢ orthonormal basis Q,,«, = (ql, e qr).

* Residual space: /\/l(X)l
e vector dimension n — r (almost surely);

¢ orthonormal basis N,,y, = (nl, ceey nn,r).
e Hat matrix: H = QQ" =X (XTX)_ XT.
e Residual projection matrix: M = NN =T, — H.
e Fitted values: ¥ = (?1, e ,l?n)—r = HY.

e Residuals: U = (Uy,...,U,) =MY =Y - Y.

surely).
Y, - X8 =y -x8.
X)

* Residual sum of squares: SS, = HUH2 = HY — IA’HQ

* Residual degrees of freedom: v, = n —r.

e Residual mean square: MS. = SS./(n — r).

* Sum of squares: SS: R¥ — R, SS(8) = ||Y — X3

}2, 8 € RF.




Chapter

Linear Model

1.1 Regression analysis

Start of
Linear regression' is a basic method of so called regression analysis’ which covers a variety of Lecture #1
methods to model on how distribution of one variable depends on one or more other variables. (05/10/2016)
A principal tool of linear regression is then so called linear model® which will be the main topic of
this lecture.

1

1.1.1 Data

Basic methods of regression analysis assume that data can be represented by n independent and
identically distributed (i.i.d.) random vectors (Yi, ZZT )T, i =1,...,n, being distributed as a generic
random vector (Y, ZT)T. That is,

Yi\iid (Y .
~ , 1=1,...,n,
Z; Z

where Z = (Zl, cee Zp)T. This will also be a basic assumption used for majority of the lecture.

Terminology (Response, covariates).

e Y is called response’ or dependent variable®.

 The components of Z are called cowariates®, explanatory variables’, predictors®, or independent
variables’.

e The sample space'’ of the covariates will be denoted as Z. That is, Z C RP, and among the
other things, P(Z € Z) = 1.

5

Y linedrni regrese * regresni analjza * linedrni model * odezwa zdvisle proménnd  ® Nepreklddd se. Vyraz

Jkovaridty“ nepouzivat! 7 vysvétlujici proménné 8 prediktory ° nezdvisle proménné ° vybérovy prostor



1.1. REGRESSION ANALYSIS 2

Notation and terminology (Response vector, covariate matrix).
Further, let

Vector Y is called the response vector'.

The n x p matrix Z is called the covariate matrix*.

¢ The vector Z; = (Zz-,l, e Zi,p)T (it =1, ..., n) represents the covariate values for the ith
observation.
e The vector Z7 = (Zl,ja ce Zn,j)T (j =1, ..., p) represent the values of the jth covariate

for the n observations in a sample.

Notation. Letter Y (or y) will always denote a response related quantity. Letters Z (or z) and
later also X (or x) will always denote a quantity related to the covariates.

This lecture:
e Response Y is continuous.
e Interest in modelling dependence of only the expected value (the mean) of Y on the covariates.

o Covariates can be of any type (numeric, categorical).

1.1.2 Probabilistic model for the data

Any statistical analysis is based on specifying a stochastic mechanism which is assumed to generate

the data. In our situation, with i.i.d. data (Yi, Z Z-T)T, i =1,...,n, the data generating mechanism

corresponds to a joint distribution of a generic random vector (Y, Z T)T which can be given by
a joint density
fr.z(y, 2), yeR, zeZ

(with respect to some o-finite product measure Ay x Az). For the purpose of this lecture, Ay will
always be a Lebesgue measure on (R, B).

It is known from basic lectures on probability that any joint density can be decomposed into
a product of a conditional and a marginal density as

vz, 2) = fyiz(y| 2) fz(2), yER, z€ Z.

With the regression analysis, and with the linear regression in particular, the interest lies in re-
vealing certain features of the conditional distribution Y ‘ Z (given by the density fy|z) while
considering the marginal distribution of the covariates Z (given by the density fz) as nuisance.
It will be shown during the lecture that a valid statistical inference is possible for suitable char-
acteristics of the conditional distribution of the response given the covariates while leaving the
covariates distribution fz practically unspecified. Moreover, to infer on certain characteristics of
the conditional distribution Y’ | Z, e.g., on the conditional mean IE(Y ‘ Z ), even the density fy|z
might be left practically unspecified for many tasks.

Y vektor odezvy 2 matice vysvétlujicich proménnjch



1.1. REGRESSION ANALYSIS 3

1.1.3 Regressors

In the reminder of the lecture, we will mainly attempt to model the conditional mean E (Y } Z).
When doing so, transformations of the original covariates are usually considered. The response
(conditional) expectation is then assumed to be a function of the transformed covariates.

In the following, lett : Z2 — X C R* be a measurable function, ¢t = (to, ey tk_l)T (for
reasons which become clear in a while, we start indexing of the elements of this transformation by
zero). Further, let

X =(Xo,..., Xe1) = (to(Z), ..., ts1(2) =t(2),
t

Xi= (Xigy o oos Xigr) ' = (to(Z), .., th1(Z2)) " =
Subsequently, we will assume that
E(Y|Z)=m(t(Z)) = m(X)
for some measurable function m : X — R.
Terminology (Regressors, regression function).

e The vectors X, X;, ¢ = 1,...,n, are called the regressor vectors® for a particular unit in
a sample.

e Function m which relates the response expectation to the regressors is called the regression
function'.

e The vector X7 := (X17j7 ceey Xn,j)—r (=0, ..., k—1)is called the jth regressor vector.®

All theoretical considerations in this lecture will assume that the transformation ¢ which relates the
regressor vector X to the covariate vector Z is given and known. If the original data (Yi, z/) ) ,

i =1,...,n are iid. having the distribution of the generic response-covariate vector (Y, Z T)T,
the (transformed) data (Y,-, X ZT )T, i =1,...,n are again i.i.d., now having the distribution of the
generic response-regressor vector (Y, X T)T which is obtained from the distribution of (Y, Z T)T

by a transformation theorem. The joint density of (Y, X T)T can again be decomposed into
a product of the conditional and the marginal density as

frx(, z)=fyix(y|z) fx(x), yeR zelX. 1R

Furthermore, it will overall be assumed that for almost all z € Z
E(Y|Z=2)=E(Y|X =t(2)). L2)

Consequently, to model the conditional expectation ]E(Y ‘ VA ), it is sufficient to model the con-
ditional expectation E(Y ‘ X) using the data (Y}, XZT)T, i =1,...,n and then to use (1.2) to
get E(Y ’ Z). In the reminder of the lecture, if it is not necessary to mention the transforma-
tion ¢t which relates the original covariates to the regressors, we will say that the data are directly
composed of the response and the regressors.

13 15

vektory regresorty ™ regresni funkce vektor jtého regresoru
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1.2 Linear model: Basics

1.2.1 Linear model with i.i.d. data

Definition 1.1 Linear model with i.i.d. data.
The data (Y}, XZT)—r i (Y, XT)T, i =1,...,n, satisfy a linear model if

EY|X)=X"8, var(Y|X) =07

where 3 = (Bo, e Bk,l)T € R¥ and 0 < 02 < oo are unknown parameters.

Terminology (Regression coefficients, residual variance and standard deviation).

T, . . .
e 3= (BO, ce ﬁk_l) is called the vector of regression coefficients'® or regression parameters."”

2 18

o o- is called the residual variance.

e 0 = o2 is called the residual standard deviation."

The linear model as specified by Definition 1.1 deals with specifying only the first two moments of
the conditional distribution Y | X. For the rest, both the density fy|x and the density fx from
(1.I) can be arbitrary. The regression function of the linear model is

-
m(x) = x'B=Ppyxo+ -+ Br_1 Th_1, xr = (:co, e xk,l) cX.

The term “linear” points to the fact that the regression function is linear with respect to the
regression coefficients vector 3. Note that the regressors X might be (and often are) linked to the
original covariates Z (the transformation ¢) in an arbitrary, i.e., also in a non-linear way.
Notation and terminology (Linear model with intercept).

Often, the regressor X is constantly equal to one (tg(z) = 1 for any z € Z). That is, the regressor
vector X is X = (1, X, ..., X k,l)T and the regression function becomes

-
m(z)=a B =P+ Bz + + Bro1Th-1, x= (1,21, ..., 24-1) EX.

t20

The related linear model is then called the linear model with intercept=®. The regression coefficient

B is called the intercept term?' of the model.

1.2.2 Interpretation of regression coefficients

The regression parameters express influence of the regressors on the response expectation. Let for
a chosen j € {0, 1, ...,k—l}

a::(:co,...,atj ...,xk_l)TEX, and z/(tD) .= (a:o,...,a:j—i—l...,a:k_l)TeX.

% regresni koeficienty 7 regresni parametry ** rezidudlni rozptyl * rezidudlni smérodatnd odchylka *° linedrni

21

model s absolutnim clenem absolutni ¢élen
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We then have
E(Y|X=2/) - E(Y | X =)
=E(Y|Xo=20, ..., Xj=a;+1, ..., X1 = 2p_1)
— E(Y|Xo==0,..., Xj =aj, ..., Xp—1 = p_1)
=Poxo+ -+ B (i + 1)+ + Br—1 Tk
— (Bowo+---+Bjaj+ -+ Pr-12r1)
= B;.

That is, the regression coefficient /3; expresses a change of the response expectation corresponding
to a unity change of the jth regressor while keeping the remaining regressors unchanged. Further,

let for a fixed 6 € R .
27 (H0) .— (2o, ..chzj+0 ..., »Tk—l)T €4,

we then have
E(Y|X =2/")) - E(Y|X =2)
=E(Y |Xo=w0, ..., Xj=a;+6, ..., Xp—1 = Tp—1)
- E(Y|Xo==w0, ..., Xj=aj, ..., X1 = Tp_1)
= B 6.

That is, if for a particular dataset a linear model is assumed, we assume, among the other things
the following:

(i) The change of the response expectation corresponding to a constant change § of the jth
regressor does not depend on the value z; of that regressor which is changed by 0.

(ii) The change of the response expectation corresponding to a constant change § of the jth
regressor does not depend on the values of the remaining regressors.

Terminology (Effect of the regressor).

The regression coefficient j3; is also called the effect of the jth regressor.

Linear model with intercept

In a model with intercept where X is almost surely equal to one, it does not make sense to
consider a change of this regressor by any fixed value. The intercept By has then the following
interpretation. If
T T
($0,1‘1,...,:Ek_1) :(1,0,...,0) e X,

that is, if the non-intercept regressors may all attain zero values, we have

Bo=E(Y|X1=0,..., X3_1=0).
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1.2.3 Linear model with general data

Notation and terminology (Model matrix).

Let
X10 oo Xipoa bl

X=| : & i =] =& LX)
XmO Xn,kfl )(—r

n

The n x k matrix X is called the model matrix** or the regression matrix*.

In the linear model with intercept, the model matrix becomes

1 Xl,l X17k_1
X=1: : = (1., X', ..., XM,

1 Xpa1 oo Xpko
Its first column, the vector 1,, is called the intercept column of the model matrix.

The response random vector Y = (Yl, e Yn)T, as well as the model matrix X are random
quantities (in case of the model with intercept, the elements of the first column of the model
matrix can be viewed as random variables with a Dirac distribution concentrated at the value of
one). The joint distribution of the “long” random vector (Y3, ..., Y, X{, ..., X Z)T = (Y, X)
has in general a density fy x (with respect to some o-finite product measure Ay x Ax) which can
again be decomposed into a product of a conditional and marginal density as

frx(y, x) = fyx(y]x) fx(x). (13)

In case of ii.d. data, this can be further written as

fyx(y, x) = {f[lfmx(yi | iBz‘)} {Zﬁlfx(wi)} : (14)

fY|X(y ‘ X) fx(x)

The linear model, if assumed for the ii.d. data, implies statements concerning the (vector) expec-
tation and the covariance matrix of the conditional distribution of the response random vector Y
given the model matrix X, i.e., concerning the properties of the first part of the product (1.3).

Lemma 1.1 Conditional mean and covariance matrix of the response vector.
Let the data (Yi, XzT)T i (Y, XT)T, i =1,...,n satisfy a linear model. Then

E(Y |X)=X8, var(Y|X)=0"L,. (1.5)

2 matice modelu ® regresni matice
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Proof. Trivial consequence of the definition of the linear model with the i.i.d. data.

3

Property (1.5) is implied from assuming (Yg, X;l—)T it (Y, XT)T, i =1,...,n, where IE(Y } X) =

X Tﬁ, var(Y ‘ X ) = ¢2. To derive many results shown later in this lecture, it is sufficient to as-
sume that the full data (= (Y, X)) satisfy just the weaker condition (1.5) without requesting that

the random vectors (Yg, X iT)T, i = 1,...,n, which represent the individual observations, are
independent or identically distributed. To allow to distinguish when it is necessary to assume the
iid. situation and when it is sufficient to assume just the weaker condition (1.5), we shall introduce
the following definition.

Definition 1.2 Linear model with general data.
The data (Y, X), satisfy a linear model if

E(Y |X)=X8, var(Y|X) =01,

where 3 = (Bo, ce Bk,l)T € R¥ and 0 < 0% < oo are unknown parameters.

Notation.

(i) The linear model with iid. data, that is, the assumption (Yi, X;r )T ixd. (Y, X T)T,
i=1,...,n, E(Y ‘ X) = XTﬁ, var(Y X) = o2 will be briefly stated as

v, X)) (v, x) L i=1,...,n,  Y|X~ (X8, 0.

(ii) The linear model with general data, that is, the assumption E(Y ‘ X) = X0, var(Y ‘ X) =
021, will be indicated by
Y | X ~ (X8, 0°L,).

Note. IfY ‘ X ~ (XB, O'QIn) is assumed, we require that in (1.3)
* neither fy |x is of a product type;
* nor fx is of a product type

as indicated in (1.4).

1.2.4 Rank of the model

The k-dimensional regressor vectors X1, ..., X, (the n x k model matrix X) are in general jointly
generated by some (n - k)-dimensional joint distribution with a density fx(z1,...,2,) = fx(x)
(with respect to some o-finite measure Ax). In the whole lecture, we will assume n > k. Next to
it, we will additionally assume in the whole lecture that for a fixed r < k,

P(rank(X) =r) = 1. (1.6)



1.2. LINEAR MODEL: BASICS 8

That is, we will assume that the (column) rank of the model matrix is fixed rather than being
random. It should gradually become clear throughout the lecture that this assumption is not really
restrictive for most of the practical applications of a linear model.

Convention. In the reminder of the lecture, we will only write rank(X) = r which will mean
that P(rank(X) = r) = 1 if randomness of the covariates should be taken into account.

Definition 1.3 Full-rank linear model.

124

A full-rank linear model** is such a linear model where r = k.

Note. In a full-rank linear model, columns of the model matrix X are linearly independent vectors
in R™ (almost surely).

1.2.5 Error terms

Notation and terminology (Error terms).

The random variables
si::Yi—X;rﬂ, i=1,...,n,

will be called the error terms (random errors, disturbances)®® of the model. The random vector
€= (51, e En)T =Y - X3

will be called the error term vector.

Lemma 1.2 Moments of the error terms.
LetY ‘ X~ (X,B, o? In). Then

Proof. E(e|X)=E(Y —X8|X) =E(Y |X) - X8 =X8-Xg8 =0,.
var(e | X) = var(Y — X8| X) = var(Y |X) = ¢°L,.

E() = B{E(|X) } = E(0,) = 0.
var(e) = E{var(s | X)} + var{E(s | X)} = E(02 I,) +var(0,) = o’ 1,.

25

' linedrni model o plné hodnosti chybové cleny, ndhodné chyby
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Note. 1f (V;, XZT)T itd (Y, XT)T, i=1,...,n, then indeed
eii'rig's-:, t1=1,...,n, e~ (0, 02).

1.2.6 Distributional assumptions

To derive some of the results, it is necessary not only to assume a certain form of the conditional
expectations of the response given the regressors but to specify more closely the whole conditional

distribution of the response given the regressors. For example, with iid. data (Y;, x! )T itd

(Y, XT)T, i=1,...,n, many results can be derived (see Chapter 3) if it is assumed

V|X ~N(XTB, o).

1.2.7 Fixed or random covariates

In certain application areas (e.g., designed experiments), the covariates (and regressors) can all (or
some of them) be fixed rather than random variables. This means that the covariate values are
determined/set by the analyst rather than being observed on (randomly selected) subjects. For
majority of the theory presented throughout this course, it does not really matter whether the
covariates are considered as random or as fixed quantities. The proofs (majority that appear in
this lecture) very often work with conditional statements given the covariate/regressor values and
hence proceed in exactly the same way in both situations. Nevertheless, especially when dealing
with asymptotic properties of the estimators used in the context of a linear model (see Chapter 13),
care must be taken on whether the covariates are considered as random or as fixed.

1.2.8 Limitations of a linear model

“Essentially, all models are wrong, but some are useful. The practical question is how
wrong do they have to be to not be useful”

George E. P. Box (1919 - 2013)

Linear model is indeed only one possibility (out of infinitely many) on how to model dependence of
the response on the covariates. The linear model as defined by Definition 1.1 is (possibly seriously)
wrong if, for example,

* The expected value E(Y ‘ X = :B), x € X, cannot be expressed as a linear function of «.
= Incorrect regression function.

¢ The conditional variance var(Y ‘ X = m), x € X, is not constant. It may depend on « as
well, it may depend on other factors.
= Heteroscedasticity.

* Response random variables are not conditionally uncorrelated/independent (the error terms
are not uncorrelated/independent). This is often the case if response is measured repeatedly
(e.g., over time) on n subjects included in the study.

Additionally, the linear model deals with modelling of only the first two (conditional) moments of
the response. In many application areas, other characteristics of the conditional distribution Y } X
are of (primary) interest.

End of
Lecture #1
(05/10/2016)



Chapter

Least Squares Estimation

In this chapter, we shall consider a set of n random vectors (Y}, XiT)T, X; = (Xi,o, - ,Xi’k,l)—r,
i =1,...,n, which are not necessarily i.i.d. but satisfy a linear model. That is,
Y ! X~ (Xﬁ, O'QIn), rank(ank) =r<k<n, 2.1

where Y = (Yl, e ,Yn)T, X is a matrix with vectors X;r, e ,X;lr in its rows and 3 = (BO, ce
Br-1) € R”* and 02 > 0 are unknown parameters. In this chapter, we introduce a method of least
squares' to estimate the unknown parameters of the linear model (2.1). All results in this chapter will
be derived from the assumption (2.1), i.e., without assuming i.i.d. data or even normally distributed
response.

' metoda nejmensich étvercii

10

Start of
Lecture #2
(05/10/2016)
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2.1 Regression and residual space, projections
2.1.1 Regression and residual space

Notation (Linear span of columns of the model matrix and its orthogonal comple-
ment).

For given dataset and a linear model, the model matrix X is a real n x k& matrix. Let 2°, ..., ¥~ €

R™ denote its columns, i.e.,

e The linear span’ of columns of X, i.e., a vector space generated by vectors 20, ..., x" 1 will be
denoted as M (X), that is,

k—1
MX)={v:v=> Bja', B=(Bo,.... 1) €R}.
j=0

o The orthogonal complement to M (X) will be denoted as M (X)J', that is,

M(X)J‘ = {u: wueR", viu=0foralve M(X)}

Note. We know from linear algebra lectures that the linear span of column of X, M(X), is

a vector subspace of dimension r of the n-dimensional Euclidean space R™. Similarly, M (X)l is
a vector subspace of dimension n — r of the n-dimensional Euclidean space R™. We have

ME)UMX)T =R, M(X)nM(X)" ={0,},

for any v € M(X), u € M(X)J‘ vliu=0.

Definition 2.1 Regression and residual space of a linear model.

Consider a linear model Y ‘ X ~ (Xﬁ, azln), rank(X) = r. The regression space’ of the model
is a vector space M(X) The residual space’ of the model is the orthogonal complement of the

. . I
regression space, i.e., a vector space M (X) .

Notation (Orthonormal vector bases of the regression and residual space).

Let qq, ..., q, be (any) orthonormal vector basis of the regression space M (X) andlet ny,...,n,_,
be (any) orthonormal vector basis of the residual space M (X)L. Thatis, q,...,q, P1,...,Mp_r
is an orthonormal vector basis of the n-dimensinal Euclidean space R™. We will denote

* Quur = ((h, SRR qr)'

® Nnx(n—r) = (nlu SRR nn—'r)-

2 linedrni obal 3 regresni prostor * rezidudlni prostor
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hd ]P)nxn = (qla sy gpy, My L, nn—r) = (Qv N)

Notes. It follows from the linear algebra lectures.
e Properties of the columns of the Q matrix:

. q;rqul, j=1...,n
. q]quzo, gl=1...,rj#l

Properties of the columns of the N matrix:
T
° n]

-
J

n;j=1 j=1,...,n—rn;

e n.n =0 jl=1,....n—r j#L

Mutual properties of the columns of the Q and N matrix:

.q;.rnl:nl—rqj:(), j:l,...,r,l:l,...,n—r.

Above properties written in a matrix form:
@T@ =1, NTN =1,
QTN = 07“><(n—r)7 NTQ - O(n—r)xrv

P'P=1,. 2.2)

It follows from (2.2) that PT is inverse to P and hence

I, —PP' — (@, N) (QT> ~QQ" + NNT.

NT

It is also useful to remind

MEX) = M(Q), MEX)T=M(N), R*=M(P).

Notation. In the following, let

H=QQ", M=NNT.

Note. Matrices H and M are symmetric and idempotent:

H =(QQ") =QQ"=H, HH=QQ'QQ =QLQ " =QQ" =H,

M'=(NN")' =NN" =M, MM=NNTNN"=NI, N =NNT =M.

2.1.2 Projections
Let y € R™. We can then write (while using identity in Expression 2.2)
y=Iy=(QQ" + NN")y=(H + M)y = Hy + My.

We have
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« y:=Hy=0Q(Q'y) e M(X).

e u:=My=N(NTy)eM(X)"
*y'u=y"QQ'N)Ny=9y"Q0,,(,_) Ny =0.
That is, we have decomposition of any y € R" into

y=9+u, FeM(X),ueMX)", §Llu

In other words, § and w are projections of y into M (X) and M (X)J', respectively, and H and M
are corresponding projection matrices.

Notes. It follows from the linear algebra lectures.

¢ Decomposition y = y + w is unique.

* Projection matrices H, M are unique. That is H = QQ" does not depend on a choice of the
orthonormal vector basis of M(X) included in the Q matrix and M = NN does not depend

on a choice of the orthonormal vector basis of M (X)J‘ included in the N matrix.

e Vector y = (@\1, e ,yjn)—r is the closest point (in the Euclidean metric) in the regression space

M(X) to a given vector y = (yl, e yn)T, that is,

~ ~ ~\ T ~ - —~ . ~ ~
V=0, 0n) EMEX) y—3llP =D wi—5)* <D (wi—5)*=ly—ul*
i=1 i=1

Definition 2.2 Hat matrix, residual projection matrix.

Consider a linear model Y ‘ X ~ (X,B, UQIn), where Q and N are the orthonormal bases of the
regression and the residual space, respectively.

1. The hat matrix® of the model is the matrix Q Q" which is denoted as H.

2. The residual projection matrix® of the model is the matrix NNT which is denoted as M.

Lemma 2.1 Expressions of the projection matrices using the model matrix.
The hat matrix H and the residual projection matrix M can be expressed as

H = X(X'TX)™XT,

M = I, - X(XTX)"XT.

Proof.
¢ Five matrices rule (Theorem A.2): X(XTX)fxTX X,
{In — X(XTX)‘XT}X — O

> regresni projekcni matice, lze vsak uZivat téZ vjrazu ,hat matice* °® rezidudlni projekcni matice
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Let H=X(X"X)XT,
M=I,-X(X'X) X" =1, - H.

We have MX = 0,,x%, both H and M are symmetric.

We now have: N _ N N
y=I,y= (H—I—IH—H)y:Hy—I—My.

Clearly, Hy = X{ (X7X) X by € M(x),
e For any z = Xb € M(X): zTMy = bTXTMy =yl MX b = 0. Hence 1\7le € M(X)L.
0,
= Uniqueness of projections and projection matrices
H=H=XX"X)"X",

M=M=1I, - X(X'X) X",

Notes.
* Expression X(XTX)_XT does not depend on a choice of the pseudoinverse matrix (XTX)_.

o Ifr = rank(ank) = k then
H = X(X'X)7'XT,
M = I, - X(XTX) 'xT.
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2.2 Fitted values, residuals, Gauss—Markov theorem

Before starting to deal with estimation of the principal parameters of the linear model, which are
the regression coefficients 3, we will deal, for a given model matrix X based on the observed
data, with estimation of the full (conditional) mean IE(Y ‘ X) = X2 of the response vector Y and
its (conditional) covariance matrix var(Y ‘ X) = 021, for which it is sufficient to estimate the
residual variance o2.
Notation. We denote

un:=X0 :E(Y‘X).

By saying that we are now interested in estimation of the full (conditional) expectation E(Y ‘ X)
we mean that we want to estimate the parameter vector p on its own without necessity to know
its decomposition into X(3.

Definition 2.3 Fitted values, residuals, residual sum of squares.
Consider a linear model Y | X~ (XB, O'QIn).

L The fitted Vilues7 or the vector of fitted values of the model is a vector HY which will be
denoted as Y . That is, N N N
Y=(,...,%) =HY.

2. The residuals® or the vector of residuals of the model is a vector MY which will be denoted as
U. That is, R
U=(Uh,....U) =MY =Y - Y.

3. The residual sum of squares’ of the model is a quantity HUH2 which will be denoted as SSe.
That is,

Notes.
o The fitted values Y and the residuals U are projections of the response vector Y into the

regression space M(X) and the residual space M (X)L, respectively.

¢ Using different quantities and expressions introduced in Section 2.1, we can write

Y =HY =QQ'Y =X(X'X) XY,

{-<:>

U=MY =NN'Y = {I, - X(X'X) X"}y =Y -

7 8 9

vyrovnané hodnoty rezidua rezidudlni soucet Ctvercii
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~

e 1t follows from the projection properties that the vector Y = ()/}1, e ,Yn)T is the nearest point
of the regression space M (X) to the response vector Y = (Y7,.. ., Yn)T, that is,

VY = (Vi,..., V)| € M(X)
|y -Y|F =3 vi-v)? < 3 i -V =y - Y[ ey
=1 =1

e The Gauss-Markov theorem introduced below shows that Y is a suitable estimator of u=Xg.
Owing to (2.3), it is also called the least squares estimator (LSE)’ The method of estimation is
then called the method of least squares" or the method of ordinary least squares (OLS).

Theorem 2.2 Gauss—Markov.

Assume a linear model Y } X ~ (X8, 02I,). Then the vector of fitted values Y is, conditionally
given X, the best linear unbiased estimator (BLUE)? of a vector parameter p = E(Y X). Further,

var(Y | X) = 0?H = o’ X(X'X) "X .

Proof.

Linearity means that Y is a linear function of the response vector Y which is clear from the
expression Y = HY.

Unbiasedness. Let us calculate E(}/} ‘ X).
E(Y|X) =E(HY |X) =HE(Y |X) = HX8 = X8 = p.

The pre-last equality holds due to the fact that HX is a projection of each column of X into
M (X) which is generated by those columns. That is HX = X.

Optimality. Let Y = a + BY be some other linear unbiased estimator of n=Xg.
e That is,
VBeRF E(Y|X)=Xg,
VBERF a + BE(Y‘X) = XB,
VB cRF a + BXB=Xg.
It follows from here, by using above equality with 3 = 0y, that @ = 0,,.

e That is, from unbiasedness, we have that V3 € R* BX3 = X3. Take now 8 =
(0, AU ,O)T while changing a position of one. From here, it follows that BX = X.

e We now have:
Y = a + BY unbiased estimator of n = a=0; & BX=X.

Trivially (but we will not need it here), also the opposite implication holds (if Y = BY
with BX = X then Y is the unbiased estimator of &t = X(3). In other words,

Y = a + BY is unbiased estimator of p <= a=0, & BX=X

1 12

1" odhad metodou nejmensich ctvercii metoda nejmensich ctverci: (MNC) nejlepsi linedrni nestranny odhad
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¢ Let us now explore what can be concluded from the equality BX = X.
BX = X, | (xXTx)"xT

BX (X'X) X' =X(X'X) X,

BH = H, 2.4)
H'B"=HT,
HB' = H. 2.5)

* Let us calculate var(Y | X):
var(Y | X) = var(HY | X) = Hvar(Y |X)H' = H (¢%L,) H'
=’HH' =c?H=0*X(X'X) X".
* Analogously, we calculate var(Y | X) for Y = BY', where BX = X:
var(Y | X) = var(BY | X) = Bvar(Y |X)B' =B (o%L,)B'
= ?BB' =2 (H+B—H)(H+B-H)"

=0’ {HHT + H(B-H)" + (B-H)H' +(B-H) B-H)'}
H 0, O

=0’H + o (B—H)(B-H)',

where H(B — ]HI)T =B - IHI)]H[—r = 0,, follow from (2.4) and (2.5) and from the fact that
H is symmetric and idempotent.
* Hence finally,
var(Y|X) — var(Y |X) =o?(B-H)(B-H)',

which is a_positive semidefinite matrix. That is, the estimator Y is not worse than the
estimator Y.

3

Note. Tt follows from the Gauss-Markov theorem that

Y |X~ (X8, 0*H).

Historical remarks

¢ The method of least squares was used in astronomy and geodesy already at the beginning of the
19th century.

¢ 1805: First documented publication of least squares.
Adrien-Marie Legendre. Appendix “Sur le méthode des moindres quarrés” (“On the method of least squares”)
in the book Nouvelles Méthodes Pour la Détermination des Orbites des Cométes (New Methods for the Deter-
mination of the Orbits of the Comets).
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® 1809: Another (supposedly independent) publication of least squares.

Carl Friedrich Gauss. In Volume 2 of the book Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium (The Theory of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections).

e C. F. Gauss claimed he had been using the method of least squares since 1795 (which is
probably true).

* The Gauss-Markov theorem was first proved by C. F. Gauss in 1821 - 1823.
e In 1912, A. A. Markov provided another version of the proof.

* In 1934, J. Neyman described the Markov’s proof as being “elegant” and stated that Markov’s
contribution (written in Russian) had been overlooked in the West.

= The name Gauss-Markov theorem.

Theorem 2.3 Basic properties of the residuals and the residual sum of squares.
LetY ‘ X~ (X,@, O'2In), rank(ank) =r < k < n. The following then holds:
(i) U = Mg, wheree =Y — X(3.
(i) SSe = Y 'MY = e Me.
(i) E(U | X) = 0,, var(U|X) =0?M.
(i) E(SS. | X) =E(SSe) = (n—r) o2

Proof.

O U=MY =M(XB+e¢)= B + Me = Me.

MX
-~
0,

(i SS. = U'U=MY) MY
— Y M MY =Y MY
M

—~
.
=

e M'Me=¢ Me.

(i) E(U|X) = E(MY |X)=MXp =0,
0,

var(U |X) = var(MY |X) = Mvar(Y |X)M" =M (¢I,) M' =0’ MM' = oM.

V) E(SS.|X) = E(e"Me|X) =E{tr(e Me) | X} = E{tr(MeeT) | x}

= tr{EMeeT) | X} = tr{ME(ecT | %)} = tr(M>T,) = tr(o* M)
—_——
var(e|X)
= o2tr(M) = o tr(NNT) =02 tr(NTN) =o*tr(I,—) =0 (n—1),
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where (to remind) N denotes an n x (n — r) matrix whose columns form an orthonormal
vector basis of a residual space M(X)l.

Finally, E(SS.) = E{E(Sse ’ X)} =E{(n—7) 02} =(n—1r)o?

Notes.
® Point (i) of Theorem 2.3 says that the residuals can be obtained not only by projecting the
response vector Y into M (X)L but also by projecting the vector of the error terms of the linear

model into M (X) L

e Point (iii) of Theorem 2.3 can also be briefly written as

U|X~ (0,, 0 M).

Definition 2.4 Residual mean square and residual degrees of freedom.
Consider a linear model Y | X ~ (Xﬁ, JQIH), rank(X) = r.

1. The residual mean square™ of the model is a quantity SS./(n — r) and will be denoted as
MS.. That is, s

n—r

MS, =

2. The residual degrees of freedom" of the model is the dimension of the residual space and will
be denotes as v.. That is,

Ve =N —T.

Theorem 2.4 Unbiased estimator of the residual variance.

The residual mean square MS. is an unbiased estimator (both conditionally given X and also
with respect to the joint distribution of Y and X) of the residual variance o in a linear model
Y ! X~ (Xﬁ, O'QIn), rank(ank) =r<k<n.

Proof. Direct consequence of Theorem 2.3, point (iv).

3

End of
Lecture #2
(05/10/2016)

B rezidudlni stiedni ¢tverec ™ rezidudlini stupné volnosti
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2.3 Normal equations
Start of
The vector of fitted values ¥ = HY is a projection of the response vector into M(X) Hence, it Lecture #3

must be possible to write Y as a linear combination of the columns of the model matrix X. That (06/10/2016)

is, there exists b € R* such that R
Y = Xb. (2.6)

Notes.
e In a full-rank model (rank(XnX k) = k), linearly independent columns of X form a vector basis

of M(X). Hence b € RF such that Y = Xb is unique.

o If rank(ank) =1 < k, a vector b € RF such that Y = Xb is not unique.

We already know from the Gauss-Markov theorem (Theorem 2.2) that E(}A" ’ X) = X@3. Hence if
we manage to express Y as Y = Xb and b will be unique, we have a natural candidate for an

estimator of the regression coefficients 3. Nevertheless, before we proceed to estimation of 3, we
derive conditions that b € R* must satisfy to fulfill also (2.6).

Definition 2.5 Sum of squares.
Consider a linear model Y { X~ (Xﬂ, UQIH). The function SS : R¥ — R given as follows

ssB) = ||y -x8|° = (v -x8)' (Y -x8), BeR'

will be called the sum of squares™ of the model.

Theorem 2.5 Least squares and normal equations.

Assume a linear model Y ‘ X ~ (X,@, O'QIn). The vector of fitted values Y equals to Xb, b € R* if
and only if b solves a linear system
X'Xb=X"Y. 2.7)

Proof.
Y =Xb, is a projection of Y into M(X)
& Y = Xb is the closest point to Y in M(X)
& Y = Xb, where b minimizes SS(B) = HY — X,BH2 over 3 € RF,

Let us find conditions under which the term SS(3) attains its minimal value over 3 € R¥. To this
end, a vector of the first derivatives (a gradient) and a matrix of the second derivatives (a Hessian)

of SS(B3) are needed.

ss(B) = ||y —x8|* = (v -x8) (Y -XB8) =YY — 2Y X8+ 8 X X8,
955
B

soucet Ctvercii

(B) = —2XTY + 2X"XgB.

15
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9255
0Bos"

For any 3 € R¥, the Hessian (2.8) is a positive semidefinite matrix and hence b minimizes SS(3)
over 3 € R” if and only if

(B) = 2X"X. 2.8)

0SS
—(b)=0
a/@ ( ) k’
that is, if and only if
X'Xb=X"Y.

Definition 2.6 Normal equations.

Consider a linear model Y ’ X~ (Xﬁ , 02In). The system of normal equations’
equations'’ of the model is the linear system

% or concisely normal

X'Xb=X"Y,

or equivalently, the linear system
XT(Y — Xb) = 0.

Note. In general, the linear system (2.7) of normal equations would not have to have a solution
(@ minimum of the sum of squares would not have to exist). Nevertheless, in our case, existence
of the solution (and hence existence of a minimum of the sum of squares) follows from the fact
that it corresponds to the projection Y of Y into the regression space M (X) and existence of the
projection Y is guaranteed by the projection properties known from the linear algebra lectures. On
the other hand, we can also show quite easily that there exists a solution to the normal equations
(and hence there exists a minimum of the sum of squares) by using the following lemma.

Lemma 2.6 Vector spaces generated by the rows of the model matrix.
Let X,, < be a real matrix. Then

M(XTX) = M(XT).

Proof. First note that M (X'X) = M(XT") is equivalent to M(XTX)J‘ = M(XT)J‘. We will
show this by showing that for any @ € R*¥ a € M (XT)l if and only if a € M (XTX)L.

HaeMEXDT = a'XT=0] = a'X'X=0]

& ae M(XTX)"

16 systém normdlnich rovnic " normdlni rovnice
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i) ace MXTX)" = a'X'X=0] = a'X"Xa=0
= |[Xa| =0 & Xa=0, < a'X"=0]

& ae M(XT)"

Note. A vector space M (XT) is a vector space generated by the columns of the matrix X', that
is, it is a vector space generated by the rows of the matrix X.

Notes.

¢ Existence of a solution to normal equations (2.7) follows from the fact that its right-hand side
XY € M(XT) and M(XT) is (by Lemma 2.6) the same space as a vector space generated
by the columns of the matrix of the linear system XTX).

¢ By Theorem A.], all solutions to normal equations, i.e., a set of points that minimize the sum of
squares SS(/3) are given as b = (X'X) ™ X'Y, where (X"X)" is any pseudoinverse to XX
(if rank(XnX k) = r < k, this pseudoinverse is not unique).

® We also have that for any b = (XTX)f X'Y:

SS. = SS(b).

Notation.

¢ In the following, symbol b will be exclusively used to denote any solution to normal equations,
that is,
b=(bo, ..., k1) = (X'X)"XTY,

o For a full-rank linear model, (rank(XnX k) = k), the following holds:
e The only pseudoinverse (X'X) ™ is (X'X)™ = (XTX)A.

e The only solution of normal equations is b = (XTX)_l XTY which is also a unique
minimizer of the sum of squares SS(3).

In this case, we will denote the unique solution to normal equations as 8. That is,

B = (B\Oa ey B\k‘—l)—r == (XTX)_l XTY
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2.4 Estimable parameters

We have seen in the previous section that the sum of squares SS(3) does not necessarily attain
a unique minimum. This happens if the model matrix X, has linearly dependent columns (its
rank » < k) and hence there exist (infinitely) many possibilities on how to express the vector of
the fitted values ¥ € M(X) as a linear combination of the columns of the model matrix X. In
other words, there exist (infinitely) many vectors b € R* such that Y = Xb. This could also be
interpreted as that there are (infinitely) many estimators of the regression parameters 3 leading to
the (unique) unbiased estimator of the response mean p = E(Y } X) = XA3. It then does not
make much sense to talk about estimation of the regression parameters 3. To avoid such situations,
we now define a notion of an estimable parameter'® of a linear model.

Definition 2.7 Estimable parameter.
Consider a linear model Y | X~ (X,@, O'QIn). Let1 € R*. We say that a parameter

6=1'3

is an estimable parameter of the model if for all up € M (X) the expression 1" 3 does not depend on
a choice of a solution to the linear system X3 = p.

Notes.
¢ Definition of an estimable parameter is equivalent to the requirement

VB1,85 € R* X8, =XBy = 1Tﬂ1 = 1T52-

That is, the estimable parameter is such a linear combination of the regression coefficients 3
which does not depend on a choice of the 3 leading to the same vector in the regression space
M (X) (leading to the same vector of the response expectation pt).

¢ In a full-rank model (rank(ank) = k), columns of the model matrix X form a vector basis of
the regression space M(X) It then follows from the properties of a vector basis that for any
p € M(X) there exist a unique 3 such that X3 = p. Trivially, for any 1 € R¥, the expression
1" 3 then does not depend on a choice of a solution to the linear system X3 = p since there is
only one such solution. In other words, in a full-rank model, any linear function of the regression
coefficients 3 is estimable.

Definition 2.8 Estimable vector parameter.
Consider a linear model Y ‘ X~ (X,B, UQIn). Letl € RF. Letly,...,1,, € R*. LetL be an m x k

matrix having vectors II, cee l;,rl in its rows. We say that a vector parameter
0=1g3
is an estimable vector parameter of the model if all parameters 0; = leB, j=1,...,m, are es-

timable.

8 odhadnutelny parametr
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Notes.
¢ Definition of an estimable parameter is equivalent to the requirement

V3,8, eRF  XB, =XB, = LB, =LG,.

o Trivially, a vector parameter p = E(Y } X) = X2 is always estimable. We also already know its
BLUE which is the vector of fitted values Y.

e In a full-rank model (rank(ank) = k), the regression coefficients vector 3 is an estimable
vector parameter.

Example 2.1 (Overparameterized two-sample problem).
Consider a two-sample problem:

Sample I: Yy, ..., Yy, £ YD, y® ~ (,ul, a?),
Sample 2: Y, 41, -, Yo 4n, g y®@, v®@ ~ (,ug, a?),

and Yi,..., Y, Yo, 41, ., Yn,+n, are assumed to be independent. This situation can be described
by a linear model Y ~ (XB, 0'21”), n = ni + na, where

Y: 1 10 Bo + b1 H1
: . 4 : :
Y, 1 1 0
Y — ni 7 X = ’ ,6: /61 7 N:X,@: BO“’BI _ M1
Yy +1 101 Bo + B2 12
. S B ) )
Yni+n, 1 01 Bo + B2 p2

(i) Parameters 1 = By + B1 and ps = Bo + Pa are {trivially) estimable.

(ii) None of the elements of the vector B is estimable. For example, take 3, = (O, 1, O)T and
By = (1, 0, —1)T. We have X3, = X3, = (1, 10,0 0)T but none of the elements
of B, and By is equal. This corresponds to the fact that two means py and pi2 can be expressed
in infinitely many ways using three numbers By, b1, B2 as 1 = Po + 1 and po = By + Po.

(iii) A non-trivial estimable parameter is, e.g.,
-
O=pp—m=p—-p=108 1=(0-11).
T T
We have for B, = (B1,0, P11, B1,2) € R® and By = (P20, Ba,1, f22) € R:

XB1 =XBy & Pro+ P11 = P20+ P21,
B0+ B2 = B+ P22

= Bro—Pr1=Po2—Pog & 178, =178,
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Definition 2.9 Contrast.
Consider a linear model Y ’ X ~ (XB, O‘QIn). An estimable parameter = ¢' 3, given by a real

T . .
vector ¢ = (co, . ,ck_l) which satisfies
k—1
chk =0, ie, ch =0,
Jj=0

is called contrast'.

Definition 2.10 Orthogonal contrasts.
Consider a linear model Y ’ X~ (XB, O'2In). Contrasts 0 = ¢' 3 and n = d" 3 given by orthogo-

nal vectors ¢ = (co, . ,ck,l)T and d = (do, - ,dk,l)—r, i.e., given by vectors ¢ and d that satisfy
c¢'d =0, are called (mutually) orthogonal contrasts.

Theorem 2.7 Estimable parameter, necessary and sufficient condition.
Assume a linear model Y ‘ X~ (X,B, 02In).

(i) Let1 € R*. Parameter = ITB is an estimable parameter if and only if
1 e M(XT).
(ii) A vector @ = 1.3 is an estimable vector parameter if and only if

M(LT) ¢ M(XT).

Proof.

@ 0= ITB is estimable

& VB, B eRF XB,=XB, = 18, =15,

¥ 81, By RN X(By = By) =0, = 17(8; = B5) =0
VyeRF Xy=0, = 1Ty =0
Vv € R¥ ~ orthogonal to all rows of X = 1T~ =0
Ve RF ')/E/\/I(XT)L = 1"y=0
& le M(XT),

S

(ii) Direct consequence of point (i).

Y kontrast
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Note. In a full-rank model (rank(XnX k) =k<n,M (XT) = R*. That is, any linear function
of 3 is indeed estimable (statement that we already concluded from the definition of an estimable
parameter).

Theorem 2.8 Gauss—Markov for estimable parameters.

Let 0 = 1" be an estimable parameter of a linear model Y ’ X ~ (XB, chIn). Let b be any
solution to the normal equations. The statistic

6 =1"b
then satisfies:

(i) 6 does not depend on a choice of the solution b of the normal equations, i.e., it does not depend
on a choice of a pseudoinverse in b = (XTX)_ XTy.

(ii) 6 is, conditionally given X, the best linear unbiased estimator (BLUE) of the parameter 6.
(iii) var(@\‘ X) =217 (XTX)_I, that is,
41X ~ (9, o217 (XTX)‘I),
where 17 (XTX) 1 does not depend on a choice of the pseudoinverse (XTX) .
If additionally 1 # 0y, then1" (XTX) 71> 0.

Let further 0, =1] 3 and 0y =1] 3 be estimable parameters. Let
6 = 1b, 6, = 1Jb.

Then o
cov(fy, 02 |X) = o1 (XX) 1,

where 1] (XTX) 1 does not depend on a choice of the pseudoinverse (XTX)_.

Proof.

(i) Let by, by be two solutions to normal equations, that is,
XY =X'Xb =X Xby.
By Theorem 2.5 (Least squares and normal equations):
& Y=Xb & Y =Xb,
that is, Xb; = Xbs.
Estimability of 6:

= 1'b; =1"b,.
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(ii) Parameter 0 = lTﬁ is estimable. By Theorem 2.7:

& le M(XT)

< 1=XTa for some a € R"

= f0=d'Xb=d'Y.
That is, 6 is a linear function of Y which is the BLUE of = XG. It then follows that 9 is
the BLUE of the parameter

T T 1T a_
a p=a XBg=1p6=0.

(iii) Proof/calculations were available on the blackboard in KIl.

Theorem 2.9 Gauss—Markov for estimable vector parameter.

Let @ = 1L3 be an estimable vector parameter of a linear model Y } X~ (X,@, 0'2In). Let b be any
solution to normal equations. The statistic

6 = Lb
then satisfies:
(i) O does not depend on a choice of the solution b of the normal equations.

(ii) 0 is, conditionally given X, the best linear unbiased estimator (BLUE) of the vector parameter
0.

(iii) var(a | X) = UQL(XTX)_ILT , that is,
0|X ~ (9, a2L(XTX)‘LT),

where ]L(XTX) "7 does not depend on a choice of the pseudoinverse (XTX) .

If additionally m < r and the rows of the matrix 1L are linearly independent then L(XTX) LT
is a positive definite (invertible) matrix.

Proof.  Direct consequence of Theorem 2.8, except positive definiteness of L(XTX)_ILT in
situations when L has linearly independent rows.

Positive definiteness of L(XTX) “LT if L, has linearly independent rows:

Proof/calculations were available on the blackboard in KI.
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Consequence of Theorem 2.9.
Assume a full-rank linear model Y ‘ X~ (X,@, Uzln), rank(ank) = k < n. The statistic

B=(xX"xX)"'Xy
then satisfies:

(@) B is, conditionally given X, the best linear unbiased estimator (BLUE) of the regression coeffi-
cients (3.

(ii) var(,@ ‘ X) = g2 (XTX)_I, that is,

BX ~ (57 02(XTX)‘1).

Proof. Use . = I, in Theorem 2.9.

Q

End of
Lecture #3
(06/10/2016)
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2.5 Parameterizations of a linear model

For given response Y = (Yl, RN Yn)T and given set of covariates Z1, ..., Z,, many different
sets of regressors X1, ..., X, and related model matrices X can be proposed. In this section,
we define a notion of equivalent linear models which basically says when two (or more) different
sets of regressors, i.e., two (or more) different model matrices (derived from one set of covariates)
provide models that do not differ with respect to fundamental model properties.

2.5.1 Equivalent linear models

Definition 2.11 Equivalent linear models.

Assume two linear models: Mi: 'Y } X; ~ (Xlﬂ, Uzln), where X1 is an n X k matrix with
rank(Xl) =rand My:' Y ‘ Xg ~ (Xg’)’, U2In), where Xo is an n X | matrix with rank(Xg) =r.
We say that models M1 and My are equivalent if their regression spaces are the same. That is, if

M(X;) = M(Xy).

Notes.
¢ The two equivalent models:
e have the same hat matrix H = X; (X] X;) X| = X,(X]X;) X] and a vector of fitted
values Y = HY;
* have the same residual projection matrix M = I,, — H and a vector of residuals U = MY;

e have the same value of the residual sum of squares SS, = U ' U, residual degrees of freedom
ve = n — r and the residual mean square MS. = SS./(n — r).

* The two equivalent models provide two different parameterizations of one situation. Neverthe-
less, practical interpretation of the regression coefficients 3 € R* and v € R! in the two models
might be different. In practice, both parameterizations might be useful and this is also the reason
why it often makes sense to deal with both parameterizations.

2.5.2 Full-rank parameterization of a linear model

Any linear model can be parameterized such that the model matrix has linearly independent
columns, i.e., is of a full-rank. To see this, consider a linear model Y ‘ X ~ (X,@, O’QIn), where
rank(ank) =r <k <n. If Q,x, is a matrix with the orthonormal vector basis of M (X) in its
columns (that is, rank(Q) = r), the linear model

Y |Q~ (Qv, 0’1,) 2.9)

is equivalent to the original model with the model matrix X. Nevertheless, parameterization of
a model using the orthonormal basis and the Q matrix is only rarely used in practice since the
interpretation of the regression coefficients < in model (2.9) is usually quite awkward.

Parameterization of a linear model using the orthonormal basis matrix Q is indeed not the only
full-rank parameterization of a given linear model. There always exist infinitely many full-rank

Start of
Lecture #4
(12/10/2016)
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parameterizations and in reasonable practical analyses, it should always be possible to choose such
a full-rank parameterization or even parameterizations that also provide practically interpretable
regression coefficients.

Example 2.2 (Different parameterizations of a two-sample problem).
Let us again consider a two-sample problem (see also Example 2.1). That is,

Lid,

Sample I: Y1, ..., Yy, LYW, YW (g, 0?),
Sample 2: Yy, 11, -y Yo 4n, i Y@, v@ ~ (,ug, o?),
and Y1, ..., Yo, Yo 41, -+, Yn,+n, are assumed to be independent. This situation can be described

by differently parameterized linear models Y ‘ X ~ (Xﬁ, o? In), n = ny1 + no where the model
matrix X is always divided into two blocks as

X
X = ,
Xo

where X1 is an nq1 X k matrix having n1 identical rows :c;r and Xy is an ng X k matrix having ns
identical rows x4 . The response mean vector 1 = E(Y } X) is then

x| 3 1
Xi8 x| 3 1
Xo8 Ty B8 2
z, B 12

That is, parameterization of the model is given by choices of vectors x1 # a3, *1 # Ok, T2 # Oy
leading to expressions of the means of the two samples as

pm=zB,  p2=xp

The rank of the model is always r = 2.

Overparameterized model =, = (1,1,0)", z, = (1,0,1) "

1 1 0
i Bo
X= 0 , B=|5|, w1 = Bo + B,
: 52 M2:60+52-
1 01
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Orthonormal basis =, = (1//71,0) ', @, = (0, 1/\/m3) ' :

—

v 0
- 0 B1 1
X=Q= |2 , B= . m=——=0F,  Bi=mim,
0 L (62 \/:Tll LV
: : po = ——=P02,  B2= /N2 2.
0 1 V2 \/7
Vs
T T
Group means z; = (1,0) , x> =(0,1) :
10
10 B
X= 3 = ) = )
01 B <52> 1 =B
s p2 = Ba.
0 1

This could also be viewed as the overparameterized model constrained by a condition 5y = 0.

Group differences =, = (1,1), z, = (1,0) '

1 1
11 Bo
X e , = , e + ,
0 B (51> p1 = Bo + B
: p2 = o, B1 = p1 — po.
1 0

This could also be viewed as the overparameterized model constrained by a condition (3 = 0.

Deviations from the mean of the means z, = (1, 1), @y = (1, —1) :

1 1

o p1 = Bo + B, 50:;11—;—;@7
) : ,3:<BO>, pr2 = PBo — b1, ﬁlzﬂl_MI;NQ
1 -1 B1
. _ Mt g
: = 9 2
1 -1

This could also be viewed as the overparameterized model constrained by a condition 1 + 2 = 0.

Except the overparameterized model, all above parameterizations are based on a model matrix having
full-rank r = 2.
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2.6 Matrix algebra and a method of least squares

We have seen in Section 2.5 that any linear model Y’ } X ~ (Xﬁ, 0’2In) can be reparameterized
such that the model matrix X has linearly independent columns, that is, rank(ank) = k. Remind
now expressions of some quantities that must be calculated when dealing with the least squares
estimation of parameters of the full-rank linear model:

H=XX'X)"'X", M=I,-H=1I,-X(X'X)"'X",

~

Y =HY =X(X'X) XY, var(Y|X) =c’H=0’X(X'X)"'X,
U=MY =Y - Y, var(U | X) = oM = o*{T, - X(X"%) "X},
B=X"x)"xTy, var(B]X) =0 (X'X) L.

The only non-trivial calculation involved in above expressions is calculation of the inverse (XTX) -
Nevertheless, all above expressions (and many others needed in a context of the least squares
estimation) can be calculated without explicit evaluation of the matrix XTX. Some of above ex-
pressions can even be evaluated without knowing explicitely the form of the (XTX)_l matrix. To
this end, methods of matrix algebra can be used (and are used by all reasonable software routines
dealing with the least squares estimation). Two methods, known from the course Fundamentals of
Numerical Mathematics (NMNMZ201), that have direct usage in the context of least squares are:

* QR decomposition;
e Singular value decomposition (SVD)

applied to the model matrix X. Both of them can be used, among the other things, to find the
orthonormal vector basis of the regression space M(X) and to calculate expressions mentioned
above.

2.6.1 QR decomposition

QR decomposition of the model matrix is used, for example, by the R software (R Core Team, 2016)
to estimate a linear model by the method of least squares. If X, is a real matrix with rank(X) =
k < n then we know from the course Fundamentals of Numerical Mathematics (NMNM20I) that it
can be decomposed as

X=0QR,
where
ank:(Q17~--7qk), qu]Rk,j:L...,k,
qi,---,qy is an orthonormal basis of M (X) and Ry is upper triangular matrix. That is,

Q'Q=1, QQ'=H.

We then have
X'X=R"Q'QR=R'R. (210)
~—~—
Iy,
That is, R" R is a Cholesky (square root) decomposition of the symmetric matrix X' X. Note
that this is a special case of an LU decomposition for symmetric matrices. Decomposition (2.10)

can now be used to get easily (i) matrix (XTX)_l, (ii) a value of its determinant or a value of
determinant of XX, (iii) solution to normal equations.
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() Matrix (XTX) ",
X'X)'=(R'R)'=R'R)'=R YR

That is, to invert the matrix XX, we only have to invert the upper triangular matrix R.

(i) Determinant of XX and (XTX)_l.
Let r1,...,7; denote diagonal elements of the matrix R. We then have

det(XTX) = det(RTR) = {det(R)}” = (ﬁ rj>2,

det{ (X"x) "'} = {det(XTX)}il.

(iii) Solution to normal equations 3 = (XTX)_leY.
We can obtain ,@ by solving:

X'Xb=X"Y
R'Rb=R'Q'Y
Rb=Q'Y. @2.1)

That is, to get B, it is only necessary to solve a linear system with the upper triangular
system matrix which can easily be done by backward substitution.

Further, the right-hand-side ¢ = (01, .. .7ck)T := Q'Y of the linear system (2.11) additionally
serves to calculate the vector of fitted values. We have

k
Y =HY =QQ'Y =Qc =) ¢gq;.

j=1
That is, the vector ¢ provides coefficients of the linear combination of the orthonormal vector basis

of the regression space M (X) that provide the fitted values Y.

2.6.2 SVD decomposition

Use of the SVD decomposition for the least squares will not be explained in detail in this course.
It is covered by the Fundamentals of Numerical Mathematics (NMNMZ20I) course.



Chapter

Normal Linear Model

Until now, all proved theorems did not pose any distributional assumptions on the random vectors
(Yi, XZ»T)T, X; = (XZ-70, e Xi’k_l)—r, i = 1,...,n, that represent the data. We only assumed
a certain form of the (conditional) expectation and the (conditional) covariance matrix of ¥ =
(Yi,..., Yn)T given X 1,..., X, (given the model matrix X). In this chapter, we will additionally
assume that the response is conditionally normally distributed given the regressors which will lead
us to the normal linear model.

34
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3.1 Normal linear model

T iig (Y, XT)T, i =1,...,n, we mentioned in Section 1.2.6 situation

X ~ N(X'B, 0?%). For the full data (Y, X), this

With iid. data (Vi, X)
when it was additionally assumed that Y
implies

Y | X~ N, (X8, 0 1,). (3.0)

Strictly speaking, the original data vectors (YZ-, X Z-T)T, i =1,...,n, do not have to be iid. with
respect to their joint distribution to satisfy (3.1. Remember that the joint density of the response
vector and all the regressors can be decomposed as

frx(y, x) = fyix(y]x) fx(x), yeR" xe€ X"

Property (3.1) is related to the conditional density fy|x which is then given as

fyix(y|x) ZH{i@(W)}, yeR" xe X"

On the other hand, the property (3.1) says nothing concerning the joint distribution of the regressors
represented by their joint density fx. Since most of the results shown in this chapter can be derived
while assuming just (3.1) we will do so and open the space for applications of the developed theory
even in situations when the regressors X1, ..., X, are perhaps not i.i.d. but jointly generated by
some distribution with a general density fx.

Definition 3.1 Normal linear model with general data.
The data (Y, X), satisfy a normal linear model' if

Y‘X NNn(X/B7 UQIn)a

where 3 = (Bo, ey ﬂk_l)T € R¥ and 0 < 02 < 0o are unknown parameters.

Lemma 3.1 Error terms in a normal linear model.
LetY ‘ X~N, (Xﬁ, o? In). The error termse =Y — X3 = (51, R 5n)T then satisfy

(i) €| X ~ Ny (0,, 02 1,).
(ii) € ~ Np(0,, 02 1,,).

i) ¢; < e, i=1,...,n, €NN(O, 02).

Proof.

(i) follows from the fact that a multivariate normal distribution is preserved after linear trans-
formations (only the mean and the covariance matrix changes accordingly).

Y normalni linedrni model
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(i) follows from (i) and the fact that the conditional distribution & } X does not depend on the
condition and hence the (unconditional) distribution of € must be the same.

(iii) follows from (ii) and basic properties of the multivariate normal distribution (indepedence is
the same as uncorrelatedness, univariate margins are normal as well).

3
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3.2 Properties of the least squares estimators under the
normality

Theorem 3.2 Least squares estimators under the normality.
Let Y ‘ X ~ N, (Xﬁ, o? In), rank(ank) = r. Let L.« is a real matrix with non-zero rows

1/, ..., 1 such that @ = (01, e Hm)T = (llT,B, ce IZL,B)T = LB is an estimable parameter.
Let 6 = (01, e Gm)T = (lirb, ey l;b)—r = ILb be its least squares estimator. Further, let

V=L(X'X) L" = (vj)

j,t:L...,m’

1 1
Dzdiag( Y ey ),
V1,1 v Umm

~

0; — 0;

Tj=—21 7 =1
J \/ma J ’ , M,
T=(T,...T,) = ———D(-6).

The following then holds.
OY | X ~ N, (X8, o* H).

(i) U |X ~ Ny (0,, 0> M).
(ii)) 0| X ~ Ny (6, 02 V).
(iv) Statistics Y and U are conditionally, given X, independent.
() Statistics 0 and SS. are conditionally, given X, independent.
S 2
LY — X6
wi) m ~ X?-
... SSe 9
(ii) ? ~ Xn—p-
@wiii) Foreachj=1,...,m, T; ~ ty_p.
(ix) T|X ~ mvty,nr (DVD).

(x) If additionally rank(LmX k) = m < r then the matrix V is invertible and

% (6-0)" (MS. V)™ (8-8) ~ Fr oy

End of
Lecture #4
(12/10/2016)
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Proof. Proof/calculations were available on the blackboard in KI.

Start of
Lecture #6

In a full-rank linear model, we have [Ai = (XTX)_l XTY and under the normality assumption, 19/10/2016)

Theorem 3.2 can be used to state additional properties of the LSE B of the regression coefficients 3.
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Consequence of Theorem 3.2: Least squares estimator of the regression coeffi-
cients in a full-rank normal linear model.

LetY ‘ X~ N, (X,B, o? In), rank(ank) = k. Further, let

V= (XTX)_I = (vjvt)j,t:O,...,kfl’

. 1 1
D:d|ag< ,...,).
/00,0 VVk=1,k—1
The following then holds.

@) B|X ~ Ni(B, a2V).
(ii) Statistics ,B and SS. are conditionally, given X, independent.

(iii) For eachj =0,....k —1,T; := \/ﬁ% ~ ty_k-
1 .
@) T = (To,..., Tp1) = mD(B —B) ~ mvt,, «(DVD).

1 (B~8) MS XK (B~ B) ~ Fink

Proof. Use L = I}, in Theorem 3.2 and realize that the only pseudoinverse to the matrix XX in
a full-rank model is the inverse (XTX)A.
Q

Theorem 3.2 and its consequence can now be used to perform principal statistical inference, i.e.,
calculation of confidence intervals and regions, testing statistical hypotheses, in a normal linear
model.

3.2.1 Statistical inference in a full-rank normal linear model

Assume a full-rank normal linear model Y | X ~ N, (X,B, o? In), rank(ank) = k and keep
denoting V = (XTX)_l = (Ujvt)jt:() T

Inference on a chosen regression coefficient

First, take a chosen j € {0, N 1}. We then have the following.

¢ Standard error of Ej and confidence interval for 3;
We have var(@- ‘X) = o2 vj,; (Consequence of Theorem 2.9) which is unbiasedly estimated as
MS, v; ; (Theorem 2.4). The square root of this quantity, i.e., estimated standard deviation of Ej
is then called as standard error’ of the estimator Bj. That is,

S.E.(B;) = v/MS, vj;. 3.2)

2 smeérodatnd, p¥ip. standardni chyba
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The standard error (3.2) is also the denominator of the t-statistic 7; from point (iii) of Conse-
quence of Theorem 3.2. Hence the lower and the upper bounds of the Wald-type (1 — «) 100%
confidence interval for 3; based on the statistic 7} are

B; + S.E.(Bj)tn_k<1 — %)
Analogously, also one-sided confidence interval can be calculated.
Test on a value of 3;
Suppose that for a given 5;-) € R, we aim in testing Hp: f3; = ?,
Hi: B; # B?.

The Wald-type test based on point (iii) of Consequence of Theorem 3.2 proceeds as follows:

Bj—5§) _ Bj—ﬁ?

Test statistic: Tjo= = = .
SE(B]) vV MS. Uj,4
o
Reject Hy if |Tj0| > th—k (1 — 5)

P-value when Tj =t;0: p=2CDF n—k:(_ |tj70|).

Analogously, also one-sided tests can be conducted.

Simultaneous inference on a vector of regression coefficients

When the interest lies in the inference for the full vector of the regression coefficients 3, the
following procedures can be used.

e Simultaneous confidence region® for 3

It follows from point (v) of Consequence of Theorem 3.2 that the simultaneous (1 — «) 100%
confidence region for 3 is the set

{BeRrF: (B-B) (MS;'X"X) (8-B) < kFini(1-a)},

~

which is an ellipsoid with center: B,
shape matrix: MS, (XTX)f1 = /a\r(B ! X),
diameter: \/k‘ Fien—k(l —a).

Remember from the linear algebra and geometry lectures that the shape matrix determines the
principal directions of the ellipsoid as those are given by the eigen vectors of this matrix. In
this case, the principal directions of the confidence ellipsoid are given by the eigen vectors of the
estimated covariance matrix v/a\r(ﬁ | X).

Test on a value of 3
Suppose that for a given 8° € R¥, we aim in testing Hp: B = 3°,

Hi: B # 8
The Wald-type test based on point (v) of Consequence of Theorem 3.2 proceeds as follows:
1 ~ T ~
Test statistic: Qo = z (ﬁ — ,80) l\/ISE_1 XX (,6 — ,60).

Reject Hy if Qo > Frn—k(1l —a).

P-value when Qo = qo: p=1—CDFFr ;s (qo).

3

simultdnni konfidencni oblast
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3.2.2 Statistical inference in a general rank normal linear model

Let us now assume a geneal rank normal linear model Y ‘ X ~ N, (XB, o? In), rank(XnX k) =
r <k

Inference on an estimable parameter

Let # = 1" 3, 1 0, be an estimable parameter and let 9 =17b be its least squares estimator.

e Standard error of § and confidence interval for ¢
We have var(é\’ X) =217 (XTX) 1 (Theorem 2.8) which is unbiasedly estimated as MS, 1" (XTX) 1

(Theorem 2.4). Hence the standard error of 0 is

SE.(6) = \/MS. 1T (X7X) L 33)

The standard error (3.3) is also the denominator of the appropriate t-statistic from point (viii) of
Theorem 3.2. Hence the lower and the upper bounds of the Wald-type (1 — «) 100% confidence
interval for 6 based on this t-statistic are

0+ SED) tar(1-3):

Analogously, also one-sided confidence interval can be calculated.

¢ Test on a value of 0

Suppose that for a given §° € R, we aim in testing Ho: 6 = 69,

Hy: 6 #6°
The Wald-type test based on point (viii) of Theorem 3.2 proceeds as follows:
. 6 —6° 6 — g0
Test statistic: To = = .
SE(0) \/ms.1T(xTx) 1
Reject Hy if Ty > tn,r<1 - %)

P-value when Ty = to: p = 2CDF n_r(— ]to\).

Analogously, also one-sided tests can be conducted.

Simultaneous inference on an estimable vector parameter

Finally, let & = L3 be an estimable parameter, where L is an m X k matrix with m < r linearly
independent rows. Let 8 = ILb be the least squares estimator of 6.

¢ Simultaneous confidence region for 6

It follows from point (x) of Theorem 3.2 that the simultaneous (1 — «) 100% confidence region
for 0 is the set

{oerm: (6-0) {MseJL,(XTX)WL,T}_1 (6-8) < mFunr(1-a)},
which is an ellipsoid with center: 0,
shape matrix:  MS.L(X'X) LT = \7a\r(/0\ | X),
diameter: \/m Fmn—r(1—a).
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e Test on a value of 6
Suppose that for a given 8° € R™, we aim in testing Hy: 6 = 6°,
Hi: 6 # 6°
The Wald-type test based on point (x) of Theorem 3.2 proceeds as follows:

(6-6°" {MSEL(XTX)_LT}_l (6—0°).

1
Test statistic: Qo = —
m

Reject Hy if Qo > Frpn—r(1—a).

P-value when Qo = qo: p=1—CDFFr p—r (QO)-

Note. Assume again a full-rank model (r = k) and take L. as a submatrix of the identity matrix

I by selecting some of its rows. The above procedures can then be used to infer simultaneously

on a subvector of the regression coefficients 3.

Note. All tests, confidence intervals and confidence regions derived in this Section were derived
under the assumption of a normal linear model. Nevertheless, we show in Chapter 13 that under
certain conditions, all those methods of statistical inference remain asymptotically valid even if

normality does not hold.
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3.3 Confidence interval for the model based mean, pre-
diction interval

We keep assuming that the data (Yi, X ZT )T, 1=1,...,n, follow a normal linear model. That is,
Y | X~ N, (X8, 0% 1,),
from which it also follows

Y| Xi~ N(X[B, 0%,  i=1,...,n.

Furthermore, the error terms ¢; = V; — X,/ 3,7 = 1,...,n are iid. distributed as ¢ ~ N(0, 02)
(Lemma 3.1).
Remember that X C R¥ denotes a sample space of the regressor random vectors X1, ..., X,,.

Let e € X and let
Ynew = my—[ewﬂ + Enew,

. T .
where £,0, ~ N(0, 02) is independent of € = (51, e ,en) . A value of Y}, is thus a value of
a “new” observation sampled from the conditional distribution

Yonew } Xnew = Tnew ~ N(mq—lrewﬁv 02)
independently of the “old” observations. We will now tackle two important problems:
(i) Interval estimation of fi,eqy 1= ]E(Ynew } Xnew = wnew) = :B,Iew,ﬁ.
(ii) Interval estimation of the value of the random variable Y., itself, given the regressor vector

Xnew = Tpew-

Solution to the outlined problems will be provided by the following theorem.

Theorem 3.3 Confidence interval for the model based mean, prediction interval.
Let Y | X ~ N, (XB, 021,), rank(Xpxi) = 7. Let Tpew € X N M(XT), @pew # Op. Let
Enew ~ N (0, 02) is independent of e =Y — XB3. Finally, let Yyer, = @, 0n3 + Encw- The following
then holds:

Q) tnew = a::;ewﬁ is estimable, .
Hnew = mnewb

is its best linear unbiased estimator (BLUE) with the standard error of

S E-(inew) = \/MSe @y (XTX) " @eas

and the lower and the upper bound of the (1 — o) 100% confidence interval for fine,, are

finew £ S.E(ineu) tn—r (1= 5 ). (3.4)
(ii) A (random) interval with the bounds
~ «
finew £ SEP.(new) ta—r (1= ), (3.5)
where
S.E.P.(@new) = \/Mse {1 + ), (XTX)_mnew}, (3.6)

covers with the probability of (1 — «) the value of Yyew.
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Proof. Proof/calculations were available on the blackboard in KI.

Terminology (Confidence interval for the model based mean, prediction interval,
standard error of prediction).

¢ The interval with the bounds (3.4) is called the confidence interval for the model based mean.
¢ The interval with the bounds (3.5) is called the prediction interval.
¢ The quantity (3.6) is called the standard error of prediction.

Terminology (Fitted regression function).

Suppose that the corresponding linear model is of full-rank with the LSE B of the regression
coefficients. The function R
m(x) =z' g, reX,

which, by Theorem 3.3, provides BLUE's of the values of
,U'(m) = E(Ynew ‘ Xnew = m) = :BTIB

and also provides predictions for YVyew, = € ' B + €pew, is called the fitted regression function.*

Terminology (Confidence band around the regression function, prediction band).

As was explained in Section 1.1.3, the regressors X; € X C R¥ used in the linear model are often
obtained by transforming some original covariates Z; € Z C RP. Common situation is that Z C R
is an interval and

T T .
Xz' = (Xi,(), ey Xi,kfl) = (to(ZZ‘), ey tkfl(ZZ‘)) :t(Zz)7 1= 1,...,77,,
where t : R — R* is a suitable transformation such that
E(Y;|Zi) =t"(Z)B = X B.

Suppose again that the corresponding linear model is of full-rank with the LSE B of the regression
coefficients. Confidence intervals for the model based mean or prediction intervals can then be
calculated for an (equidistant) sequence of values zpew.1,- ., 2new,n € Z and then drawn over
a scatterplot of observed data (Yl, Zl)T, e (Yn, Zn)T. In this way, two different bands with
a fitted regression function

m(z) =t (2)8, z€Z,

going through the middle of both the bands, are obtained. In this context,

(i) The band based on the confidence intervals for the model based mean (Eq. 3.4) is called the
confidence band around the regression function;’

(i) The band based on the prediction intervals (Eq. 3.5) is called the prediction band.’

* odhadnutd regresni funkce ° pis spolehlivosti okolo regresni funkce ° predikéni pds



3.4. DISTRIBUTION OF THE LINEAR HYPOTHESES TEST STATISTICS UNDER THE
ALTERNATIVE 44

3.4 Distribution of the linear hypotheses test statistics
under the alternative

Section 3.2 provided classical tests of the linear hypotheses (hypotheses on the values of estimable
parameters). To allow for power or sample size calculations, we additionally need distribution of
the test statistics under the alternatives.

Theorem 3.4 Distribution of the linear hypothesis test statistics under the alterna-
tive.

LetY ‘ X~N, (Xﬁ, U2In), rank(X,,«x) = r < k. Let 1 # O such that 0 = 1" 3 is estimable. Let
0 =1"b be its LSE. Let 0% 0" c R, 6° # 6! and let

6 — O

Ty = :
\/MSe 1'(XTX) 1

Then under the hypothesis 0 = 01,
ot — Y
021" (XTX) 1

To| X ~thp(N), A=

Proof. Proof/calculations were available on the blackboard in KI.

Note. The statistic Ty is the test statistic to test the null hypothesis Hy: § = 6" using point (viii)
of Theorem 3.2.

Theorem 3.5 Distribution of the linear hypotheses test statistics under the alter-
native.

LetY ! X~N, (X,B, 0'2In), rank(X,, xx) = r < k. Let L,,,xx be a real matrix with m < r linearly

independent rows such that @ = 1L3 is estimable. Let 0 = Lb be its LSE. Let 0°, 6' cR™, 0° £ 0!
and let

Qo= % (609" {MSeL(XTX)_LT}A (6-6°).

Then under the hypothesis @ = 0,

Qo|X ~ Fnr(N),  A=(8"-0%" {JQL(XTX)TLT}_I (6" — 6.

Proof. Proof/calculations were available on the blackboard in KIl.

Beginning of
skipped part
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Note. The statistic Qq is the test statistic to test the null hypothesis Hy: 8 = 0° using point (x)
of Theorem 3.2.

Note. We derived only a conditional (given the regressors) distribution of the test statistics at
hand. This corresponds to the fact that power and sample size calculations for linear models are
mainly used in the area of designed experiments’ where the regressor values, i.e., the model matrix
X is assumed to be fixed and not random. A problem of the sample size calculation then involves
not only calculation of needed sample size n but also determination of the form of the model
matrix X. More can be learned in the course Experimental Design (NMST436).%

" navrzené experimenty ® Ndvrhy experiments; (NMST436)

End of
skipped part



Chapter

Basic Regression Diagnostics

We will now start from considering the original response-covariate data. That is, we assume that
data are represented by n random vectors (Yg, ZiT)T, Z;, = (Zi,h e Zm,)T € Z C Ry,
i = 1,...,n. We keep considering that the principal aim of the statistical analysis is to find
a suitable model to express the (conditional) response expectation IE(Yz } ZZ»), i=1,...,n, in
summary the response vector conditional expectation E(Y ‘ Z), where Z is a matrix with vectors
Zy, ..., Z, in its rows. Suppose that t : Z — X C R¥ is a transformation of the covariates
leading to the model matrix of regressors

X t'(Z1)
X=|: |=| i [=t2), rank(Xp)=r<k
XT tT(Zn)

46



4.1. (NORMAL) LINEAR MODEL ASSUMPTIONS 47

4.1 (Normal) linear model assumptions

Basis for statistical inference shown by now was derived while assuming a linear model for the data,
i.e., while assuming that E(Y ‘ Z) =t'(Z)B = XB for some B € R* and var(Y ’ Z) = o’1,.
For the data (Y}, x/! )T, i =1,...,n, where we directly work with the response-regressors pairs,
this means the following assumptions (: = 1,...,n):

(AD) (Y | X; = :c) = 3 for some 3 € R* and (almost all) x € X.

= Correct regression function m(z) = t'(2)3, z € Z, correct choice of transformation ¢ of the
original covariates leading to linearity of the (conditional) response expectation.

(A2) var(Yg ‘ X; = a:) = o2 for some o2 irrespective of (almost all) values of x € X.

= The conditional response variance is constant (does not depend on the covariates or other factors)
=homoscedasticity' of the response.

(A3) Cov(Yi, Y, ‘ X = x) =0, i # [, for (almost all) x € X™.

= The responses are conditionally uncorrelated.

Some of our results (especially those shown in Chapter 3) were derived while additionally assuming
normality of the response, i.e., while assuming

(Ad) Yi|Xi::L'~./\/’( Tﬁ, ) for (almost all) &z € X.

= Normalityof the response.

If we take the error terms of the linear model, i.e., the vector (51, e en)T =e=Y —-Xg3=

(Yl -X/B,...,Y, - X/ /@)T, the above assumptions can also be stated as saying that there
exists 3 € R¥ for which the error terms satisfy the following.

(Al (51 ‘ X, = a:) = 0 for (almost all) € X, and consequently also E(EZ) =0,i=1,.

= This again means that a structural part of the model stating that IE(Y | X) = X3 for some
B € R is correctly specified, or in other words, that the regression function of the model is
correctly specified.

(A2) var(ai ‘ X; = w) = 02 for some o2 which is constant irrespective of (almost all) values of
x € X. Consequently also var(ei) =0,i=1,...,n.

= The error variance is constant = homoscedasticity of the errors.

(A3) cov(si, € ! X = x) =0, i # [, for (almost all) x € X™. Consequently also cov (51', 51) =0,
1 # 1.

= The errors are uncorrelated.
Possible assumption of normality is transferred into the errors as

(A4) &; ‘ X, =x N./\/'(O o ) for (almost all) * € X and consequently also ¢; NN(O, 02),
1=1,.

= The errors are normally distributed and owing to previous assumptions, 1, ..., &, ~ N(0, o2).

U homoskedasticita
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Remember now that many important results, especially those already derived in Chapter 2, are valid
even without assuming normality of the response/errors. Moreover, we shall show in Chapter 13 that
also majority of inferential tools based on results of Chapters 3 and 5 are, under certain conditions,
asymptotically valid even if normality does not hold.

In general, if inferential tools based on a statistical model with certain properties (assumptions)
are to be used, we should verify, at least into some extent, validity of those assumptions with
a particular dataset. In a context of regression models, the tools to verify the model assumptions
are usually referred to as regression diagnostic* tools. In this chapter, we provide only the most
basic graphical methods. Additional, more advanced tools of the regression diagnostics will be
provided in Chapters 11 and 14.

As already mentioned above, the assumptions (Al)-(A4) are not equally important. Some of them
are not needed to justify usage of a particular inferential tool (estimator, statistical test, ...), see
assumptions and proofs of corresponding Theorems. This should be taken into account when
using the regression diagnostics. It is indeed not necessary to verify those assumptions that are not
needed for a specific task. It should finally be mentioned that with respect to the importance of the
assumptions (Al)-(A4), far the most important is assumption (Al) concerning a correct specification
of the regression function. Remember that practically all Theorems in this lecture that are related
to the inference on the parameters of a linear model use in their proofs, in some sense, the
assumption ]E(Y ‘ X) eM (X) Hence if this is not satisfied, majority of the traditional statistical
inference is not correct. In other words, special attention in any data analysis should be devoted to
verifying the assumption (Al) related to a correct specification of the regression function.

As we shall show, the assumptions of the linear model are basically checked through exploration
of the properties of the residuals U of the model, where
U=MY, M=I,-XX'X)"X"=(my)

i,l=1,...,n°

When doing so, it is exploited that each of assumptions (Al)-(A4) implies a certain property of the
residuals stated earlier in Theorems 2.3 (Basic properties of the residuals and the residual sum of
squares) and 3.2 (Properties of the LSE under the normality). It follows from those theorems (or
their proofs) the following:

L (A — E(U | X) = 0,.
2. (AD) & (A2) & (A3) = var(U | X) = ¢? M.
3. (Al & (A2) & (A3) & (A4) = U | X ~ N, (0,,, 0? M).

Usually, the right-hand side of the implication is verified and if it is found not to be satisfied, we
know that also the left-hand side of the implication (a particular assumption or a set of assumptions)
is not fulfilled. Clearly, if we conclude that the right-hand side of the implication is fulfilled, we
still do not know whether the left-hand side (a model assumption) is valid. Nevertheless, it is
common to most of the statistical diagnostic tools that they are only able to reveal unsatisfied
model assumptions but are never able to confirm their validity.

An uncomfortable property of the residuals of the linear model is the fact that even if the errors
(e) are homoscedastic (var(el-) = ¢% for all i = 1,...,n), the residuals U are, in general, het-
eroscedastic (having unequal variances). Indeed, even if the assumption (A2) if fulfilled, we have
var(U } X) = o2 M, var(Ui ’ X) = g2 m;; (@ = 1,...,n), where note that the residual projection
matrix M, in general, does not have a constant diagonal m 1, ..., my, . Moreover, the matrix M
is even not a diagonal matrix. That is, even if the errors €1, ..., &, are uncorrelated, the residu-
als Uy, ...,U, are, in general, (coditionally given the regressors) correlated. This must be taken

% regresni diagnostika

End of
Lecture #6
(19/10/2016)
Start of
Lecture #8
(26/10/2016)
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into account when the residuals U are used to check validity of assumption (A2). The problem
of heteroscedasticity of the residuals U is then partly solved be defining so called standardized
residuals.
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4.2 Standardized residuals

Consider a linear model Y ’ X ~ (X,B, UQIn), with the vector or residuals U = (Ul, e Un), the
residual mean square MS,, and the residual projection matrix M having a diagonal (mu, cee mnn)
The following definition is motivated by the facts following the properties of residuals shown in
Theorem 2.3:

E(U|X) =0,  var(U|X)=0"M,

E(Ui|x): ) Var(Ui‘X):UQWi,i, 1=1,...,n.

Definition 4.1 Standardized residuals.

The standardized residuals® or the vector of standardized residuals of the model is a vector U =
(U, ..., USM), where

Ui
—, m;; >0
std _ ) /MSemy;’ ’ 1
Ut = i=1,...,n.

undefined, m;; =0,

Theorem 4.1 Moments of standardized residuals under normality.
LetY ‘ X~ N, (Xﬂ, 02In) and let for chosen i € {1,...,n}, m;; > 0. Then

E(U|X) =0,  var(Uf|X) =1.

Proof. Proof/calculations were available on the blackboard in KIl.

Lemma B.2 used in the proof.

Notes.
¢ Unfortunately, even in a normal linear model, the standardized residuals Uftd, el Uﬁtd are, in
general,

¢ neither normally distributed;

e nor uncorrelated.

¢ In some literature (and some software packages), the standardized residuals are called studentized
residuals®.

¢ In other literature including those course notes (and many software packages including R), the
term studentized residuals is reserved for a different quantity which we shall define in Chapter 14.

% standardizovand rezidua * studentizovand rezidua
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4.3 Graphical tools of regression diagnostics

In the whole section, the columns of the model matrix X (the regressors), are denoted as X 0, o X k=1
ie.,

X= (X% ..., X",

Remember that usually X° = (1, cee 1)T is an intercept column. Further, in many situations,
see Section 5.2 dealing with a submodel obtained by omitting some regressors, the current model
matrix X is the model matrix of just a candidate submodel (playing the role of the model matrix X°
in Section 5.2) and perhaps additional regressors are available to model the response expectation
E(Y ’ Z). Let us denote them as V!, ..., V™. That is, in the notation of Section 5.2,

Xt = (Vi ..., v™).

The reminder of this section provides purely an overview of basic residual plots that are used as
basic diagnostic tools in the context of a linear regression. More explanation on use of those plots
will be/was provided during the lecture and the exercise classes.

4.3.1 (A1) Correctness of the regression function

To detect:
Overall inappropriateness of the regression function
= scatterplot (f", U ) of residuals versus fitted values.

Nonlinearity of the regression function with respect to a particular regressor X’

= scatterplot (X 7, U) of residuals versus that regressor.
Possibly omitted regressor V'

= scatterplot (V, U ) of residuals versus that regressor.

For all proposed plots, a slightly better insight is obtained if standardized residuals U*'? are used
instead of the raw residuals U.

4.3.2 (A2) Homoscedasticity of the errors

To detect
Residual variance that depends on the response expectation
= scatterplot (}/}, U ) of residuals versus fitted values.

Residual variance that depends on a particular regressor X’

= scatterplot (Xj ) U) of residuals versus that regressor.

Residual variance that depend on a regressor V' not included in the model

= scatterplot (V, U ) of residuals versus that regressor.
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For all proposed plots, a better insight is obtained if standardized residuals U*' are used instead
of the raw residuals U. This due to the fact that even if homoscedasticity of the errors is fulfilled,
the raw residuals U are not necessarily homoscedastic (var(U ‘ Z) = o2 M), but the standardized
residuals are homoscedastic having all a unity variance if additionally normality of the response
holds.

So called scale-location plots are obtained, if on the above proposed plots, the vector of raw residuals

U is replaced by a vector
(VIoge], ... \Jluz]).

4.3.3 (A3) Uncorrelated errors

Assumption of uncorrelated errors is often justified by the used data gathering mechanism (e.g.,
observations/measurements performed on clearly independently behaving units/individuals). In
that case, it does not make much sense to verify this assumption. Two typical situation when
uncorrelated errors cannot be taken for granted are

(i) repeated observations performed on N independently behaving units/subjects;

(i) observations performed sequentially in time where the ith response value Y; is obtained
in time ¢; and the observational occasions ¢; < --- < t, form an increasing (and often
equidistant) sequence.

In the following, we will not discuss any further the case (i) of repeated observations. In that
case, a simple linear model is in most cases fully inappropriate for a statistical inference and
more advanced models and methods must be used, see the course Advanced Regression Models
(NMST432). In case (ii), the errors €1,...,&, can often be considered as a time series’. The
assumptions (A1)-(A3) of the linear model then states that this time series (the errors of the model)
forms a white noise®. Possible serial correlation (autocorrelation) between the error terms is then

usually considered as possible violation of the assumption (A3) of uncorrelated errors.

As stated above, even if the errors are uncorrelated and assumption (A3) is fulfilled, the residuals
U are in general correlated. Nevertheless, the correlation is usually rather low and the residuals
are typically used to check assumption (A3) and possibly to detect a form of the serial correlation
present in data at hand. See Stochastic Processes 2 (NMSA409) course for basic diagnostic methods
that include:

* Autocorrelation and partial autocorrelation plot based on residuals U.

e Plot of delayed residuals, that is a scatterplot based on points (U, Us), (Ua, Us), ..., (Up—1, Uy,).

4.3.4 (A4) Normality

To detect possible non-normality of the errors, standard tools used to check normality of a random
sample known from the course Mathematical Statistics 1 (NMSA331) are used, now with the vector
of residuals U or standardized residuals U*? in place of the random sample which normality is
to be checked. A basic graphical tool to check the normality of a sample is then

¢ the normal probability plot (the QQ plot).

Usage of both the raw residuals U and the standardized residuals U*'? to check the normality
assumption (A4) bears certain inconveniences. If all assumptions of the normal linear model are

fulfilled, then

5

Casovd fada  ® bily sum
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The raw residuals U satisfy U |Z ~ N, (On7 o? M) That is, they maintain the normality, nev-
ertheless, they are, in general, not homoscedastic (var(Ui}Z) = g2 mig © = 1,...,n).
Hence seeming non-normality of a “sample” Uy, ..., U, might be caused by the fact that
the residuals are imposed to different variability.

The standardized residuals U**¢ satisfy ]E(Uftd ’ Z) =0, var(UZ-Std ‘ Z) =1lforali=1,...,n.
That is, the standardized residuals are homoscedastic (with a known variance of one), nev-
ertheless, they are not necessarily normally distributed. On the other hand, deviation of the
distributional shape of the standardized residuals from the distributional shape of the errors
e is usually rather minor and hence the standardized residuals are usually useful in detecting
non-normality of the errors.



Chapter

Submodels

In this chapter, we will again consider the original response-covariate data being represented by n
random vectors (YZ‘, ZZ-T)T, Z; = (Zm7 ey Zi,p)T € ZCRP,i=1,...,n The main aim is
still to find a suitable model to express the (conditional) response expectation ]E(Y ‘ Z), where 7Z
is a matrix with vectors Z1, ..., Z,, in its rows. Suppose that ¢ty : RP — R0 and ¢t : R? — RF
are two transformations of the covariates leading to the model matrices

.
X9 XV = t(2y), x| X, = t(Zy),

x0 — : , : X = : , : (5.1
x0T X0 = t(Z,), X7 X, = tZ,).

n

Briefly, we will write

Let (almost surely),
rank(X%) = 7, rank(X) = r, (5.2)

where 0 < rg < kg < n, 0 < r < k < n. We will now deal with a situation when the matrices X°
and X determine two linear models:

Model Mg : Y | Z ~ (X°8°, 02 1,),
Model M : Y |Z ~ (X8, 0*1,),

and the task is to decide on whether one of the two models fits “better” the data. In this chapter,
we limit ourselves to a situation when My is so called submodel of the model M.

54
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5.1 Submodel

Definition 5.1 Submodel.
We say that the model M is the submodel' (or the nested model®) of the model M if

M(XY) ¢ M(X)  withrg <.

Notation. Situation that a model My is a submodel of a model M will be denoted as

Mo C M.

Notes.
¢ Submodel provides a more parsimonious expression of the response expectation E(Y ‘ Z).

e The fact that the submodel My holds means E(Y ’ Z) € M(XO) C M(X) That is, if the
submodel Mg holds then also the larger model M holds. That is, there exist 3° € R*0 and
B € R¥ such that

E(Y |Z) =X°8° = XB.

o The fact that the submodel Mg does not hold but the model M holds means that IE(Y } Z) €
M (X) \ M (XO). That is, there exist no 3° € R*0 such that E(Y ‘ Z) = X03°,

5.1.1 Projection considerations
Decomposition of the n-dimensional Euclidean space

Since M (XO) cM (X) C R™, it is possible to construct an orthonormal vector basis
Prxn = (P15 -+ Pn)
of the n-dimensional Euclidean space as
P=(Q% Q', N),

where

* Q) ,,,: orthonormal vector basis of the submodel regression space, i.e.,
M(X%) = M (QY).

o Q}Lx(rim): orthonormal vectors such that Q := (@0, Ql) is an orthonormal vector basis of the
model regression space, i.e.,

M(X) = M(Q) = M((Q°, @)

' podmodel * vnoreny model
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* N, x(n—r): orthonormal vector basis of the model residual space, i.e.,

M(X)" = M(N).
Further,
. Ngx(n_m) = (Ql, N): orthonormal vector basis of the submodel residual space, i.e.,

M(x)* = M) = m((@", ).
It follows from the orthonormality of columns of the matrix IP:
I, = ]P;TIP; _ P]P)T _ QO QOT + Ql QIT + NNT
=QQ" +NNT'

=Q Q" + NONOT.

Notation. In the following, let
HO = Q° @OT

M =N°NOT = Q! Q!" + NNT.

Notes.
e Matrices H” and M° which are symmetric and idempotent, are projection matrices into the
regression and the residual space, respectively, of the submodel.

* The hat matrix and the residual projection matrix of the model can now also be written as
H=QQ =QQ" +Q'Q"' =H’+Q'Q",
M = NNT — MO . Ql@l—r'

Projections into subspaces of the n-dimensional Euclidean space

Let y € R™. We can then write

y=T,y=(Q°Q"" + Q'Q'" + NNT)y
T T

=Q'Q° y + Q'Q' y + NN'y

N——

@ u
_ nonoT 11T NNT
=0Q0Q" y+QQ y+ Y.
@0 UO

We have
«J=(Q°Q° +Q'Q' )y =Hy e M(X).
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u=NN"y=My e M(X)L.
30 = QY Q" y = H'y € M(XO).
u®:= (Q'Q'" + NNT)y = My € M(X0)".

T ~ ~
d=Q'Q' y=7-9"=u’—u

5.1.2 Properties of submodel related quantities

Notation (Quantities related to a submodel).

When dealing with a pair of a model and a submodel, quantities related to the submodel will be
denoted by a superscript (or by a subscript) 0. In particular:

=0
Y =HY = QOQOTY : fitted values in the submodel (projection of Y into the submodel
regression space).

e U'=Y — lA’O =MY = (QIQIT + NNT)Y : residuals of the submodel.

e 5SSO = HUOHQ : residual sum of squares of the submodel.
e ¥ = n — 7 : submodel residual degrees of freedom.
o_ SSe .
* MS¢ = — : submodel residual mean square.
v

e

Additionally, as D, we denote projection of the response vector Y into the space M (Ql), ie.,

D=0 Q' 'Y-Y_-¥Y' —U'-U. (5.3)

Theorem 5.1 On a submodel.
Consider two linear models M : 'Y |7Z ~ (Xﬁ, o? In) and My : Y |Z ~ (XOBO, o2 In) such that
Mo C M. Let the submodel Mg holds, i.e., let E(Y ‘ Z) € M(XO). Then

i) ?0 is the best linear unbiased estimator (BLUE) of a vector parameter ,uo = XO,BO = IE(Y ‘ Z).

(ii) The submodel residual mean square I\/ISS is the unbiased estimator of the residual variance o2,

~0
(iii) Statistics Y and U° are conditionally, given 7, uncorrelated.
~ ~0
(iv) ArandomvectorD=Y —-Y =U"—-U satisfies

ID||* = SS° — SS...

@) If additionally, a normal linear model is assumed, i.e., if Y |Z ~ N, (XO,BO, o2 In) then the
statistics Y and U" are conditionally, given 7, independent and

SsY —ss, SS? - ss.

0
rT—7T vV, — U
= —g5— = —s5— ~ Frnonr=Fupvew (5.4)

n—r Ve
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Proof. Proof/calculations were available on the blackboard in KIl.

End of
Lecture #8
(26/10/2016)
Start of
Lecture #10
(02/1/2016)

5.1.3 Series of submodels

When looking for a suitable model to express E(Y | Z), often a series of submodels is considered.
Let us now assume a series of models

Model Mg : Y | Z ~ (XOBO, o’ L),
Model M; : Y | Z ~ (X!8%, 0°1,.),
Model M : Y |Z ~ (X8, 621,,),

where, analogously to (5.1), an n x k; matrix X! is given as

-

X1 Xi = t(Zy),

x! = : :
1T Xl _ VA

Xn n tl( n)7
for some transformation £, : RP — R¥! of the original covariates Z1, ..., Z,, which we briefly
write as

X! =t,(2).

Analogously to (5.2), we will assume that for some 0 < r; < k1 < n,
rank(X1) = r;.

Finally, we will assume that the three considered models are mutually submodels. That is, we will
assume that

MEX) cMEX) cM(X)  withrg <7 <,

which we denote as
Mo C My C M.

Notation. Quantities derived while assuming a particular model will be denoted by the corre-
sponding superscript (or by no superscript in case of the model M). That is:

. }/}0, U?, SSY, 19, MSY: quantities based on the (sub)model My: Y | Z ~ (XO,BO, o’L,);

. 171, U', SS., v!, MS: quantities based on the (submodel M;: Y |Z ~ (X!3', 021,,);

e

. IA/', U, SS., ve, MS.: quantities based on the model M: Y | Z ~ (X,@, 02In).

Theorem 5.2 On submodels.
Consider three normal linear models M : Y | Z ~ N, (X,@, o? In), Mi: Y|Z~N, (Xlﬂl, o? In),
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Mo: Y|Z~ N, (XOBO, o2 In) such that My C My C M. Let the (smallest) submodel My hold,
ie., letE(Y ‘ Z) € M(XO). Then

SS? — ss! SSY — ss!

0 1
— ™ —To _ Ve — Ve _
Fo1 = SS. = SS, Fri—ro,n—r = ]'—ug—ug,ye- (5.9)
n—r Ve

Proof. Proof/calculations were available on the blackboard in KI.

Note. Both F-statistics (5.4) and (5.5) contain

¢ In the numerator: a difference in the residual sums of squares of the two models where one of
them is a submodel of the other divided by the difference of the residual degrees of freedom of
those two models.

¢ In the denominator: a residual sum of squares of the model which is larger or equal to any of
the two models whose quantities appear in the numerator, divided by the corresponding degrees
of freedom.

* To obtain an F-distribution of the F-statistics (5.4) or (5.5), the smallest model whose quantities
appear in that F-statistic must hold which implies that any other larger model holds as well.

Notation (Differences when dealing with a submodel).

Let M4 and Mp are two models distinguished by symbols “A” and “B” such that M4 C Mp. Let

v and i}B, U4 and UP, 5SS and SS? denote the fitted values, the vectors of residuals and
the residual sums of squares based on models M4 and Mp, respectively. The following notation
will be used if it becomes necessary to indicate which are the two model related to the vector D
or to the difference in the sums of squares:

D(Mg|M,) =D(B|A) =Y  —¥v" Ut —UP.
SS(Mp |M4) =SS(B| A) :=SSZt — SS5.

Notes.
e Both F-statistics (5.4) and (5.5) contain certain SS (B } A) in their numerators.

¢ Point (iv) of Theorem 5.1 gives
2
ss(B|4) = |[p(B| )|

5.1.4 Statistical test to compare nested models

Theorems 5.1 and 5.2 provide a way to compare two nested models by the mean of a statistical
test.
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F-test on a submodel based on Theorem 5.1

Consider two normal linear models: Model My: Y |Z ~ N, (XOBO, o2 In),
Model M: Y |Z ~ N, (XB, 0%1,,),
where My C M, and a set of statistical hypotheses: Hy: E(Y ‘ Z) eM (XO)
Hi: E(Y |Z) € M(X)\ M(X?),
that aim in answering the questions:

¢ Is model M significantly better than model Mg?

* Does the (larger) regression space M(X) provide a significantly better expression for E(Y ’ Z)
over the (smaller) regression space M (XO)?

The F-statistic (5.4) from Theorem 5.1 now provides a way to test the above hypotheses as follows:

SS0—SS.  SS(M]|Mo)

Test statistic; I = r—"o _ r—r
0 SS. SS.
n—r n—r
Reject Hy if Fo > Frorgnr(1 — ).

P-value when Fy = fo: p=1—-CDFr ,—ryn—r (fo).

F-test on a submodel based on Theorem 5.2

Consider three normal linear models: Model My: Y |Z ~ N, (X°8°, 021,,),
Model My: Y |Z ~ N, (X8, 0 1,,),
Model M: Y |Z ~ N, (X8, 0*1,),
where My C My C M, and a set of statistical hypotheses: Hp: E(Y ‘ Z) € M(X?)
H: E(Y[Z) € M(X)\ M(X9),
that aim in answering the questions:

e Is model M; significantly better than model M?

® Does the (larger) regression space M (Xl) provide a significantly better expression for E(Y ‘ Z)
over the (smaller) regression space M(XO)?

The F-statistic (5.5) from Theorem 5.2 now provides a way to test the above hypotheses as follows:

SS? — ss! SS(I\/I1 ’ MO)
istic: — L —To _ TL—To
Test statistic: o1 = SS, = SS,
n—r n—r
RejeCt Ho if FO,l > -Fm—ro,n—r(l - a)-

P-value when Fyy1 = fo1: p=1—-CDFx i —rgn—r (f(]’l).
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5.2 Omitting some regressors

The most common couple (model - submodel) is Model M: Y |Z~ (Xﬁ, O'QIn),
Submodel Mg: Y |Z ~ (X°8Y, 0%1,,),
where the submodel matrix X is obtained by omitting selected columns from the model matrix

X. In other words, some regressors are omitted from the original regressor vectors X1, ..., X, to
get the submodel and the matrix X°. In the following, without the loss of generality, let

X = (XO, Xl), 0< rank(XO) =rg<r= rank(X) < n.

The corresponding submodel F-test then evaluates whether, given the knowledge of the regressors
included in the submodel matrix X, the regressors included in the matrix X! has an impact on
the response expectation.

Theorem 5.3 Effect of omitting some regressors.

Consider a couple (model - submodel), where the submodel is obtained by omitting some regressors
from the model. The following then holds.

@) If M(X') L M(X°) then
D=x!(x"x)xy = ¥,

which are the fitted values from a linear model Y |7 ~ (Xlﬁl, azln).

(ii) If for given Z, the conditional distribution Y ‘ 7 is continuous, i.e., has a density with respect
to the Lebesgue measure on (R", Bn) then

D #0, and SSS — SSe > 0 almost surely.

Proof. Let . .
M? = I, - X°(X° x%)7x°

be the projection matrix into the residual space M (XO)L of the submodel. We then have
Mox! = X' — XO(x°'x%)7x°'xL.

Hence
MK XY = M(X0, MUx!)
since both spaces are generated by columns of matrices X° and X!. Due to the fact that MY is

the projection matrix into M(Xo)l, all columns of the matrix X° are orthogonal to all columns
of the matrix M® X!, In other words

M(X%) L mMM°xH).
Let
P = (QQ.N)

be a matrix with the orthonormal basis of R" in its columns such that
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¢ QY,,,: orthonormal basis of the submodel regression space M (X°), i,
MEX) = M(@").
. Q;X(PTO): orthonormal vectors such that (QO, Ql) is the orthonormal basis of the model
regression space M(XO, Xl), ie.,
MK XY = mM(Q% QY.
® N,,xn_: orthonormal basis of the model residual space M(XO, Xl)J'.
Since M(XO, Xl) = M(XO, MO Xl) and M(XO) L M(MO Xl), we also have that
M(@Q'Y) = mM(Mx!).
Vector D is a projection of the response vector Y into the space M(Ql) = M(MO Xl). The
corresponding projection matrix, let say H' can be calculated as (use Lemma 2.1 with X = M° X1)

H = (MOX') (X' MOMOXY)T X M.
——

MO
Then - -
D = H'Y = (M°x')(x! M%X")" x' M°Y. (5.6)
N——
UO
That is,

D = (M°x') (x''MOx")” XU,
where U" = MY are residuals of the submodel.
i If M (Xl) 1 M(XO), we have MOX! = XL Consequently,
X'y = xUMx! = XY
and by (5.6), while realizing M = M° M, we get
D = x' (x''x))x!y.
(ii) The vector D, as a projection of vector Y into the vector space M(Ql) = M(Moxl)
(subspace of R™ of vector dimension r — 7() is equal to the zero vector if and only if
Y € M(QY)",

1. . .
where M(Ql) is a vector subspace of R™ of vector dimension n — r + 1y < n. Hence,
under our assumption of a continuous conditional distribution Y ‘ Z,

P(Y e M(Q)"|2) =0,
that is, D # 0,, almost surely.
Consequently, SSY — SS, = HDH2 > 0 almost surely.

Note. If we take the residual sum of squares as a measure of a quality of the model, point (ii)
of Theorem 5.3 says that the model is almost surely getting worse if some regressors are removed.
Nevertheless, in practice, it is always a question whether this worsening is statistically significant
(the submodel F-test answers this) or practically important (additional reasoning is needed).
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5.3 Linear constraints

Suppose that a linear model Y | Z ~ (X,@, aQIn), rank(ank) = r is given and it is our aim to
verify whether the response expectation E(Y ‘ Z) lies in a constrained regression space

M LB =6 :={v:v=XB3, BeRF L3=0", (5.7)

where L, is a given real matrix and 8° € R™ is a given vector. In other words, verification of
whether the response expectation lies in the space M (X; L3 = 00) corresponds to verification of
whether the regression coefficients satisfy a linear constraint L3 = 6°.

Lemma 5.4 Regression space given by linear constraints.

Consider a linear model Y |7 ~ (XB, len), rank(ank) =r <k <n. Let L« be a real
matrix with m < r rows such that

(@) rank(]L) =m (ie, L is a matrix with linearly independent rows);

(ii) @ = L3 is estimable parameter of the considered linear model.

The space M (X; L3 = Om) is then a vector subspace of dimension r — m of the regression space

M(X).

Proof. Proof/calculations were available on the blackboard in KIl.

Notes.

¢ The space M(X; L3 = 00) is a vector space only if 8° = 0,, since otherwise, 0, ¢
M(X; LB = 00). Nevertheless, for the purpose of the statistical analysis, it is possible (and in
practice also necessary) to work also with 8° # 0,,,.

o With m =7, M(X; LB =0,,) = {0,}.

Definition 5.2 Submodel given by linear constraints.

We say that the model My is a submodel given by linear constraints’ L3 = 6° of model M:
Y|Z ~ (X,B, JZIn), rank(ank) = r, if matrix L satisfies conditions of Lemma 5.4, m < r and
the response expectation E(Y ‘ Z) under the model My is assumed to lie in a space M (X; LB = 90).

Notation. A submodel given by linear constraints will be denoted as

Mo: Y |Z ~ (X8, 0’L,), LB = 6°.

3 podmodel zadany linedrnimi omezenimi



5.3. LINEAR CONSTRAINTS 64

Since with 8° # 0,,, the space M(X; L3 = Om) is not a vector space, we in general cannot
talk about projections in a sense of linear algebra when deriving the fitted values, the residuals
and other quantities related to the submodel given by linear constraints. Hence we introduce the
following definition.

Definition 5.3 Fitted values, residuals, residual sum of squares, rank of the model
and residual degrees of freedom in a submodel given by linear constraints.

Let b° € R* minimize SS(3) = HY — XBHQ over 3 € R¥ subject to LB = 6°. For the submodel
Mo:Y |Z ~ (X8, 0%L,), LB = 0°, the following quantities are defined as follows:

Fitted values: }/}0 = XbY.

Residuals: U" :=Y — }/}0.
Residual sum of squares: SSY := HUOHQ.
Rank of the model: 7y = r — m.

Residual degrees of freedom: 0 := n — rg.

Note. The fitted values could also be defined as

}70 = argmin HY—?Hz.

YeM(x;18=0°)

That is, the fitted values are (still) the closest point to Y in the constrained regression space

M(X; L3 = 90).

End of
Lecture #10
Theorem 5.5 On a submodel given by linear constraints. (sotzm/tzm?
Let Mg : Y |Z ~ (X@ UzIn), LB = 6° be a submodel given by linear constraints of a model Leac:u:e 12
2
M: Y |2~ (X8, o7Ly). Then (10/11/2016)

(i) The fitted values IA/O and consequently also the residuals U® and the residual sum of squares
SSY are unique.

(i) b° minimizes SS(B) = HY — XBH2 subject to LB = 6° if and only if
B =b— (XX) LT{L(XTx)‘LT}_l (Lb — 6°),

where b= (X"X) XY is (any) solution to a system of normal equations X' Xb = XY,

(iii) The fitted values lA’O can be expressed as

Y =V -xX(XTX)" LT{L(XTX)_LT}A (Lb — 6°).

~ 0
(iv) The vector D =Y —Y satisfies

HDH2 =SS? —SS, = (Lb— OO)T{L(XTX)‘LT}_l (Lb — 6Y). (5.8)
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Proof. First mention that under our assumptions, the matrix L(XTX)_ILT is

(i) invertible;

(i) does not depend on a choice of the pseudoinverse (X'X)™.

This follows from Theorem 2.9 (Gauss-Markov for estimable vector parameter).

Second, try to look for i}o = Xb° such that b° minimizes SS(3) = HY — XBHQ over 3 € R¥
subject to L3 = 6° by a method of Lagrange multipliers. Let

08, A) = |y —x8|* + 22T (LB - 6)
— (Y -X8)' (Y —X8) + 2AT (L3 - 6°),

where a factor of 2 in the second part of expression of the Lagrange function ¢ is only included to
simplify subsequent expressions.

The first derivatives of ¢ are as follows:

gg(ﬁ, A) = —2X" (Y -X8) + 2L"A,
e 0
= =2 (LB —8Y).
X (B, A) (LB —6°)
. Dy . .
Realize now that %(ﬂ, A) = 0y, if and only if
X'xg =Xy — LA (5.9)

Note that the linear system (5.9) is consistent for any A € R and any Y € R". This follows from
the fact that due to estimability of a parameter L3, we have M(L") C M(XT) (Theorem 2.7).
Hence the right-hand-side of the system (5.9) lies in M(XT), for any A € R™ and any Y € R".
The left-hand-side of the system (5.9) lies in M (X'X), for any 3 € R*. We already know that
M(XT) = M(XTX) (Lemma 2.6) which proves that there always exist a solution to the linear
system (5.9).

Let b(\) be any solution to X'X3 = XTY — LTA. That is,
b’ = (X'X)"XTY — (XTX) LA
=b— (XTX) LT,
which depends on a choice of (XTX)_.
Further, Clp(ﬁ, A) = 0,, if and only if
OA
Lb°(\) = 0°
Lb - L(X'X) L' A=6"
L(X'X)"L"A=Lb — 6°.

—_—
invertible as we already know
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That is, .
A={LETX) LT (L - 6).
Finally,
~1
b= b — (XX) LT{LXX) LT} @b-6),
. - _ _ -1
v =xt'= ¥ - X (XX) LT{LETX) LT} (Lb-6°).
Realize again that M (ILT) M (XT). That is, there exist a matrix A such that
LT =XTAT, L = AX.
Under our assumptions, matrix A is even unique. The vector IA/'O can now be written as
. ~ _ _ —1
V- ¥ - xx X)X AT LX) LT (Lb -6°). @10
~~ : , =~ =~

unique unique unique

unique unique

To show point (iv), use (5.10) in expressing the vector D — ¥ — ¥":
D=X (XTX)‘XTAT{L(XTX)‘LT}_l (Lb— 6°).
That is,
ID|” = (Lb— 6% " {L(XTX)TLT}_I A XETX) XX (XTX)XTAT

X by the five matrices rule

{L(XTX)TLT}_I (Lb — 6%

= (Lb—6%" {L(XTX)TLT}_I
= (Lb—6"" {L(XTX)‘LT}_l L(X"X) LT {L(XTX)‘LT}_l (Lb — 6%

— (Lb— BO)T{L(XTX)_LT}_l (Lb — 6°).

It remains to be shown that HDH2 =SSY — SS,.. We have

s = |[Y = VP = | ¥ =¥+ x () LT{LTR) LT b -6

UGM(X)L De‘/(/l(x)

= U]* + [Pl = ss. + ||

AX (XTX)"XTAT {L(XTX)TLT}_I (Lb — 6°)
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5.3.1 F-statistic to verify a set of linear constraints

Let us take the expression (5.8) for the difference between the residual sums of squares of the
model and the submodel given by linear constraints and derive the submodel F-statistic (5.4):

S0 _ss,  (Lb- HO)T{L(XTX)_LT}A (Lb — 6°)

Fo=—¢5 = 55,
n-—r n—r

= Lo {ws L L) - e)

_ % ©-0")" (s, L(x"x) LT} (@0, 611
where = Lb is the LSE of the estimable vector parameter = IL3 in the linear model Y ‘ X ~
(Xﬁ, O‘QIn) without constraints. Note now that (5.11) is exactly equal to the Wald-type statistic
Qo (see page 41) that we used in Section 3.2.2 to test the null hypothesis Hy: & = 6° on an
estimable vector parameter 8 in a normal linear model Y ‘ 7~ N, (Xﬁ, Uzln). If normality can
be assumed, point (x) of Theorem 3.2 then provided that under the null hypothesis Hy: 6 = oY,
that is, under the validity of the submodel given by linear constraints L3 = 6, the statistic Fj
follows the usual F-distribution 7, ,,—. This shows that the Wald-type test on the estimable vector
parameter in a normal linear model based on Theorem 3.2 is equivalent to the submodel F-test
based on Theorem 5.1.

5.3.2 t-statistic to verify a linear constraint

Consider L. = 17, 1 € R¥, 1 % 0y such that § = ITB is an estimable parameter of the normal
linear model Y ‘ 7~ Ny (X,@, O'2In). Take ° € R and consider the submodel given by m = 1
linear constraint 1" 8 = 6°. Let 9 = 1"b, where b is any solution to the normal equations in the
model without constraints. The statistic (5.11) then takes the form

~ 2
~ -1 - _pn0
Fozl(e_eo) MS. 1" (XTX) 1 1(0—00) = i =15,
m VMS 1T (X7X) 1

where ~
B 6 —6°
VMS 1T (X7X) 1
is the Wald-type test statistic introduced in Section 3.2.2 (on page 40) to test the null hypothesis
Ho: 6 = 6 in a normal linear model Y ‘ Z ~ N, (Xﬁ, JQIn). Point (viii) of Theorem 3.2 provided

that under the null hypothesis Ho: 6 = #°, the statistic Tj follows the Student t-distribution t,,_,
which is indeed in agreement with the fact that TO2 = Fy follows the F-distribution Fi ;.

To
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5.4 Coefficient of determination

5.4.1 Intercept only model

Notation (Response sample mean).

The sample mean over the response vector Y = (Yl, cee Yn)T will be denoted as Y. That is,

1 — 1
V=pl Y=Y
-

Definition 5.4 Regression and total sums of squares in a linear model.

Consider a linear model Y ‘ X ~ (X,B, 02In), rank(X,xx) = r < k. The following expressions
define the following quantities:

(i) Regression sum of squares’ and corresponding degrees of freedom:

SSi = HIA" —?1n}|2 = Z(?Z —?)2, vp=1—1,
i=1

(ii) Total sum of squares® and corresponding degrees of freedom:

SSr=[[Y =V1,|[* =Y (Vi - V)" wr=n-1.
i=1

Lemma 5.6 Model with intercept only.
LetY ~ (Lﬂ, CQIn). Then

DY =Y1,=(Y,....Y) .
(ii) SSe = SS7.

Proof. This is a full-rank model with X = 1,,. Further,

n
xX'x)" = ()1,)7" = % X'y =1y =) v
i=1

Hence 7 = %Z;‘:lm =Y andY = X7 =1Y =Y1,.

* regresni soucet ctvercti ° celkovy soucet Ctverctl
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5.4.2 Models with intercept

Lemma 5.7 Identity in a linear model with intercept.
LetY ‘ X ~ (X,B, O’ZIn) where 1,, € M(X) Then

LY =) Yv=)Y=1Y.

i=1 i=1

Proof.
¢ Follows directly from the normal equations if 1,, is one of the columns of X matrix.
¢ General proof:
1Y =¥ '1,=@Y) 1, =Y HL, =Y 1,
since H1,, = 1,, due to the fact that 1,, € M(X)

Theorem 5.8 Breakdown of the total sum of squares in a linear model with inter-
cept.
LetY ‘ X~ (X,B, JZIn) where 1,, € M(X) Then

Y (Ni-Y) = Y (vi-v) + Y (Ni-Y)

=1 =1 =1

Proof. The identity SS7 = SS, + SSgr follows trivially if r = rank(X) = 1 since then
M(X) = M(1,) and hence (by Lemma 5.6) Y = Y'1,,. Then SS7 = SS,, SSx = 0.

In the following, let r = rank(X) > 1. Then, model Y | X ~ (lnﬁo, 02171) is a submodel of the
model Y ‘ X ~ (Xﬁ, O'QIn) and by Lemma 5.6, SSp = SSS. Further, from definition of SSg,

it equals to SSg = HD 2, where D = Y — i}o. By point (iv) of Theorem 5.1 (on a submodel),
HDH2 = SS? — SS... In other words,

SSk =SS — SS..
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The identity SS7 = SS. + SSg can also be shown directly while using a little algebra. We have

n n

SSr=> (Vi -Y)' =) (Yi-V;+Y,-Y)

i=1 i=1

T (T 2 Y (- ) (- V)

n n n n
_ SSe+SSR+2{ZYi}AQ ~YY vi+YY Y —fof}
=1 =1 =1 =1

0

=SS + SSgr

since Y . YV, =" Y; and additionally

n n
S YV -Y'Y=Y'HY, S V-Y'Y-Y'HHY-Y HY.
1=1 =1

5.4.3 Theoretical evaluation of a prediction quality of the model

One of the usual aims of regression modelling is so called prediction in which case the model
based response mean is used as the predicted response value. In such situations, it is assumed

that data (V;, X T )T, i =1,...,n, are a random sample from some joint distribution of a generic
random vector (Y, XT)T, X = (Xo, e Xk_l)T and the conditional distribution Y | X can
be described by a linear model, i.e.,
EY|X)=X"8, var(Y|X)=0? (5.12)
for some 3 = (ﬁo, ceey 5k_1)T € R* and some o2 > 0, which leads to the linear model
Y x|
Y|XN(X/67UQIN)7 Y = ,X:
Y, X,

for the data. As usually, we assume rank(X) =r < k < n (almost surely).

In the following, let v € R and ¢? > 0 be the marginal mean and the variance, respectively, of the
response random variable Y, i.e.,

E(Y)=v, var(Y)=¢% (5.13)
This corresponds to the only intercept linear model
Y ~ (1,7, ¢°L,)

for the data with a model matrix 1,, of rank 1.
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Suppose now that all model parameters (3, -, o2, CQ) related to the distribution of the random

vector (Y, X T)T are known and the aim is to provide the prediction Y of the response value Y.
We could also say that we want to predict the Y -component of a not yet observed (“new”) random

vector (Ynew, X! )T which is distributed as the generic vector (Y, X T)T. Nevertheless, for

new
simplicity of notation, we will not use the subscript ;. and will simply work with the random

vector (Y, X T)T whose distribution satisfies (5.12) and (5.13).

Suppose further that the random vector (Y, X T)—r is defined on a probability space (Q, A, P)
and let 0(X) C A be a o-algebra generated by the random vector X, P|,(x) be a probability
measure restricted to this o-algebra and Ly(X) = Lo(Q, 0(X), Pl,(x)). Further, let o(0) =
{@, Q} be a trivial o-algebra on , P|, ) the related restricted probability measure and La()) =

LQ(Qa 0(@), P’o(@))'
A problem of prediction of a value of the random variable Y € Ly (2, A, P) classically corresponds

to looking for Y which in a certain sense minimizes the mean squared error of prediction® (MSEP)
MSEP (V) = E(Y - Y)*.
We now distinguishes two situations:

(i) No exogenous information represented by the value of a random vector X is available to
construct the prediction. In that case, we get (see also Probability Theory 1 (NMSA333) course)

Y = argmin ]E()7 - Y)2 = argmin IE(Y/ - Y)2 = IE(Y) == yM,
Y eLa(0) YeR

In the following, we will call YM a5 a marginal prediction of Y since it is based purely on
the marginal distribution of the random variable Y. The MSEP is then

MSEP(YM) =E(y - Y)* = var(Y) = ¢%.

(ii) The value of a random vector X is available, which is mathematically represented by knowl-
edge of the o-algebra o(X') and the related probability measure P|,(x. This can be used to
construct the prediction. Then (again, see Probability Theory 1 (NMSA333) course for details)

Y = argmin E(f/ — Y)2 = E(Y | X) =X'8:= }A/C,
Yela(X)

which will be referred to as a conditional prediction of Y since it is based on the conditional
distribution of Y given X. Its MSEP is
e T 2 T 2
MSEP(YC) = E(X T8 -Y)” = E[E{(X B-Y) ‘X}]

= E{var(v | X) } =E(0?) = o*.

In practice, the conditional prediction corresponds to a situation when covariates/regressors repre-
sented by the vector X are available to provide some information concerning the response Y. On
the other hand, the marginal prediction corresponds to a situation when no exogenous information
on Y is available.

b stredni ctvercovd chyba predikce
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To compare the marginal and the conditional prediction, we introduce the ratio of the two MSEP’s:
MSEP(YC) o2
MSEP (VM) — ¢*

That is, the ratio 02/¢? quantifies advantage of using the prediction YC based on the regression

model and the covariate/regressor values X compared to using the prediction Y™ \which does not
require any exogenous information and is equal to the marginal response expectation.

5.4.4 Coefficient of determination

In practice, data (the response vector Y and the model matrix X) are available to estimate the
unknown parameters using the linear models M¢c: 'Y } X~ (X,B, o? In), rank(X) =7 and Mj;:
Y ~ (1n’y7 ¢? In). The unbiased estimators of the conditional and the marginal variance are:

n

1 1 =
72 _ — . 2
(= —=SSr=—= 3 (i -V)

=1

where Y = (f’l, e ffn)T are the fitted values from the model M. Note that 8 is a classical
sample variance based on data given by the response vector Y. That is, a suitable estimator of the
ratio 02 /(? is

nir Sse n—1 SSe

= . (5.14)
ﬁSST n—r SSt
Alternatively, if Y; ixd. Y,i=1,...,nY ~ N(y, 42), that is, if Y7,...,Y,, is a random sample
from A (7y, ¢?), it can be (it was) easily derived that a quantity
1 1< —\2
—SSp = — Y,-Y
2557 =5 2 (-7)

is the maximum-likelihood estimator’ (MLE) of the marginal variance ( 2, Analogously, if Y | X ~
N (X TB, 0'2), it can be derived (see the exercise class) that a quantity

i=1
is the MLE of the conditional variance o2. Alternative estimator of the ratio 02/¢? is then

1ss,  ss, 515
155, ~ SSp '

Remember that in the model Y | X ~ (Xﬁ, UZIn) with intercept (1,, € M (X)), we have,

2 (N=Y)" =3 (-F) + 3 (Vi -T)
=1 =1 =1
S, 33 SSk

" maximdlné vérohodny odhad
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where the three sums of squares represent different sources of the response variability:
SSyt (total sum of squares): original (marginal) variability of the response,

SS. (residual sum of squares): variability not explained by the regression model,

(residual variability, conditional variability)
SSk (regression sum of squares): variability explained by the regression model.

Expressions (5.14) and (5.15) then motivate the following definition.

Definition 5.5 Coefficients of determination.
Consider a linear model Y | X ~ (Xﬁ, JQIn), rank(X) = r where 1,, € M(X) A value

SS
RP=1- 5
SSr
is called the coefficient of determination® of the linear model.
A value | S
2 _,_ DN~ e
Ragy =1 n—r1 SSr

is called the adjusted coefficient of determination’ of the linear model.

Notes.
® By Theorem 5.8, SSp =SS, + SSg and at the same time SSp > 0. Hence

0<R*<1, 0<Rl<I,

and R? can also be expressed as
_ SSg

 Both R? and R?Ldj are often reported as R? - 100% and R?Ldj - 100% which can be interpreted
as a percentage of the response variability explained by the regression model.

R2

* Both R? and Ridj quantify a relative improvement of the quality of prediction if the regression
model and the conditional distribution of response given the covariates is used compared to the
prediction based on the marginal distribution of the response.

* Both coefficients of determination only quantifies the predictive ability of the model. They do
not say much about the quality of the model with respect to the possibility to capture correctly
the conditional mean E(Y ‘ X ) Even a model with a low value of R2 (R?1 ) might be useful
with respect to modelling the conditional mean IE(Y | X ) The model is perhaps only useless

fi dicti .
or prediction purposes End of

Lecture #12

5.4.5 Overall F-test (10/11/2016)
Start of

Lecture #14
(16/11/2016)

Lemma 5.9 Overall F-test.
Assume a normal linear model Y | X ~ N, (X,@, azIn), rank(ank) =r >1wherel, € M(X)

8 koeficient determinace ° upraveny koeficient determinace
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Let R? be its coefficient of determination. The submodel F-statistic to compare model M : Y | X ~
N, (X,@, aQIn) and the only intercept model My : Y | X ~ /\fn(lnv7 azln) takes the form

RZ
T1-RZ

n—r

F _
0 r—1

(5.16)

Proof.
e R2=1- SSS; and according to Lemma 5.6: SS = SSU.
* Hence 0
SS SS, —SS SS
RP=1-—"=="c_""° 1-R'=_C
SS, SS, SS,
e At the same time
o_ SS0—ss,
I Lf;_fse _n—r SSS—SSe:n—r ST _n—r R?
0 SSe r—1 SS. r—1 S5 r—11—R?*
n—r SS

e

Note. The F-test with the test statistic (5.16) is sometimes (especially in some software packages)
referred to as an overall goodness-of-fit test. Nevertheless be cautious when interpreting the results
of such test. It says practically nothing about the quality of the model and the “goodness-of-fit”!



Chapter

General Linear Model

We still assume that data are represented by a set of n random vectors (Yi, Xz-T)T, X; = (XLO,

. XLk,l)T, i=1,...,n, and use symbols Y for a vector (Yl, cee Yn)T and X for an n X k
matrix with rows given by the covariate/regressor vectors X1, ..., X,. In this chapter, we mildly
extend a linear model by allowing for a (conditional) covariance matrix having different form than
021, assumed by now.

Definition 6.1 General linear model.
The data (Y, X) satisfy a general linear model' if

E(Y |X) = XB, var(Y | X) = o W,

where B € R¥ and 0 < 0% < oo are unknown parameters and W is a known positive definite
matrix.

Notes.
e The fact that data follow a general linear model will be denoted as

Y| X~ (X8, oW ).

* General linear model should not be confused with a generalized linear model* which is something
different (see Advanced Regression Models (NMST432) course). In the literature, abbreviation “GLM”
is used for (unfortunately) both general and generalized linear model. It must be clear from
context which of the two is meant.

Example 6.1 (Regression based on sample means).
~ ~ T
Suppose that data are represented by random vectors (Y1,1, coy Y, X 1T) )

ol
(Yon,-- s Yow., X,)
such that for each i = 1, ..., n, the random variables Y 1, . .., Y; ., are uncorrelated with a common

conditional (given X ;) variance o2,

T

U obecny linedrni model * zobecnény linedrni model
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Suppose that with respect to the response, we are only able to observe the sample means of the g

variables leading to the response variables Y1, ..., Y,, where
1 o I Ko
Y1 = azn,ja ceey Yo = wfnZYnJ‘
7=1 7j=1
The covariance matrix (conditional given X) of a random vector Y = (Yl, ce Yn)T is then
1
o 0
var(Y | X) =52 |
1
0o ... o
W

Theorem 6.1 Generalized least squares.

Assume a general linear model Y } X ~ (Xﬂ, O'QW_l), where rank(ank) =r <k<mn. The
following then holds:

(i) A vector R
Yo =X(X'WX) X'WY

is the best linear unbiased estimator (BLUE) of a vector parameter p := E(Y ! X) = X,
and

var(Y¢ | X) = o2 X(XTWX) "X

Both Y ¢ and var(?G ‘ X) do not depend on a choice of the pseudoinverse (XTWX)_.
If further Y | X ~ N, (X8, 0>W™1) then

Yo |X~ N, (X8, o X(XTWX) " XT).

(i) Letl e ]Rk, 1 # O, be such that 6 = ITB is an estimable parameter of the model and
let

be == (XTWX) X"WY.

Zlhenf(; =1"b¢; does not depend on a choice of the pseudoinverse used to calculate be
and O is the best linear unbiased estimator (BLUE) of 6 with

var (6 | X) = 01T (X TWX) 1,
which also does not depend on a choice of the pseudoinverse.
If further Y | X ~ N, (X8, 0?W™1) then

Oc | X ~ N (0, 21T (XTWX) 1),
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@iii) If further r = k (full-rank general linear model), then
Be = (XTWX) ' XTwy
is the best linear unbiased estimator (BLUE) of B with
var (B¢ | X) = 0 (XTWX) .
If additionally Y ’ X ~ N, (X8, oW1 then
Be | X ~ Ni(B, 0 (XTWX) ).
(iv) The statistic

SSe.q

MS. ¢ == ,
n—r

where )
SSe = Hw% (Y - Yq) H — (Y -Ya) WY —Y),

is the unbiased estimator of the residual variance o2.

If additionally Y ‘ X ~ N, (X8, oW1 then
SS@G 2

o2 ~ Xn—r>

and the statistics SS. ¢ and ?G are conditionally, given X, independent.

Proof. Matrices W~! and W are positive definite. Hence there exist W2 such that

-
W =W: (W%) , e.g., Cholesky decomposition

) Let Y* = W2Y.
Then E(Y*|X)=W2E(Y |X) = W2Xg,
var(Y* | X) = Wi var(Y | X) (W3) | = oL,
—_———

o 2L

That is, we have a linear model M*
M*: Y*|X ~ (W2X3, 02L,),

X*
where rank(X*) = rank(W%X) = rank(X) =7

The hat matrix for model M* is

B = WiIX(XTWX) X (W})
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(i)

which does not depend on a choice of a pseudoinverse X(XTWX)_XT. Note that due to

regularity of the matrix W2, also expression X (X' WX) X' does not depend on a choice
of this pseudoinverse.

The fitted values in model M* are then calculated as
Y = my*r = waix(XTWX) X WY,
By Gauss-Markov theorem (Theorem 2.2), the vector Y is the best linear unbiased estimator
(BLUE) of the vector E(Y* ’ X) = W%XB with
~x _ T
var(Y'|X) = o?H* = o2 Wax(XTWX) X' (W?)
By linearity, the vector
Yo = w2y = X(XTWX) X WY
is the BLUE of the vector
W rWzX8 = X8 = E(Y |X),
and T
var(Yo |X) = Wavar(Y7|X) (W2) = o?X(XTWX) X,
which does not depend on a choice of a pseudoinverse (XTWX)f.

If additionally Y ‘ X~ N, (X,B, O'2W_1), then by properties of a normal distribution (both

Ve and ?G are linear functions of Y), we have
Y |X ~ N(W%x,ﬁ, 02W%X(XTWX)‘XT(W%)T).
Yol|X ~ N(X8 , o?X(XTWX) XT).

We are assuming that # = 1" 3 is an estimable parameter of the model M: Y ‘ X ~
(X,B, o? W‘l). That is,

V61, By XBy =XB, impliesl’ B, =1'5,.
Due to regularity of the matrix W%, condition X3, = X3, is equivalent to the condition
1 1
WQXBI — WQXBZ
X* xX*
That is,
VB, By X'y =X"B, implies1' B, =1'8,,
and hence parameter § = 1" 3 is estimable also in model M*: Y* ’ X ~ (X*ﬁ, o2 In),
where Y* = W2Y, X* = WzX
By Theorem 2.5 (LSE and normal equations), we have that
Y = X*p* b* solves normal equations in model M*
b* solves X*'X*b = X*TY*
b* solves XTWXb = XTWY
b = (XTWX) XTwWy.

rret
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(iii)

Remember that X* = W%X. Hence,
Y" = W2Xb* ifand only if b* = (X'WX) XTWY.
Further, remember that 1/}(; = W_%l/}*. Hence,
Yo = W 2W2Xb* if and only if b* = (X WX) X WY,

That is, R
Yo = Xbg if and only if bg := b* = (XTWX)_ X'wy.
Then, by Gauss-Markov theorem (Theorem 2.8),

0c = 0* = 1"bg

is BLUE of the parameter & = 173, which does not depend on a choice of a pseudoinverse
(XTWX) . Furthermore,

var(0 | X) = var(*|X) = 21" (XTWX) L,

which also does not depend on a choice of a pseudoinverse (XTWX)_. If additionally,
Y ‘ X~ N, (X,@, O'2W_1) then by properties of a normal distribution (only linear transfor-

mations are involved to calculate 5@ from Y), we have

O | X ~ N (9, o217 (XTWX) 1),

Suppose that for an m x k matrix, the parameter & = I3 is an estimable vector parameter
of the model M: Y ‘ X ~ (X,@, o2 Wfl). By analogous steps as in (ii), we show that

0g == Lbg, bg = (X'WX)” X'Wy

is BLUE of 6, which does not depend on a choice of a pseudoinverse (XTWX)_. Further-
more,

var(0¢ | X) = o?L(XTWX) LT,
and under assumption of normality,
06| X ~ N (8, o L(XTWX) L.

Now, if rank(X) = k, the matrix X" WX is invertible and hence its only pseudoinverse is

(XTWX)_ = (XTWX)_l. Moreover, the vector parameter 3 is estimable and by taking
L = I, we obtain that its BLUE is

Be = XTWX) ' XTWY,
var(Bg |X) = o (XTWX) T,
and under assumption of normality,

Bo|X ~ M(8, o (XTWX) ).



80

(iv) Let us first calculate the residual sum of squares of the model M*: Y™™ } X ~ (X*,@, o2 In),
where Y* = W%Y, X* = W%X, rank(X*) = rank(X) = 7. We have (remember further
that Y = W3Y )

*

st = (V-9 (Y - ¥T) = (Wi - WiVg) (WhY - Wivg)
= (Y -Yg) W(Y - Y¢) = SS.c.
By Theorem 2.3, we have
E(SS.c) = E(SS}) = (n—r)o? = E(SS}|X) = E(SSc|X).

That is,
SSe.c
n—r

is the unbiased estimator of the residual variance o2.

MScq =

Furthermore, if normality is assumed, Theorem 3.2 applied to model M* provides that

st
o2 ~ Xn—r
Since SS; =SS, ¢, we have directly
SSQ’G -~ X2
o2 n—r

Finally, Theorem 3.2 also provides (conditional, given X) independence of lA"* and SS}.
Nevertheless, since Yo = W-2Y" and SSe¢.¢ = SS;, we also have (conditional, given X)

e’

independence of lA’G and SS. .

3

Note. Mention also that as consequence of the above theorem, all classical tests, confidence
intervals etc. work in the same way as in the OLS case.

Terminology (Generalized fitted values, residual sum of squares, mean square,
least square estimator).

e The statistic lA’G =X (XTWX)_ XTWY is called the vector of the generalized fitted values.

e The statistic SS. ¢ = HW% (Y — lAfG) H2 = (Y — ?G)TW (Y — IA/G) is called the general-

ized residual sum of squares.*

5

e The statistic MS, ¢ = ©C s called the generalized mean square.
n

e The statistic ,(ABG = (XTWX)_I XTWY in a full-rank general linear model is called the gener-
alized least squares (GLS) estimator® of the regression coefficients.

3 zobecnéné vyrovnané hodnoty * zobecnény rezidudlni soucet ctvercii  ° zobecnény stiedni étverec  ® odhad metodou
zobecneénjch nejmensich ctvercii
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Note. The most common use of the generalized least squares is the situation described in Exam-
ple 6.1, where

L 0

w1
wl=1":

0 1

We then get

n n
XTWY = Z w;Yi X, XTWX = Z w X X,
i=1 i=1

SSeq = sz‘ (Y; — ?G,i)2-

i=1

The method of the generalized least squares is then usually referred to as the method of the

ighted least WLS).
weighted least squares (WLS) Partial end

of Lecture #14
(16/11/2016)

" vizené nejmensi Ctverce



Chapter

Parameterizations of Covariates

7.1 Linearization of the dependence of the response on
the covariates

As it is usual in this lecture, we represent data by n random vectors (Yi, ZZT)T, Z; = (Zi,h ey
Zm,)—r € Z CRP,i=1,...,n. The principal problem we consider is to find a suitable model

to express the (conditional) response expectation E(Y ’ Z), where Y = (Yl, e Yn)—r and Z is
a matrix with vectors Z1, ..., Z,, in its rows. To this end, we consider a linear model, where

IE(Y ‘ Z) can be expressed as IE(Y ‘ Z) = X2 for some 3 € R¥, where
el X, = (X0, ..., Xl,k:—l)T = t(Zy),

X;I' Xn = (Xn,Oy SRR XTL,k—l)T = t(Zn)7

and t: Z — X C RF, t(z) = (to(z), ol tk,l(z))T = (a:o, A :rk,l)T = x, is a suit-
able transformation of the original covariates that linearize the relationship between the response
expectation and those covariates. The corresponding regression function is then

m(z) =t (2)B = Boto(z) + -+ + Br1tp-1(2), z€Z. )

One of the main problems of a regression analysis is to find a reasonable form of the transformation
function ¢ to obtain a model that is perhaps wrong but at least useful to capture sufficiently the
form of E(Y ‘ Z) and in general to express E(Y ‘ Z = z), z € Z, for a generic response Y being
generated, given the covariate value Z = z, by the same probabilistic mechanism as the original
data.

82
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7.2 Parameterization of a single covariate

In this and two following sections, we first limit ourselves to the situation of a single covariate, i.e.,
p =1, Z CR, and show some classical choices of the transformations that are used in practical
analyses when attempting to find a useful linear model.

7.2.1 Parameterization

Our aim is to propose transformations ¢ : Z — R*, t(2) = (to(2), ...,tk,l(z))T such
that a regression function (7.1) can possibly provide a useful model for the response expectation
E(Y ‘ 7 = z) Furthermore, in most cases, we limit ourselves to transformations that lead to
a linear model with intercept. In such cases, the regression function will be

m(z) = fBo + Prsi(z) + - + Br—1sk—1(2), z€Z, (7.2)

where the non-intercept part of the transformation ¢ will be denoted as s. That is, for z € Z,

s: Z— R s(2) = (s1(2), - s1e1(2)) T = (01(2), - o, tra(2))

Definition 7.1 Parameterization of a covariate.
Let Zy, ..., Zy be values of a given univariate covariate Z € Z C R. By a parameterization of this
covariate we mean

(i) a function s : Z — R*1, s(2) = (s1(2), ..., sk,l(z))—r, z € Z, whereall s1, ..., Sk_1
are non-constant functions on Z, and

@ii) ann x (k — 1) matrix S, where

ST(Zl) Sl(Zl) Sk:—l(Zl)

Terminology (Reparameterizing matrix, regressors).

Matrix S from Definition 7.1 is called reparameterizing matrix' of a covariate. Its columns, i.e.,
vectors

51(Z1) sk-1(Z1)
X! = : ey XL = :
Sl(Zn) Sk:—l(Zn)
determine the regressors of the linear model based on the covariate values 71, ..., Z,.

' reparametrizacni matice
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Notes.
¢ A model matrix X of the model with the regression function (7.2) is
1 X1 ... Xig 1 X{
X= (10, 8) = (1o, X\, o, XM =0 0 0 =]
1 Xp1 oo Xnko 1 X,
Xi = S(ZZ'), Xi,j = Sj(Zi), 1= 1,...,n, j = 1,...,k— 1.

e Definition 7.1 is such that an intercept vector 1,, (or a vector ¢ 1,, ¢ € R) is (with a positive prob-
ability provided a non-degenerated covariate distribution) not included in the reparameterizing
matrix S. Nevertheless, it will be useful in some situations to consider such parameterizations
that (almost surely) include an intercept term in the space generated by the columns of the
reparameterizing matrix S itself. That is, for some parameterizations (see the regression splines
in Section 7.3.4), we will have 1,, € M (S)

7.2.2 Covariate types

The covariate space Z and the corresponding univariate covariates Z1, ..., Z, are usually of one
of the two types and different parameterizations are useful depending on the covariate type which
are the following.

Numeric covariates

Numeric? covariates are such covariates where a ratio of the two covariate values makes sense and

a unity increase of the covariate value has an unambiguous meaning. The numeric covariate is
then usually of one of the two following subtypes:

(i) continuous, in which case Z is mostly an interval in R. Such covariates have usually a physical
interpretation and some units whose choice must be taken into account when interpreting
the results of the statistical analysis. The continuous numeric covariates are mostly (but not
necessarily) represented by continuous random variables.

(i) discrete, in which case Z is infinite countable or finite (but “large”) subset of R. The most
common situation of a discrete numeric covariate is a count® with Z C Ny. The numeric
discrete covariates are represented by discrete random variables.

Categorical covariates

Categorical® covariates (in the R software referred to as factors), are such covariates where the ratio
of the two covariate values does not necessarily make sense and a unity increase of the covariate
value does not necessarily have an unambiguous meaning. The sample space Z is a finite (and
mostly “small”) set, i.e.,

Z = {wl, ...,wg},

where the values w; < --- < wg are somehow arbitrarily chosen labels of categories purely used
to obtain a mathematical representation of the covariate values. The categorical covariate is always
represented by a discrete random variable. Even for categorical covariates, it is useful to distinguish
the two subtypes:

2 numerické, prip. kvantitativni 3 pocet * kategoridlni, pfip. kvalitativni
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(i) nominal® where from a practical point of view, chosen values wi, ..., wg are completely
arbitrary. Consequently, practically interpretable results and conclusions of any sensible
statistical analysis should be invariant towards the choice of wi, ..., wg. The nominal

categorical covariate mostly represents a pertinence to some group (a group label), e.g,
region of residence.

(i) ordinal® where ordering w1 < --- < wg makes sense also from a practical point of view. An
example is a school grade.

Notes.
e From the practical point of view, it is mainly important to distinguish numeric and categorical
covariates.

o Often, ordinal categorical covariate can be viewed also as a discrete numeric. Whatever in this
lecture that will be applied to the discrete numeric covariate can also be applied to the ordinal
categorical covariate if it makes sense to interprete, at least into some extent, its unity increase
(and not only the ordering of the covariate values).

5 nomindlni ° ordindlni
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7.3 Numeric covariate

It is now assumed that Z; € Z C R, ¢ = 1,...,n, are numeric covariates. Our aim is now to
K3 M )
propose their sensible parameterizations.

7.3.1 Simple transformation of the covariate
The regression function is
m(z) = Bo + P1s(z), z€Z, (7.3)

where s : Z — R is a suitable non-constant function. The corresponding reparameterizing matrix
is

s(Z1)
S = :
$(Zn)
Due to interpretability issues, “simple” functions like: identity, logarithm, exponential, square root,
reciprocal, ..., are considered in place of the transformation s.

Evaluation of the effect of the original covariate

Advantage of a model with the regression function (7.3) is the fact that a single regression coefficient
B1 (the slope in a model with the regression line in = s(z)) quantifies the effect of the covariate
on the response expectation which can then be easily summarized by a single point estimate and
a confidence interval. Evaluation of a statistical significance of the effect of the original covariate
on the response expectation is achieved by testing the null hypothesis

H[)I ,8120

A possible test procedure was introduced in Section 3.2.

Interpretation of the regression coefficients

Disadvantage is the fact that the slope 81 expresses the change of the response expectation that
corresponds to a unity change of the transformed covariate X = s(Z), i.e., for z € Z:

Br=E(Y|X=5(2)+1) - E(Y|X =5(2)),
which is not always easily interpretable.

Moreover, unless the transformation s is a linear function, the change in the response expectation
that corresponds to a unity change of the original covariate is a function of that covariate:

EY|[Z=2+1) —E(Y|Z=2)=p{s(z+1)—s(2)}, z2€Z.

In other words, a model with the regression function (7.3) and a non-linear transformation s
expresses the fact that the original covariate has different influence on the response expectation
depending on the value of this covariate.

Note. 1t is easily seen that if n > k = 2, the transformation s is strictly monotone and the
data contain at least two different values among 71, ..., Z, (which has a probability of one if the
covariates Z; are sampled from a continuous distribution), the model matrix X = (1n, S) is of
a full-rank r = k = 2.
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7.3.2 Raw polynomials
The regression function is polynomial of a chosen degree k — 1, i.e.,

m(z)=Po+ 1z + - + B2, zeZ. (7.4)
The parameterization is

s: Z — RFFL s(z) = (z, ...,zk_l)T, z€Z

Zy ...zt

Evaluation of the effect of the original covariate

The effect of the original covariate on the response expectation is now quantified by a set of & — 1

regression coefficients 8% = (51, e ﬁk_l)T. To evaluate a statistical significance of the effect
of the original covariate on the response expectation we have to test the null hypothesis

H(] : ,BZ = Ok—l-

An appropriate test procedure was introduced in Section 3.2.

Interpretation of the regression coefficients

With £ > 2 (at least a quadratic regression function), the single regression coefficients i, ...,
Br—1 only occasionally have a direct reasonable interpretation. Analogously to simple non-linear
transformation of the covariate, the change in the response expectation that corresponds to a unity
change of the original covariate is a function of that covariate:

EY|[Z=2+1) —E(Y|Z=2)

=81+ B {(z+1)? =22} + - + B {(z+ D= ze 2.

Note. 1t is again easily seen that if n > k and the data contain at least k different values
among among 71, ..., Z, (which has a probability of one if the covariates Z; are sampled from
a continuous distribution), the model matrix (1n, S) is of a full-rank » = k.

Degree of a polynomial

Test on a subset of regression coefficients (Section 3.2) or a submodel test (Section 5.2) can be
used to infer on the degree of a polynomial in the regression function (7.4). The null hypothesis
expressing, for d < k, belief that the regression function is a polynomial of degree d—1 corresponds
to the null hypothesis

HQZ Bd:() & ... & kalzo.
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7.3.3 Orthonormal polynomials

The regression function is again polynomial of a chosen degree k& — 1, nevertheless, a different
basis of the regression space, i.e., a different parameterization of the polynomial is used. Namely,
the regression function is

m(z) =By + 1P 2) + - + Bt PF(2), ze€ Z, (7.5)
where P7 is an orthonormal polynomial of degree j, j = 1,...,k — 1 built above a set of the
covariate datapoints Z1, ..., Z,. That is,

Pj(z):aj70+aj71z+~--—i—aj7jzj, ji=1, ..., k—1, (7.6)
and the polynomial coefficients a;;, j =1,...,k—1,1=0, ..., j are such that vectors

PI(Z)
Pi = : . o j=1,... k-1,
P (Zy)
are all orthonormal and also orthogonal to an intercept vector P° = (1, e I)T. The corre-
sponding reparameterizing matrix is
PYzy) ... PYZy)
S = (Pl, P’H) = : : : @.7)
PY(Z,) ... P4z,

which leads to the model matrix X = (1n, S) which have all columns mutually orthogonal and
the non-intercept columns having even a unity norm. For methods of calculation of the coefficients
of the polynomials (7.6), see lectures on linear algebra. It can only be mentioned here that as soon
as the data contain at least k different values among 71, ..., Z,, those polynomial coefficients
exist and are unique.

Note. For given dataset and given polynomial degree k — 1, the model matrix X = (1n, S) based
on the orthonormal polynomial provide the same regression space as the model matrix based on
the raw polynomials. Hence, the two model matrices determine two equivalent linear models.

Advantages of orthonormal polynomials compared to raw polynomials

¢ All non-intercept columns of the model matrix have the same (unity) norm. Consequently, all
non-intercept regression coefficients 1, ..., S;x_1 have the same scale. This may be helpful
when evaluating a practical (not statistical!) importance of higher-order degree polynomial terms.

e Matrix X'X is a diagonal matrix diag(n, 1, ...,1). Consequently, the covariance matrix
var(ﬁ ‘ X) is also a diagonal matrix, i.e., the LSE of the regression coefficients are uncorre-
lated.

Evaluation of the effect of the original covariate

The effect of the original covariate on the response expectation is again quantified by a set of k — 1

regression coefficients 3% := (51, e 5k_1)T. To evaluate a statistical significance of the effect
of the original covariate on the response expectation we have to test the null hypothesis

Hy: 8% =04_;.

See Section 3.2 for a possible test procedure.
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Interpretation of the regression coefficients

The single regression coefficients 31, ..., Br_1 do not usually have a direct reasonable interpre-
tation.

Degree of a polynomial

Test on a subset of regression coefficients/test on submodels (were introduced in Sections 3.2
and 5.2) can again be used to infer on the degree of a polynomial in the regression function (7.5)
in the same way as with the raw polynomials. The null hypothesis expressing, for d < k, belief
that the regression function is a polynomial of degree d — 1 corresponds to the null hypothesis

H(): ﬂd:() & ... & 5]6,1:0.

7.3.4 Regression splines

Basis splines

The advantage of a polynomial regression function introduced in Sections 7.3.2 and 7.3.3 is that it
is smooth (have continuous derivatives of all orders) on the whole real line. Nevertheless, with the
least squares estimation, each data point affects globally the fitted regression function. This often
leads to undesirable boundary effects when the fitted regression function only poorly approximates
the response expectation IE(Y ’ Z = z) for the values of z being close to the boundaries of the
covariate space Z. This can be avoided with so-called regression splines.

Definition 7.2 Basis spline with distinct knots.
Letd € Ng and A = ()\1, e )\d+2)T € R¥*2, where —0o < A\; < --- < Agya < oo. The basis
spline of degree d with distinct knots’ X is such a function B%(z; X), z € R that

(i) Bd(z; A) =0, forz <A and z > Agio;

(i) On each of the intervals (\j, A\j+1), j =1, ..., d+ 1, B(-; X) is a polynomial of degree d;

(iii) B%(-; A) has continuous derivatives up to an order d — 1 on R.

Notes.
* The basis spline with distinct knots is piecewise® polynomial of degree d on (A1, A\gi2).

* The polynomial pieces are connected smoothly (of order d — 1) at inner knots Az, ..., Agt1.

* On the boundary (A\; and A4, 2), the polynomial pieces are connected smoothly (of order d — 1)
with a constant zero.

Definition 7.3 Basis spline with coincident left boundary knots.

Letd e Ny, 1 <r<d+2and X = ()\1, e /\d+2)—r € R¥2 where —co < \j = -+ =\ <
-+ < Agy2 < oo. The basis spline of degree d with 7 coincident left boundary knots® X is such
a function B%(z; \), z € R that

" bazicky spline [Cti splajn] stupné d se vzdjemné riznymi uzly ® po Gastech ° bazicky spline stupné d s v prekryvajicimi
se levymi uzly
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0] Bd(z; A) =0, forz <\ and z > \jyo;
(i) On each of the intervals (\j, \j+1), j =7, ..., d+ 1, B3(:; X) is a polynomial of degree d;
(iii) B(-; X) has continuous derivatives up to an order d — 1 on (A, 00);

(iv) Bd(‘; A) has continuous derivatives up to an order d — r in ;.

Notes.

e The only qualitative difference between the basis spline with coincident left boundary knots and
the basis spline with distinct knots is the fact that the basis spline with coincident left boundary
knots is at the left boundary smooth of order only d — r compared to order d — 1 in case of the
basis spline with distinct knots.

* By mirroring Definition 7.3 to the right boundary, basis spline with coincident right boundary
knots is defined.

Basis B-splines

There are many ways on how to construct the basis splines that satisfy conditions of Definitions 7.2
and 7.3, see Fundamentals of Numerical Mathematics (NMNM20I) course. In statistics, so called
B-splines have proved to be extremely useful for regression purposes. It goes beyond the scope of
this lecture to explain in detail their construction which is fully covered by two landmark books
de Boor (1978, 2001); Dierckx (1993) or in a compact way, e.g., by a paper Eilers and Marx (1996). For
the purpose of this lecture it is assumed that a routine is available to construct the basis B-splines
of given degree with given knots (e.g., the R function bs from the recommended package splines).

An important property of the basis B-splines is that they are positive inside their support interval
(general basis splines can also attain negative values inside the support interval). That is, if

A= (/\1, ey )\d+2)T is a set of knots (either distinct or coincident left or right) and B%(-, \) is
a basis B-spline of degree d built above the knots A then

B(z, A) > 0, A < 2 < Adto2,

Bz, A) =0, 2 < A1, 2> Adga-

Spline basis

Definition 7.4 Spline basis.

Letd € No, k > d+1and A = (A, ..., A_ar1) € RE4HL where —00 < A\ < ... <
Ai—d41 < oo. The spline basis'’ of degree d with knots X is a set of basis splines B1, ..., By, where
for z € R,

Bi(z) = BY(z; A1, ..., AL, \a),

—_———
(d+1)x
Bs(z) = B¥(z; Mty -, AL, A2, Ag),
d
X

10 splinovd bdze
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Ba(2) = B (z; M, A1, A2, -y Adr),

2%
Bd+1(2’) = Bd(z; >\17 >\27 sy >‘d+2)a

Bd+2(2) = Bd(z; >\27 sy )‘d+3)a

Bi_a(2) = B2 Me—ady -+ Me—dr1),

Bi—g+1(2) = BH (2 Me—2ds1s -+ » Mh—d1s Mb—d1)s
—_——
2%
Bi—1(2) = B (25 Me—d—1s Mi—d -+ s Mo—dit1s -5 Mo—dt1),s
dx
Bi(z) = Bd(z; Mied ey Mo—dily « vy MNo—dt1)-
(d+1)x
End of
) ) ) Lecture #5
Properties of the B-spline basis . (13/10/2016)
If ¥ > d+1, aset of knots A = ()\1, ceey )\k—d+1) , =00 < A1 < .o < Ap—dy1 < 00 IS Start of
given and By, ..., By, is the spline basis of degree d with knots A composed of basis B-splines | ecture #7
k> d-+1, aset of knots A = ()\1, e )\k_d+1)T, —00 < A1 < ... < Ag—g41 < 00 is given and (20/10/2016)
By, ..., By is the spline basis of degree d with knots A composed of basis B-splines then
k
(a) Bj(z) =1 for all z € (/\1, /\k,dﬂ); (7.8)
j=1
(b) for each m < d there exist a set of coefficients +{", ..., 7;* such that
k
Z 7" Bj(z) is on (A1, Ag—q+1) a polynomial in 2 of degree m. (7.9)
j=1

Regression spline

It will now be assumed that the covariate space is a bounded interval, i.e., Z = (zmm, zmax),
—00 < Zmin < Zmaz < 00. The regression function that exploits the regression splines is

m(z) = 1 Bi(z) + -+ + Bp Br(z), z€2Z, (7.10)
where By, ..., By is the spline basis of chosen degree d € Ny composed of basis B-splines built
above a set of chosen knots A = ()\1, ceey )\k_d+1)T, Zmin = A < oo < Me—d+1 = Zmaz- The

corresponding reparameterizing matrix coincided with the model matrix and is
Bi(Zy) ... Byp(Z1)
X=§S= : : : —: B. (7.10)
Bi(Z,) ... By(Zyn)
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Notes.
o It follows from (7.8) that
1, € M(B).

This is also the reason why we do not explicitely include the intercept term in the regression
function since it is implicitely included in the regression space. Due to clarity of notation, the
regression coefficients are now indexed from 1 to k. That is, the vector of regression coefficients

isB=(B1,..., B) .

e It also follows from (7.9) that for any m < d, a linear model with the regression function based
on either raw or orthonormal polynomials of degree m is a submodel of the linear model with
the regression function given by a regression spline and the model matrix B.

e With d = 0, the regression spline (7.10) is simply a piecewise constant function.

¢ In practice, not much attention is paid to the choice of the degree d of the regression spline.
Usually d = 2 (quadratic spline) or d = 3 (cubic spline) is used which provides continuous first
or second derivatives, respectively, of the regression function inside the covariate domain Z.

® On the other hand, the placement of knots (selection of the values of A1, ..., Ax_g+1) is quite
important to obtain the regression function that sufficiently well approximates the response
expectations E(Y } Z = z), z € Z. Unfortunately, only relatively ad-hoc methods towards
selection of the knots will be demonstrated during this lecture as profound methods of the knots
selection go far beyond the scope of this course.

Advantages of the regression splines compared to raw/orthogonal polyno-
mials

¢ Fach data point influences the LSE of the regression coefficients and hence the fitted regression
function only locally. Indeed, only the LSE of those regression coefficients that correspond to the
basis splines whose supports cover a specific data point are influenced by those data points.

* Regression splines of even a low degree d (2 or 3) are, with a suitable choice of knots, able to
approximate sufficiently well even functions with a highly variable curvature and that globally
on the whole interval Z.

Evaluation of the effect of the original covariate

To evaluate a statistical significance of the effect of the original covariate on the response expecta-
tion we have to test the null hypothesis

Ho: B1 =" =B
Due to the property (7.8), this null hypothesis corresponds to assuming that E(Y } Z) eM (ln) -

M(IB) Consequently, it is possible to use a test on submodel that was introduced in Section 5.1
to test the above null hypothesis.

Interpretation of the regression coefficients

The single regression coefficients 31, ..., B do not usually have a direct reasonable interpretation.
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7.4 Categorical covariate

In this Section, it is assumed that Z; € Z, i = 1,...,n, are values of a categorical covariate. That
is, the covariate sample space Z is finite and its elements are only understood as labels. Without
loss of generality, we will use, unless stated otherwise, a simple sequence 1, ..., G for those labels,
ie.,

z={1,...,G}.

Unless explicitely stated (in Section 7.4.4), even the ordering of the labels 1 < --- < G will not
be used for any but notational purposes and the methodology described below is then suitable for
both nominal and ordinal categorical covariates.

The regression function, m : Z — R is now a function defined on a finite set aiming in

parameterizing just G (conditional) response expectations IE(Y ‘ Z = 1), e IE(Y ! Z = G). For
some clarity in notation, we will also use symbols mq, ..., mq for those expectations, i.e.,

m(l) = E(Y } Z=1) = my,

m(G) = EY|Z=G) = ma.

Notation and terminology (One-way classified group means).

Since a categorical covariate often indicates pertinence to one of G groups, we will call mq, ..., mg

as group means" or one-way classified group means. A vector

m=(my, ..., mag)

12

will be called a vector of group means,= or a vector of one-way classified group means.

Note. Perhaps appealing simple regression function of the form
m(z) = Bo + f1 2, z=1,...,G,

is in most cases fully inappropriate. First, it orders ad-hoc the group means to form a monotone
sequence (increasing if 1 > 0, decreasing if 57 < 0). Second, it ad-hoc assumes a linear
relationship between the group means. Both those properties also depend on the ordering or
even the values of the labels (1,...,G in our case) assigned to the G categories at hand. With
a nominal categorical covariate, none of it is justifiable, with an ordinal categorical covariate, such
assumptions should, at least, never be taken for granted and used without proper verification.

7.4.1 Link to a G-sample problem

For following considerations, we will additionally assume (again without loss of generality) that the

data (Y;, Zi)T, i =1,...,n, are sorted according to the covariate values 71, ..., Z,,. Further-
more, we will also exchangeably use a double subscript with the response where the first subscript

12

U skupinové stiedni hodnoty vektor skupinovych strednich hodnot
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will indicate the covariate value, i.e.,

Zl 1 Yi Yi,l
: n1-times : :
an ]. Yn1 }/1 ;1
Z — = s Y = —
Zn—nc-‘rl G Yn—nc+1 YGJ
: : nag-times : :
Zn G Yn YG,nG

Finally, let
T
Yg:(qu,h""YYg,ng) ’ 9217"'an

denote a subvector of the response vector that corresponds to observations with the covariate value
being equal to g. That is,

Y=M,.. ., %) =], ..., vD"

Suppose now that the data (Yi, Zi)T ik (Y, Z)—r and a linear model holds with E(Y ‘ Z = g) =

Mg, var(Y ‘ 7 = g) =02, g=1,...,G. In that case, for given g € {1, ..., G}, the random
variables Y 1, ..., Yy, (elements of the vector Y,) are iid. from a distribution of Y| Z = ¢
whose mean is m, and the variance is 2. That is,

Yi,ly ceey Yl,nl 1}\(’1 (m17 02)7
(7.12)
Yo, -, Yang ixd. (mg, 02).

Having all elements of the response random vector independent, (7.12) describes a classical G
sample problem where the samples are assumed to be homoscedastic (having the same variance).

Notes.
o If the covariates 71, ..., Zg are random then also nq, ..., ng are random.

¢ In the following, it is always assumed that ny > 0, ..., ng > 0 (almost surely).
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7.4.2 Linear model parameterization of one-way classified group
means

As usual, let ¢ be the (conditional) response expectation, i.e.,

M1 mi
ni-times
Ml,nl mi
— — mi 1,
E(Y|Z)=p:= : = : = : : (7.13)
—— —— me 1ng,
HaG,1 mgag
ng-times
HG ng mag

Notation and terminology (Regression space of a categorical covariate).

A vector space

ma ln1
:my, ..., mg €R CR"”
mag ]-nG
will be called the regression space of a categorical covariate (factor) with levels frequencies n1, ..., ng
and will be denoted as Mp(ny, ..., ng).
Note. Obviously, with ny > 0, ..., ng > 0, a vector dimension of Mpg(ny, ..., ng) is equal

to G and a possible (orthogonal) vector basis is

1 0
: 11 -times
1 0
- 1, ®(1,...,0)
Q= : i = : : (7.14)
- 1o, ®(0, ..., 1)
0 1
: ng-times
0 1

When using the linear model, we are trying to allow for expressing the response expectation p, i.e.,
a vector from Mp(n1, ..., ng) as a linear combination of columns of a suitable n x k& matrix X,
ie., as

p=XB, PBeR:

It is obvious that any model matrix that parameterizes the regression space Mp(nq, ..., ng)
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must have at least G columns, i.e., ¥ > GG and must be of the type

n1-times
—— 1, ® :::1r
X — : = : , (7.15)

—— | . ®wg

ng-times

where x1, ..., xg € RF are suitable vectors.

Problem of parameterizing a categorical covariate with G' levels thus simplifies into selecting a G x k
matrix X such that

z|
X=1:
g
Clearly, B
rank(X) = rank(X).
Hence to be able to parameterize the regression space Mp(ny, ..., ng) which has a vector

dimension of G, the matrix X must satisfy

rank(X) =G.
The group means then depend on a vector 3 = (ﬂo, e Bk_l)T of the regression coefficients as
myg = m;,@, g=1,...,G,
m = 526.

A possible (full-rank) linear model parameterization of regression space of a categorical covariate
uses matrix QQ from (7.14) as a model matrix X. In that case, X = Iy and we have

n=Qpg,
m = (3.

(7.16)

Even though parameterization (7.16) seems appealing since the regression coefficients are directly
equal to the group means, it is only rarely considered in practice for reasons that will become clear
later on. Still, it is useful for some of theoretical derivations.



7.4. CATEGORICAL COVARIATE 97

7.4.3 ANOVA parameterization of one-way classified group means

In practice and especially in the area of designed experiments, the group means are parameterized
as

mg = oo+ oy, g=1,...,G,
(7.17)
m = (lg, Ig)a = aolg + aZ,
where o = (ao, o, ..., ag)T is a vector of regression coefficients and a? = (ozl, e ozg)T

is its non-intercept subvector. That is, the matrix X is

X = (1¢, Ig).
The model matrix is then
1 1 0
: 11 -times
1 1 0

______ 1, ®(1,1,...,0)
X=1| = : ) (7.18)
______ 1o, ®(1,0,...,1)

ng-times

which has G + 1 columns but its rank is G (as required). That is, the linear model Y |Z ~
(Xa, U2In) is less-than-full rank. In other words, for given pu € M(X) = Mp(ni, ..., ng),
there exists infinitely many vectors o € R@*! such that u = Xa. Consequently, also a solution to
related normal equations is not unique. Nevertheless, unique solution can be obtained if suitable
indetifying constraints" are imposed on the vector of regression coefficients c.

Terminology (Effects of a categorical covariate).

Values of o, ..., ag (a vector a?) are called effects of a categorical covariate.

Note. Effects of a categorical covariate are not unique. Hence their interpretation depends on
chosen identifying constraints.

Identification in less-than-full-rank linear model

In the following, a linear model Y’ } X ~ (X,@, O'QIn), rank(X,,xx) = r will be assumed (in our
general notation), where » < k. We shall consider linear constraints on a vector of regression
coefficients, i.e., constraints of the type

Al@ = Oma

where A is an m x k matrix.

B identifikacni omezeni
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Definition 7.5 Identifying constraints.

We say that a constraint

AIBZOW

identifies a vector 3 in a linear model Y ‘ X ~ (X8, 0°1,) if and only if for each p € M (X) there
exists only one vector 3 which satisfies at the same time

p=XB and AB=0,,.

Note. If a matrix A determines the identifying constraints, then, due to Theorem 2.5 (least squares
and normal equations), it also uniquely determines the solution to normal equations. That is, there
is a unique solution b = 3 that jointly solves linear systems

X'Xb=X"Y, Ab=0,,

or written differently, there is a unique solution to a linear system
XTX - X'y
A N0, )

The question is now, what are the conditions for a matrix A to determine an identifying constraint.
Remember (Theorem 2.7): If a matrix L, satisfies M (LT) cM (XT) then a parameter vector
6 = IL3 is estimable which also means that for all real vectors 3, 3, the following holds:

XB,=XBy, = LB =LG,.

That is, if two different solutions of normal equations are taken and one of them satisfies the
constraint then do the both. It was also shown in Section 5.3 that if further I has linearly
independent rows then a set of linear constraints L3 = 0 determines a so called submodel
(Lemma 5.4). It follows from above that for identification, we cannot use such a matrix L for
identification.

Theorem 7.1 Scheffé on identification in a linear model.

Constraint A3 = 0,, with a real matrix A, identifies a vector B in a linear model Y ‘ X ~

(Xﬁ, O'QIn), rank(X,,xx) =7 < k < n if and only if

M(AT) 0 M(XT) = {0},
rank(X) + rank(A) = k.

Proof.  We have to show that, for any u € M(X), the conditions stated in the theorem are
equivalent to existence of the unique solution to a linear system X3 = g that satisfies A3 = 0,,.
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Existence of the solution

& YpeM (X) there exists a vector 3 € R¥ such that
XB=pn & AB=0,.

& Y e M(X) there exists a vector 3 € R¥ such that

ank o 124
(n)e- (o)
——

D
& Ve M(X) there exists a vector 3 € R¥ such that

o (gn)

& W 0])", peMx)} cMD),
& {M(D)}L c{(u"05)" ne M(X)}L.
& {vm ER", vy eR™  Vpe M(X)
R ] (o B
& {Vvl eER™, vy eR™ VB eRF
WfoDp=of = (of.af) (37) <0}

N {Vm eR™, vy eR™ VB eRF
v]X = —vgA = ov/X8= O}.

= {Vvl ER", vy eR™ v]X = —v]A = o/ X= og}.
-~ {Vvl S ]Rn, Vo € RrR™ XTvl = —ATUQ = XT’Ul = Ok}.
N——

u
& VueRF uEM(XT)ﬂM(AT) = u:Ok}.

& MAHNMET) = {o}.

Uniqueness of the solution

& YpeM (X) there exists a unique vector 3 € R* such that
XB=p & AB=0,.

& Vp € M(X) there exists a unique vector 3 € R¥ such that
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< rank(D) = k.

< A has rows such that dim{M(AT)} =k — r (since rank(X) = 1)

and all rows in A are linearly independent with rows in X.

< rank(A) = k — r (since we already have a condition

M (XT) n .M (AT) = {0} needed for existence of the solution).

Notes.

1. Matrix A,, . used for identification must satisfy rank(A) = k — r. In practice, the number
of identifying constraints (the number of rows of the matrix A) is usually the lowest possible,
ie,m=k—r.

. Theorem 7.1 further states that the matrix A must be such that a vector parameter 8 = A3
is not estimable in a given model.

. In practice, a vector p, for which we look for a unique B such that p = X3, AB = 0,
is equal to the vector of fitted values Y. That is, we look for a unique ﬂ € RF (that, since
being unique, can be considered as the LSE of the regression coefficients) such that

XB=Y & AB=0,,.
By Theorem 2.5 (Least squares and normal equations), ¥ = X,B if and only if B solves

normal equations XTX,B X'Y.

Suppose now that rank(A) = m = k — r, ie, the regression parameters are identified by

a set of m = k — r linearly independent linear constraints. To get ,@, we have to solve
a linear system

X'xXB=X"Y,
AB = Op,
which can be solved by solving
X'xX8=X"Y,
ATAB =0,,

or using a linear system R
(X'X+ATA)B=X"TY,

which written differently is

D'D3=X"Y,

End of
Lecture #7
(20/10/2016)
Start of
Lecture #9
(27110/2016)
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Matrix D "D is now an invertible k x k matrix and hence the unique solution is

with

B=DD) 'XxTY.

Identification in a one-way ANOVA model

As example of use of Scheffé’s Theorem 7.1, consider a model matrix X given by (7.18) that provides
an ANOVA parameterization of a single categorical covariate, i.e., a linear model for the one-way
classified group means parameterized as

mg = o + ay, g=1,...,G.

We have rank(XnX(G_H)) = G with a vector ¢ = (ao, Qat, ... ag)T of the regression coef-
ficients. The smallest matrix A,,,(g41) that identifies @ with respect to the regression space
M(X) = Mp(ny, ..., ng) is hence a non-zero matrix with m = 1 row, ie,,
T T
A=a' =(ag, a1,...,ac) #0qg4

such that a ¢ M(XT), i.e., such that 6 = a '« is not estimable in the linear model Y ‘ X ~
(on, o? In).

It is seen from a structure of the matrix X given by (7.18) that

G
GGM(XT) <~ G/:(ZCga Cla---acG)T

g=1

for some ¢ = (cl, ceny Cg)T € RY ¢ # 0q. That is, for identification of v in the lin-
ear model Y‘X ~ (Xa, o2 In) with the model matrix (7.18), we can use any vector a =

(ao, a, ..., ag)—r = 0¢_1 that satisfy
G
ag # Z ag.
g=1

Commonly used identifying constraints include:

Sum constraint:

G
Ar=al =(0,1,....,1)] = Y a,=0
g=1

that implies the following interpretation of the model parameters:

G

1 _

oy = EE my =:m,
g=1

ap = mip—m,
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Weighted sum constraint:

G
T T
A2:a2:(0,n1,...,ng) = anag:O
9=1
that implies
G
1 _
ao = E ng mg = mW,
g=1
ap = mip—mw,
ag = mg—mwy.
Reference group constraint (I € {1, ..., G}):

As=aj =(0,0,...,1,...,0) <= =0,
N———

1 on [th place

which corresponds to omitting one of the non-intercept columns in the model matrix X
given by (7.18) and using the resulting full-rank parameterization. It implies

Qp = My,
a1 = mp—my,
ag = mg-—my.
No intercept:
T T
Ag=a; =(1,0,...,0) = ap =0,

which corresponds to omitting the intercept column in the model matrix X given by (7.18)
and using the full-rank parameterization with the matrix QQ given by (7.14). That is,

oy = 0,
ap = mi,
o = Mmgq.

Note. Identifying constraints given by vectors a1, as, a3 (sum, weighted sum and reference group
constraint) correspond to one of commonly used full-rank parameterizations that will be introduced

in Section 7.4.4 where we shall also discuss interpretation of the effects a? = (al, e oz(;)T if
different identifying constraints are used.
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7.4.4 Full-rank parameterization of one-way classified group means

In the following, we limit ourselves to full-rank parameterizations that involve an intercept column.
That is, the model matrix will be an n X G matrix

+
1 ¢
: n1-times
1 cf
——— 1, ® (1, ¢f)
X = - : ,
- == L ® (1, ¢)
T
1 cg
: ng-times
T
1 cg
where ci, ..., cg € RE! are suitable vectors. In the following, let C be an G x (G — 1) matrix
with those vectors as rows, i.e.,
T
¢
C=]:
T
Ca
A matrix X is thus a G x G matrix _
X =(1¢, C).
If 8= (60, e ﬁG_l)T € RY denote, as usual, a vector of regression coefficients, the group
means m are parameterized as
mg = /80+CJBZ7 g:17"'aG7 7.19)
m=XB=(1g, C)B = Polg + CB7,
where 3% = (61, cee ﬁG_l)T is a non-intercept subvector of the regression coefficients. As we

know,

rank(X) = rank(X) = rank((1¢, C)).
Hence, to get the model matrix X of a full-rank (rank(X) = (), the matrix C must satisfy
rank((C) =G—-1land 1¢ ¢ M((C) That is, the columns of C must be

() (G — 1) linearly independent vectors from RG;

(i) being all linearly independent with a vector of ones 1.

Definition 7.6 Full-rank parameterization of a categorical covariate.

Full-rank parameterization of a categorical covariate with G levels (G = card(Z)) is a choice of the
G x (G — 1) matrix C that satisfies

rank(C) = G — 1, 1¢ ¢ M(C).
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Terminology ((Pseudo)contrast matrix).

Columns of matrix C are often chosen to form a set of G — 1 contrasts from RE. In this case,
we will call the matrix C as a contrast matrix}* In other cases, the matrix C will be called as
a pseudocontrast matrix.”®

Note. The (pseudo)contrast matrix C also determines parameterization of a categorical covariate
according to Definition 7.1. Corresponding function s : Z — R% ! is

and the reparameterizing matrix S is an n x (G — 1) matrix

n1-times
—— 1, ® c]—
- 1nG ® Cg‘

ng-times

Evaluation of the effect of the categorical covariate

With a given full-rank parameterization of a categorical covariate, evaluation of a statistical signifi-
cance of its effect on the response expectation corresponds to testing the null hypothesis

Ho:ﬂlzo& &Bgflzo, (7.20)

or written concisely
Z
Hp : ﬁ =0g_1.

This null hypothesis indeed also corresponds to a submodel where only intercept is included in the
model matrix. Finally, it can be mentioned that the null hypothesis (7.20) is indeed equivalent to
the hypothesis of equality of the group means

Ho: m;i = -+ = mg. (7.21)

If normality of the response is assumed, equivalently an F-test on a submodel (Theorem 5.1) or
a test on a value of a subvector of the regression coefficients (F-test if G > 2, t-test if G = 2, see
Theorem 3.2) can be used.

Notes. The following can be shown with only a little algebra:

s IfG =2 8= (ﬁo, Bl)T. The (usual) t-statistic to test the hypothesis Hy : 1 = 0 using
point (viii) of Theorem 3.2, i.e., the statistic based on the LSE of 3, is the same as a statistic of
a standard two-sample t-test.

Y kontrastoud matice “ pseudokontrastovi matice
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o If G > 2, the (usual) F-statistic to test the null hypothesis (7.20) using point (x) of Theorem 3.2
which is the same as the (usual) F-statistic on a submodel, where the submodel is the only-

intercept model, is the same as an F-statistic used classically in one-way analysis of variance
(ANOVA) to test the null hypothesis (7.21).

In the following, we introduce some of classically used (pseudo)contrast parameterizations which
include: (i) reference group pseudocontrasts, (iij) sum contrasts, (iii) weighted sum contrasts, (iv)
Helmert contrasts, and (v) orthonormal polynomial contrasts.

Reference group pseudocontrasts

0O ... 0
1 ... 0 ol
c= | = (%o (7.22)
ST Ic_1
0o ... 1

The regression coefficients have the following interpretation

my = o, Bo = mi,
ma = [+ B, B1 = mg—my,

. (7.23)
mag = o+ Ba-1, Ba-1 = mg—mi.

That is, the intercept 3y is equal to the mean of the first (reference) group, the elements of

8% = (ﬁl, e Bg,l)—r (the effects of Z) provide differences between the means of the remaining
groups and the reference one. The regression function can be written as

m(z)=fo + f1l(z=2) + - + fa1l(z=G), =z=1,...,G.

It is seen from (7.23) that the full-rank parameterization using the reference group pseudocontrasts
is equivalent to the less-than-full-rank (ANOVA) parameterization my = a9 + oy, g = 1,...,G,

T. . . .
where o = (ao, a1y e ag) is identified by the reference group constraint

Oq:O.

Notes.

e With the pseudocontrast matrix C given by (7.22), a group labeled by Z = 1 is chosen as
a reference for which the intercept 5y provides the group mean. In practice, any other group
can be taken as a reference by moving the zero row of the C matrix.

¢ In the R software, the reference group pseudocontrasts with the C matrix being of the form
(7.22) are used by default to parameterize categorical covariates (factors). Explicitely this choice
is indicated by the contr.treatment function. Alternatively, the contr.SAS function provides
a pseudocontrast matrix in which the last Gth group serves as the reference, i.e., the C matrix
has zeros on its last row.
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Sum contrasts

1 0
N : I~
c=| + - ] = il (7.24)
0o ... 1 —15,4
-1 ... -1
Let
1 G
WZEng
g=1

The regression coefficients have the following interpretation

/80 = m,
mi = Po+ b, fr = mi—m,
(7.25)
ma-1 = Bo+ Ba-1, Be-1 = mg-1—Mm.
G-1
ma = Bo— > By
g=1
The regression function can be written as
G-1
m(z) =By + Bil(z=1) + - + fa1 Iz =G = 1) = (3 8,) 1= = G),
g=1
z=1,...,G.

If we consider the less-than-full-rank ANOVA parameterization of the group means as m, = ap+ay,
g=1,...,G, it is seen from (7.25) that the full-rank parameterization using the contrast matrix
(7.24) links the regression coefficients of the two models as

ag = Bo = m,
ar = [ = p—m,
B (7.26)
ag-1 = Ba-1 = pg-1-—m,
G—-1
ag = — Y By = pc —m.
g=1
At the same time, the vector o satisfies
G
> a,=0. (7.27)
g=1

That is, the full-rank parameterization using the sum contrasts (7.25) is equivalent to the less-
than-full-rank ANOVA parameterization, where the regression coefficients are identified by the
sum constraint (7.27). The intercepts ag = [y equal to the mean of the group means and the
elements of 3% = (ﬁl, e BG_l)T = (al, ce aG_l)T are equal to the differences between
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the corresponding group mean and the means of the group means. The same quantity for the last,

Gth group, ag is calculated from 3% as ag = — Efz_ll g

Note. In the R software, the sum contrasts with the C matrix being of the form (7.24) can be
used by the mean of the function contr.sum.

Weighted sum contrasts

1 0
C= 0o ... 1 (7.28)
_m_nGa
R

Let G
>3

= — g Myg.

n gl
g=1

The regression coefficients have the following interpretation

BO = mw,
mi1 = o+ b, B = mi—mw,
(7.29)
mg-1 = Bo+ Be-1, Be-1 = mg-1—Mmw.
G-1 n
— _ -9
mg = 50 Z nGﬁga
g=1
The regression function can be written as
G-1 n
m(z)=Bo + fil(z=1) + - + fo_11(z = - (X 22p,) 1z = @),
g=1 nG
z=1,...,G.

If we consider the less-than-full-rank ANOVA parameterization of the group means as m, = agp+ay,
=1,...,G, it is seen from (7.29) that the full-rank parameterization using the contrast matrix
(7.28) links the regression coefficients of the two models as

ag = fo = mw,
ar = B = mi;—mw,
ag-1 = PBa- = mg-1— Mmw,
n __
aqg = — Z niﬁg = mg— my.

At the same time, the vector o satisfies

G
> ngag =0. (7.30)
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That is, the full-rank parameterization using the weighted sum pseudocontrasts (7.29) is equivalent
to the less-than-full-rank ANOVA parameterization, where the regression coefficients are identified
by the weighted sum constraint (7.30). The intercepts cvg = 5y equal to the weighted mean of the
group means and the elements of 3% = (61, e BG,l)T = (al, e ozG,l)—r are equal to the
differences between the corresponding group mean and the weighted means of the group means.

The same quantity for the last, Gth group, o is calculated from 8% as ag = — ZgG;ll Z—é Bg-

Helmert contrasts

-1 -1 -1
1 -1 ... -1
c=| o 2. =1 (731
0o 0 ... G—-1

The group means are obtained from the regression coefficients as
G-1
mi = Bo— > By
g=1

G-1
my = ﬁo+51*25ga
g=2

G-1
m3 = ﬁo+252—25g,
g=3
mg-1 = Po+(G—2)Bg-—2—Ba-1,

mg = PBo+(G—1)pBg-1.

Inversely, the regression coefficients are linked to the group means as

1 G
BO = a ng =:
g=1
1

3

pr = i(mz—ml),
1 1
B2 = §{m3—§(m1+m2)},
ps = i{m4—%(m1+m2+’m3)},
. | Gl
for = glmem gy M)

which provide their (slightly awkward) interpretation: 84, g =1,...,G —1,is 1/(g + 1) times the
difference between the mean of group g + 1 and the mean of the means of the previous groups
1, ..., g

Note. In the R software, the Helmert contrasts with the C matrix being of the form (7.31) can be
used by the mean of the function contr.helmert.
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Orthonormal polynomial contrasts

Plwr) PAwr) ... PO Hwy)

c_ P! (.wg) P2(.(,U2) P 1(wo) | 732

Pl('wc) Pz('wc) PG_i(wG)

where wy < --- < wg is an equidistant (arithmetic) sequence of the group labels and
Pj(z):aj70+aj7lz—i—'--+aj7jzj, ji=1...,G-1,

are orthonormal polynomials of degree 1, ..., G — 1 built above a sequence of the group labels.
Note. 1t can be shown that the polynomial coefficients a;;, j =1,...,G—-1,1=10,...,j

and hence the C matrix (7.32) is for given G invariant (up to orientation) towards the choice of the
group labels as soon as they form an equidistant (arithmetic) sequence. For example, for G = 2, 3,4
the C matrix is

G=2 G=3
1 1 1
“ RRCR:
C= ;
1 B 2
NG £= V6|
1 1
Vi V6
G=14
3 1 1
Y
1 1 3
|2 2 s
1 1 3
W 2 2
3 1 1
Wi 2 2

The group means are then obtained as

my = m(w) = Bo+ PP wi)+ -+ Ba-1 P (wr),

my = m(wz) = Bo+ 1 P(wz) + -+ Ba_1 P Hwa),

me = m(we) = Bo+ B PHwe) + -+ + Ba—1 PCHwa),

where
m(z) = Bo + B Pl(z) + -+ Ba_q PG*l(z),

is the regression function. The regression coefficients 3 now do not have any direct interpretation.
That is why, even though the parameterization with the contrast matrix (7.32) can be used with
the categorical nominal covariate, it is only rarely done so. Nevertheless, in case of the categorical

zE{w1,...,wG}
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ordinal covariate where the ordered group labels w; < --- < wg have also practical interpretability,
parameterization (7.32) can be used to reveal possible polynomial trends in the evolution of the
group means myq, ..., mq and to evaluate whether it may make sense to consider that covariate
as numeric rather than categorical. Indeed, for d < G, the null hypothesis

H(): 6d:0 & & BG—IZO

corresponds to the hypothesis that the covariate at hand can be considered as numeric (with values
w1, ..., wg of the form of an equidistant sequence) and the evolution of the group means can be
described by a polynomial of degree d — 1.

Note. In the R software, the orthonormal polynomial contrasts with the C matrix being of the
form (7.32) can be used by the mean of the function contr.poly. It is also a default choice if the
covariate is coded as categorical ordinal (ordered).

End of
Lecture #9
(2710/2016)



Chapter

Additivity and Interactions

8.1 Additivity and partial effect of a covariate

Start of
Suppose now that the covariate vectors are Lecture #11

(03/11/2016)
(Z, VD) (2, V) €ZxV,  ZCR VCRTL,  p>2

As usual, let Y denote a generic response variable, (Z, VT)—r € Z x V a generic covariate vector,

and let
Y1 Z 1 VI

Y=|:], Z=1| 1, V=1 :
Y, Zn v

be vectors/matrices covering the response variables and covariate values for the n data points.

8.1.1 Additivity

Definition 8.1 Additivity of the covariate effect.

We say that a covariate Z € Z acts additively in the regression model with covariates (Z, VT)T €
Z %V, if the regression function is of the form

E(Y|Z =2V =v) =m(z, v) = mz(z) + my(v), (, ’UT)T €EZxV, 8.

where my : Z — R and my : V — R are some measurable functions.

8.1.2 Partial effect and conditional independence

If the effect of Z € Z acts additively in a regression model, we have for any fixed v € V:
EY|Z=2+1,V=v)-EY|Z=2V=v)=mz(z+1)—myz(z), z€Z. @2

That is, the influence (effect) of the covariate Z on the response expectation is the same with any
value of V € V.

111
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Terminology (Partial effect of a covariate).

If a covariate Z € Z acts additively in the regression model with covariates (Z, VT)—r € ZxY,
quantity (8.2) expresses so called partial effect' of the covariate Z on the response given the value
of V.

Hypothesis of no partial effect of the Z covariate corresponds to testing
Ho: myz(z) = const, z € Z. (8.3

If it can be assumed that the covariates at hand (Z and V') influence only the (conditional) response
(Y) expectation and not other characteristics of the conditional distribution of the response given
the covariates (as it is for example the case of a normal linear model), then the null hypothesis (8.3)
corresponds to conditional independence between the response Y and the Z covariate given the
remaining covariates V' (given an arbitrary value of the remaining covariates).

8.1.3 Additivity in a linear model

In a context of a linear model, both mz and my are chosen to be linear in unknown (regression)
parameters and the corresponding model matrix is decomposed as

X = (x7, xXV),

where X7 corresponds to the regression function m and depends only on the covariate values Z,
and XV corresponds to the regression function my and depends only on the covariate values V.
That is, the response expectation is assumed to be

E(Y|Z, V) =X?B+XY~,

for some real vectors of regression coefficients 3 and ~.

Matrix XZ and the regression function m then correspond to parameterization of a single covari-
ate for which any choice out of those introduced in Sections 7.3 and 7.4 (or others not discussed
here) can be used plus possibly an intercept column. In most practical situations,

rank(X?) > 2, 1, e M(X7).

Model with the model matrix
X0 = (1,, XV)

is then a submodel of the model with the model matrix X = (X#, XV') and corresponds to the
regression function

mo(z, v) = Bo + my (v), (z, UT)T e ZxV.

Hypothesis (8.3) of no partial effect of the Z covariate and conditional independence between the Z
covariate and the response Y given the remaining covariates V' corresponds to testing a submodel
with the model matrix X = (1,,, XV') againts a model with the model matrix X = (X%, XV').

v parcialni efekt
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8.2

Additivity of the effect of a numeric covariate

Remember that with additivity of the Z and the V' covariates, the regression function m(z, v), the
related model matrix X of the linear model and expression of the conditional mean of the response
vector Y are

EY|Z=2V=v)=m(z,v) = mz(z) + my(v),
X = (XZ, XV>,
E(Y |2, V) = X?8 + XVYq,

where XZ = t#(Z) is based on some transformation tZ of the Z covariates, X¥ =tV (V) is based
on some transformation ¢V of the V' covariates and (3 and ~ are unknown regression coefficients.

Let us now assume that Z is a numeric covariate with Z C R. While limiting ourselves to
parameterizations discussed in Section 7.3, the matrix X% can be

()

(i)

X% = (1n, S% ), where SZ is a reparameterizing matrix of a parameterization

Sz = (81, cee, Sk_l)T D Z 5 RFT
having a form of either

(a) a simple transformation (Section 7.3.1);
(b) raw polynomials (Section 7.3.2);

(c) orthonormal polynomials (Section 7.3.3).

If we denote the regression coefficients related to the model matrix XZ as 8 = (Bo, 51,

T . . .
o ﬁk_l) , the regression function is

m(z, v) = fo + B s1(z) + -+ + Br—1 5k—1(2) + my(v), (, UT)T €ZxV, (84

which can also be interpreted as
m(z, v) =y(v) + Brsi(z) + - + Br-15k-1(2), (07) €ZxV,

where yo(v) = Bo + mv (v).

In other words, if a certain covariate acts additively and its effect on the response is described
by parameterization sz then the remaining covariates V' only modify an intercept term in
the relationship between the response and the covariate 7.

X% = BZ, where BZ is a model matrix (7.11) of the regression splines By, ..., By. With the
regression coefficients related to the model matrix B being denoted as 3 = (ﬂl, e Bk)T,
the regression function becomes

m(z, v) = 1 B1(2) + -+ + Br Br(2) + my(v), (z, 'UT)T €ZxV, (8.5)

where the term my (v) can again be interpreted as an intercept vo(v) = my (v) in the
relationship between response and the covariate Z whose value depends on the remaining
covariates V.
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8.2.1 Partial effect of a numeric covariate

With the regression function (8.4), the partial effect of the Z covariate on the response is determined

by a set of the non-intercept regression coefficients 8% := (ﬁl, ce ﬁk_l)T. The null hypothesis

Hy: B =0,

then expresses the hypothesis that the covariate Z has, conditionally given a fixed (even though
arbitrary) value of V', no effect on the response expectation. That is, it is a hypothesis of no partial
effect of the covariate Z on the response expectation.

With the spline-based regression function (8.5), the partial effect of the Z covariate is expressed by
(all) spline-related regression coefficients (31, ..., Bi. Nevertheless, due to the B-splines property
(7.8), the null hypothesis of no partial effect of the Z covariate is now

Hy: B1=---=p.
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8.3 Additivity of the effect of a categorical covariate

Remember again that with additivity of the Z and the V' covariates, the regression function
m(z, v), the related model matrix X of the linear model and expression of the conditional mean
of the response vector Y are

E(Y|Z =2V =v)=m(z v) mz(z) + my(v),

x = (x4, xv), 8.6
E(Y |z, V) = X?8 4+ XV4,

where XZ = t#(Z) is based on some transformation tZ of the Z covariates, XV = tV (V) is based
on some transformation ¢V of the V' covariates and 3 and ~ are unknown regression coefficients.

Assume now that Z is a categorical covariate with Z = {1, ..., G} where Z =g, g =1, ..., G, is
repeated n,-times in the data which are assumed (without loss of generality) to be sorted according
to the values of this covariate. The group means used in Section 7.4 must now be understood
as conditional group means, given a value of the covariates V', and the regression function (8.6)
parameterizes those conditional group means, i.e., for v € V:

m(l,v) = EY|[Z=1,V=v) = m(v),
: : 8.7)
m(G,v) = E(Y|Z=G,V=v) = mgv).
Let T
m(v) = (ml('v), e mg(v))

be a vector of those conditional group means if the remaining covariates take a value V = v.

The matrix XZ can be any of the model matrices discussed in Section 7.4. If we restrict ourselves
to the full-rank parameterizations introduced in Section 7.4.4, the matrix X< is

1o, ®cf
XZ = (1n> SZ)v SZ = 3
1, ® cg
where ci, ..., cg € RE! are rows of a chosen (pseudo)contrast matrix
cf
C=]:
e
If B = (ﬁg, B, .., BG_l)T denotes the regression coefficients related to the model matrix
XZ = (ln, S% ) and we further denote 3% = (61, e Bg_l)T, the conditional group means are,
for v € V, given as
mi(v) = fo+elB7+my(v) = 0(v)+ef B
(8.8)
mg(v) = Bo+eLB?+my(v) = vo(v)+elB?,

where vo(v) = o + my(v), v € V. In a matrix notation, (8.8) becomes

m(v) = 1gy(v) + CB%. (8.9)
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8.3.1 Partial effects of a categorical covariate

In agreement with a general expression (8.2), we have for arbitrary v € V and arbitrary g1, go € Z:

EY|Z=g1,V =v)—E(Y

Z:927V:”) = Mg, (v) — myg,(v)

Tz
= (Cgl - cgz) B,
which does not depend on a value of V' = v. That is, the difference between the two conditional
group means is the same for all values of the covariates in V.

(8.10)

Terminology (Partial effects of a categorical covariate).

If additivity of a categorical Z covariate and V' covariates can be assumed, a vector of coefficients
37 from parameterization of the conditional group means (Egs. 8.8, 8.9) will be referred to as
partial effects of the categorical covariate.

Note. 1t should be clear from (8.10) that interpretation of the partial effects of a categorical
covariate depends on chosen parameterization (chosen (pseudo)contrast matrix C).

If the Z covariate acts additively with the V' covariate, it makes sense to ask a question whether
all G conditional group means are, for a given v € V, equal. That is, whether all partial effects of
the Z covariate are equal to zero. In general, this corresponds to the null hypothesis

Ho: mi(v) =--- = mg(v), ve). (8.11)

If the regression function is parameterized as (8.8), the null hypothesis (8.11) is expressed using the
partial effects as

Hy: 8% = 0¢_1.

8.3.2 Interpretation of the regression coefficients

Note that (8.8) and (8.9) are basically the same expressions as those in (7.19) in Section 7.4.4. The
only difference is dependence of the group means and the intercept term on the value of the
covariates V. Hence interpretation of the individual coefficients 8y and 3% = (51, e BG_l)T
depends on the chosen pseudocontrast matrix C, nevertheless, it is basically the same as in case
of a single categorical covariate in Section 7.4.4 with the only difference that

(i) The non-intercept coefficients in 3% have the same interpretation as in Section 7.4.4 but
always conditionally, given a chosen (even though arbitrary) value v € V.

(i) The intercept Sy has interpretation given in Section 7.4.4 only for such v € V for which
my (v) = 0. This follows from the fact that, again, for a chosen v € V, the expression (8.8)
of the conditional group means is the same as in Section 7.4.4. Nevertheless only for v such
that my (v) = 0, we have Sy = yo(v).

Example 8.1 (Reference group pseudocontrasts).

If C is the reference group pseudocontrasts matrix (7.22), we obtain analogously to (7.23), but now for
a chosen v € V, the following

Potmy(v) = () = mv),

P = ma(v) —mi(v),

Ba-1 = mel(’U)_ml(’U)
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Example 8.2 (Sum contrasts).

If C is the sum contrasts matrix (7.24), we obtain analogously to (7.25), but now for a chosen v € V),
the following

Bo+my(v) = () = mv),
B = mi(v) —m(v),
Ba-1 = mg-1(v) —m(v),

where

_ 1 &
m(v) = G;mg('v), veV.

If we additionally define ag = — Z?Z_ll Bg, we get, in agreement with (7.26),

G-1

ag = =Y By = ma(v) —m(v).

g=1
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8.4 Effect modification and interactions

8.4.1 Effect modification

From now onwards, we will assume that the covariate vectors are
(20, Wi, V) o (2, Wa, V)T € 2XWxY, ZCR,WCR, VCRZ p>2.
As usual, let

Y Z Wy V]

denote vectors/matrices collecting the response variables and covariate values for the n data points.

Finally, let (as always), Y denote a generic response variable and (Z, W, VT)—r € ZxWxVbe
a generic covariate vector. In this and the following sections, we will assume that the regression
function is

E(Y ‘ Z=z,W=wV = v) =m(z, w, v) = mzw(z, w) + my(v), (8.12)
(z,w,vT)TEZxWXV,

where my : V — R is some measurable function and mzy : Z x W — R is a measurable
function that cannot be factorized as mzw (z, w) = mz(z) + mw(w). We then have for any
fixed v € V.

EY|[Z=z2+1,W=w,V=v)-EY|[Z=2W=uwV =)

=mzw(z+ 1, w) —mzw(z, w), (8.13)

EY|[Z=2,W=w+1,V=v)-EY|[Z=2W=uwV =)
=mzw(z, w+1) —mzw(z, w), (8.14)
z€Z, weWw,

where (8.13), i.e., the effect of a covariate Z on the response expectation possibly depends on the
value of W = w and also (8.14), i.e., the effect of a covariate W on the response expectation
possibly depends on the value of Z = 2. We then say that the covariates Z and W are mutual
effect modifiers.

8.4.2 Effect modification in a linear model

In a context of a linear model, both m 71> and my are chosen to be linear in unknown (regression)
parameters and the corresponding model matrix is decomposed as

X - (XZW’ XV)’
EY|Z=2W=wV=v)=m(z, w,v) = mzw(z, w) + my(v),

where X?W = t?W (7, W) corresponds to the regression function m zy and results from a certain
transformation t2" of the Z and W covariates, and XV = ¢V (V) corresponds to the regression

2 modifikdtory efektu
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function my and results from a certain transformation ¢¥ of the V covariates. In the rest of this
section and in Sections 8.5, 8.6 and 8.7, we show classical choices for the matrix X4" based on
so called interactions derived from covariate parameterizations that we introduced in Sections 7.3

and 7.4. End of
Lecture #11
. (03/1/2016)
8.4.3 Interactions
Start of
Suppose that the covariate Z is parameterized using a parameterization Lecture #13
- (10/11/2016)
sz=(s%, ..., sF,) : Z— R (8.15)
and the covariate W is parameterized using a parameterization
sw=(s\,....s")" W — R 8.16)
and let SZ and S" be the corresponding reparameterizing matrices:
s, (Z1) s (Wh)
. k— . I—
S? = : = (Sy, ..., 8%, sV = : = (Siy, ..., Si).
s5(Zn) Sjv;/(Wn)
Definition 8.2 Interaction terms.
Let (Zl, Wl)T, ey (Zn, Wn)T € Z x W C R? be walues of two covariates being parameterized
using the reparameterizing matrices S and S . By interaction terms® based on the reparameterizing
matrices S and SV we mean columns of a matrix
SV =% sV,
Note. See Definition A.5 for a definition of the columnwise product of two matrices. We have
IW _Z.gW _ 1.ql k-1 . gl 1. ql-1 k—1 . ql—1
SPW =578V = (Sy:Sw,.... 8% Sy, ..., S;: Sy, ..., Sy Sy
sy (Wh) @ s3(Z1)
Sy (Wn) ® Sg(Zn)
s{(Z1) st W) - sy (Z0) st (W) - s{(Z0) 8L (W) - siy(Zh) )Y, (Wh)
Slz(Zn) Sll/v(Wn) T 35—1(Zn) Sll/v(wn) T 31Z(Zn) SKI(Wn) e Sf—l(zn) Sg/zl(wn)

3 interakéni cleny
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8.4.4 Linear model with interactions

Remember that we are now assuming that the regression function m(z, v) is decomposed as
m(z, w, v) = mzw(z, w) + my(v). In context of a linear model, all factors of the regres-
sion function are chosen to be linear in the unknown model parameters and are determined by
corresponding model matrices:

E(Y ’ Z=z,W=w,V=v)=m(z,w,v) = mzw(z,w) + my(v),

X = (XZW, XV>, 17

where X?W = t?W (7, W) is based on some transformation " of the Z and W covariates and
XV =tV (V) is based on some transformation ¢" of the V' covariates.

Interaction terms in parameterization of the myzy part of the regression function, i.e., in the
matrix X" are used inside the linear model to express a certain form of the effect modification.
If1, ¢ S% and 1, ¢ SW, the matrix X4V from (8.17) is usually chosen as

X*W = (1,, s%, sV, V), (8.18)

which, as will be shown, corresponds to a certain form of the effect modification. Let the related
regression coefficients be denoted as

Z Z W ZW ZW ZW T
/3:(601 /317"'7/8]@717 51 ) "'76[ 1> 611 sorery Mk—=1,10 =+ MP1l—=1> =+ > ]cfl,lfl) .
::fﬁZ —. ,BW _. EZW

That is, the regression function is

m(z, w,v) = Bo + BEsZ(2)+- +BF1sf (8.19)
+ B sV (w) -+ B 8
+ B T (2) s (w) + - + 87y sia(2) st (w)
+ -+ 511 L s7(z )Sﬁl(w)+"'+5ICZF{,1713§71(Z)3}/K1(W)

+ my(v)

= Bo + sz(2)B7 + spw)BY + (spw)®sy(z)) B + my(v),

S—ZFW(Zv w)

(z,w,vT)TEZxWXV,

where sz (2, w) = sw(w) @ sz(z), (=, w)T € ZxW.

Main and interaction effects

Coefficients in 3% and 3" are called the main effects' of the covariate Z and W, respectively.

Coefficients in 34" are called the interaction effects.”

Y hlavni efekty ° interakcni efekty
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The effects of the covariates Z or W, given the remaining covariates are then expressed as
EY|[Z=z2+1,W=w,V=v)-EY|[Z=2W=uwV =)
={sz(z+1) — sz(z)}T,BZ + {szw(z+1, w) — szw(z, w)}TﬂZW, (8.20)
EY|[Z=2,W=w+1,V=v)-EY|[Z=2W=uwV =)
= {sw(w+1) — sww)} BY + {szw(z, w+1) — szw(z w)} 67V, ©2)
z€Z, weW.

That is, the effect (8.20) of the covariate Z is determined by the main effects 3% of this covariate
as well as by the interaction effects ,BZ W Analogously, the effect (8.21) of the covariate W is
determined by its main effects 3" as well as by the interaction effects 32"

Hypothesis of no effect modification

If factor mzy (2, w) of the regression function (8.17) is parameterized by matrix X#"' given by
(8.18) then the hypothesis of no effect modification is expressed by considering a submodel in
which matrix X?W is replaced by a matrix

XZHW — (1,, §7, sW).

8.4.5 Rank of the interaction model

Remind that we assume in the whole lecture that the number of rows n of all considered model
matrices is higher than the number of columns and hence the rank of all such matrices is equal to
their column rank.

Lemma 8.1 Rank of the interaction model.

(i) Let rank((SZ, SW)) =k+1—2, ie, all columns from the matrices SZ and SV are linearly

independent and the matrix (SZ , SW) is of full-rank. Then the matrix SV = §% :SW is of
full-rank as well, i.e.,
rank(S?V) = (k—1)(1 - 1).

(ii) Let additionally 1,, ¢ M(SZ), 1, ¢ M(SW). Then also a matrix X4V = (1n, sZ, sW, SZW)
is of full-rank, i.e.,

rank(X?W) = 14+ (k-1)+ (-1 + (k-1 (1-1) = kL

Proof. Left as exercise in linear algebra.

Proof/calculations were skipped and are not requested for the exam.
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Note (Hypothesis of no effect modification).

Under the conditions of Lemma 8.1, we have for X%V = (1n7 S, sV, SZW) and X4tW =
(1n, SZ, SW):

rank(X?") = k1, rank(X7TW) =14+ (k—-1)+(1-1)=k+1-1,
M(XZHW) c M(XPV).

If the hypothesis of no effect modification is tested by a submodel F-test then its numerator degrees
of freedom are
El—k—14+1=(k-1)-(1-1).

The corresponding null hypothesis can also be specified as a hypothesis on the zero value of an
estimable vector of all interaction effects:

Ho: 87" = 03_1).q-1)-

8.4.6 Interactions with the regression spline

Either the Z covariate or/and the W covariate can also be parameterized by the regression splines.
In that case, the interaction terms are defined in the same way as in Definition 8.2. As example,
consider situation where the W covariate is parameterized by the regression splines

-
By = (B, ..., B")
with the related model matrix
By (W)

BW: . :(Bll/V77B{/V)7

By (W)

and the Z covariates by the parameterization (8.15) and the reparameterizing matrix S# as usual.
In that case, the interaction terms are columns of a matrix

BW =sZ:BY = (S,:Bjy, ..., Sy By, ..., S8, :BYy, ..., S5 . B}

By, (Wh) ® s (Z1)

By (W) . 55 (Zn)

s{(Z1)BY (Wh) -+ sf_((Z1) BY (Wh) -+ sT(Z1) BY (Wh) -+ sp_y(Z1) B)Y (Wh)

31Z(Zn) B}/V(Wn) 55—1(Zn) BF/(Wn) 31Z(Zn> BZW(WTL) S%—l(zn) BIW(WH)
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Interaction model with regression splines

We have 1,, € M(BW) and also M(SZ) C M(BZW) for BZW = SZ . BW (see also Sec-
tion 8.5.3). That is,
M( (10, 87, BY, BZY) ) = M((BY, BZY)).

It is thus sufficient (with respect to obtained regression space) to choose the matrix X?" as
XZW — (BW, BZW)

Let the related regression coefficients be denotes as

ﬂ:(ﬁfvv"'aﬁl ) 117"'75]@ 117"'751l a"'?Bkll)
—_——
The regression function is then
m(z, w,v) = BY BYY(w)+---+ B B (8.22)
+ BV sT(2) BY (w) + -+ + B 1 571 (2) BY (w)
+ o+ B ST () BY (w) + -+ B st (2) BY (w)
+ my(v)

= By (w)8Y + (By(w)@si(z) B + my(v),

BEW(Z’ w)

(z,w,vT)TEZxWXV,

where By (2, w) = By (w) @ sz(2), (z, w)T € Z X W.

No effect modification with the regression splines
The effect of the Z and W covariate, respectively, on the response expectation is
E(Y‘Z:z—i—l, W:w,V:v) — E(Y‘Z:z,W:w, V:v)
{Bz(z+1) — BZ(Z)}TBZ + {Bzw(z+1, w) — Bzw(z, w)}TﬁZW,

EY|Z=2,W=w+1,V=v) —EY|Z=2W=uw,V =0v)

{BZW(z, w+1) — Bzw(z, w)}T,@ZW, (z, w, 'UT)T e ZxWxV.
Due to the fact that 1,, € M(IB%Z), we have M(SW) C M(IB%ZW) = M(BZ : SW). Furthermore,
let for g% = (51 Y ey Blvfl)—r € R~ a vector ng be defined as
W, Bl B, BT 8.23)

k-times k-times
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Then (due to 1,, € M (IBZ)), we have

{Bzw(z +1,w) — Bzw(z, w)} BEY =0,
{Baw(z, w+1) — Baw(z, w)} BFY = {sw(w+1) — sw(w)} 87,
(, w)T €ZxW.

In terms of a linear model, situation when B%" has a form of (8.23) corresponds to replacing
the B4 block in the model matrix X?", which parameterizes the m zy factor of the regression
function by S That is, hypothesis of no effect modification corresponds to a submodel in which
the matrix X?W = (IB%W, BZ W) is replaced by a matrix

XZ+W — (BW7 SZ)

Rank of the models

With respect to the rank of the resulting models, analogous statements hold as those given in
Lemma 8.1. Remember that the matrix SZ has in general k — 1 columns, the matrix BY has [
columns. Suppose that the matrices S# and B" are such that

rank(XZ+W) = rank((IB%W, SZ)> =1l+k-1,

that is, the columns from the matrices S# and B" that parameterize the Z and the W covariate,

respectively, are all linearly independent (which is satisfied in most practical situations). Analogously
to Lemma 8.1, it can then be shown that both BZ" = S§Z:BW and X4W = (]BW, ]B%ZW) are of
full-rank, i.e.,

rank(B?") = rank(SZ:B") = (k—=1)1,

rank(XZ) = rank((B", BZY)) = 1+ (k1) = kL

Test of hypothesis of no effect modification has then ki — {I+(k—1)} = (k—1)- (I — 1) degrees
of freedom.
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8.5 Interaction of two numeric covariates

In this and two following sections, we discuss in more detail situation when the two covariates
that are mutual effect modifiers are (i) both numeric, (ii) one of them numeric and one of them
categorical (Section 8.6), (iii) both categorical (Section 8.7). We mainly focus on interpretation of the
model parameters when the effect modification is modeled by interaction terms of a linear model.

First, we shall consider a situation when both Z and W are numeric covariates with Z C R,
W C R. As in the whole chapter, there are possibly other covariates available, being given by the
vector V. € YV C RP~2, p > 2. The regression function is assumed to be

E(Y ‘ Z=z,W=w,V = 'v) =m(z, w, v) = mzw(z, w) + my(v),
(z,w,'vT)TGZXWXV,

leading to the model matrix
X = (X" xV), (8.24)

where X?W = t“W (7, W) corresponds to the regression function m zy- and results from a certain
transformation t#" of the Z and W covariates, and XV = ¢V (V) corresponds to the regression
function my and results from a certain transformation ¢tV of the V' covariates. The response
vector expectation is

E(Y |X) =E(Y|Z, W, V) =X?"3 +X"~,

where 3 and ~ are unknown regression parameters.

8.5.1 Linear effect modification

Suppose first that SZ is a reparameterizing matrix that corresponds to a simple identity trans-
formation of the covariate Z. For the second covariate, W, assume that the matrix SV is an
n x (I — 1) reparameterizing matrix that corresponds to the general parameterization (8.15), e.g.,
any of reparameterizing matrices discussed in Sections 7.3.1, 7.3.2 and 7.3.3. That is,

sz(z) = z, 2 € Z,
sw(w) = (s‘fv(w), ol sYKl(w))T, weW,
(8.25)
Z sy (W) sy (Wh) ... sV (W)
SZ = : s SW = . == : : : )
Z, sy (W) sV (W) ... sV (W)

If the mutual effect modification is expressed by the interactions, the matrix XZW from (8.24) is
given as

1 Z1 SE/V(WI) e 3}/‘_/1(W1) Z1 S‘{V(Wl) . Zl S}/K1<W1)
XZW —
1 Zn sV(Wy) ... sﬁl(Wn) ZnsWW,) ... Z, s}/zl(Wn)
~N = ~~

1, SZ SW SZW
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and the related regression coefficients are
Z pW W pZW Zwy T
B:(/B()’Bvﬁlv"wﬁl—lvﬁl 9 vty lfl) .
W zZW
B B

The regression function (8.19) then becomes

m(z, w,v) =B + p7z + B sV (w) + - + BY sV (w)

C TV )+ 4 Y () 4 my (o) 826
={Bo + sy (w)BY + my(v)} + (67 + sy (w)B8ZV) 2 8.27)
=: 7§ (w, v) =77 (w)

= {,30 + B4z —i—mv('v)}

= 7(1)/‘/(2;’ ’U)

+ (B + B 2) sV (w) + -+ (B + BT 2) sV (w),  (8.28)
—_—— N—_— ———

=912 =l (2)

(z,w,v)TEZxWxV

The regression function (8.26) can be interpreted twofold.

(i) Expression (8.27) shows that for any fixed w € W, the covariates Z and V' act additively
and the effect of Z on the response expectation is expressed by a line. Nevertheless, both
intercept 7 and the slope 7 of this line depend on w and this dependence is described
by the parameterization sy;. The intercept is further additively modified by a factor my (v).

With respect to interpretation, this shows that the main effect 5 has an interpretation of
the slope of the line that for a given V' = v describes the influence of Z on the response if
W = w is such that sy (w) = 0;_;. This also shows that a test of the null hypothesis

Hoi ﬁZZO

does not evaluate a statistical significance of the influence of the covariate Z on the response
expectation. It only evaluates it for values of W = w for which sy (w) = 0;_1.

(ii) Analogously, expression (8.28) shows that for any fixed z € Z, the covariates W and V act
additively and the effect of I on the response expectation is expressed by its parameteriza-
tion sy . Nevertheless, the related coefficients (v, 7}V, ..., 7]",) depend in a linear way
on z. The intercept term is 7" further additively modified by a factor my (v).

With respect to interpretation, this shows that the main effects 3" has an interpretation of
the coefficients of the influence of the W covariate on the response if Z = 0. This also
shows that a test of the null hypothesis

Ho: BV =0,

does not evaluate a statistical significance of the influence of the covariate W on the response
expectation. It only evaluates it under the condition of Z = 0.
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8.5.2 More complex effect modification

More complex effect modifications can be obtained by choosing a more complex reparameterizing
matrix SZ for the Z covariate. Suppose that

s7(2) = (s2(2), ..., sZ,(2)) |,  z€Z,
sw(w) = (s (w), ..., sV, (w) ', wew,
) sy (Z1) sP(Z1) ... s (Z)
sS4 = : = : : : ’
s}('Zn) sf(én) sffl.(Zn)
5 sy (Wh) sy (Wh) ... sl (W)
oW _ . _ . . . |
) \som) s n)

and as before, the matrix X?" is given as X" = (1717 SZ, sW. SZW), where SV = §Z.SW,

The regression coefficients related to the matrix X?" are now

/6:(505 IBIZ""7BkZ—17 B}jvu"')ﬁl 1 /611 )"'75k 115"')B1l 1)"'7/Bk 1l 1)T7
/BZ BW I@ZW

and the regression function is

m(z, w,v) = Bo + BEsT(z) + - + ﬁszl 5571(2)

+ B sV (w) + -+ B s (w)

+ BEY sT(2) st (w) + -+ B s (z) s (w) + -
+ 51ZIW151Z( )3K1(w) +/8k: 10— 1Sk 1(2 )Slw—/l(w)
+ my(v)

= Bo + 52(2)87 + sy(w)B” + (sy(w) ® s5(2))87" + my(v),

(z,w,vT)TGZxWxV.

Interpretation of such a model is then straightforward generalization of the situation described
in Section 8.5.1. Namely, the regression function can be written to see that the W covariate is
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a modifier of the effect of the Z covariate:

m(z, w, v) = {Bo+ sy (w)B” +mv(v)} + (B + sy (w)BLY) s7(2)

~~

=& (w, v) =97 (w)

4+ -4+ (55714‘31;/(7””) ]CZl/I]/:O) 51?71(2)7

= ’YkZ—l(w)
(z,w,vT)TGZxWxV,

where the effect of Z on the response expectation is given by the function sz, and ﬁjZ.W =

T .
(jZ,{/V>"'7 jZ,lIi/l) ,]:1,...,]-6—1_

Analogously, the regression function can also be written to see that the Z covariate is a modifier
of the effect of the W covariate:

m(z, w,v) = {Bo+s5(2)B7 +my(v)} + (B +s3(2)BLY) st (w)

= (2, v) =91 (2)

+ o 4 (B +54(2)B88M) sV (w),

= 'Ylvlll(z)
(z,w,vT)TEZxWxV,

where the effect of W on the response expectation is given by the function sy, and ,B,ZJW =

(B8, BEN ) i =1l

8.5.3 Linear effect modification of a regression spline

Let us now again assume that the covariate Z is parameterized using a simple identity transforma-
tion and the reparameterizing matrix S is given as in (8.25). Nevertheless, for the covariate W, let
us assume its parameterization using the regression splines

Bw=BY,...,B")"
with the related model matrix
By (W) BYY(W1) ... BY(W)
BYW — : _ . . .
By (Wy) By (W,) ... Bl (Wy)

Analogously to previous usage of a matrix S*'V, let a matrix B" be defined as

ZiBY (W) ... ZiBY (W)
BZW:SZ:]BW: . . .

Zy,BY (Wy) ... Z,BY(W,)

Remember that for any w € W, Zé‘:1 B]W(w) = 1 from which it follows that
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i 1, € BY;
(i) M(S%) € M(BZW).
That is,
M((ln, sZ BY, IB%ZW)) - M((IB%W, ]B%ZW)>. (8.29)

Hence if a full-rank linear model is to be obtained, where interaction between a covariate pa-
rameterized using the regression splines and a covariate parameterized using the reparameterizing

matrix S% = (Zl, e Zn)—r is included, the model matrix X" must be of the form
BYWy) ... BYW1)  ZiBY(W1) ... Zy BV (Wy)
X7 = (8%, B7Y) = P . ; .
BY(W,) ... BYW,) Z,BY(W,) ... Z,B"(W,)
BW BZW

If we denote the related regression coefficients as
w W pZW ZWN T
B:(ﬁ17'-->ﬁl ' M1 s Ml ) )
_. ,BW _. BZW

the regression function (8.19) becomes

+ BV BY (w) + -+ + BEV 2BV (w) + my(v) (8.30)
= {BTW(w)BW + my(v)} + B, (w)B%V 2 (831
=: ’yOZ(w, v) =77 (w)

=B +B7"2) Bl (w) + -+ (B + 8"V z) B (w) + my(v), (832
~— ———— N—_———

=" (2) =" (2)
N
(z,w,v) €ZxWxV.

The regression function (8.30) can again be interpreted twofold.

(i) Expression (8.31) shows that for any fixed w € W, the covariates Z and V' act additively
and the effect of W on the response expectation is expressed by a line. Nevertheless, both
intercept 7 and the slope ¢ of this line depend on w and this dependence is described by
the regression splines Byy. The intercept is further additively modified by the factor my (v).

(ii) Analogously, expression (8.32) shows that for any fixed z € Z, the covariates W and V' act
additively and the effect of W on the response expectation is expressed by the regression
splines Byy. Nevertheless, related spline coefficients (’y{/v e 71W ) depend in a linear
way on z With respect to interpretation, this shows that the main effects 3" has an

interpretation of the coefficients of the influence of the W covariate on the response if
Z =0.
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8.5.4 More complex effect modification of a regression spline

Also with regression splines, a more complex reparameterizing matrix S based on a transformation
Sy = (51, e sk_l)T can be chosen. The property (8.29) still holds and the matrix X4" can still
be chosen as (B, BZ"), B = SZ:B". Interpretation of the model is again a straightforward
generalization of the situation of Section 8.5.3.
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8.6 Interaction of a categorical and a numeric covariate

Consider now a situation when Z is a categorical covariate with Z = {1, ..., G} where Z = g,
g =1,..., G, is repeated ny-times in the data and W is a numeric covariate with YW C R.
As in the previous sections, there are possibly other covariates available, given by the vector
V €V CRP2 p> 2. As before, the regression function is assumed to be

EY|Z=2W=wV =v) =m(z, w, v) =mzw(z, w) + my(v), (8.33)
(z,w7vT)T€ZxWxV,
leading to the model matrix
X = (}gZVV7 XV),

where XZW = t?W (7, W) corresponds to the regression function m 2y and results from a certain
transformation t#" of the Z and W covariates, and XV = ¢V (V) corresponds to the regression
function my and results from a certain transformation " of the V covariates. The response
vector expectation is

E(Y|X)=E(Y|Z, W, V) =X?"3+ X4,

where 3 and - are unknown regression parameters.

In the following, we will assume (without loss of generality) that data are sorted according to the
values of the categorical covariate Z. For the clarity of notation, we will analogously to Section 7.4
use also a double subscript to number the individual observations where the first subscript will
indicate the value of the covariate Z. That is, we will use

Al AR 1 Wi Wi

an A n1 1 Wn1 Wl,n1
Zn—nc+l ZG,l G Wn—ng—i—l WG,I

Zn ZG’,nG G Wn WG,nG

If the categorical covariate Z can be interpreted as a label that indicates pertinence to one of the
G groups, the regression function (8.33) in which the value of z is fixed at z =g, g =1, ..., G,
can be viewed as a regression function that parameterizes dependence of the response expectation
on the numeric covariate W and possibly other covariates V' in group g. We have for w € W,
vew:

m(l, w, v) = E(Y’Zzl, W=wV=v) = mw, v),
: : (8.34)
m(G, w, v) = E(Y‘Z:G, W =w, V:U) = mg(w, v).
Functions my, ..., mg are then conditional (given a value of Z) regression functions describing

dependence of the response expectation on the covariates W and V.
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Alternatively, for fixed w € W and v € V, a vector
m(w7 U) - (ml(w7 ’U), s mG(w7 v))T

can be interpreted as a vector of conditional (given W and V') group means.

In the following assume that the categorical covariate Z is parameterized by the mean of a chosen
(pseudo)contrast matrix

T
clT Cc1 = (01,1, cey Cl,G—l) s 1, ®c1T

C=1:1, : that is, S% =

T T T
el Cg = (CG,la cey CG,Gfl) , lnG ® el

8.6.1 Categorical effect modification

First suppose that the numeric covariate 1 is parameterized using a parameterization

Sy = (s‘fv, N sYKl)T c W — R
SW is the corresponding n x (I — 1) reparameterizing matrix. Let S}", ..., S{¥ be the blocks of
the reparameterizing matrix S that correspond to datapoints with Z =1, ..., Z = G. That is,
forg=1, ..., G, matrix SZV is an ng x (I — 1) matrix,
s1y(Wo,1) sV (Wea) oo s (Wea) sy
s—ll/;/(Wg7ng) S‘l/V(WgﬂTg) R S}/‘—/l(Wgang) Sg/

When using the interactions between the Z and W covariates to express their mutual effect
modification, the matrix X#"W that parameterizes the term m_zy (2, w) in the regression function

(8.33) is again
XZW — (17% SZ, SW, SZW),

where the interaction matrix S*" = SZ:SW is an n x (G — 1)(I — 1) matrix:

c1,1 S¥V(W171) c1,6-1 s‘fV(Wl,l) c1,1 slVZI(WM) ce.C,6-1 slVKl(WM)
c11 SYV.(WL,H) ce.C1,G-1 s‘{;/(Wl,nl) | an sYKl.(Wlm) L. CcL,e-1 sviil(WLnl)
SZW I
oSV (Wen) oo oo s Wean) | o | corslsWen) o oo sa(Wan)
ca,1 s‘fV(WGnG) corcaa-187 Wamg) | -+ | ca1slVa(Wang) -+ caa151(Wan,)
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s1 Wi1)e SZVL(WLI)Cl

s1 (Win,) e SIVK1(WLn1)Cl

———————————————— SV ® ¢f
w T

________________ SG ® CG

s1 (Waa) eg siv1(Waa) e

sV (Wang) el - 811 (Wang) €6

The model matrix X4W which parameterizes the mzyy factor in the regression function (8.33) is
then

1,, 1,, ®c] sV SV ®ef
XZW — (177,7 SZ, SW, SZW) —
1, 1,,® cg Sg;v Slév ® cg

with the related regression coefficients being

ﬂ:(B07 BIZa"')Bg—lv Byvv"'alﬁl 1 ﬂll a"'vﬁG 115"‘7B1l 17"'7B§H/17l—1>—r'
:I/BZ ::/BW ::BZW

For following considerations, it will be useful to denote subvectors of the interaction effects B%"

as
W _ T
B (117"'76G117"'7 1l17"'75G 1l1) :

zZW
= Pel = :6

The regression function (8.33) is then given by
m(z,w,v) = o+ el B7 + sp(w)Bw + (si(w) @)Y + my(v),
(z,w,v") € ZxWxV. (835
Forz=g¢g,g=1,..., G, w €W and v € V, we can write the regression function (8.35) also as
m(g, w, v) = mg(w, v) = fo + ¢; B7 + B s\ (w) + -+ B 5" (w)

+ 51" (w) C;ﬂ.Z1W+"‘+5lVK1(w) chﬂ.sz_Vl + my(v). (8.36)

A useful interpretation of the regression function (8.36) is obtained if we view mg4(w, v) as a con-
ditional (given Z = g) regression function that describes dependence of the response expectation
on the covariates W and V' in group ¢ and write it as

mg(w, v) = {Bo + ¢, B7 + my(v)}

+ (B0 ¢y BEY) stV (w) + - + (B + ¢y BEY) sity (w). 837)

=: ng,l = 7g,l—1
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Expression (8.37) shows that a linear model with an interaction between a numeric covariate
parameterized using a parameterization sy and a categorical covariate can be interpreted such
that for any fixed Z = g, the covariates W and V' act additively and the effect of W on the
response expectation is expressed by its parameterization sy. Nevertheless, the related coefficients
depend on a value of a categorical covariate Z. The intercept term is further additively modified
by a factor my (v).

In other words, if the categorical covariate Z expresses pertinence of a subject/experimental unit
into one of G groups (internally labeled by numbers 1, ..., (), the regression function (8.37) of the
interaction model parameterizes a situation when, given the remaining covariates V', dependence
of the response expectation on the numeric covariate W can be in each of the G groups expressed
by the same linear model (parameterized by the parameterization sy), nevertheless, the regression
coefficients of the G linear models may differ. It follows from (8.37) that given Z = ¢ (and given
V = v), the regression coefficients for the dependence of the response on the numeric covariate
W expressed by the parameterization sy are

o) = Bo + ¢, B7 + my(v), (8.38)
v = B + ¢, 8L, j=1,...,0—1. 8.39)

Chosen (pseudo)contrasts that parameterize a categorical covariate Z then determine interpretation
of the intercept Sy, both sets of main effect 32 and 8" and also the interaction effects 32" This
interpretation is now a straightforward generalization of derivations shown earlier in Sections 7.4.4
and 8.3.

o Interpretation of the intercept term 3y and the main effects 3% of the categorical covariate Z
is obtained by noting correspondence between the expression of the group specific intercepts

’y%(’v), ., 7Y (v) given by (8.38) and the conditional group means (8.8) in Section 8.3.
e Analogously, interpretation of the main effects 3" and the interaction effects 34" is obtained
by noting that for each j = 1, ..., 1 — 1, the group specific “slopes” 'yK/j, cey fygf ; given by
(8.39) play a role of the group specific means (7.19) in Section 7.4.4.

Example 8.3 (Reference group pseudocontrasts).
Suppose that C is the reference group pseudocontrast matrix (7.22). While viewing the group spe-

cific intercepts (8.38) as the conditional (given V. = wv) group means (8.8), we obtain, analo-
gously to Example 8.1, the following interpretation of the intercept term [y and the main effects
3% = (Blz Y s ﬁgfl)T of the categorical covariate:
Bo+myv(v) = v,
B = 1) —(w),
55—1 = 7g-1,0(”)"7%(”)~
If for given j =1, ..., 1 — 1, the group specific “slopes” yﬂ/j, e vgvj given by (8.39) are viewed as

the group specific means (7.19) in Section 7.4.4, interpretation of the jth main effect BJW of the numeric

ZW

. . . : T,
covariate and the jth set of the interaction effects ,ZjW = ( WIEREEE ﬂg‘ivl j) is analogous to
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expressions (7.23):

gy = A7,
VA w w
;= T2 Ny
_ w w
5@ 1 = Yo-15 ~ Ny
End of
Lecture #13
Example 8.4 (Sum contrasts). (10/11/2016)

Suppose now that C is the sum contrast matrix (7.24). Again, while viewing the group specific intercepts Partial start
(8.38) as the conditional (given V' = wv) group means (8.8), we obtain, now analogously to Example 8.2, of Lecture #14
the following interpretation of the intercept term [y and the main effects 3% = (51 s ey 6571)T (16/11/2016)

of the categorical covariate:

Bo+my(v) = 73" (v),
B = o) =" (v),
Bé, = 78/71,0('“) - 7" (v),
where
1 G
TV w)= Y M), weV.
=1
If for given j = 1, ..., | — 1, the group specific ‘slopes” 'yK/j, cey ’yg{j given by (8.39) are viewed as
the group specific means (7.19) in Section 7.4.4, interpretation of the jth main effect ,BW of the numeric
covariate and the jth set of the interaction effects ,B,Z]-W = ( 17] Y e BG 1 1)T is analogous to
expression (7.26):
gy = 5",
o= ol
BEY, 1 = ’Yg:V—Lj -%",
where
1 G
— W
el Z Vg.j
g=1

Alternative, interpretation of the regression function (8.36) is obtained if for a fixed w € W and
v € V, the values of mg(w, v),g=1,...,G, are viewed as conditional (given W and V') group
means. Expression (8.36) can then be rewritten as

mg(w, v) = {Bo + sy (w)B" + my(v)} +e5 {B7 + stV (w)BY + -+ 51V, (w)BIY,

Z*(

=: 7§ (w, v) ¥ (w)
(8.40)

That is, the vector m(w, v) is parameterized as

m(w, v) = ’yOZ(w, v)lg + (C'yz*(w).
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And the related coefficients 77 (w, v), ¥?*(w) depend on w by a linear model parameterized by
the parameterization sy, the intercept term is further additively modified by my (v). Expression
(8.40) perhaps provide a way for the interpretation of the intercept term Sy and the main effects B%.
Nevertheless, attempts to use (8.40) for interpretation of the main effects 8" and the interaction
effects 32" are usually quite awkward.

8.6.2 Categorical effect modification with regression splines
Suppose now that the numeric covariate W is parameterized using the regression splines

Bw=BY,...,B")"

with the related model matrix B" that we again factorize into blocks B}", ..., BY that correspond
to datapoints with Z =1, ..., Z = G. That is, for g = 1, ..., G, matrix IB%ZV is an ny x [ matrix,
By (W) Bl (Wg1) ... BY(Wy) By
IB;‘g/V = : = : : : and BY =| :
B%<ngng> B}/I/(Wgyng) M BZVV(Wg)ng) ]:Bg

Let BY = SZ.BW which is an n x (G — 1)I matrix:

6171 BYV(Wl,l) Cl,G—l BYV(WLl) 61,1 BZ‘/V(Wl’l) Cl,G—l BZVV(WLl)
c1,1 By (Win,) c1,a-1 Bi" Win,) c11 B (Win,) c1,6-1 B Win,)
BZW —

Ca,1 BYV(WGJ) N CG,G—-1 BYV(WGJ) e Ca,1 Bl‘/V(WGJ) e CG,G-1 B;/V(WGJ)
cc1BY Weng) .. caa-1BY Wene) | -+ | ca1 BY Wamg) - cac-1B (Wan,)

BYV(WLl) Cir PN BIVV(WLl) ClT

BY (Wi, e BlY (Win,)e

1 1,n1) €1 l 1,n1) €1
———————————————— BY ® ¢/
———————————————— IB%V ® cg
T
Bl (We,) e B (Wa,) ey
B}/V(WGJLG) Cg T BIW(WGJ%G) cg

As in Section 8.5.3, remember that for any w € W, 22:1 B]W (w) = 1 from which it follows that

G 1, € BY;
(i) M(S%) € M(BZW).
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Hence

M( (1, 87, BY, BZY)) = m( (B, B7Y))

and if a full-rank linear model is to be obtained that includes an interaction between a numeric
covariate parameterized using the regression splines and a categorical covariate parameterized by
the reparameterizing matrix S% derived from a (pseudo)contrast matrix C, the model matrix X%V
that parameterizes the term myzy (2, w) in the regression function (8.33) is

BY, B ®cf
XZW — (]BW, BZW) —

B, BY @ cg
The regression coefficients related to the model matrix X*" are

w
ﬂ:(ﬁla"'aﬂl ) 11a"'>BG 1,10 =+ <> 1k7"'7BG 1k)

_. BW . aZw ZW
: — Mel = Pek

— ,BZW

The value of the regression function (8.19) for z =g, g =1, ..., G, w € W, and v € V, i.e, the
values of the conditional regression functions (8.34) can then be written as

mg(w, v) = B B (w) + -+ 4" B" (w)
+ Bl (w) ey BAY + -+ B (w) ey BT + mv (v).
Its useful interpretation is obtained if we write it as
mg(w, v) = (B + ¢, B%") Bl () + - + (8" + ¢, B3Y) B (w) + mv (v),

_. W
- /Y_gl

)

%
= /Yg,k
which shows that the underlying linear model assumes that given Z = g, the covariates W and V'
act additively and the effect of the numeric covariate W on the response expectation is described
by the regression spline whose coefficients ’y;f/l, cee fygzg, however, depend on the value of the
categorical covariate Z. Analogously to Section 8.6.1, interpretation of the regression coefficients 3"
and 32" depends on chosen (pseudo)contrasts used to parameterize the categorical covariate Z.
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8.7 Interaction of two categorical covariates

Finally, we could consider a situation when both Z and W are categorical covariates with
zZ=A{1,..., G}, w={1,..., H}.

Analogously to Section 8.6, each of the two categorical covariates can classically be parameterized

by the means of (pseudo)contrasts, not necessarily of the same type for the two covariates at hand.

The interaction part of the model matrix is then created in the same way as before. Nevertheless, we

postpone more detailed discussion of the meaning of the related interaction terms into Chapter 9,

and in particular into its Section 9.2 which deals with so called two-way classification. End of
Lecture #14
(16/11/2016)
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8.8 Hierarchically well-formulated models, ANOVA tables

8.8.1 Model terms

In majority of applications of a linear model, a particular covariate Z € Z C R enters the regression
function using one of the parameterizations described in Sections 7.3 and 7.4 or inside an interaction
(see Defition 8.2) or inside a so called higher order interaction (will be defined in a while). As
a summary, depending on whether the covariate is numeric or categorical, several parameterizations
s were introduced in Sections 7.3 and 7.4 that with the covariate values Z1, ..., Z, in the data
lead to a reparameterizing matrix

s'(Z1) X1
S = . = : s
s (Zn) X,
where X1 = s(Z;), ..., X, = s(Z,,) are the regressors used in the linear model. The considered

parameterizations were the following.

Numeric covariate

(i) Simple transformation: s =s: Z — R with

S(Zl) X1 = X1 = S(Zl),
s=| : |=s), : (8.4)
S(Zn) Xn=X, = S(Zn>
(i) Polynomial: s = (s1, ..., sk_l)T such that s;(z) = P’(z) is polynomial in z of

degree j, 5 =1,...,k — 1. This leads to

PY(zy) ... P¥YZzy)
S = : : : :(P%.”,P“ﬂ, (8.42)
PYZ,) ... P¥YZ,)

X, = (PY(2),..., P"Y(z)],

X, _ (PY(Z), ..., P*1(Z,))".

For a particular form of the basis polynomials P!, ..., P*~1 raw or orthonormal
polynomials have been suggested in Sections 7.3.2 and 7.3.3. Other choices are possible
as well.

(iii) Regression spline: s = (31, ce sk)T such that s;(z) = Bj(z),j = 1,...,k, where
By, ..., By is the spline basis of chosen degree d € Ny composed of basis B-splines
built above a set of chosen knots A = (/\1, ey )\k,dH)T. This leads to

Bi(Z1) ... Bu(Z)
S=B=| : : :<B1, Bk), (8.43)
Bi(Z) ... Bu(Z)

Start of
Lecture #15
(16/11/2016)
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-
X1 = (Bi(4), ..., B(#4))
-
X, = (Bi(Z),...,B*Zz,)) .
Categorical covariate with Z = {1, ..., G}. The parameterization s is s(z) = ¢, z € Z,
where ¢y, ..., cg € RE! are the rows of a chosen (pseudo)contrast matrix Cgxg_1. This
leads to
cgl X1 = ez,
s=| : |= (cl, CCH) , : (8.44)
c}n X, = cgz,.

Main effect model terms

In the following, we restrict ourselves only into situations when the considered covariates are
parameterized by one of above mentioned ways. The following definitions define sets of the
columns of a possible model matrix which will be called the model terms and which are useful to
be always considered “together” when proposing a linear model for a problem at hand.

Definition 8.3 The main effect model term.

Depending on a chosen parameterization, the main effect model term® (of order one) of a given
covariate 7 is defined as a matrix T with columns:

Numeric covariate

(i) Simple transformation: (the only) column S of the reparameterizing matrix S given by
(8.41), i.e,
T = (S).

(ii) Polynomial: the first column P of the reparameterizing matrix S (given by Eq. 8.42) that
corresponds to the linear transformation of the covariate 7, i.e.,

T = (P).

(iii) Regression spline: (all) columns Bl, e BF of the reparameterizing matrix S = B
given by (8.43), i.e.,
T = (B', ..., B").

Categorical covariate: (all) columns C', ..., CS~' of the reparameterizing matrix S given by
(8.44), i.e.,

T=(C',...,C).

Definition 8.4 The main effect model term of order ;.

If a numeric covariate Z is parameterized using the polynomial of degree k — 1 then the main effect
model term of order j, j = 2,...,k — 1, means a matrix T whose the only column is the jth

b hlavni efekt
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column P’ of the reparameterizing matrix S (given by Eq. 8.42) that corresponds to the polynomial of
degree j, ie., ‘ '
T = (PY).

Note. The terms T, ..., T9~! are called as lower order terms included in the term TY.

Two-way interaction model terms

In the following, consider two covariates Z and W and their main effect model terms Tz and Tyy .

Definition 8.5 The two-way interaction model term.
The two-way interaction’ model term means a matrix TV, where

T?W .= T, :Tw.

Notes.
¢ The main effect model term Tz and/or the main effect model term Ty that enter the two-way
interaction may also be of a degree j > 1.

¢ Both the main effect model terms T and Ty are called as lower order terms included in the
two-way interaction term Tz : Tyy.

Higher order interaction model terms

In the following, consider three covariates Z, W and V' and their main effect model terms T,
Tw, Ty.

Definition 8.6 The three-way interaction model term.
The three-way interaction® model term means a matrix TZWV  where

T?WV .= (Tz:Tw): Tv.

Notes.
* Any of the main effect model terms Tz, Ty, Ty that enter the three-way interaction may also
be of a degree j > 1.

o All main effect terms Tz, Ty and Ty and also all two-way interaction terms Tz : Ty, Tz : Ty
and Ty : Ty are called as lower order terms included in the three-way interaction term T4"V

¢ By induction, we could define also four-way, five-way, ..., i.e., higher order interaction model
terms and a notion of corresponding lower order nested terms.

" dvojnd interakce ® trojnd interakce
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8.8.2 Model formula

To write concisely linear models based on several covariates, the model formula is used. The
following symbols in the model formula have the following meaning:
o I

intercept term in the model if this is the only term in the model (i.e., intercept only model).

Letter or abbreviation:
main effect of order one of a particular covariate (which is identified by the letter or abbrevia-
tion). It is assumed that chosen parameterization is either known from context or is indicated
in some way (e.g.,, by the used abbreviation). Letters or abbreviations will also be used to
indicate a response variable.

Power of j, j > 1 (above a letter or abbreviation):
main effect of order j of a particular covariate.

Colon (:) between two or more letters or abbreviations:
interaction term based on particular covariates.

Plus sign (+):
a delimiter of the model terms.
Tilde (~):
a delimiter between the response and description of the regression function.

Further, when using a model formula, it is assumed that the intercept term is explicitely included
in the regression function. If the explicit intercept should not be included, this will be indicated by
writing —1 among the model terms.

8.8.3 Hierarchically well formulated model

Definition 8.7 Hierarchically well formulated model.

Hierarchically well formulated (HWE) model’ is such a model that contains an intercept term (pos-
sibly implicitely) and with each model term also all lower order terms that are nested in this term.

Notes.
¢ Unless there is some well-defined specific reason, models used in practice should be hierarchically
well formulated.

® Reason for use of the HWF models is the fact that the regression space of such models is
invariant towards linear (location-scale) transformations of the regressors where invariance is
meant with respect to possibility to obtain the equivalent linear models.

Example 8.5.

Consider a quadratic regression function

mg(z) = Bo + Bz + o z”

and perform a linear transformation of the regressor:

x=20(t—¢), t=p+ =, (8.45)

> 8

% hierarchicky dobre formulovany model
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where 6 # 0 and ¢ # 0 are pre-specified constants and t is a new regressor. The regression function
intis
me(t) =0+t + 2t

where o = o — B¢ + 26702,

Y1 = P10 — 2626%¢,

Y2 = (26°.
With at least three different x values in the data, both regression functions lead to two equivalent
linear models of rank 3.

Suppose now that the initial regression function m,, did not include a linear term, i.e., it was

mx<x) = ﬁO + 52 $2

which leads to a linear model of rank 2 with at least three or even two different covariate values
in data). Upon performing the linear transformation (8.45) of the regressor x, the regression function
becomes

m(t) =0+t + 2 t?

with yo = fo + £26°¢%,
T = —2626%,
Y2 = f26”.
With at least three different covariate values in data, this leads to the linear model of rank 3.

To use a non-HWF model in practice, there should always be a (physical, ...) reason for that. For
example,

* No intercept in the model = it can be assumed that the response expectation is zero if all
regressors in a chosen parameterization take zero values.

* No linear term in a model with a quadratic regression function m(x) = By + fo2? = it
can be assumed that the regression function is a parabola with the vertex in a point (0, (o)
with respect to the = parameterization.

* No main effect of one covariate in an interaction model with two numeric covariates and
a regression function m(x, z) = By + 51 2z + P2 x z = it can be assumed that with z = 0,
the response expectation does not depend on a value of z, ie., E(Y ‘ X=2272=0)=p
(a constant).

8.8.4 ANOVA tables

For a particular linear model, so called ANOVA tables are often produced to help the analyst to
decide which model terms are important with respect to its influence on the response expectation.
Similarly to well known one-way ANOVA table (see any of introductory statistical courses and also
Section 9.1), ANOVA tables produced in a context of linear models provide on each row input of
a certain F-statistic, now that based on Theorem 5.2. The last row of the table (labeled often as
Residual, Error or Within) provides

(i) residual degrees of freedom v, of the considered model;
(ii) residual sum of squares SS. of the considered model;

(iii) residual mean square MS, = SS. /v, of the considered model.
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Each of the remaining rows of the ANOVA table provides input for the numerator of the F-statistic
that corresponds to comparison of certain two models M; C My which are both submodels of
the considered model (or My is the considered model itself) and which have v and 5 degrees of
freedom, respectively. The following quantities are provided on each of the remaining rows of the
ANOVA table:

(i) degrees of freedom for the numerator of the F-statistic (effect degrees of freedom vy = v1—1»);

(i) difference in the residual sum of squares of the two models (effect sum of squares SSg, =

SS(Mg | My));

(iii) ratio of the above two values which is the numerator of the F-statistic (effect mean square

MSE = SSE/VE),
(iv) value of the F-statistic F'p = MSp/MSe;

(v) a p-value based on the F-statistic F and the F,, ,, distribution.

Several types of the ANOVA tables are distinguished which differ by definition of a pair of the two
models M; and Ms that are being compared on a particular row. Consequently, interpretation of
results provided by the ANOVA tables of different type differs. Further, it is important to know
that in all ANOVA tables, the lower order terms always appear on earlier rows in the table than the
higher order terms that include them. Finally, for some ANOVA tables, different interpretation of
the results is obtained for different ordering of the rows with the terms of the same hierarchical
level, e.g., for different ordering of the main effect terms. We introduce ANOVA tables of three
types which are labeled by the R software (and by many others as well) as tables of type I, II or
[T (arabic numbers can be used as well). Nevertheless, note that there exist software packages and
literature that use different typology. In the reminder of this section we assume that intercept term
is included in the considered model.

In the following, we illustrate each type of the ANOVA table on a linear model based on two
covariates whose main effect terms will be denoted as A and B. Next to the main effects, the
model will include also an interaction term A : B. That is, the model formula of the considered
model, denoted as M 45 is ~ A + B + A:B. In total, the following (sub)models of this model will
appear in the ANOVA tables: My: ~ 1,

M 4: ~ A,

M B ~ B,

Marp: ~A+B,

Mag: ~A+B-+A:B.

The symbol SS (F2 ’ Fl) will denote a difference in the residual sum of squares of the models with
model formulas F; and F5.

Type | (sequential) ANOVA table

Example 8.6 (Type | ANOVA table for model M5 :~ A+ B+ A: B).

In the type I ANOVA table, the presented results depend on the ordering of the rows with the terms
of the same hierarchical level. In this example, those are the rows that correspond to the main effect
terms A and B.



8.8. HIERARCHICALLY WELL-FORMULATED MODELS, ANOVA TABLES 145

Order A + B + A:B

Degrees  Effect Effect
Effect of sum of mean
(Term) freedom  squares square F-stat. P-value
A * SS(A ‘ 1) * * *
B * SS (A +B ‘ A) * * *
A:B * SS(A+B+A:B|A+B) « * *
Residual v, SS. MS,

Order B + A + A:B

Degrees  Effect Effect
Effect of sum of mean
(Term)  freedom squares square F-stat. P-value
B * SS(B|1) * * *
A * SS (A +B ‘ B) * * *
A:B * SS(A+B+A:B|A+B) « * *
Residual v, SS. MS,

The row of the effect (term) E in the type I ANOVA table has in general the following interpretation
and properties.

¢ It compares two models M; C My, where
® M contains all terms included in the rows that precede the row of the term E.
® My contains the terms of model My and additionally the term E.

* The sum of squares shows increase of the explained variability of the response due to the term
E on top of the terms shown on the preceding rows.

e The p-value provides a significance of the influence of the term E on the response while
controlling (adjusting) for all terms shown on the preceding rows.

e Interpretation of the F-tests is different for rows labeled equally A in the two tables in
Example 8.6. Similarly, interpretation of the F-tests is different for rows labeled equally B in
the two tables in Example 8.6.

¢ The sum of all sums of squares shown in the type I ANOVA table gives the total sum of squares
SSt of the considered model. This follows from the construction of the table where the terms
are added sequentially one-by-one and from a sequential use of Theorem 5.8 (Breakdown of the
total sum of squares in a linear model with intercept).

Type Il ANOVA table

Example 8.7 (Type Il ANOVA table for model M5 :~ A+ B+ A : B).

In the type I ANOVA table, the presented results do not depend on the ordering of the rows with the
terms of the same hierarchical level as should become clear from subsequent explanation.
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Degrees  Effect Effect

Effect of sum of mean

(Term) freedom  squares square F-stat. P-value

A * SS (A +B ‘ B) * * *

B * SS(A+B|A) * * *

A:B * SS(A+B+A:B|A+B) « * *

Residual v, SS. MS,

The row of the effect (term) E in the type I ANOVA table has in general the following interpretation
and properties.

e It compares two models M; C My, where

® M is the considered (full) model without the term E and also all higher order terms than E
that include E.

® M contains the terms of model My and additionally the term E (this is the same as in type
I ANOVA table).

¢ The sum of squares shows increase of the explained variability of the response due to the term
E on top of all other terms that do not include the term E.

® The p-value provides a significance of the influence of the term E on the response while
controlling (adjusting) for all other terms that do not include E.

¢ For practical purposes, this is probably the most useful ANOVA table.

Type Il ANOVA table

Example 8.8 (Type Ill ANOVA table for model M5 :~ A+ B + A : B).

Also in the type Il ANOVA table, the presented results do not depend on the ordering of the rows with
the terms of the same hierarchical level as should become clear from subsequent explanation.

Degrees  Effect Effect
Effect of sum of mean
(Term)  freedom squares square F-stat. P-value
A * SS(A+B+A:B|B+A:B) « * *
B * SS(A+B+A:B|A+A:B) « * *
A:B * SS(A+B+A:B|A+B)  x * *
Residual v, SS. MS,

The row of the effect (term) E in the type Il ANOVA table has in general the following interpretation
and properties.

e It compares two models M; C My, where

e M); is the considered (full) model without the term E.
® M contains the terms of model My and additionally the term E (this is the same as in type

I and type II ANOVA table). Due to the construction of M1, the model Ms is always equal to
the considered (full) model.
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¢ The submodel M; is not necessarily hierarchically well formulated. If My is not HWF, interpreta-
tion of its comparison to model Mo depends on a parameterization of the term E. Consequently,
also the interpretation of the F-test depends on the used parameterization.

e For general practical purposes, most rows of the type III ANOVA table are often useless.



Chapter

Analysis of Variance

In this chapter, we examine several specific issues of linear models where all covariates are categor-
ical. That is, the covariate vector Z is Z = (Zl, ey Zp)T, Zj€ Zj,j=1,...,p, and each Z;
is a finite set (with usually a “low” cardinality). The corresponding linear models are traditionally
used in the area of designed (industrial, agricultural, ...) experiments or controlled clinical stud-
ies. The elements of the covariate vector Z then correspond to p factors whose influence on the
response Y is of interest. The values of those factors for experimental units/subjects are typically
within the control of an experimenter in which case the covariates are fixed rather than being
random. Nevertheless, since the whole theory presented in this chapter is based on statements on
the conditional distribution of the response given the covariate values, everything applies for both
fixed and random covariates.

148
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9.1 One-way classification

One-way classification corresponds to situation of one categorical covariate Z € Z = {1, ..., G},
see also Section 7.4. A linear model is then used to parameterize a set of G (conditional) response
expectations ]E(Y ‘ Z = 1), - E(Y ‘ Z = G) that we call as one-way classified group means:

m(g):E(Y‘Z:g)::mg, g=1,...,G.

Without loss of generality, we can assume that the response random variables Y7, ...,Y,, are sorted
such that

Z = = Zy =1,

Zni+1 = 0 = Zngny = 2,

Znytednga+1l = 0 = In = G

For notational clarity in theoretical derivations, it is useful to use a double subscript to index
the individual observations and to merge responses with a common covariate value Z = g, g =
1,..., G, into response subvectors Y,

Z=1: Yi=a ., Yin) =, ..., %),

Z=G: Yo= o1 - Yans) = Vtotngaits - Ya) -

The full response vector is Y and its (conditional, given Z = (Zl, e Zn)T) mean are
Y. mi 1y,
Yy=|: |, E{Y|z)-= : = p 9.0
YG mg ]-nG

A standard linear model then additionally assumes

var(Y | Z) = 01, 9.2)
With the iid. data (Y;, Zi)T itd: (Y, Z)T for which (9.1) and (9.2) are assumed, the random
variables Yy 1, ..., Yy (elements of the vector Y ) are iid. from a distribution of Y |Z = ¢

whose mean is m, and the variance is 0. That is, the response random variables form G

independent i.i.d. samples:

Sample 1: Y1 = (Yl,h ey Ylml)—r, Ylvj 1,1\51 (ml, 0'2), ] = 1, ooy ng,

Sample G: Yo = (YG,l, ce, YG’nG)T, Ya ;i itd (mg, 0%), j=1,...,ng.

We arrive at the same situation even if the covariate values are fixed rather than random. A con-
ceptual difference between the situation of random and fixed covariates in this setting is that with
random covariates, the group sample sizes ni, ..., ng are random as well, whereas with the fixed
covariates, also those sample sizes are fixed. As in Section 7.4, we keep assuming that n; > 0,
.. ng > 0 (almost surely in case of random covariates). A linear model with the inference being
conditioned by the covariate values can now be used to infere on the group means mq, ..., mg
or on their linear combinations.
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9.1.1 Parameters of interest

Differences between the group means

The principal inferential interest with one-way classification lies in estimation of and tests on
parameters

eg,h:mg_mha g7h:17"’7G7g7éh7

which are the differences between the group means. Since each 6, is a linear combination of the
elements of the mean vector p = E(Y ‘ Z), it is trivially an estimable parameter of the underlying
linear model irrespective of its parameterization. The LSE of each 6, ;, is then a difference between
the corresponding fitted values.

The principal null hypothesis being tested in context of the one-way classification is the null
hypothesis on equality of the group means, i.e., the null hypothesis

Ho: mi =+ =mg,
which written in terms of the differences between the group means is

H0:9g7h:07 g,hzl,...,G,g?ﬁh.

Factor effects

One-way classification often corresponds to a designed experiment which aims in evaluating the
effect of a certain factor on the response. In that case, the following quantities, called as factor
effects, are usually of primary interest.

Definition 9.1 Factor effects in a one-way classification.

By factor effects in case of a one-way classification we understand the quantities 11, .. ., ng defined
as
Ng = Mg — M, g=1,...,.G,

G
1 .
where T = el hg_l my, is the mean of the group means.

Notes.

e The factor effects are again linear combinations of the elements of the mean vector pu =
E(Y ‘ Z) and hence all are estimable parameters of the underlying linear model with the LSE
being equal to the appropriate linear combination of the fitted values.

¢ Each factor effect shows how the mean of a particular group differ from the mean of all the
group means.

e The null hypothesis
Ho:ng =0, g=1,...,G,
is equivalent to the null hypothesis Hy: m; = - - - = m¢ on the equality of the group means. End of
Lecture #1535
(16/11/2016)
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9.1.2 One-way ANOVA model

Start of
As a reminder from Section 7.4.2, the regression space of the one-way classification is Lecture #16
(23/M/2016)
my 177,1
:ma, ..., mg € R CR™
mgag 1ng
While assuming n, > 0, g = 1,...,G, n > G, its vector dimension is G. In Sections 7.4.3 and

7.4.4, we introduced two classical classes of parameterizations of this regression space and of the
response mean vector p as = X3, 3 € R¥.

ANOVA (less-than-full rank) parameterization
mg = ap+ ag, g=1,....G
. o . o Z \NT
withk=G+1, B=a= (ao, a ) .
—~ -
(Ctl, ooy Ctg)

Full-rank parameterization
myg = Bo—l—c;]rﬁz, g=1,....G

with k=G, B= (6, B% ),
~~

-
(617 R 6G—1)
cf
where C = | @ | is a chosen G x (G — 1) (pseudo)contrast matrix.
T
Ca

Note. If the parameters in the ANOVA parameterization are identified by the sum constraint
25:1 ag = 0, we get

1 G
ay = el Z My =m,
g=1
H
1 _
Qg :ng:mg—Eth =mg —Mm,
h=1
that is, parameters o, ..., ag are then equal to the factor effects.

Terminology. Related linear model is referred to as one-way ANOVA model'

' model analyzy rozptylu jednoduchého tridéni



9.1. ONE-WAY CLASSIFICATION 152

Notes.
* Depending on chosen parameterization (ANOVA or full-rank) the differences between the group
means, parameters 6 5, are expressed as

-
Opn =g —ap = (cg—cn) B%,  g#h
The null hypothesis Hy: m; = - - - mg on equality of the group means is the expressed as

(@) H():Oél = =0q.
b Hy: 51 =0& ... & Bg_1 =0, ie,Hy: B2 =0¢g_1.
e If a normal linear model is assumed, test on a value of the estimable vector parameter or
a submodel test which compares the one-way ANOVA model with the intercept-only model can

be used to test the above null hypotheses. The corresponding F-test is indeed a well known
one-way ANOVA F-test.

9.1.3 Least squares estimation

In case of a one-way ANOVA linear model, explicit formulas for the LSE related quantities can easily

be derived.

Theorem 9.1 Least squares estimation in one-way ANOVA linear model.

The fitted values and the LSE of the group means in a one-way ANOVA linear model are equal to the
group sample means:

~ s 1 « _
mg:YgJ:niZYJ::th g=1, 7G7]:17 y Mg
9 1=1
That is,
my Yie Y101n1
mg ?GO ?Golng
If additionally normality is assumed, i.e, Y | Z ~ Ny, (p, 02 1,,), wherep = (mq 1, , ..., mg 1IG)T’
then i | Z ~ Ng(m, 62 V), where
1
nr 0
v=|:
1
0 nG
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We have
ny ... 0 Z?ilyl,j nil 0
X'x=|: - ], x'y= : )T =
0 ng 2221 Ya, 0 %
~ T 1 — = AT
B=m=(f,...,mg) =X'X) XV=Y1, ..., Yce)
Finally,
mllnl Ylo]-nl
?:XB: pu— .
mG’lnG ?Golnc

Normality and the form of the covariance matrix of 772 follows from a general LSE theory.

LSE of regression coefficients and estimable parameters

With a full-rank parameterization, a vector m is linked to the regression coefficients 3 = ( Bo, BZ ) T,
BZ = (/31, cey ﬁc_l)T, by the relationship

m = Bola + CB2.

Due to the fact that Y = XB, where X is a model matrix derived from the (pseudo)contrast matrix

~ ~ =7
C, the LSE 3 = (ﬁo, B )T of the regression coefficients in a full-rank parameterization satisfy

A~ ~Z
m = Blqg +C8

which is a regular linear system with the solution

(-

That is, the LSE of the regression coefficients is always a linear combination of the group sample
means. The same then holds for any estimable parameter. For example, the LSE of the differences
between the group means 0, ; = mg —myp, g, h=1,...,G, are

?10

?Go

~

gg,h:?go_?ho, g,hzl,...,G.

Analogously, the LSE of the factor effects 1y = m, — é Zgzl mp, g=1,...,G, are

G

= 1 =

ng:Yg.—ag Y he, g=1,...,G.
h=1
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9.1.4 Within and between groups sums of squares, ANOVA F-
test

Sums of squares

Let as usual, Y denote a sample mean based on the response vector Y, i.e.,

G ng

] 18
Y - E E E Yg’j == ; E nng..
g=1

g=1j=1

In a one-way ANOVA linear model, the residual and the regression sums of squares and corre-
sponding degrees of freedom are

B & & SN2 ¢ & = 2

SSe= Y =Y[" =3 (Yos —Yoi) =D > (Yoi —Yee) ",
g=1j=1 g=1 j=1
Ve =n— G,
S w112 AR >\ 2 G - >\ 2
SSR=Y =YL =) > (Y, -Y) =D ny (Ve —Y),
g=17=1 g=1

I/R:G—l.

2
’

In this context, the residual sum of squares SS. is also called the within groups sum of squares

the regression sum of squares SSp is called the between groups sum of squares®.

One-way ANOVA F-test

Let us assume normality of the response and consider a submodel Y |Z ~ Nn(lnﬂo, azln) of
the one-way ANOVA model. A residual sum of squares of the submodel is

G ng
S50 = 557 = Y ~ V1P = 303 (¥, - V)°

g=1 j=1

Breakdown of the total sum of squares (Theorem 5.8) gives SSp = SSp — SS, = SSS — SS, and
hence the statistic of the F-test on a submodel is

SSr

- MS g
F=_G1 _ (9.3)
SS. ?
=3¢, MS,
where 55 S5
o R _ e
MSR_iG_I, MS, —.

The F-statistic (9.3) is indeed a classical one-way ANOVA F-statistics which under the null hypothesis
of validity of a submodel, i.e., under the null hypothesis of equality of the group means, follows an
FG—1,n—q distribution. Above quantities, together with the P-value derived from the o1 ,—¢
distribution are often recorded in a form of the ANOVA table:

2 vnitroskupinovy soucet étvercl  * meziskupinovy soucet ctvercii
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Degrees Effect  Effect
Effect of sum of mean

(Term) freedom squares square F-stat. P-value

Factor G-1 SSgr MSrp F P
Residual n — G SS. MS,

Consider a terminology introduced in Section 8.8, and denote as Z main effect terms that corre-
spond to the covariate Z. We have SSp = SS(Z ‘ 1) and the above ANOVA table is now type I as
well as type I ANOVA table. If intercept is explicitely included in the model matrix then it is also
the type III ANOVA table.
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9.2 Two-way classification

Suppose now that there are two categorical covariates Z and W available with
zZezZ=A1,...,G}, Wew={1,..., H}.

This can be viewed as if the two covariates correspond to division of population of interest into
G - H subpopulations/groups. Each group is then identified by a combination of values of two
factors (Z and W) and hence the situation is commonly referred to as two-way classification’.
A linear model can now be used to parameterize a set of G - H (conditional) response expectations
E(Y ‘ Z =g, W= h), g=1,...,G, h=1,..., H (group specific response expectations). Those
will be called, in this context, as two-way classified group means:

m(g, h):E(Y‘Z:g,W:h) =My, g=1,....G, h=1,... H.

Suppose that a combination (Z, VV)—r = (g, h)T is repeated n j,-times in the data, g = 1, ..., G,

h=1,..., H. Thatis,
G H
n:Zan,h.

g=1 h=1
Analogously to Section 9.1, it will overally be assumed that n,; > 0 (almost surely) for each g
and h. That is, it is assumed that each group identified by (Z, T/V)T = (g, h)T is (almost surely)
represented in the data.

For the clarity of notation, we will now use also a triple subscript to index the individual observa-
tions. The first subscript will indicate a value of the covariate Z, the second subscript will indicate
a value of the covariate W and the third subscript will consecutively number the observations with
the same (Z, W)T combination. Finally, without loss of generality, we will assume that data are
sorted primarily with respect to the value of the covariate W and secondarily with respect to the
value of the covariate Z. That is, the covariate matrix and the response vector take a form as
shown in Table 9.1.

As usually, let Z = (Zl,l,la ceey ZQH’HG’H)T denote the n x 1 matrix with all values of the Z

covariate in the data and similarly, let W = (Wl,Ll? s We HpG, H)T denote the n x 1 matrix
with all values of the W covariate.

Still in the same spirit of Section 9.1, we merge response random variables with a common value

of the two covariates into response subvectors Y, ) = (Yg,h,l, e Yg,h,ng’h)T, g=1,...,G,
h=1,...,H. The overall response vector Y is then
T T T T T
Y:(YLl?""YG,l? ey YLH""7YG,H) .

Similarly, a vector m will now be a vector of the two-way classified group means. That is,
T
m = (ml,l, ceey MGy oov v e , M1,H, ...,mG,H)
Further, let

H
ng.zg Ng by g=1....G
h=1

denote the number of datapoints with Z = g and similarly, let

G
n.h:anﬁ, h=1,...,H
g=1
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Table 9.1: Two-way classification: Covariate matrix and overall response vector.

Zn W

Wi

Y

denote the number of datapoints with W' = h. Finally, we will denote various means of the group

means as follows.

3|

Mge

Mep

For following considerations, it is useful to view data as if each subpopulation/group corresponds
to a cell in an G x H table whose rows are indexed by the values of the Z and W covariates as

shown in Table 9.2.

Notes.

* The above defined quantities Mge, ey, ™ are the means of the group means which are not
weighted by the corresponding sample sizes (which are moreover random if the covariates are
random). As such, all above defined means are always real constants and never random variables
(irrespective of whether the covariates are considered as being fixed or random).
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Table 9.2: Two-way classification: Response variables, group means, sample sizes in a tabular
display.

Response variables

w
7 1 o H
T . T
1 Yii=11 - Yiin,) : Yig= a1, - Yimn )
T . T
G Yai= a1 - Yaing,) . Yen=Yout - Yo Hnou)
Group means Sample sizes
w w
Z 1 . H ° 7 1 ... H °
1 my1 . MiH Mie 1 ni1y C NH Nie
G mg1 : mgH MG G ng1 1 ngH NG
° Mel . MeH m ° Nel ... MNeH n

* When interpreting the means of the group means, it must be taken into account that in general,
it is not necessarily true that mge = E(Y } Z = g) g=1,...,G), Mgy = IE(Y ’ W = h)
th=1,...,H), orm:]E(Y).

¢ Data in the overall response vector Y are sorted as if we put columns of the response matrix
from Table 9.2 one after each other.

The full response vector is Y and its (conditional, given Z and W) mean are
mi1 Ln,
E(Y|Z, W) = : =: . 9.4)
magH 1”G,H
A standard linear model then additionally assumes

var(Y | Z, W) = 0*1,,. 9.5)

With the iid. data (Yi, Zi, VVZ-)—r iid. (Y, Z, W)T for which (9.4) and (9.5) are assumed, the

random variables Yy 1, 1, ..., Yy hngn (elements of the vector Y, ) are iid. from a distribution
of Y|Z = g, W = h whose mean is mgj, and the variance is o2. That is, the response random
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variables form GG - H independent ii.d. samples:
T
Sample (1, 1) : Y171 = (Y17171, ey Ylylanl,l) y

iid. 2 .
Yig; ~ (mig, 0%),  j=1,...,n171,

T
Sample (G, H) : YG,H = (YG,H,la ey YG,H,nng) s

iid. 2 .
YG,H,j ~ (mG,HaU )7 ]:17"'7nG,H'

As in Section 9.1, we arrive at the same situation even if the covariate values are fixed rather than
random. A conceptual difference between the situation of random and fixed covariates in this
setting is that with random covariates, the group sample sizes n1 1, ..., ng g are random as well,
whereas with the fixed covariates, also those sample sizes are fixed. Analogously to Section 9.1, we
keep assuming that 711 > 0, ..., ng g > 0 (almost surely in case of random covariates). A linear
model with the inference being conditioned by the covariate values can now be used to infere on
the group means m; 1, ..., mg,g or on their linear combinations.

9.2.1 Parameters of interest

Various quantities, all being linear combinations of the two-way classified group means, i.e., all
being estimable in any parameterization of the two-way classification, are clasically of interest,
especially in the area of designed experiments used often in industrial statistics. Here, the levels of
the two covariates Z and W correspond to certain experimental (machine) settings of two factors
that may influence the output Y of interest (e.g., production of the machine). The group mean
myg,p, is then the mean outcome if the Z factor is set to level g and the W factor to level h. Next
to the group means themselves, additional quantities of interest clasically include

(i) The mean of the group means .

¢ For designed experiment, this is the mean outcome value if we perform the experiment with all
combinations of the input factors Z and W (each combination equally replicated).

e If Y represents some industrial production then 7 provides the mean production as if all
combinations of inputs are equally often used in the production process.

(ii) The means of the means by the first or the second factor, i.e., parameters

Miey -+ -5 MGe, and Mely ---, MeH-

® For designed experiment, the value of Tge (g = 1,...,G) is the mean outcome value if we fix
the factor Z on its level g and perform the experiment while setting the factor W to all possible
levels (again, each equally replicated).

* If Y represents some industrial production then 7744 provides the mean production as if the Z
input is set to g but all possible values of the second input W are equally often used in the
production process.

¢ Interpretation of T2e1 (h =1, ..., H) just mirrors interpretation of 77 .
(iii) Differences between the means of the means by the first or the second factor, i.e., parameters
091792‘ = mgl'_mfh.? g1, 92 = 17"‘7G) g1 7&927

9.h17h2 1= TNk, — Mehy, hi, ho =1,...,H, hy # hs.
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Those, in a certain sense quantify the mean effect of the first or the second factor on the
response.
® For designed experiment, the value of 04, g, (g1 # g¢2) is the mean difference between the

outcome values if we fix the factor Z to its levels g7 and go, repectively and perform the
experiment while setting the factor W to all possible levels (again, each equally replicated).

® If Y represents some industrial production then 6, ¢, (g1 7# g2) provides difference between
the mean productions with Z set to g1 and g, respectively while using all possible values of the
second input W equally often in the production process.

¢ Interpretation of fep, n, (1 # ho) just mirrors interpretation of 64, 4,.

9.2.2 Additivity and interactions

By now, there is practically no difference compared to the one-way classification examined in
Section 9.1 except the fact that the group means are indexed by a combination of the two covariate
values.

Next to estimation of specific parameters of interest, specific questions related to the structure of
the vector m of the two-way classified group means are being examined. To proceed, note that we
can write the group means as follows

Mg = M + (Mge =) + (Mep =) + (M1 — Mge = Mep +110),

which motivates the following definition.

Main and interaction effects

Definition 9.2 Main and interaction effects in two-way classification.

Consider a two-way classification based on factors Z and W. By main effects of the factor Z, we
understand quantities n?, ... ,nZ defined as

0 = Mg —m, g=1,...,G.
By main effects of the factor W, we understand quantities )" , ... ,nW defined as
W= e, —m,  h=1,...,H.
By interaction effects, we understand quantities 775 oo né% defined as
oW = mgn — Mge — Men + M, g=1,....G, h=1,....H.

That is, the two-way classified group means are given as

Mgp = m+ngZ +77ZV +77§hw, g=1,....G, h=1,...,H. (9.6)

Having defined the main effects, we can note that their differences provide also differences between
the means of the means by the corresponding factor. That is,

991192. = mgl' - mgzo = 77gZ1 - ngzga g1, 92 = 17 vy G7 g1 7é g2, 9.7)

Oohihy = Tehy — Tieh, = 7]}1?1/ - 77}?2/7 hi, he =1, ..., H, h1 # ha.
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Additivity

Suppose now that the factors Z and W act additively on the response expectation. That is, effect
of change of one covariate (let say Z) does not depend on a value of the other covariate (let say
W). That is, for any g1, go =1,...,G

EY|Z=g,W=h) —E(Y|Z=gs, W=h) = mg.p — mg,p

does not depend on a value of h =1, ..., H. Consequently, for any g1, g2 and any h
Mg h — Mgoh = Mgle — Mgye. (9.8)
This implies
Mgy, h — Mgie = Mgy h — Mgy, g1,92=1,....G, h=1,...,H.
In other words, additivity implies that for any h = 1, ..., H, the differences
Alg,h) = mgp — Mg

do not depend on a value of g =1,...,G. Then (forany g =1,...,Gand h=1,..., H)

Mg — Mge = Alg, h)

= Mep — M.

Clearly, we would arrive at the same conclusion if we started oppositely from assuming that for
any hy, ha =1, ..., H

EY|Z=g,W=h1) —E(Y|Z=g, W=ha) = mgp, — Mg,

does not depend on a value of g = 1,...,G.

In summary, additivity implies

Mgh — Mge — TMep +m = 0, g=1,...,G, h=1,...

VA4
Mg,k

Easily, we see that this is also a sufficient condition for additivity. That is, hypothesis of additivity
of the effect of the two covariates on the response expectation is given as

Ho: /) =0, g¢=1,...,G,h=1,.. H

Main effects under additivity, partial effects
Under additivity, the two-way classified group means can be written as

Mgp = m—l—ngz—i—n}:v, g=1,....,G, h=1,..., H.
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In that case, in agreement with (9.8), we have

091792‘ = 77921 - 77922 = Mg ,hn — Mgy h, g1, g2 = 17 ceey G7 g1 7& g2,
h=1,..  H
9.9)
eohl,hz = 77}1?1/ - 77}?; = mg,hl - mg,h27 hl) h2 = 1) ey H7 hl 7& h’27
g=1,...,G.

That is, the differences between the main effects not only provide differences between the means
of the means by corresponding factor (as indicated by Eq. 9.7) but also differences between the two
group means if we change the value of one factor and keep the value of the second factor which
can be arbitrary.

In Section 8.3.1 we introduced a notion of a partial effects of a certain categorical covariate (let
say Z € Z = {1, o, G }) on the response expectation if it with other covariates (or a covariate,
let say W) acts additivively. The partial effects of the covariate Z, given the other covariate
W were introduced as the model parameters that determine quantities IE(Y ’ Z =q,W =
w) — E(Y ‘ Z =gy, W = w), g1, g2 = 1,...,G. 1If the other covariate, W, is categorical as
well with W e W = {1, o H }) then the partial effects of the Z covariate are related to the
quantities

E(Y[Z=g1,W=h) = E(Y[Z=g2,W=h) = mgn — mgp
gla92:17 R Ga hzla "'7H7
which are then given by (9.9), i.e., as differences between related main effects.
9.2.3 Linear model parameterization of two-way classified group
means

Estimation of all parameters of interest may proceed by considering suitably parameterized linear
model. When doing so, remember that we assume data being sorted primarily by the value of the
covariate W and secondarily by the value of the Z covariate as indicated in Table 9.1. The full

response expectation is then given by (9.4) which is, if written in more detail

mi1lp,,

E(Y |2, W)=p=

It is our aim to parameterize the vector p as u = X3, where X is the n x k£ model matrix and
B € RF a vector of regression coefficients. The situation is basically the same as in case of a single
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categorical covariate in Section 7.4 if we view each of the G - H combinations of the Z and W
covariates as one of the values of a new categorical covariate with G - H levels labeled by double
indeces (1,1), ..., (G, H). The following facts then directly follow from Section 7.4 (given our
assumption that ng, > 0 for all (g, h)).

e Matrix X must have a rank of G - H, e, at least kK = G - H columns and its choice simplifies
into selecting an (G - H) x k matrix X such that

T T
Ty 1, ®

T T
Tga log, ® oo,y

X= ' , leading to X =

T T
L1 H 1o,y ® T g

T T
TqH Ligu ® Ty

o rank(X) = rank(X).
e Matrix X parameterizes the two-way classified group means as
men = x,,8, g=1,...,G, h=1, ..., H,
m = §~§,6.

If purely parameterization of a vector m of the two-way classified group means is of interest, matrix
X can be chosen using the methods discussed in Section 7.4 applied to a combined categorical
covariate with G - H levels. Nevertheless, it is usually of interest to use such parameterization
where

(i) (at least some of) the regression coefficients have meaning of primary parameters of interest
(also other parameters of interest than those proposed in Section 9.2.1 can be considered);

(ii) hypothesis of additivity corresponds to setting a subvector of the regression coefficients vector
to the zero vector. In that case, a model expressing the additivity is a submodel of the full
two-way classification model obtained by omitting some columns fromm the model matrix.

Both requirements will be fulfilled, as we shall show, if we parameterize the two-way classified
group means by the interaction model based on the covariates Z and W using common guidelines
introduced in Section 8.4.

9.2.4 ANOVA parameterization of two-way classified group means
End of
As shown by (9.6), the two-way classified group means can be written using the main and interac- Lecture #16

tion effects as mgy;, = m + ngZ + n}I:V + ngZZV’ g=1,...,G, h=1,..., H. This motivates (23/11/2016)

so called ANOVA parameterization of the two-way classified group means being given as Start of
VA w VALY Lecture #17
Mgn =qp + a5 +a; +a;, =1,....,G, h=1,..., H, 9.10
g.h = Q0 T Qg Ty, g, g 610 (24/11/2016)

T T T\T
Z OzW,aZW)

where a vector of regression coefficients a = (ao, a’ is composed of
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e the intercept term avp;

. T . . .
e coefficients aZ = (alz Y ey aé) that are, in a certain sense, related to the main effects of the
Z covariate;
. T . . .
e coefficients oV = (ozIfV, e oeg/) that are, in a certain sense, related to the main effects of
the W covariate;
. T . .
e coefficients a?" = (QIZ’II/V’ R a(Z;Y}/, ...... , alz’lg, R ag%) that are, in a certain sense,

related to the interaction effects.

Notes.
¢ The intercept term g is not necessarily equal to 77;
o The coefficients o, ..., aZ are not necessarily equal to the main effects n7, ..., nZ;
e The coefficients o}, ..., a}qu are not necessarily equal to the main effects n}", ..., 77}3/;
e The coefficients o}V, ..., aZ", are not necessarily equal to the interaction effects nZ1", ...,
ZW.
leN:E

as the parameterization (9.10) does not lead to the full-rank linear model as will be immediately
shown.

Let mop, = (ml,h, ceey mGJl)T, h =1,..., H be subvectors of m. In a matrix form, parameteri-
zation (9.10) is

Me1 1G IG 1G Cee e OG IG cee e OGXG Qg
O[Z
m = = Y
«
— aZW
MeH 1G IG OG lG 0G><G IG
Xa

where matrix X, is an (G- H) x (1 +G+ H + G- H) matrix and its rank is hence at most G- H (it
is indeed precisely equal to G- H). That is, matrix X,, provides less-than-full rank parameterization
of the two-way classified group means. Note that matrix X, can concisely be written as

Xa:(1H®lg‘1H®Ig‘1H®lg‘1H®IG) (9.11)
(1w ®1e|reC|Deis|BoT ), 0.12
—_——
lg.m

where

C=1g, D=Iy.

That is, we have

m = aolen + (g ® C)a? + (D ® 16)a"” + (D ® C)a?W. 9.13)
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Lemma 9.2 Column rank of a matrix that parameterizes two-way classified group
means.

Matrix X being divided into blocks as

X:(1H®1G\1H®@\ﬁ®10\ﬁ>®@)

has the column rank given by a product of column ranks of matrices (1g, (E) and (1 H, ﬁ) That is,

coI-rank(X) = coI-rank((lg, C)) . coI-rank((lH, ]D)))

Proof. Proof/calculations below are shown only for those who are interested.

By point (x) of Theorem A.3, matrix X is upon suitable reordering of columns (which does not have
any influence on the rank of the matrix) equal to a matrix

Xreord = (1H ® (1, C) ’ D @ (1c, @))

Further, by point (ix) of Theorem A.3:

Xreord = (1H7 HAj)) ® (1G7 @)

Finally, by point (xi) of Theorem A.3:
coI-rank(X) = coI-rank(Xmord) = coI-rank((lg, @)) . coI-rank((lH, ]]3)))

Q

Lemma 9.2 can now be used to get easily that the rank of the matrix X, given by (9.11) is indeed
G - H and hence it can be used to parameterize GG - H two-way classified group means.

Sum constraints identification

Deficiency in the rank of the matrix Xqis 1+ G + H. By Scheffé’s theorem on identification in
a linear model (Theorem 7.1), (1+G + H) (or more) linear constraints on the regression coefficients
« are needed to identify the vector c in the related linear model. In practice, the following set of
(24 G + H) constraints is often used:

YaZ=o Y=o
. 9= el 9.14)
ol =0, g=1,...,G, > aZV =0, h=1,..., H,
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which in matrix notation is written as

0o 1. o5 ol ... 0o}

0 o, 15 ol ... 0}

A= 0 e 0c¢ Ocxc Ocxu lo ... Ig
O T TG, "o ol o 1 ... o]
0 oL o0 o0 ... 1}

We leave it as an exercise in linear algebra to verify that an (24+ G+ H) x (1+ G+ H+ G- H)
matrix A satisfies conditions of Scheffé’s theorem, i.e.,

ank(A) =1+ G+ H,  M(AT) nM((X) ") = {o}.

Interpretation of the regression coefficients under the sum constraints

The coefficients « identified by a set of constraints (9.14) have the following (easy to see using simple
algebra with expressions (9.10) while taking into account the constraints) useful interpretation.

oy = Mm,
agZ = Mge — M = ngZ, g=1,...,G,
osz = Tep — M = 77,‘:‘/, h=1,..., H,
allV = mgp—Tge —Mep+m = 07}, g=1,...,G,
h=1,..., H.

That is, with the regression coefficients @ being identified by the sum constraints, the intercept
is equal to the mean of all group means, the subvector a? has a meaning of the main effects of
the Z covariate, the subvector &'V has a meaning of the main effects of the W covariate, and
the subvector " has a meaning of the interaction effects according to Definition 9.2. The most
importantly, we have,

z Z z Z — —

Qg —Qgy = Mg — Ny, = Mge—Mge = O g, g1, 92=1,..., G,
w w w w — —

ap, — Qpy = Mpy — Npy = Mepy — Mehy = Oepy s, hi, ho =1, ..., H.

9.2.5 Full-rank parameterization of two-way classified group means

With the ANOVA parameterization, the model matrix X was derived from a matrix Xa given by
(9.12). Let us start from this expression whileNusing N(pseudo)contrast matrices that we used to
parameterize categorical covariates on place of C and D.
Let -

c/ c1 = (i1, -0 ci-1)

Ca cg = (cgi, ..., CG,G—1)T
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be a G x (G — 1) (pseudo)contrast matrix that could be used to parameterize the Z covariate (i.e.,

1 ¢ M((C), rank((C) = G — 1). Similarly, let

d! di = (di1, -, dl,H—l)Ta

d; dH = (dH,h ey dH,H*l)T

be an H x (H — 1) (pseudo)contrast matrix that could be used to parameterize the W covariate
(e, 1y ¢ M(]D), rank(]D)) =H —1).

Note that we do not require that matrices C and I are based on (pseudo)contrasts of the same
type. Let

X5=(1H®1G\1H®C\D®1G\D®<c) 9.15)
1 c; d d] @ cf
1 cl d; d1T®cg
1 c/ dj; d ® c]
1 el dj; dl, ® ¢l

which is a matrix with G- H rows and 1+ (G —1)+(H —1)+(G—1)(H —1) = G- H columns
and its structure is the same as a structure of the matrix (9.12). Using Lemma 9.2 and properties
of (pseudo)contrast matrices, we have

coI-rank(§~§5) = coI-rank((lg, (C)) : coI-rank((lH, ]D))) =G-H.

That is, the matrix 525 is of full-rank GG - H and hence can be used to parameterize the two-way
classified group means as

m=%s8, B= (6 87,087 ")
where
BZ = (51Zv ) Bg—l)—r7 IBW = (5}/{/7 R 6[1/}/—1)T7

zw zZw w zZw Zw T
B — ( 1,1 5 -+ BG*LI’ ...... 3 LHfl’ ceey 5G*1,H*1) .

We can also write
m = Bolen + (lg ® C)B% + (D ® 15)8" + (D ® C)B?Y,
mgn = Bo + ¢, 87 + dy B + (dy ® c))B?Y,
g=1,....,G, h=1,..., H 9.16)

Different choices of the (pseudo)contrast matrices C and I lead to different interpretations of the
regression coefficients 3.
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Link to general interaction model

If we take expression (9.15) of the matrix 523, it is directly seen that it can also be written as
X5 = (1g.m, 7, SV, §2W),
where B B B o
S =1y ® C, s =D ® 1g, S#W = §%.sW.

Similarly, the related model matrix X which parameterizes a vector p (in which a value mgy, is
repeated n, j,-times) as pu = X3 is factorized as

Xg = (1, S%, s, sZW), 9.17)

where SZ and SW is obtained from matrices S and SV, respectively, by appropriately repeating
their rows and S = SZ : SW. That is, the model matrix (9.17) is precisely of the form given
in (8.18) that we used to parameterize a linear model with interactions. In context of this chapter,
the (pseudo)contrast matrices C and D, respectively, play the role of parameterizations sz in (8.15)
and sy in (8.16), respectively and a linear model with the model matrix Xg is a linear model with
interactions between two categorical covariates.

9.2.6 Relationship between the full-rank and ANOVA parameteri-
zations

With the full-rank parameterization of the two-way classified group means, expression (9.16) shows
that we can also write

mgn = ap +aZ +aff + a2V, g=1,...,G h=1,... H, 9.18)
where
ap = P,
af = c;,rﬂz, g=1,...,G, o1
o = djpY, h=1,..., H,
a2V o= (dy ® )Y, g=1,....G h=1.. H

That is, chosen full-rank parameterization of the two-way classified group means corresponds to the
ANOVA parameterization (9.18) in which (1 4+ G+ H + G - H) regression coefficients « are uniquely
obtained from G- H coefficients 3 of the full-rank parameterization using the relationships (9.19). In
other words, expressions (9.19) correspond to identifying constraints on « in the less-than-full-rank
parameterization. Note also, that in matrix notation, (9.19) can be written as

Qo = 507
a? = Cp7,

(9.20)
o = DY,

a?W = (D® C)BW".
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9.2.7 Additivity in the linear model parameterization

In Section 9.2.2, we have shown that necessary and sufficient condition for additivity of the effect
of the two covariates on the response expectation is that the interaction terms ng,‘i‘/ = Mgn —
Mge —Men, +Mm,g=1,...,G,h =1,..., H, are all equal to zero. It is easily seen that in general
ANOVA parameterization

mgﬁ:ao—l—agz—i—a;‘zv—f—ozizv, g=1,....G, h=1,...,H,

(where the vector « of the regression coefficients is not unique with respect to the vector of m of
the two-way classified group means) a sufficient condition for additivity is given as

L IW . IW
Ho: oiy = =agm

or written differently as

Hy: oWV =algpy for some a € R.

By using similar calculations as in Section 9.2.2, we can find that this condition is also necessary
condition of additivity.

If we take into account (9.20), which links the ANOVA parameterization and the full-rank parame-
terization, we have that o' = a1 for some a € R, if and only if (D ® C) 84" = a 1. Due to
the fact that 1 ¢ M (]D) ® C) (if both C and ID are (pseudo)contrast matrices), this is only possible
with @ = 0 and 32" = 0. Hence with the full-rank parameterization of the two-way classified
group means, the hypothesis of additivity is (as expected) expressed by

Ho : B7Y = 0(g_1)(m—1)-

In the ANOVA parameterization, additivity @?V = alq.py for some a € R) corresponds to
simplification of the interaction block Iy ® I of the model matrix X, in (9.11) into an intercept
column 1¢.5. In the full-rank parameterization, additivity (32" = 0(G—1)(H—1)) corresponds to

omitting the interaction block D® C from the model matrix 325 given by (9.15). The model matrices
in the two parameterizations become

X2 = (1pele|ln el |y @ 1 ).,
§§§+W = <1H®1g‘1H®C‘D®1g>,

where XZtW has 1+ G + H columns and §~§§+W has 1+ (G-1)+(H—-1)=G+H -1
columns. Both matrices are of the same rank
YZ+WY\ _ YZ+WY _
rank (X)) = rank(Xﬁ )=G+H-1.
That is, the matrix X?FW has a deficiency of 2 in its rank, the matrix Xg W is of full rank.

The vector of the two-way classified group means is parameterized as

m = XerWa = oolg.yg + (lH & Ig)aZ + (IH [ 1g)OzW
= XZWB = Blen + (1y ® C)B% + (D ® 16)8",
mgn = ag + af + off (3.21)

= Bo + ¢)B” + d; 8",
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where the related vectors of regression coefficients are

Z z W wh T
o = (Oé(],al,...,OéG,Oél,...,OéH) s
CXZ OlW T
Z Z w w
/6 = (507 B17°"7/BG—1761 )"'7/8H71) .
a7 W
B B

Two (1 + G+ H — (G + H — 1)) constraints are needed to identify the coefficients of the ANOVA
parameterization. This can be achieved, e.g., by using the identifying constraints Aax = 0 with

011 ... 1
W [0 | 0 o).
010 ... 01 ... 1

i.e., by using two sum constraints

G H
> ol =0, > ay =o0. 9.22)
g=1 h=1

It can be easily checked that having considered the sum constraints (9.22), coefficients a? and oV
lead to the corresponding main effects, i.e.,

agZ = Mge —M = ngZ g=1,...,G,
af = Tep— MM = 77}?/ h=1,..., H.

Partial effects
As explained in Section 9.2.2, we have under additivity that for any g1, go =1, ...,G
Ogi,g00 = Mgie — Migze = Mgy ,h — Mgyh

does not depend on the value of h = 1,..., H and hence determines the partial effects of
the covariate Z on the response expectation given the covariate W. With the two considered
parameterizations, the related quatities are calculated as

Z z T2z
Ogrgoe = 0 — g, = (cg —cg,) B (9.23)
Note that (9.23) holds for the a vector being arbitrarily identified (i.e., not necessarily by the sum

constraints).

Analogously for the partial effects of the W covariate given the Z covariate, for any hq, hy =
1, ...,.H
oy ,hy = Tehy — Tehy = Mghy — Mghy

does not depend on the value of g =1,...,G and

W w T W
0'h17h2 = p — o, = (dh1_dh2) B .
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9.2.8 Interpretation of model parameters for selected choices of
(pseudo)contrasts

Let us again consider the full-rank parameterizations of the two-way classified group means, i.e.,

mgn = Bo + ¢, 87 + dyBY + (d ® c;)B7Y,
g=1,...,G, h=1,..., H, (9.24)

m=fyley + (1z ® C)B% + (D ® 1¢)B" + (D ® C)B?",

where ¢, ..., ¢ are rows of the G x (G — 1) (pseudo)contrast matrix C and d , ..., d}; are

rows of the H x (H — 1) (pseudo)contrast matrix D, and 8 = (ﬁo, BZT, BWT, BZWT)T are
related regression coefficients.

Chosen (pseudo)contrast matrices C and D determine interpretation of the coefficients 3 of the
full-rank parameterization (9.24) of the two-way classified group means and also of the coefficients
« given by (9.19) and determine an ANOVA parameterization with certain identification. For in-
terpretation, it is useful to view the two-way classified group means as entries in the G x H
table as shown in Table 9.3. Corresponding sample sizes ng5, g = 1,...,G, h =1,..., H, form
a G x H contingency table based on the values of the two categorical covariates Z and W (see
also Table 9.2).

With the ANOVA parameterization

mg,h:ao—i—ag%—ahw—l—aizv, g=1,....,G, h=1,..., H,

m=aley + (g ® IG)aZ + (Ig ® 1G)OlW + (Ig @ IG)OéZWa

the coefficients a? = C3% and o = DB" can be interpreted as the row and column effects,

Table 9.3: Decomposition of the two-way classified group means into row, column and cell effects.

Group means ANOVA parameterization
w w
A 1 H Z 1
1 mi1 mi g p— 1 aIZ’I{V ozlz%/ + ole
G mGgi ... MGH G aéf’lv aé% + a(Z;
+ a‘{V e F a}/{v + ag

Full-rank parameterization

W
Z 1 H

— 1 (4 ® )Y . (df @ ¢)BFY 4+ ¢[B”
G (di ® cf)B”" ... (df @ )BT +ciB”

+d; " .. +d 8" + Bo
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respectively, in the group means table. The interaction effects a?"V = (]D ® (C) BZW can also be
placed in a table (see Table 9.3) whose entries can be interpreted as cell effects in the group means
table. In other words, each group mean is obtained as a sum of the intercept term oy = 5y and
corresponding row, column and cell effects as depicted in Table 9.3.

As was already mentioned, the two (pseudo)contrast matrices C and ID can be both of different
type, e.g., matrix C being the reference group pseudocontrast matrix and matrix D being the sum
contrast matrix. Nevertheless, in practice, both of them are mostly chosen as being of the same
type. In the reminder of this section, we shall discuss interpretation of the model parameters for two
most common choices of the (pseudo)contrasts which are (i) the reference group pseudocontrasts
and (ii) the sum contrasts.

Reference group pseudocontrasts

Suppose that both C and ID are reference group pseudocontrasts, i.e.,

c/ 0 ... 0 d] 0 ... 0
T T

c— cy _ 1 ...0 _ ()g,i1 D= d, _ 1 ...0 _ 0} , .
: oo Ic1 : oo Iy
el 0 ... 1 dj; 0 ... 1

We have,
of 0 o’ 0
Z Z w w
a B a B
2 —Cp% = :1 : 2 — oV =DgW = 1 . (9.25)
a(Z; 5571 OC‘I;V 511/}11

To get the link between the full-rank interaction terms ,BZ W and their ANOVA counterparts a?",

we have to explore the form of vectors dh ® c ,g=1,...,G, h=1, ..., H. With the reference
group pseudocontrasts, we easily see that

d,T@cI = 0, foral h=1,..., H,
d]—®ch = 0, forallg=1,...,G,
dy @ c) = (0,...,1,...,0), ifg#1&h#1,

1 on a place that in (d; ® ch) BZY multiplies 5 b1

which leads to

VA A4 VA4
afy  afy ... afp 0 0 - 0
W IW W VA1 W
@31 Q392 ... Qo | 0 51,1 e 1,H-1 9.26)
W IZW VA
Qg1 Qg2 -+ Agpm 0 BG 1,1 5G 1,H-1

That is, decomposition of the two-way classified group means becomes as shown in Table 9.4.
This leads to the following interpretation of the regression coefficients in the ANOVA and full-rank
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Table 9.4: Decomposition of the two-way classified group means with the reference group pseudo-
contrasts.

Group means ANOVA parameterization
W w
Z 1 2 e H Z 1 2 e H
1 ml,l mai,2 e ml,H _ 1 Otlz‘l/v Qfgv . QfVI{V —+ ()(12
2 ma,1  M22 ... M2H - 2 afy‘{v QQZEV .. QQZ"QI/ +aZ
G mag1 Mma2 ... MGH G aéf/{/ aéfg e aé% + o
+ a¥V + aXV e + aYHV + oo
Reference group pseudocontrasts
%4
Z 1 2 .. H
. 1 0 0 0 +0
— ZW ZW Z
2 0 11 e 1,H-1 + B
ZW VAL Z
G 0 B&ohia - B&iima + 661
+0 +4 + BY. + 0
1 o e H—-1 0
parameterizations:
ag = fo = mi1,
Z Z
Qg = Pg—1 = Mmg1 — M, g=2,...,G,
w w
ap = By = mip — M1, h=2, ..., H,
ZW ZW
agp =B 11 = Mgh — Mg1 — Mmip + mig, g=2,....,G, h=2,..., H

It is also seen from Table 9.4 that the ANOVA coefficients are identified by a set of 3+ (H — 1) +
(G—1) =G+ H + 1 constraints

alz:O, 04‘1/[/:0,
ZW ZW ZW
al,l :0, Ozl’h :0, h:2,...,H, Oég’l :0, g:2,,G

The first two constraints come from (9.25), remaining ones correspond to zeros in the matrix (9.26).
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Note (Reference group pseudocontrasts in the additive model).

If the additive model is assumed where mg; = g + ozf + ahW, g=1,....G,h=1,...,H,
and the reference group pseudocontrasts are used in the full-rank parameterization in (9.21), the

ANOVA coefficients @ = (ao, OCZT, aWT)T

(,80, ﬁZ T7 ,@WT)T again by (9.25), that is, they are identified by two constraints
ozlz =0, aYV = 0.

Their interpretation becomes

ap=0 = mn,

agZ = Bgz_l = mgn — Mip, g=2,...,G, arbitrary h € {1,...
= Mge — Miae,

af =BV = mgn — mga, h=2 ..., H, arbitrary g€ {1,...

= Meh — Mial-

Sum contrasts

Suppose now that both C and DD are the sum contrasts, i.e.,

r ... 0 e/
C_ B B Ic—
| o v |eby | \1h)]
“ e CG*l G*l
-1 ... -1 el
1 0 d
D— _ : _ In—
| o | {a) | \—1h)
H-1 H-1
~1 -1 dj;
We have,
Z BZ
= o’ =cp’ p ,
Aty Be1
Z G-1
Qg - Zg:l Bg
alV B
=" =pg" W ,
1 H-1

are obtained from the full-rank coefficients 3 =

,H}

7G}

9.27)
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The form of the vectors dh ® c ,g=1,....,G, h=1, ..., H, needed to calculate the interaction

terms ozg W is the following

dy @ cj = (0,...,1,...,0), forg=1,...,G -1,
h=1,...,H—1,
1 on a place that in (d,l— ® c;) BZY multiplies 5%V

g:h >
dy ® e, = (0g_1,...,—1g_1, ..., 0g_1), foralh=1,...,H —1,
— 1G_1 block on places that in (dh ® cG),@ZW multiply 84,
diy®c) = (0,...,-1,...,0, ... ... ,0,...,—1,...,0), foralg=1,...,G —1,

—1’s on places that in (dH ® c )BZW multiply 592.W

d; (%9 Cg = (1, ceey 1) = 1(G—1)(H—1)~

This leads to

VA ZW ZW
a7 N T a1 g
ZW ZwW ZwW
dc-11 - Qg1 YG-1,H
Zw ZW ZW
Qg1 .- Qg pg-1 RreN;:)
ZW ZW H-1
11 1,H-1 — D h=
= ZW
5(; 1,1 6G71,H71 Zh 1 G 1h
G—1 pZW ZW G-1 H-1 pz2wW
- Zg:l g,1 Z gH 1 Zg:l h=1 /Bg,h

That is, decomposition of the two-way classified group means becomes as shown in Table 9.5.

Note that the entries in each row of the table with the cell effects and also in each column sum up
to zero. Similarly, the row effects (coefficients a?) and also the column effects (coefficients a'V)
sum up to zero. Identifying constraints for the ANOVA coefficients « that correspond to considered
sum contrast full-rank parameterization are hence

G H

Sef-0. Yo

g=1 h=1
H
Zagh =0, foreachg=1, ..., G, (9.28)
G

Zag,h =0, foreachh=1, ..., H.

Note that in a set of G 4+ H constraints on the interaction terms agZ }/LV, one constraint is redundant

and the last two rows could also be replaced by a set of (G — 1)7+ (H-1)+1=G+H-1
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Table 9.5: Decomposition of the two-way classified group means with the sum contrasts.

Group means ANOVA parameterization
w w
Z 1 - H-1 H Z 1 e H-1 H
1 mi, e mi,H-1 mi,H . 1 af‘{v e Oélz‘;r{V 1 Oéf‘?{ + Oélz
G-1 mg-i,1 ... MG-1,H—1 MG-1,H G-1 océwl 1 ... aCZ;‘iVLH,l ozcz;wl " +aé_,
G ma,1 . ma,H-1 me,H G aéVY . aé%,l aGVE + oz
+ alV +af_,  tap + ap
Sum contrasts
w
Z 1 H-1 H
ZW = aw z
1 1,1 s 51 JH-1 - 617h + B
h=1
B ZW = aw z
G-1 BEM 1 s BE e B& 1 + BG-1
G-1 i G—-1 i G—1H-1 W G—1 P
G - Zﬁg,l - Zﬁg,H—l Zﬁ,h - Zﬁg
g=1 g=1 g=1 h=1 g=1
w w = ow
+ 61 +ﬁH71 - Bh + 60
h=1
constraints:
H
ZQZYLV:Q foreachg=1,...,G — 1,
h=1
G
Zah:O, foreachh=1,..., H — 1,
g=1
G-1H-1
W _ ZW
ag,h =QGg.H-
g=1 h=1

We see that the set of equations (9.28) exactly corresponds to identification by the sum constraints
(9.14), see Section 9.2.4. Hence the interpretation of the regression coefficients is the same as
derived there, namely,

oy = m,

VA __ __

af = Mge — M, g=1,...,G,
ap = Mep — m, h:]-v aHﬂ
zZW
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Additionally,
A Z — —
ag — g, = Mge — Mgy, g1, 92=1,..., G,
w w — —
Qap, — Qpy = TMepy — Mepy, hi, hg =1, ..., H.

Note (Sum contrasts in the additive model).

If the additive model is assumed where my ), = ag + agZ + a,‘;v, g=1,....G,h=1,....H
and the sum contrasts are used in the full-rank parameterization (9.21), the ANOVA coefficients

a = (ag, aZT, aWT)T are obtained from the full-rank coefficients 3 = (Bo, ,BZT, ,@WT)T
again by (9.27), that is, they are identified by two constraints

G H
Zaf =0, Z ahw =0.
g=1 h=1

Their interpretation becomes

ayg = m,
agZ = Mgp — Maeh, g=1,...,G, arbitary he {1,...,H}
= Mge — M,
) = Mgh — Mge, h=1,..., H, arbitraryge {1,...,G}
= Mep — M.
Additionally,
0451 — agZZ = Mg h — Mgy hs g1,92=1,..., G, amitrary he {1,...,H}
= Mge — Mgy,
w wo_ _ ;
Qpy — Qpy, = Mgp — Mg hy, hi, ho =1, ..., H, arbitrary g € {1,...,G}
= Mep; — Maehy-

9.2.9 Two-way ANOVA models

In this section, we explore in few more details properties of the linear models that can be considered
in context of two-way classification. They are as follows and each of them corresponds to different
structure for the two-way classified group means.

Interaction model

No structure is imposed on the group means that, in the two considered parameterizations, are
written as

Mgp = 0o + agZ + a};v + aizv,
= Bo+c) B +d, 8" + (d] ®c))B?Y, 9.29)
g=1,...,H h=1,..., H.
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where
A z ZNT w w wy T
Oé(), (8% :(Oé:l,,OCG) 5 (8% :(Oél ,...704H) 5
ZW ZW VAL% ZW ZWANT
(8% :(0611,.. OéGl, ey a1H7"'7aG,H)

are the regression parameters in the (less-than-full rank) ANOVA parameterization and

/807 BZ (Bl ) e /85 I)Tv ﬁW = (BYVa SRR ﬁlv}/ I)Tv

W zZW T
B :(113"'756‘ 1,1> - 1,H—1a"'?ﬁG’ 1,H— 1)
are the regression parameters in the full-rank parameterization given by the (pseudo)contrast ma-
trices with rows ¢{ , ..., ¢}, and d] , ..., d};, respectively.

If (almost surely) ngj, > 0 for all g, h, the rank of the related linear model is (almost surely) G - H,
see Section 9.2.3. This explains why the interaction model is also called as the saturated model®.
The reason is that its regression space has maximal possible vector dimension equal to the number
of the group means.

In the following, let symbols Z and W denote the terms in the model matrix that correspond to
the coefficients a? or ,@Z , and &V or ,@W, respectively. Let further Z : W denote the terms
corresponding to the interaction coefficients a?" or 34". The interaction model will then
symbolically be written as

Mzwl ~Z+W+2Z:W.

Additive model

It is obtained as a submodel of the interaction model (9.29) where it is requested

VAL W
a1 = =agH

which in the full-rank parameterization corresponds to requesting

B = 0G_1).(11-1)-

Hence the group means can be written as

mgp = Qo + agZ + a}f/,
(9.30)

= Bo+c.B7 +d; Y, g=1,...,H h=1,..., H.

In Section 9.2.7, we have shown that if n,; > 0 (almost surely) for all g, h, the rank of the linear
model with the two-way classified group means that satisfy (9.30), is G + H — 1 (almost surely).
The additive model will symbolically be written as

Mziw: ~Z+W.

Note. 1t can easily be shown that nge forall g = 1,...,G and nep for all h =1,..., H suffice
to get a rank of the related linear model being still G+ H — 1. This guarantees, among other things,
that all parameters that are estimable in the additive model with ngj; > 0 for all g, h, are still
estimable under a weaker requirement nge for all g = 1,...,G and nep, forall h =1,..., H. That
is, if the additive model can be assumed, it is not necessary to have observations for all possible
combinations of the values of the two covariates (factors) and the same types of the statistical

> saturovany model



9.2. TWO-WAY CLASSIFICATION 179

inference are possible. This is often exploited in the area of designed experiments where it might
be impractical or even impossible to get observations under all possible covariate combinations.

See Section 9.2.2 what the additive model implies for the two-way classified group means. Most
importantly:

(i) for each g # g2, g1, 92 € {1,...,G}, the difference mg, ,, — mg, », does not depend on
avalue of h € {1,..., H} and is equal to the difference between the corresponding means
of the means by the first factor, i.e.,

Mgy h — Mgy b = TMgie — TMgye = g1 goe,
which is expressed using the parameterizations (9.30) as

z Z T3z,
6917920 = C“g1 - agg = (Cgl - 092) 18 ’

(ii) for each hy # ho, hi, ho € {1,..., H}, the difference mgy 5, — mgy p, does not depend on
a value of g € {1,...,G} and is equal to the difference between the corresponding means
of the means by the second factor, i.e.,

Mg hy — Mghy = Mehy — Mehy = 9'h17h2>

which is expressed using the parameterizations (9.30) as

w w T W
00h1,h2 = p, — oy, = (dh1 - dh2) B".

Model of effect of Z only
It is obtained as a submodel of the additive model (9.30) by requesting
W w

al :...:aH’

which in the full-rank parameterization corresponds to requesting

BY =0p_1.
Hence the group means can be written as
mgpr = Qo + agZ,
(9.31)
= Bo + ¢, B7, g=1,...,H h=1,..., H.

This is in fact a linear model for the one-way classified (by the values of the covariate Z) group
means whose rank is G’ as soon as nge > 0 for all g = 1,...,G. The model of effect of Z only
will symbolically be written as

Myz: ~ Z.

The two-way classified group means then satisfy

(i) Foreach g =1,...,G, mg1 =+ = Mmg,H = Mge.

(i) Te1 = +++ = MeH.
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Model of effect of 11" only

It is the same as the model of effect of Z only with exchaged meaning of Z and W. That is, the
model of effect of W only is obtained as a submodel of the additive model (9.30) by requesting

of =...=df,
which in the full-rank parameterization corresponds to requesting
B =0g_1.

Hence the group means can be written as

mgh = Qo + O‘]‘-ivv
(9.32)
= fBo +dj BY, g=1,....,H h=1,..., H.
The model of effect of W only will symbolically be written as

My : ~W.

Intercept only model
This is a submodel of either the model (9.31) of effect of Z only where it is requested
of =...=a% or B =0g_1, respectively

or the model (9.32) of effect of W only where it is requested

oV = =a¥ or BV =0py_,, respectively.
Hence the group means can be written as

mgn = Qo,

= B, g=1,....H, h=1,..., H.

As usual, this model will symbolically be denoted as

MQZ ~ 1.

Summary

The models that we consider for the two-way classification are summarized by Table 9.6. The
considered models form two sequence of nested submodels:

(i Mo C Mz C Mz w C Mzw;
(i) Mg C My C Mz C Mzw.

Related submodel testing then corresponds to evaluating whether the two-way classified group
means satisfy a particular structure invoked by the submodel at hand. If normality of the error
terms is assumed, the testing can be performed by the methodology of Chapter 5 (F-tests on
submodels).

End of
Lecture #17
(24/m/2016)
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Table 9.6: Two-way ANOVA models.

Requirement
Model Rank for Rank
Mzw: ~Z+W+2Z:W G-H ngn >0forallg=1,...,

G
Mziw: ~Z+W G+H—-1 nge>0forallg=1,...,G,
Nep, >0forall h=1,... H

G

H

Mg: ~Z G nge >0foral g=1,...,
My : ~W H Nep, >0forall h=1,...,
Mg: ~ 1 1 n>0

9.2.10 Least squares estimation

Start of
Also with the two-way classification, explicit formulas for some of the LSE related quantities can Lecture #18
be derived and then certain properties of the least squares based inference drawn. (30/11/2016)
Notation (Sample means in two-way classification).
1 X
Yohe = — Y Y ., =1,...,G,h=1,...,H,
g:h Mg h Z: g:h.j g
7=1
1 H Ng.h 1 H
Yoo i= n ZZYQ,h,J’:nizngthg,hn g=1....G,
9% h=1j=1 9® h=1
1 G Ng,h 1 G
Yop = — Yyni=— Y g he h=1,...,G,
h n.h Z Z g’h“j n.h anvh g7h ’
g=1 j=1 g=1
1 G H an 1 & 1 X
Y:: ﬁzzzyg7h’j:ﬁzngoygozﬁzn.hyOh'
g=1h=1j=1 g=1 h=1

Asusual, mgp, g =1,...,G, h=1,..., H, denote the LSE of the two-way classified group means

and /’IT\L = (T/fll,l, ooy T/T\LG7H)T.

Theorem 9.3 Least squares estimation in two-way ANOVA linear models.

The fitted values and the LSE of the group means in two-way ANOVA linear models are given as follows
(always forg=1,...,G,h=1,...,H, j=1,...,ngp).

(i) Interaction model My : ~ 7 +W +27Z:W

~

mgvh = }/jq:h:j = ngh.'
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(ii) Additive model M vy : ~Z+ W
Mg.h = S}g,h,j =Yg+ Yer—Y,
but only in case of balanced data® gy =J forallg=1,....G,h=1,...,H)
(iii) Model of effect of Z onlyMy: ~ 7

mgvh = }/:q:hv.j = Yg.'

(iv) Model of effect of W only My, : ~W

mg7h = nghaj = Y.h

@) Intercept only model M: ~ 1

~

mgvh = nvhzj = Y

Note. There exists no simple expression to calculate the fitted values in the additive model in
case of unbalanced data. See Searle (1987, Section 4.9) for more details.

Proof.
Only the fitted values in the additive model must be derived now.

Models Mz, Mz, Myy are, in fact, one-way ANOVA models where we already know that the fitted
values are equal to the corresponding group means.

Also model Mg is nothing new.

Fitted values in the additive model can be calculated by solving the normal equations corresponding
to the parameterization

mgyh:ao—i—af—ka}f}/, g=1,....G, h=1,... H.
while imposing the identifying constraints
G H
Z agZ =0, Z ahW =0.
g=1 h=1

For the additive model with the balanced data (ng) = J forallg=1,...,G, h=1,..., H):

® Sum of squares to be minimized
SS(a) = Z Z Z(Yi‘%hvj —ap — af - oth)Q.
* Normal equations = derivatives of SgS(ohz) d]ivided by (—2) and set to zero:
SN Yyui—GHIag—HIY of —GI> o =0,
g h J g h

NS Yypj—HJIoag—HIal - 0) off =0, g=1,...,G,
h J h

SN Yyni—Glag—JY of —GJay =0, h=1,...,H
g J 9

b vywizend data
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o After exploiting the identifying constraints:
Y>> Yenj—GHJIag=0,
g h J
YD Yynj—Hlag—HJa) =0, g=1,..G,
h J

YN Yynj—GJlag—GJaf =0,  h=1,... H

g
e Hence ag =Y,
a_g:?g.—?, g=1,...,G,
aV =Y, — Y, h=1,..., H.

e And then 7,y =ao+aZ +a})) =Yge+Ye, -7,

g:17'-‘7G, h:1,7H

Consequence of Theorem 9.3: LSE of the means of the means in the interaction
and the additive model with balanced data.

With balanced data (ng ), = J forallg =1,...,G, h=1,..., H), the LSE of the means of the means
by the first factor (parameters M, - .., Mge) or by the second factor (parameters Tie1, . . ., Mefr)
satisfy in both the interaction and the additive two-way ANOVA linear models the following:

mg.:?g., g=1,...,G,
Men =Yen, h=1,... H.
V. . —~Z ~ ~ T —W ~ ~ T
If additionally normality is assumed then ™ ~ := (ml., ey mg.) andm = (m.l, ceey m.H)
satisfy
—~Z7 —~W
m | Z, W~ Ng(m?, a?V?), m |Z, W~ Ny (@, a2 V7,
where
Mle J% ce 0
mZ=| : |, vZ= o
MGe 0 - J%
Mel ﬁ ... 0
m” = , VW=
MeH 0o ... %
Proof. Al parameters g4e, g = 1,...,G, and M, h =1,..., H are linear combinations of the

group means (of the response mean vector pu = ]E(Y ‘ Z, W)) and hence are estimable with the
LSE being an appropriate linear combination of the LSE of the group means. With balanced data,
we get for the the considered models (calculation shown only for LSE of mge, g = 1,...,G):
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(i) Interaction model

1z H 1 Xz H
9 = 1 Z Mgh = H ZYg,h. HiJZJYng = n Z”ghygho =Yg
h=1 h=1 h=1 9® h=1
(ii) Additive model
1 & 1 &
e = 23 = S (T + Von =)
h=1 h=1
1 & 1 &
:Yg.—i_ﬁz Yoh_Y:Ygo+TwZ GJYoh_Y
h=1 h=1
1 X
= Ygo + E Z nohyoh -Y = Ygo
h=1
Y

Further, E(?g. ‘ Z, W) = Tge follows from properties of the LSE which are unbiased or from
direct calculation. Next,

- 1
var(Yg. ‘ Z, W) = var [JH Z ZYWW 7, W] = JU—H

h=1j=1

follows from the linear model assumption var(Y ‘ 7, W) =021,.

Finally, normality of Y ;e in case of a normal linear model, follows from the general LSE theory.

H

9.2.11 Sums of squares and ANOVA tables with balanced data
Sums of squares

As already mentioned in Section 9.2.9, the considered models form two sequence of nested sub-
models:

(i Mo C Mz C Mz w C Mzw;
(i) Mg C My C Mzyw C Mzw.

Corresponding differences in the residual sums of squares (that enter the numerator of the re-
spective F-statistic) are given as squared Euclidean norms of the fitted values from the models
being compared (Section 5.1). In particular, in case of balanced data (ng, = J, g = 1,...,G,
h=1,..., H), we get

G H
SS(Z+W+ZW[Z+W) =337 (Vyne —Ygo— Yar +Y)7,
g=1h=1
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G H G H
SSZ+WIW) =33 T (Ve t Var =Y =Yur) =D J (Ve - Y)7,
g=1h=1 g=1h=1
G H G H
SSZ+W|Z) =YY T (Vg + Y=Y ~V5) =D Y I (YVar - Y)?,
g=1h=1 g=1h=1
G H
SS(z[1) =37 (Ve -Y),
g=1h=1
G H
SSW|1) = Y J (Ve -Y)"
g=1 h=1

We see,
SS(Z+W|W) =55(z|1),
SS(Z+W|Z) =SS(W|1).
Nevertheless, note that this does not hold in case of unbalanced data,

Notation (Sums of squares in two-way classification).

In case of two-way classification and balanced data, we will use the following notation.

SSz —ZZJ (Yoo — V)%,

e
SSw =33 J(Ver - V)7,
g=1h=1
G H
SSZW = ZZJ(Yg,hO - 7go - ?oh + ?)27
g=1h=1
G H J o
SSri= 3> (Yons = V)",
g=1h=1 j=1
G H J
SSZV =33 D (Yans — Yone)™

@
Il
—
i
—_
<
I
—_

Notes.
® Quantities SSz, SSy, SSzw are differences of the residual sums of squares of two models that
differ by terms Z, W or Z:W, respectively.

e Quantity SS is a classical total sum of squares.

e Quantity SSZ" is a residual sum of squares from the interaction model.

Lemma 9.4 Breakdown of the total sum of squares in a balanced two-way classi-
fication.
In case of a balanced two-way classification, the following identity holds

SS7 =SSz + SSyw + SSzw + SSGZW.
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Proof.

Decomposition in the lemma corresponds to the numerator sum of squares of the F'-statistics when
testing a series of submodels
Mo C Mz C Mziw C Mzw

or a series of submodels

Mo C My C Mziw C Mzw.

Let Mg, Mz, My, Mziw, Mzw be the regression spaces of the models Mg, Mz, My,
Mziw, Mzw, respectively.

That is, SS7 = ||U°||?, where U are residuals of model My and
U0:D1+D2+D3+UZW,

where D1, D3, D3, U?" are mutually orthogonal projections of Y into subspaces of R™:

@) Ds: projection into Mz \ My, || D1]|* = SSz.
(i) Dy: projection into Mz, w \ Mgz, || D2||? = SSy.
(iii) D3: projection into Mzw \ Mz, ||D3||* = SSzw.
(iv) UZW: projection into R™ \ Mz (residual space of Mzyy).

From orthogonality: SSp =SSz + SSyw + SSzw + SSGZW.

ANOVA tables

As consequence of the above considerations, it holds for balanced data:

(i) Equally labeled rows in the type I ANOVA table are the same irrespective of whether the table
is formed in the order Z + W + Z:W or in the order W + Z + Z:W.

(ii) Type I and type I ANOVA tables are the same.

Both type I and type II ANOVA table then take the form

Degrees Effect  Effect
Effect of sum of mean
(Term) freedom squares square F-stat. P-value
Z G-1 SS, * * *
W H-1 SSw * * *
Z:W GH—-G—-H+1 SSzw * * *

Residual n—-GH SSZW &«
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9.3 Higher-way classification

Situation of three or more, let say p > 3 factors whose influence on the response expectation
is of interest could further be examined. This would lead to a linear model with p categorical
covariates. Each of the covariates can be parameterized by the means of (pseudo)contrast as
explained in Section 7.4. In general, higher order (up to order of p) interactions can be included in
the model. Depending on included interactions, models with different interpretation with respect
to the structure of higher-order classified group means are obtained. Nevertheless, more details go
beyond the scope of this course. More can be learned, for example, in the Experimental Design
(NMST436) course.

In future, possibly something brief can be included. See Seber and Lee (2003, Section 8.6).
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Simultaneous Inference in
a Linear Model

As usual, we will assume that data are represented by a set of n random vectors (Y;, X iT)T,

X, = (Xw, e ,Xiyk_l)—r, i = 1,...,n, that satisfy a linear model. Throughout the whole
chapter, normality will also be assumed. That is, we assume that

Y | X~ N, (XB, 0%L,),  rank(Xnxp) =7 <k <n,

where Y = (Yl,...,Yn)T, X is a matrix with vectors X1T7...,XTTL in its rows and B = (BO,...7

ﬂk,l)T € R*¥ and 0% > 0 are unknown parameters. Further, we will assume that a matrix L,
(m > 1) with rows l;r, ey l;'; (all non-zero vectors) is given such that

0=18=0/8,....1.8) = (61,....60m)"

is an estimable vector parameter of the linear model. Our interest will lie in a simultaneous inference
on elements of the parameter 6. This means, we will be interested in

(i) deriving confidence regions for a vector parameter 6;

(ii) testing a null hypothesis Hy: @ = 8° for given 8° € R™.

188
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10.1 Basic simultaneous inference

If matrix L, is such that

@) m <

(i) its rows, i.e., vectors 1, ..., 1, € R¥ are linearly independent,

then we already have a tool for a simultaneous inference on @ = IL3. 1t is based on point (x) of
Theorem 3.2 (Least squares estimators under the normality). It provides a confidence region for 6
with a coverage of 1 — o which is

~ ~1 ~
{oer™: (0-8) {MS.LX'X) LT} (0-8) < mFunr(l-a)}, 01
where 6 = Lb is the LSE of 6. The null hypothesis Hy: @ = 0° is tested using the statistic

1 ~ _ -1
Qo=— (-6 {MS.L(x'X) LT} (8-6), 10.2)
m
which under the null hypothesis follows an F,,, ,,—, distribution and the critical region of a test on
the level of « is

C(a) = [Fnn—r(1—a), o). (10.3)

The P-value if Qo = qo is then given as p = 1 — CDF £ ,, »—r(qo). Note that the confidence region
(10.1) and the test based on the statistic ()g and the critical region (10.3) are mutually dual. That is,
the null hypothesis is rejected on a level of « if and only if 8° is not covered by the confidence
region (10.1) with a coverage 1 — a.
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10.2 Multiple comparison procedures

10.2.1 Multiple testing

The null hypothesis Hy: 8 = 6° (8° = (9?, e 9%)T) on a vector parameter 6 = (91, cee Om)T
can also be written as Hy: 61 =60 & - & 6, =00,

Definition 10.1 Multiple testing problem, elementary null hypotheses, global null
hypothesis.
A testing problem with the null hypothesis

H: 60=6) & ... & 6, =6, (10.4)
is called the multiple testing problem' with the m elementary hypotheses”
H: 6,=6 ..., Hy: 6, =06°.

Hypothesis Hy is called in this context also as a global null hypothesis.

Note. The above definition of the multiple testing problem is a simplified definition of a general
multiple testing problem where the elementary null hypotheses are not necessarily simple hypothe-
ses. Further, general multiple testing procedures consider also problems where the null hypothesis
Hy is not necessarily given as a conjunction of the elementary hypotheses. Nevertheless, for our
purposes in context of this lecture, Definition 10.1 will suffice. Also subsequent theory of multiple
comparison procedures will be provided in a simplified way in an extent needed for its use in con-
text of the multiple testing problem according to Definition 10.1 and in context of a linear model.

Notation.

e When dealing with a multiple testing problem, we will also write

Ho = H1 & PN & Hm
or
HO = Hl, PPN Hm
or
m
Ho = () H;.
j=1

e In context of a multiple testing, subscript 1 at H; will never indicate an alternative hypothesis.
A symbol C will rather be used to indicate an alternative hypothesis.

¢ The alternative hypothesis of a multiple testing problem with the null hypothesis (10.4) will always
be given by a complement of the parameter space under the global null hypothesis, i.e.,

HE: 0,460 OR ... OR 6, #60,

= it orR ... orR HL,

L' problém vicendsobného testovini * elementdrni hypotézy
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where HE 2 0; #6% 5 =1,...,m. We will also write

¢ Different ways of indexing the elementary null hypotheses will also be used (e.g., a double

subscript) depending on a problem at hand.

Example 10.1 (Multiple testing problem for one-way classified group means).

Suppose that a normal linear model Y ‘ X ~ Ny, (Xﬁ, O’QIn) is used to model dependence of the
response Y on a single categorical covariate Z with a sample space Z = {1, ..., G}, where the
regression space M (X) of a vector dimension G parameterizes the one-way classified group means

mi=E(Y|Z=1), ..., mg=E(Y|Z=0G).

If we restrict ourselves to full-rank parameterizations (see Section 7.4.4), the regression coefficients vector
, T\T T .
is B = (50, B4 ) , 3% = (51, ey ﬁG_l) and the group means are parameterized as

mg:BO_‘_C;—/BZa 9217"'7Ga

where
cf
c=| :
e
is a chosen G x (G — 1) (pseudo)contrast matrix.
The null hypothesis Hy: my = --- = mg on equality of the G group means can be specified as

a multiple testing problem with m = (g) elementary hypotheses (double subscript will be used to

index them):
Hyo:myp=mg, ..., Hg-1G:mGg-1=mg.

The elementary null hypotheses can now be written in terms of a vector estimable parameter

0= (91,25 ) GG*LG)Ta

Hgyh:mg_mh:(cg_ch)—rﬁzv 9217"‘7G_17 h:g+17

as
Hyp:012=0, ..., Hg1c:0g-16=0,

or written directly in term of the group means as
Hyo:my—mo=0, ..., Hg-1c:mg-1—mg=0,
The global null hypothesis is Hy: @ = 0, where @ = IL3. Here, I is an (g) x G matrix
T
0 (Cl — C2)
L—|: .

0 (CG_1 — CG')—r

Since rank((C) =G — 1, we have rank(]L) = G — 1. We then have
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e forG>4,m= (g) > G. That is, in this case, the number of elementary null hypotheses is higher
than the rank of the underlying linear model.

e For G > 3, the matrix 1L has linearly dependent rows.
That is, for G > 3, we can

(i) neither calculate a simultaneous confidence region (10.1) for 6;

(ii) nor use the test statistic (10.2) to test Hy: @ = 0.
In this chapter,

(i) we develop procedures that allow to test the null hypothesis Hy: L3 = 6° and provide
a simultaneous confidence region for @ = L3 even if the rows of the matrix L are linearly
dependent or its rank is higher than the rank of the underlying linear model;

(i) the test procedure will also decide which of the elementary hypotheses is/are responsible (in
a certain sense) for rejection of the global null hypothesis;

(iii) developed confidence regions will have a more appealing form of a product of intervals.

10.2.2 Simultaneous confidence intervals

Suppose that a distribution of the random vector D depends on a (vector) parameter 6 = (91, e

6m) €Oy x - x O, =06CR™

Definition 10.2 Simultaneous confidence intervals.

(Random) intervals (QJ-L, GJU), j=1,...,m, where HJL = Gf(D) and GJU = OJU(D),j =1,...,m,

are called simultaneous confidence intervals® for parameter @ with a coverage of 1 — « if for any
0 _ (g0 0T

60°=(09,...,00) €6,

P((0F, 67) x - x (05, 05) 2 6% 6 =0") >1-a.

End of
Lecture #18
Notes. (30/1/2016)
e The condition in the definition can also be written as Start of
Lecture #19
. C(pL U 0.9_ o
P(Vj=1,...m: (6}, 07)56% 6 =0") >1-a. BOM2016)

¢ The product of the simultaneous confidence intervals indeed forms a confidence region in
a classical sense.

Example 10.2 (Bonferroni simultaneous confidence intervals).

Let foreachj = 1,...,m, (9;;, HJU ) be a classical confidence interval for ; with a coverage of 1 — ..
That is, N
g 0 . L U 0. _n0
Vi=1,...,m, V6 €O : P((ej,ej)sej,aj_ej)zl—%.

3 simultdnni intervaly spolehlivosti
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We then have

Vi=Tom V00 €0, P((0F, 07) 3 0% 0, =) <

Further, using elementary property of a probability (for any 8° € ©)

P(Eljzl,...,m: (e},ey)ze;?;e:ao) ZP(HLGU 90;0:00)

J7 )

m
«
<>
m
J=1
Hence,

P(ijl,...,m: (6%, 95/)99?;0:90> -

That is, intervals (HJ-L, GJU), j = 1,...,m, are simultaneous confidence intervals for parameter 0
with a coverage of 1 — o Simultaneous confidence intervals constructed in this way from univariate
confidence intervals are called Bonferroni simultaneous confidence intervals. Their disadvantage is that
they are often seriously conservative, i.e., having a coverage (much) higher than requested 1 — .

10.2.3 Multiple comparison procedure, P-values adjusted for mul-
tiple comparison

Suppose again that a distribution of the random vector D depends on a (vector) parameter 8 =

(91, e Gm)T €O X+ X0y =0 CR™ Let for each 0 < o < 1 a procedure be given
to construct the simultaneous confidence intervals (QJL (), HJ-U(a)), j =1,...,m, for parameter
6 with a coverage of 1 — .. Let for each j = 1,...,m, the procedure creates intervals satisfying

a monotonicity condition

l—ap<1—as - (HjL(Oél), 0](](061)) - (9%(0&2), 9]U<052))

Definition 10.3 Multiple comparison procedure.
Multiple comparison procedure (MCP)* for a multiple testing problem with the elementary null hy-

potheses Hj: 0; = 9?, j = 1,...,m, based on given procedure for construction of simultaneous
confidence intervals for parameter @ is the testing procedure that for given 0 < a < 1
(i) rejects the global null hypothesis Hy: 6 = 6° if and only if
(0%(0()7 (9?(0[)) X X (‘97[7/1(05)7 072]1(0‘)) % 00;

@ii) for j = 1,...,m, rejects the jth elementary hypothesis H; : 0; = 9? if and only if

(07 (), 65 () % 69,

* procedura vicendsobného srovndvini
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Note. Since (6f(a), 67 (c)) >< o x (0L (), 0Y(a)) # 6° if and only if there exists
j=1,...,m, such that (HJL( ) % 69, the MCP rejects, for given 0 < o < 1, the global
null hypothesm Ho: 0 = 6° 1f and only if, it rejects at least one out of m elementary null
hypotheses.

Note (Control of the type-I error rate).

Classical duality between confidence regions and testing procedures provides that for any 0 < o <
1, the multiple comparison procedure defines a statistical test which

(i) controls the type-I error rate with respect to the global null hypothesis Hy: 8 = 6Y, i.e.,

P(Ho rejected; 6 = 90) < a;

(ii) at the same time, for each j = 1,...,m, controls the type-1 error rate with respect to the
elementary hypothesis H;: 6; = 9?, ie.,

P(Hj rejected; 0; = 0?) <«

Definition 10.4 P-values adjusted for multiple comparison.

P-values adjusted for multiple comparison for a multiple testing problem with the elementary null
hypotheses H;: 0; = 69, j = 1,...,m, based on given procedure for construction of simultaneous

confidence intervals for parameter 6 are values p(fdj e, pm] defined as

¥ =int{a: (05(@), 8(@) 260}, j=1,...m.

Notes. The following is clear from construction:
* The multiple comparison procedure rejects for given 0 < o < 1 the jth elementary hypothesis
H;: 0; = 9? (G=1,...,m)if and only ifp?d] <a.

e Since the global null hypothesis Hy: 6 = 6" is rejected by the MCP if and only if at least one
elementary hypothesis is rejected, we have that the global null hypothesis is for given « rejected
if and only if

mm{pad], e, p%ij} < a.

That is,
dj dj dj
P = min{p?, ..., pi’

is the P-value of a test of the global null hypothesis based on the considered MCP.

Example 10.3 (Bonferroni multiple comparison procedure, Bonferroni adjusted
P-values).

Let for 0 < a < 1, (HJ-L(a), GJ-U(oe)), j = 1,...,m, be the confidence intervals for parameters
01, ..., O, each with a (univariate) coverage of 1 — % That is,

Vi=1l...m Vo) e0;: P((0Fa), 07 (a) 2600, =00) =12

m.
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As shown in Example 10.2, (GJL (), 9][-](04)), j =1,...,m, are the Bonferroni simultaneous confidence

intervals for parameter 6 = (91, cee Hm)T with a coverage of 1 — .

Let forj =1,....m, pu’“ be a P-value related to the (single) test of the (jth elementary) hypothesis
Hj: 6; = 9? bemg dual to the confidence interval (GjL(a), 6§J (@)). That is,

=it & (0h(a). 0 ) 503

m

Hence,
min{mp}‘m, 1} = inf{a : (HJ-L((X), 9?(04)) 3 9;-)}.

That is, the P-values adjusted for multiple comparison based on the Bonferroni simultaneous confidence
intervals are

pf =minfmpy 1), =1
The related multiple comparison procedure is called the Bonferroni MCP.
Conservativeness of the Bonferroni MCP is seen, for instance, on the fact that the global null hypothesis
Hy: 0 = 6Y is rejected for given 0 < o < 1 if and only if, at least one of the elementary hypothesis is

rejected by its single test on a significance level of a/m which approaches zero as m, the number of
elementary hypotheses, increases.

10.2.4 Bonferroni simultaneous inference in a normal linear model

Consider a linear model
Y | X~ N, (XB, 0°L,),  rank(Xnxp) =7 <k <n.

Let
-

0=18=»1[8,....,1.8) = (61, ..., 6,)

be an estimable vector parameter of the linear model. At this point, we shall only require that

1; # 0y, for each j = 1,...,m. Nevertheless, we allow for m > r and also for possibly linearly
dependent vectors 1y, ..., L,.
As usual, let @ = Lb = (llTb, e l;b)T = (671, e é\m)T be the LSE of the vector 8 and let

MS. be the residual mean square of the model.

It follows from properties of the LSE under normality that for given «, the (1 — —) 100%
m

confidence intervals for parameters 61, ..., 6,, have the lower and the upper bounds given as
6F(a) = b — \/MS.IT(XTX) L, t(1-50),
2m
(10.5)
V() = Ub+\/MS. 1] (XTX) Lt (1-55), =1..m
j 7 tn—r A ) 5
By the Bonferroni principle, intervals (GJ-L(oz), QJU (@), j =1,...,m, are simultaneous confidence

intervals for parameter € with a coverage of 1 — a.

For each j = 1,...,m, the confidence interval (10.5) is dual to the (single) test of the (jth
elementary) hypothesis H;: 0; = 0? based on the statistic

1/b— 69
\/MS 1 (XTX) L

9
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(which under the hypothesis H; follows the Student t,,_, distribution) while having the critical
region of the test on a level of a/m as

65 = (=0, ~tuer (1= o) U [ermr (1 52 ) ).

The related univariate P-values are then calculated as
p?ni =2 CDFm n—r (— |tj70’),

where t; is the value of the statistic T](O?) attained with given data. Hence the Bonferroni
gdjusted P-values for a multiple testing problem with the elementary null hypotheses H;: 6; = 9?,
j=1,...,m, are

pf :min{2mCDFt7n_r(— tio 1,...,m.

) 1}
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10.3 Tukey’s T-procedure

Method presented in this section is due to John Wilder Tukey (1915 - 2000) who published the
initial version of the method in 1949 (Tukey, 1949).

10.3.1 Tukey’s pairwise comparisons theorem

Lemma 10.1 Studentized range.
Let Ty, ..., Ty, be a random sample from N'(pu, 02), 0> > 0. Let

R= max T; — min T;
I J . J
7j=1,....m j=1,...m

be the range of the sample. Let S? be the estimator of o2 such that S* and T = (Tl, e ,Tm)—r are
independent and

SZ
V—z ~ X2 forsome v>0.
o
Let R
Q-5

The distribution of the random variable Q then depends on neither y, nor o.

Proof.
e We can write:

1 . T —p (T —p
R ;{m?X(Tj —p) — min(T; — u)} mj‘@X(%) - mjm<]a>
5 .

g

g

¢ Distribution of both the numerator and the denominator depends on neither x4, nor o since

T, _
eForallj=1,...,m MNN(O, 1).
o

S
e Distribution of — is a transformation of the x?2 distribution.
o

Note. The distribution of the random variable Q = £ from Lemma 10.1 still depends on m (the
sample size of T') and v (degrees of freedom of the X2 distribution related to the variance estimator
S?).
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Definition 10.5 Studentized range.

R
The random variable Q = — from Lemma 10.1 will be called studentized range’ of a sample of size

m with v degrees of freedom and its distribution will be denoted as d, ..

Notation.

e For 0 < p < 1, the p100% quantile of the random variable @) with distribution g, ,, will be
denoted as gy, . (p).

* The distribution function of the random variable () with distribution q,,, will be denoted
CDFgm. ().

Theorem 10.2 Tukey’s pairwise comparisons theorem, balanced version.
Let Ty,...,T,, be independent random variables and let T; ~ N (u;, v?0?), j = 1,...,m, where

v? > 0 is a known constant. Let S? be the estimator of 0® such that S* and T = (Tl, e ,Tm)T
are independent and

vS? 9
2 X for some v > 0.
Then
P(forallj #1: ‘T] -1 — (py — Ml)‘ < gmp(l — a) Vo2 S2> =1-a.
Proof.
T
e It follows from the assumptions that random variables —Z o ,j=1,...,m, are i.id. with the
v

distribution N (0, o2).

T — (s T — 11
o Let R = max(j'uj> — min(w).
7 v J v

R
= § ~ dm,v-

* Hence for any 0 < a < 1 (qy,,, is a continuous distribution):

max<]“J> _ min<3’”>
l1—-a=P d Y e Y < gmy(l—a)
S
m]aX(Tj = 1) — mjin(Tj — 1)
=P e < gmp(1—a)

= P(max(T; — 1) — min(Ty — 1) < 0 (1 - )

S studentizované rozpéti
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—P(forall j £ 1 |(Tj ~ ) = (Ti = )| < vSamu(l-0))

- P<for all j A1 |Tj =T — (5 — )| < (1l —a)Vo? 52)_

Theorem 10.3 Tukey’s pairwise comparisons theorem, general version.

Let Ty, ..., Ty, be independent random variables and let Tj ~ N (p;, v]zaz), j=1,...,m, where

UJQ- > 0, j = 1,...,m are known constants. Let S be the estimator of o® such that S* and

T= (Tl, e ,Tm)T are independent and

vS?
2 forsome v > 0.

5 X
o2

Then

| T
P(forallj #1 |Tj =T — (uj— m)| < amu(l—a) Tsz > l—o

Proof. Proof/calculations were skipped and are not requested for the exam.

See Hayter (1984).
M|

Notes.

e Tukey suggested that statement of Theorem 10.3 holds already in 1953 (in an unpublished
manuscript Tukey, 1953) without proving it. Independently, it was also suggested by Kramer
(1956). Consequently, the statement of Theorem 10.3 was called as Tukey-Kramer conjecture.

¢ The proof is not an easy adaptation of the proof of the balanced version.

10.3.2 Tukey’s honest significance differences (HSD)

A method of multiple comparison that will now be developed appears under several different
names in the literature: Tukey’s method, Tukey-Kramer method, Tukey’s range test, Tukey’s honest
significance differences (HSD) test.

Assumptions.
In the following, we assume that

T= (T, ..., Tn)

where
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o 1= (Mly e ,um)T € R™ and 02 > 0 are unknown parameters;
e V is a known diagonal matrix with v?, ... v2 on a diagonal.
That is, 11, ..., T), are independent and Tj; ~ N (pu;, o2 vj), 7 = 1,...,m. Further, we will

assume that an estimator S? of o2 is available which is independent of 7' and which satisfies
v S?/a% ~ x2 for some v > 0.

Multiple comparison problem.

A multiple comparison procedure that will be developed aims in testing m* = (g‘) elementary
hypotheses on all pairwise differences between the means p1, ..., fi,. Let

01 = 1 — s j=1,....m—-1,1=j+1,...,m,
.
0= (012,013 ..\ Om—1m) -

The elementary hypotheses of a multiple testing problem that we shall consider are

Hjo: 050(= 5 — ) =603, j=1,....m—=1,1=j+1,...,m,
for some 0° = (9(1)72, 0(1)’3, e 99,#1’m)—r € R™". The global null hypothesis is as usual Hy: 6 =

6°.

Note. The most common multiple testing problem in this context is with 8° = 0,,~ which
corresponds to all pairwise comparisons of the means p, ..., py,. The global null hypothesis
then states that all the means are equal.

Some derivations

Using either of the Tukey’s pairwise comparison theorems (Theorems 10.2 and 10.3), we have (for
chosen 0 < o < 1):

vz+vl2
Plforall j#1 |T; =T = (g — )| < amp(l =)/ F5— 5] = 1-q,

with equality of the above probability to 1 — « in the balanced case of v? = - -- = v2,. That is, we
have,

Ty — Ty — (pj — pu)

v24v?
J_ 7l 2
\ L5 S

T; - T — 69,

P | forall j #1 <gmy(l—0a)] > 1-a.

Let for j # [ and for 921 eR

Tj,l(eg,l) = 5 5
Ch + v;

2
5 S
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That is
l—-a <P (for all j #1 TjJ(Hg’l)‘ <gmu(l—a); 8= 00) (10.6)
Ty =T - 69,
= P |forall j #1 27’<qm7y(1—04);0:00
v]--l—vl 52
V2
- P(for all j # 1 9 f(a), ef}’(a)) > 69; 6 = 00>, 10.7)
where
0TL(a) =T, — Ty — quy(1—a)y/ 2520 82,
’ — (10.8)
070 () =Tj — T + Guo(l —a) /50 52, j<l.

Theorem 10.4 Tukey’s honest significance differences.

Random intervals given by (10.8) are simultaneous confidence intervals for parameters 0;; = p; — ju,
j=1,....m—=11=j+1,...,m with a coverage of 1 — «.

In the balanced case of v? = - -- = v2,, the coverage is exactly equal to 1 — o, i.e,, for any 8° € R™

P(for all j #1 (eij(a), ef}f(a)) >69; 6= 00) =1-o

Related P-values for a multiple testing problem with elementary hypotheses H;;: 0;; = GJ v 9
J < I, adjusted for multiple comparison are given by

pa=1- CDFq,m,VQt?,zD» J <l

T;—T;—6°
7Ll attained with given data.

52

where t;{l is a value oijJ(H?J) =

Proof.

The fact that (HJTIL (o), nglU (a)), j < I, are simultaneous confidence intervals for parameters
01 = pj — p with a coverage of 1 — «a follows from (10.7).

The fact that the coverage of the simultaneous confidence intervals is exactly equal to 1 — « in
a balanced case follows from the fact that inequality in (10.6) is equality in a balanced case.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem
with the elementary hypotheses H;;: 0;; = (9?’[, j < I, follows from noting the following (for each
j<l:

(0@, 657 @) 30 = |Tau(8)| = a1 - )

It now follows from monotonicity of the quantiles of a continuous Studentized range distribution

that
P?jl = inf{a : (GflL(oz), 93?(04)) 3 6’?75} = inf{a : ‘Tg}l (9?71)) > qm, v (1 — a)}



10.3. TUKEY’S T-PROCEDURE 202

is attained for p}jl satisfying
T5(69)] = . (1 = P).

That is, if t? ; is a value of the statistic 7}; (‘9]0‘1) attained with given data, we have
=1 = COF g (1)

3

End of
Lecture #19
10.3.3 Tukey’s HSD in a linear model (30711/2016)
Start of
In context of a normal linear model Y ‘ X ~ Nn(X,B, U2In), rank(ank) — <k < n, the Lecture #20
Tukey’s honest significance differences are applicable in the following situation. (0112/2016)

® L, is a matrix with non-zero rows 1; , ..., l; such that the parameter

T T
77:]]-4,3: (lirﬁa SRR 17—:7, ) = (7717 ceey nm)
is estimable.
e Matrix LL is such that
V=L(X'X) L' = (vj,l)jyl:h_,m
is a diagonal matrix with ’UJQ- =, j=1,...,m
With b = (XTXYXTY and the residual mean square MS, of the fitted linear model, we have
(conditionally, given the model matrix X):

(n —r)MS, 9

T:=5=(b,...,16)" =1Lb~ N, (n, 6?V), 5 ~ Xa—r

o
1 and MS, independent.

Hence the Tukey’s T-procedure can be used for a multiple comparison problem on (also estimable)
parameters

T .
O i=mn—m=(-1) B, J <l
The Tukey’s simultaneous confidence intervals for parameters 6;;, j < [, with a coverage of 1 — o
have then the lower and the upper bound given as

~ 7,2
9_’]1711/(&) =0 =M — qm,n—r(l - a) \/%,

~ I 31,2 '
077 (@) =7 =+ dmn—r(1 — ) \/%, i<l

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem

with elementary hypotheses
Hjp: 00 =05,  j<l

for chosen H?Z € R, is based on statistics

TjJ(G?J) = Jj <l
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The above procedure is in particular applicable if all involved covariates are categorical and the
model corresponds to one-way, two-way or higher-way classification. If normal and homoscedastic
errors in the underlying linear model are assumed, the Tukey’s HSD method can then be used to
develop a multiple comparison procedure for differences between the group means or between the
means of the group means.

One-way classification
.
Let Y = (Yl,l’ e Yg,nc) ,n = Zle ng, and

Y5 ~ N(mg’ 02)7
Y, j independent for g =1,...,G, j=1,...,ng,

We then have (see Theorem 9.1, with random covariates conditionally given the covariate values)

Y, my ?11 0
T := ~ Ng , o? :
Yo mg 0 %

Moreover, the mean square error MS, of the underlying one-way ANOVA linear model satisfies,

with v, = n — G,
ve MS, 9
72 ~Y

X7e s MS. and T independent
o
(due to the fact that T is the LSE of the vector of group means m = (ml, e mg)T). Hence the
Tukey’s simultaneous confidence intervals for 0, ), = mg—myp, g =1,...,G-1, h=g+1,...,G

with a coverage of 1 — «, have then the lower and upper bounds given as

_ 1,1 1
Y,- Y, + qG7ng(1—a)\/2 (n—+n—h) MS., g <h.
g

In case of a balanced data (n; = --- = ng), the coverage of those intervals is even exactly equal

to 1 — , otherwise, the intervals are conservative (having a coverage greater than 1 — «).

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem
with elementary hypotheses
Hyn: Ogn=0gp  g<h

for chosen 92’ 5 € R, is based on statistics
R
1,1 1 ’
\/ S (—+—)wms.
2\ng ny
Note. The R function TukeyHSD applied to objects obtained using the function aov (performs

LSE based inference for linear models involving only categorical covariates) provides a software
implementation of the Tukey’s T multiple comparison described here.

Tyn(gn) = g <h.
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Two-way classification

T H
Let Y = (Yl,l,lv - YG,H,no,H) ,n = Zngl > h—1 Ng,n and
Yg:hvj ~ N(mg’}“ 02)7
Y, 1 ; independent for g =1,...,G, h=1,...,H, j=1,...,ng4,

Let, as usual,

H H Ng.h
ng. = : :ng7h’ n : :: :Y7 a]’
h=1 9® p=1j=1
Mige = = ~1,....G
mg. = E mgyh, mg. = n ngyhmgyh, g=1,...,G.
— ge

Balanced data

In case of balanced data (n,j, = J for all g, h), we have nge = J H, W;t = myg. Further,
?1. ml. ﬁ Ce 0
T:=| : | ~MNg o, e ,
?G. MGe 0 . J%

see Consequence of Theorem 9.3. Further, let MS?" and MSZ*"W be the residual mean squares
from the interaction model and the additive model, respectively, v2" = n — G H, and vZ™" =
n — G — H + 1 degrees of freedom, respectively. We have shown in the proof of Consequence
of Theorem 9.3 that for both the interaction model and the additive model, the sample means
Yie, ..., Yo are LSE’s of estimable parameters 71, ..., Mae and hence, for both models,
vector T' is independent of the corresponding residual mean square. Further, depending on whether
the interaction model or the additive model is assumed, we have
* *

Ve ;\256 ~ nga
where MS? is the residual mean square of the model that is assumed (MSeZ W or MSeZ +Wy and vy
the corresponding degrees of freedom (2" or vZ+"W). Hence the Tukey’s simultaneous confidence
intervals for 0y, g, = Mg e — Mgye, g1 = 1,...,G =1, g2 = g1 + 1,...,G have then the lower
and upper bounds given as

_ _ 1 .
Yg1' — YQZ' :l: qG7 V;(l — ) J7H MS

and the coverage of those intervals is even exactly equal to 1 — a.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem
with elementary hypotheses

. 0
Hy, g0 0!]1,!]2 egl .92 g1 < g2,

for chosen 981 g ER s based on statistics

Yoe—Yae—0°
Tghgz (021792) == 192 g1,g2’ g1 < g2.
—_— MS*
JH
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Unbalanced data

With unbalanced data, direct calculation shows that Beginning of
7. - ni. 0 skipped part
T := ~ Ng S L
Yo me T
Further, the sample means Y1,,...,Y e are LSE’s of the estimable parameters Wﬁ"f, o Wg’:

in both the interaction and the additive model. This is obvious for the interaction model since
there we know the fitted values (= LSE’s of the group means mg ;). Those are ?g,hd = 797h.,
g=1,....G,h=1,...,H, j=1,...,ngp (Theorem 9.3). Hence the sample means Yie -
Y G, which are their linear combinations, are LSE’s of the corresponding linear combinations of

the group means my j,. Those are the weighted means of the means mﬁ"f, e mgt, To show that
the sample means Yq,, ..., Y g, are the LSE’s for the estimable parameters Wf’f, ey Wéﬁ in the

additive model would, nevertheless, require additional derivations.

For the rest, we can proceed in the same way as in the balanced case. That is, let MS} and v/}
denote the residual mean square and the residual degrees of freedom of the model that can be
assumed (interaction or additive). Owing to the fact that T is a vector of the LSE’s of the estimable
parameters for both models, it is independent of MS}. The Tukey’s T multiple comparison procedure
is now applicable for inference on parameters

6?;?’92 :m;ult. —m;;t., g=1....G=-1, go=q1+1,...,G.
The Tukey’s simultaneous confidence intervals for 919”1ng = m;”lt, — mg’;,, g=1,....,G—-1, g2 =
g1+ 1,...,G, with a coverage of 1 — «, have the lower and upper bounds given as

_ 1 1 1
Yge—Yge £ qg, ug(l - a)\/2 < + )MS;'

Ngie  Ngye

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem
with elementary hypotheses

. wt __ pwt,0
Hgy 95 091192 - 0911927 g1 < g2,

for chosen H;f}lt,’g% € R, is based on statistics

Evd v wt,0
Yg1° — Ygz' — 991792

1 1 1 ) g1 < g2.
—( + )M%
2 an' ngz'

t,0\ _
Tglvg2 (Qg;,gz) -

Notes.
* Analogous procedure applies for the inference on the means of the means

1 G 1 G

_ —wt

Mel, = — E Mg hs Mep = — E Ng.h Mg h, h=1,...,H,
Ggil Tlel, =

by the second factor of the two-way classification.

¢ The weighted means of the means mgwf or m¥} have a reasonable interpretation only in certain

special situations. If this is not the case, the Tukey’s multiple comparison with unbalanced data
does not make much sense.
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® Even with unbalanced data, we can, of course, calculate the LSE’s of the (unweighted) means
of the means 74e or T,;,. Nevertheless, those LSE’s are correlated with unbalanced data and
hence we cannot apply the Tukey’s procedure.

Note (Tukey’s HSD in the R software).

The R function TukeyHSD provides the Tukey’s T-procedure also for the two-way classification
(for both the additive and the interaction model). For balanced data, it performs a simultaneous
inference on parameters 6,, 4, = 74,6 — Tg,e (and analogous parameters with respect to the
second factor) in a way described here. For unbalanced data, it performs a simultaneous inference
on parameters 9;”;92 = W;’f, — mg, as described here, nevertheless, only for the first factor
mentioned in the model formula. Inference on different parameters is provided with respect to the
second factor in the model formula. That is, with unbalanced data, output from the R function

TukeyHSD and interpretation of the results depend on the order of the factors in the model formula.
TukeyHSD with two-way classification for the second factor uses “new” observations that adjust for

the effect of the first factor. That is, it is worked with “new” observations Yg*h it given as

Yy =Yghi—YgetY, g=1,....,G, h=1,...,H, j=1,...,ngp.

The Tukey’s T procedure is then applied to the sample means

G

1 _ _
nhznmyg. +Y, h=1,...,H,
° g=1

S

Yoh = ?'h -

whose expectations are

1 G 1 G H

—wt § —wt E E

mi"h — T ng7hmg). + ﬁ ng’thgy}m, h = 17 ey f[7
*h =1 g=1 ho—1

which, with unbalanced data, are not equal to mﬁ”,f

End of
skipped part
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10.4 Hothorn-Bretz-Westfall procedure

The multiple comparison procedure presented in this section is applicable for any parametric model
where the parameters estimators follow either exactly (as in the case of a normal linear model) or
at least asymptotically a (multivariate) normal or t-distribution. In full generality, it was published
only rather recently (Hothorn et al., 2008, 2011), nevertheless, the principal ideas behind the method
are some decades older.

10.4.1 Max-abs-t distribution

Definition 10.6 Max-abs-t-distribution.

Let T = (Tl, . ,Tm)T ~ mvty, , (E), where 33 is a positive semidefinite matrix. The distribution

of a random variable

H = max [T}
7j=1,....m

will be called the max-abs-t-distribution of dimension m with v degrees of freedom and a scale matrix

3 and will be denoted as hy, , ().

Notation.

e For 0 < p < 1, the p100% quantile of the distribution h,, , (%) will be denoted as h,, ., (p; ).
That is, hy, ., (p; ) is the number satisfying

P(j:max 17| < b (p; 2)) = p.

1,....,m

e The distribution function of the random variable with distribution h,, ,(X) will be denoted

CDFph (-5 2).

Notes.
e If the scale matrix 3 is positive definite (invertible), the random vector T' ~ mvt,, , (E) has
a density w.r.t. Lebesgue measure

T v+m 1 Te—1 _vim
fr) = T s %{th t} . ter™
r(5) i3 7

e The distribution function CDFy, ,, ,,(; 3) of a random variable H = max;—1, . |1}| is then
(for h > 0):

CDFh o (h; B) = P(}max 7| < h> - P(Vj =1,...,m |Tj| < h>

Jj=1,....m

h h
:/ / Fr(te, o t) iy - di,
—h —h

e That is, when calculating the CDF of the random variable H having the max-abs-t distribution,
it is necessary to calculate integrals from a density of a multivariate t-distribution.
¢ Computationally efficient methods not available until 90’s of the 20th century.
* Nowadays, see, e.g., Genz and Bretz (2009) and the R packages mvtnorm or mnormt.
® Calculation of CDFy, ,y, ,(+; ) is also possible with a singular scale matrix 3.
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10.4.2 General multiple comparison procedure for a linear model

Assumptions.

In the following, we consider a normal linear model
Y | X~ N, (X8, 0°L,), rank(X,x;) =1 < k.

Further, let

be a matrix such that

0=18=0/8,....1.8) =(61,...,6m)"

is an estimable vector parameter with 1; = O, ..., 1, # O.

Notes.
¢ The number m of the estimable parameters of interest may be arbitrary, i.e., even greater than r
or k.

¢ The rows of the matrix . may be linearly dependent vectors.

Multiple comparison problem.
A multiple comparison procedure that will be developed aims in providing a simultaneous infer-
ence on m estimable parameters 61, ..., 6, with the multiple testing problem composed of m

elementary hypotheses
Hji 0]':0?, jzl,...,m,

for some 6° = (69, ..., 921)T € R™. The global null hypothesis is as usual Hy: 8 = 6°.

Notation. In the following, the following (standard) notation will be used:
o b= (XTX)_XTY (any solution to normal equations XTXb=XTY);

=Lb=(1{b,...,11b) = (01, ...,0n)": LSE of 6;
e V=LEX"X) LT = (v)
(XTX)7);

il=lm (which does not depend on a choice of a pseudoinverse

. 1 1
ID):dlag( Y e >;
v U1,1 v Umm

MSe: the residual mean square of the model with v, = n — r degrees of freedom.
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Reminders from Chapter 3

e For j =1,...,m, (both conditionally given X and unconditionally as well):
0, —0; 0, —0;
Z; = ~ N(0,1), Tp=—2_—F_ ~ t,,.
/ \/UQUJ'J ( ) / \/MSevjvj e

¢ Further (conditionally given X):

Z:(Zl,...,zm)T:\/}QD(@—e) ~ Npu(0,, DVD),
T=(T1,.. T = &S D(@-6) ~ mvty .. (DVD).

Notes.
¢ Matrices V and DVID are not necessarily invertible.

o If rank(IL) = m < r then both matrices V and DVD are invertible and Theorem 3.2 further
provides (both conditionally given X and unconditionally as well) that under Hy: 6 = 0°:

Q=1 (8-0")T (M5, V) (@) = LTTOVD) T ~ Fper

m

This was used to test the global null hypothesis Hy : 6 = 0° and to derive the elliptical
confidence sets for 6.

e It can also be shown that if mg = rank(]L) then under Hy: 6 = 6°:

= (0-0°) (V5. 7)* (0-0°) = LTT (VD) T ~ Fipor,

(both conditionally given X and unconditionally), where symbol + denotes the Moore-Penrose
pseudoinverse.

Some derivations

Letfor@?ER,jzl,...,m,

Then, under Hy: 6 = 6°:
T(6°) := (TL(6Y), ..., Tw(6%)) " ~ mvty o (DVD).
We then have, for 0 < o < 1:

1—a = P max [T5(69)] < hpn-r(1— 5 DVD); 6 = 6°)

Jj=1,....m

- P(for all j=1,...,m |T5(09)] < hnnr(1 — a; DVD); 9:90)
0, — 6"

= Plforallj=1,...,m ‘H
,/MSevj,j

= Plforallj=1,...,m <0§{L(a), QfU(a)> > 9?; 0= 00>, (10.9)

< hmn-r(l—a; DVD); 6 = 00>



10.4. HOTHORN-BRETZ-WESTFALL PROCEDURE 210

where

HJHL(oz) =0; — hpy n—r(1 — s DVD) \/MS, v; 5,

~ (10.10)
0‘7[{(](0() :9 hmn 7»(1—0( DVD)\/MS@UJ'J, ]:1"‘.777’1“

Theorem 10.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in a normal lin-
ear model.

Random intervals given by (10.10) are simultaneous confidence intervals for parameters 0; = 173,

j=1,...,m, with an exact coverage of 1 — c, i.e., for any 8° = (0(1), e ,921)T eR™

P(forallj =1,...,m (HfL(a), HJHU(a)) 90?; 0:90> =1-aq.

Related P-values for a multiple testing problem with elementary hypotheses H; : 0; = 9?, 99 e R,
j=1,...,m, adjusted for multiple comparison are given by

pil =1 - CDFh7m7n_,,<\t?|; DVD), j=1,...,m,

0.—00
0, . O = EECG -
where t; is a value of T};(67) N attained with given data.
Proof.
The fact that <0§IL(04), HfU(a)>, j =1,...,m, are simultaneous confidence intervals for pa-

rameters ; = le (3 with an exact coverage of 1 — « follows from (10.9).

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem
with the elementary hypotheses H;: 6; = 9?, j=1,...,m, follows from noting the following (for
each j =1,...,m)

(95“(@), er(a)) 460 ‘Tj(eg?)( > hupnr(1 — a; DVD).

It now follows from monotonicity of the quantiles of a continuous max-abs-t-distribution that
pfl = inf{a : (HfL(a), ¢9JHU(a)) # 0?} = inf{a : ‘T](H?)‘ > hmn—r(1— oy ]D)VD)}
is attained for pf satisfying
IT5(69)] = han,nr (1 = b1 DVD).
That is, if t;-) is a value of the statistic 7T} ((9?) attained with given data, we have

).

pJH =1- CDFh,m,nfr< j
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Note (Hothorn-Bretz-Westfall MCP in the R software).

In the R software, the Hothorn-Bretz-Westfall MCP for linear hypotheses on parameters of (general-
ized) linear models is implemented in the package multcomp. After fitting a model (by the function
1m), it is necessary to call sequentially the following functions:

(i) glht. One of its arguments specifies the linear hypothesis of interest (specification of
the IL matrix). Note that for some common hypotheses, certain keywords can be used.
For example, pairwise comparison of all group means in context of the ANOVA models is
achieved by specifying the keyword “Tukey”. Nevertheless, note that invoked MCP is still
that of Hothorn-Bretz-Westfall and it is not based on the Tukey’s procedure. The “Tukey”
keyword only specifies what should be compared and not how it should be compared.

(ii) summary (applied on an object of class glht) provides P-values adjusted for multiple com-
parison.

(iii) confint (applied on an object of class glht) provides simultaneous confidence intervals
which, among other things, requires calculation of a critical value h,, ,,—(1 — ), that is also
available in the output.

Note that both calculation of the P-values adjusted for multiple comparison and calculation of the
critical value hy, ,—,(1 — «) needed for the simultaneous confidence intervals requires calculation
of a multivariate t integral. This is calculated by a Monte Carlo integration (i.e., based on a certain
stochastic simulation) and hence the results slightly differ if repeatedly calculated at different
occasions. Setting a seed of the random number generator (set.seed()) is hence recommended
for full reproducibility of the results.
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10.5 Confidence band for the regression function

. . . T
In this section, we shall assume that data are represented by ii.d. random vectors (Yi, z/ ) ,

i =1,...,n, being sampled from a distribution of a generic random vector (Y, ZT)T € Ri*P,
It is further assumed that for some known transformation ¢ : R? — R¥, a normal linear model
with regressors X; = t(Z;), i = 1,...,n, holds. That is, it is assumed that for the response vector
Y, the covariate matrix Z and the model matrix X, where

Yy z! x| t'(Z)
Y = s Z = ) X = = : 5
Y, z) x,) t'(Z,)
we have
Y|Z ~ No(XB, 0°1,) 10.11)

for some B € R¥, 02 > 0. Remember that it follows from (10.11) that
Yi| Zi ~ N(X]B, 0%,

and the error terms ¢; = Y; — X,/ 8,7 = 1,...,n are iid. distributed as ¢ ~ N(0, 02). The
corresponding regression function is

E(Y|X =t(2) =E(Y|Z=2)=m(z) =t" ()8, z€cR"
It will further be assumed that the model matrix X is of full-rank (almost surely), i.e., rank(ank) =
k. As it is usual, B will be the LSE of a vector of 3 and MS, the residual mean square.

Reminder from Section 3.3

Let z € RP be given. Theorem 3.3 then states that a random interval with the lower and upper
bounds given as

£ (2B * toa(1-5) VMS AT (2) (XTX) 't (2),

is the confidence interval for m(z) = ¢ ' (2)3 with a coverage of 1 — c. That is, for given z € R?,
for any ﬁo € R,

P(tT(z)E + tn_k<1— %) \/MsetT(z)(XTx)‘lt(z) > t7(2)8% ﬂ:ﬁo) = 1-a

Theorem 10.6 Confidence band for the regression function.

Let (Yi, ZZT)T7 i=1,...,n, be i.id random vectors such that' Y } 7 ~ Ny (Xﬁ, azln), where
X is the n x k model matrix based on a known transformation t : RP? — R* of the covariates
Zy,...,Z,. Let rank(ank) = k. Finally, let for all z € RP t(z) # O. Then for any 3% e RF

P (for all z € RP

(@B + kP k(- a)MS.tT()(XTX) t(z) > tT(2)8% B=p°)

=1—-aq.
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Note. Requirement t(z) # 0y, for all z € RP is not too restrictive from a practical point of view
as it is satisfied, e.g., for all linear models with intercept.

Proof. let for 0 < o < 1)

K={BeRr": (B-B) (X'X)(8-B) < kMS. Firn s(1-0a)}.

Section 3.2: K is a confidence ellipsoid for 3 with a coverage of 1 — q, that is, for any 8" € R¥

PK2B% B=p")=1-a.

K is an ellipsoid in R, that is, bounded, convex and with our definition also closed subset of R¥.

Let for z € RP:

L(z) = inf t' (2)8, U(z) =supt' (z)B.
Bek Bek

From construction:

BekK = VzeRP L(z) < t'(2)8 < U(z).

Due to the fact that I is bounded, convex and closed, we also have

V2zeRP L(z) < t'(2)B8 < U(z) = Bek.

That is,
BeK & VzeRP L(z) < t'(2)8 < U(z).

and hence, for any ,60 € R¥,

l-a=P(K>8% B=p")=P(forall ze R? L(z) < t'(2)8° < U(z); B=7").
(10.12)

Further, since tT(z)ﬁ is a linear function (in 8) and X is bounded, convex and closed, we have

L(z) = if t'(z)B=mint" ()8,  U(z) = sup t(2)B=maxt’ ()8,

and both extremes must lie on a boundary of /C, that is, both extremes are reached for 3 satisfying
~. T —~

(B-B8) (X'X)(B-B8) = kMS, Fipi(1 — ).

Method of Lagrange multipliers:

o8, ) =178 + ;M (8-B) (XT%) (8- B) — kMS. Fiu 41— a))

(% is only included to simplify subsequent expressions).
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Derivatives of :

9%
B

gf(@ ) = %{(B ~B)" (XTX) (8- B) — kMS, Fin (1 - a)}.

(B, \) =t(z) + \X"X (8- B),

With given A, the first set of equations is solved
B =B -

o

with respect to 3) for
(XTX) 't (z).

>l =

Use B(A) in the second equation:

itT(z)(XTX)‘IXTX(XTX)‘lt(z) = kMS, Frni(1 — ),

)\2
B t7(2)(XTX) t(2)
A== \/k MSe Frn—r(l —a)’

Hence, 3 which minimizes/maximizes t' (z)3 subject to

B-B) (X'X) (8- B) = kMS, Frn_s(1—a)

is given as

@)

ﬁmin -

_ kMSeka,k(l—a) T -1 .
\/tT(z)(XTX)_It(z) (RX)tz),

5 k MSe ./rk,n_k(l - Oé) T -1 .
Pmaa =B+ \/ t7(2) (XTX)flt(z) (X7X) "t(2).

Note that with our assumptions of ¢(z) # 0, we never divide by zero since (XTX)f1 is a positive
definite matrix.

That is,

—tT(2)B — \MS.tT(2)(XTX)1(2) k Frun(l - a),

U(z) =t (2)Bmas

=tT(2)B + YMSct (2)(XTX)(2) k Frnn(1 - ).
The proof is finalized by looking back at expression (10.12) and realizing that, due to continuity,
l—a=P(forall ze R? L(z) < t'(2)8° < U(z); B= ﬂo)
=P(forall z € R? L(z) < t'(2)B° < U(z); B= B°)

= P(for all z ¢ RP

t'(z)B + \/kfk,nfk(l—a) MS.tT(2)(XTX) 't(z) > t7(2)8% 5:50>,
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Terminology (Confidence band for the regression function).

If the covariates Z1,...,Z, € R, confidence intervals according to Theorem (10.6) are often
calculated for an (equidistant) sequence of values 21,...,zy € R and then plotted together with
the fitted regression function m(z) =t (2)83, z € R. A band that is obtained in this way is called
the confidence band for the regression function ° as it covers jointly all true values of the regression
function with a given probability of 1 — c.

Note (Confidence band for and around the regression function).
For given z € R:

Half width of the confidence band FOR the regression function (overall coverage) is

VEFini(l— ) MS, ¢7(2)(XTX)14(=).

Half width of the confidence band AROUND the regression function (pointwise coverage) is

toi(1-5) V/MS, £7(2)(XTX)1¢(2)

_ \/]-'lm_k(l—a) MS. ¢ (2)(XTX)~1¢(z),

since for any v > 0, t (1 - %) =F1.,(1—a).

For k > 2, and any v > 0,
]{:‘Fkﬂ,(l — a) > .F17V(1 — a)

and hence the confidence band for the regression function is indeed wider than the confidence

band around the regression function. Their width is the same only if k£ = 1.
End of

Lecture #20
(01/12/2016)

8 pds spolehlivosti pro regresni funkci
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Checking Model Assumptions

Start of
In Chapter 4, we introduced some basic, mostly graphical methods to check the model assumptions. Lecture #21
Now, we introduce some additional methods, mostly based on statistical tests. As in Chapter 4, we (07/12/2016)

assume that data are represented by n random vectors (Yi, Z?)T, Z; = (Zi717 ey Zijp)T €
Z CRPji=1,...,n. Possibly two sets of regressors have been derived from the covariates:
(i) X; i=1,...,n, where X; = tx(Z;) for some transformation tx : R? — R*. They give

rise to the model matrix

x|
Xowp = | @ | = (XO, Xk—l),
X,
For most practical problems, X 0 — (17 ey 1)T (almost surely).
(i) Vi i=1,...,n, where V; = ty/(Z;) for some transformation ¢y : R? — R/, They give
rise to the model matrix
v
anl: :(Vl,...,Vl>.
VT

n

Primarily, we will assume that the model matrix X is sufficient to be able to assume that
E(Y‘Z) = E(Y’X) = X3 for some B = (60, e Bk,l)T € RE. That is, we will arrive
from assuming

Y |Z~ (X8, 0’1,),
or even from assuming normality, i.e.,
Y |Z ~ N, (XB, 0°1,).

The task is now to verify appropriateness of those assumptions that, in principle, consist of four
subassumptions outlined in Chapter 4, which can all be written while using the error terms & =

(1, oven) =(Vi—X{8,...,Y,—X[8) =Y —X8:

(A1) Correct regression function = (Conditionally) errors with zero mean = E(ai ‘ Zi) = 0,
1=1,...,n.

216
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(A2) (Conditional) homoscedasticity of errors = var(si ‘ ZZ-) = o2

=c
(A3) (Conditionally) uncorrelated/independent errors = cov (5i, £ ‘ Z) =0,i #j.
(A4) (Conditionally) normal errors = ¢; | 7 indep. .

The four assumptions then gradually imply

(Al) Errors with (marginal) zero mean: ]E(sz) =0,i=1,...,n.
(A2) (Marginal) homoscedasticity of errors = var(fsi) =02 =const,i=1,...,n.

(A3) (Marginally) uncorrelated/independent errors = cov (51', ej) =0,1 #j.

(A4) (Marginally) Normal errors = ¢; iid e

onst, i =1,...,n.
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11.1 Model with added regressors

In this section, we technically derive some expressions that will be useful in latter sections of this
chapter and also in Chapter 14. We will deal with two models:

(i) Model M: Y | 7 ~ (X,@, oQIn).

(ii) Model My: Y ’ 7 ~ (X,B + V, O‘QIn), where the model matrix is an n x (k + ) matrix G,

G=(X,V).

Notation (Quantities derived under the two models).

(i) Quantities derived while assuming model M will be denoted as it is usual. In particular:

* (Any) solution to normal equations: b = (XTX)_ XTY. In case of a full-rank model
matrix X:

B=xX"x)"'xTY
is the LSE of a vector 3 in model M;

e Hat matrix (projection matrix into the regression space M (X)):
= X(XTX) X" = (hig) oy

o Fitted values Y = HY = (}71, ce ?n)T;

* Projection matrix into the residual space M (X)J‘:

M =T, —H=(mi),,

e Residuals: U=Y - Y = MY = (Ul, e Un)T;
* Residual sum of squares: SS, = HUH2

(i) Analogous quantities derived while assuming model M, will be indicated by a subscript g:

* (Any) solution to normal equations: (b;, ch)T = (GTG)f G'Y. In case of a full-rank
model matrix G:

~T Y T -1
(By.7y) =(G'G) G'Y
provides the LSE of vectors 3 and ~ in model M;

e Hat matrix (projection matrix into the regression space M (G)):

Hy =G(G'G) G" = (hgs)

it=1,...,n’

e Fitted values ffg =H,Y = (179,1, ces i}g,n)T;

* Projection matrix into the residual space M (G)l:

My =1, —Hy = (mg,i,t)‘

i,t=1,....,n°

* Residuals: U, =Y — ?g =MyY = (Ug,la ce Ugvn)T;

* Residual sum of squares: SS. ; = HUQHQ.
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Lemma 11.1 Model with added regressors.

Quantities derived while assuming model M :'Y | 7 ~ (Xﬂ, aQIn) and quantities derived while
assuming model My : Y’ ‘ Z ~ (XB + V~, 0°1,) are mutually in the following relationship.

Y, = Y +MV(VMV) VU
= Xb,+Ve,,  forsomeb, € RF ¢, € R
Vector b, and cy such that f’g = Xb, + Vey satisfy:
g = (VIMV) VU,
by = b— (X'X) X"Ve,  forsomeb= (X'X) X'Y.

B
inally ,
S5, — SS., = [MVc,||”

Proof.
o }/}g is a projection of Y into M(X, V) = M(X, MV).
e Use ‘H = X(XTX) X

X' XMV
Vv XT
H, = (X, MV 0
9 ( ) VMX VI MV (VTM)
0

= (x, mv) <(XTOX) (VTN(/)W)> (5%41)

= X(XTX)"X" + MV(V'MV) VM.

e So that,
Y, =HY =X(X'X) XY +MV(V MV) V MY,
P U
=Y + MV(V'MV) VU &b

¢ Theorem 2.5: It must be possible to write }/}g as

~

Y, =Xb, + Ve,,

where (bg, Cg)T solves normal equations based on a model matrix (X, V).

o We rewrite ™ to see what b, and ¢4 could be.
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o Remember that Y = Xb for any b = (XTX)_ XTY. Take now ® and further calculate:

Y,=Xb + {I, - X(X'X) X"} V(VIMV) VU

Y M
=Xb + V(VIMV) VU - X(X'X) X'V(VIMV) VU

=X{b - (X'X) X"V(VIMV) VIU} +V(VIMV) V'U.

c
b, g

e Thatis, ¢, = (V' MV) V'U,
by=b— (X'X) X"Ve,.

e Finally
~ ~ 112 — 2 2
SSe —SSey = ||V, = Y||" = |[MV(VIMV) VTU||"= [|[MVey|".
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11.2 Correct regression function

We are now assuming a linear model
M: Y |Z~ (X8, 0’1,),
where the error terms € =Y — X3 satisfy (Lemma 1.2):
E(e ‘ Z) =0,, var(s ‘ Z) = O'QIn.
The assumption (Al) of a correct regression function is, in particular,

E(Y|Z) e M(X), E(Y|Z)=XB forsome 3 € R",

E(|2) =0, (= E(e)=0,).
As (also) explained in Section 4.1, assumption (Al) implies
E{U|z) =0,

and this property is exploited by a basic diagnostic tool which is a plot of residuals against
possible factors derived from the covariates Z that may influence the residuals expectation. Factors
traditionally considered are

(i) Fitted values }A’;

(ii) Regressors included in the model M (columns of the model matrix X);

(iii) Regressors not included in the model M (columns of the model matrix V).

Assumptions.

For the rest of this section, we assume that model M is a model of general rank r with intercept,
that is,

rank(X) =r <k<n, X= (XO, XH), X0—1,.

In the following, we develop methods to examine whether for given j (j € {1, N 1}) the jth
regressor, i.e., the column XV, is correctly included in the model matrix X. In other words, we will
aim in examining whether the jth regressor is possibly responsible for violation of the assumption
(A).

11.2.1 Partial residuals

Notation (Model with a removed regressor).
For j € {1, B 1}, let X(=7) denote the model matrix X without the column X7 and let

B(_j) = (507 cee ijla ﬁj+1> sy Bk—l)—r

denote the regression coefficients vector without the jth element. Model with a removed jth
regressor will be a linear model

MED .y |Z ~ (X(—j)ﬁ(—j)’ O'ZIn).
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All quantities related to the model M(=7) will be indicated by a superscript (—j). In particular,
M) =1, — X(-9) <X<—j)TX(—j)) x0T
is a projection matrix into the residual space M(X(_j ))J';
U-) =MDy

is a vector of residuals of the model M(—9),

Assumptions.
We will assume rank(X(’j)) = r — 1 which implies that

0 X7 ¢ M(X(—j));
(i) X7 # 0y;

(iii) X7 is not a multiple of a vector 1,,.

Derivations towards partial residuals

Model M is now a model with one added regressor to a model M(~7) and the two models form
a pair (model-submodel). Let

b= (bo,---,bj_1,bj,b541,- - br_1)

be (any) solution to normal equations in model M. Lemma 111 (Model with added regressors)
provides

b= (X7 M) x9) " x9T U, (1LY
Further, since a matrix M(—7) is idempotent, we have
XjT M) xI — HM(—j)XjHZ‘

At the same time, M(=7) X7 # 0,, since X7 ¢ M(X(_j)), X7 # 0,,. Hence, XjT M) XIT >0
and a pseudoinverse in (11.1) can be replaced by an inverse. That is,

T

M(—i)xj)_l X X/ vy

X7 M=) X7
is the LSE of the estimable parameter /3; of model M (which is its BLUE).

Ui =

In summary, under the assumptions used to perform derivations above, i.e., while assuming that
X" =1,, and for chosen j € {1, R 1}, the regression coefficient 3; is estimable. Conse-
quently, we define a vector of jth partial residuals of model M as follows.



11.2. CORRECT REGRESSION FUNCTION 223

Definition 11.1 Partial residuals.
A vector of jth partial residuals' of model M is a vector

Ur + B; X1
Ureti — U + Bj XJ — :
Un + B Xn,j

Note. We have
UPrd =U 4+ 3; X9 =Y — (Xb-3;X7) =Y — (Y — 3, X7).

That is, the jth partial residuals are calculated as (classical) residuals where, however, the fitted
values subtract a part that corresponds to the column X7 of the model matrix.

Theorem 11.2 Property of partial residuals.
Let Y|Z ~ (XB, 0°1,)), rank(Xpxx) = 7 < k, X0 = 1,, B = (Bo, ..., Br1) . Let j €

{1, ok — 1} be such that rank(X(*j)) =r —1 and let Bj be the LSE of B;. Let us consider
a linear model (regression line with covariates X’) with

o the jth partial residuals UP*""J as response;

* a matrix (ln, X ) as the model matrix;

. . T
* regression coefficients y; = (*yj,O, ’yj71) .

The least squares estimators of parameters vy; o and ;1 are

Y0 =0, A1 =5

Proof.
o UPVti = U + ;X7

y 12 =it |12
e Hence HUPCW Jo_ Y0 ln — Vi1 XJH = HU — {’Yj,o 1, + ('7]',1 _BJ)XJ}H = &b,

e Since 1,, € M(X), X e M(X), U e M(X)J‘, we have
~ 12
& — U + |iota + (a - ) X7 = Ju?

with equality if and only if 7,0 =0 & ~;1 = ,gj

Y vektor jtjch parcidlnich rezidui
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Shifted partial residuals

Notation (Response, regressor and partial residuals means).
Let

3

v_ 1 i _ 1 - Fpartj 1 - t,j
V="3Y 4Y:n§1&m U =n§1wm%
1= 1=

If X° = 1,, (model with intercept), we have
n n ) R
0=3 U= 3 (0 + Biy),
i=1 i=1
L5 (s
n i AV i )
i=1 i=1

ot — B X

Especially for purpose of visualization by plotting the partial residuals against the regressors
a shifted partial residuals are sometimes used. Note that this only changes the estimated intercept
of the regression line of dependence of partial residuals on the regressor.

Definition 11.2 Shifted partial residuals.

A vector of jth response-mean partial residuals of model M is a vector

Upart,j,Y _ Upart,j + (? N Bjyj) 1,.

A vector of jth zero-mean partial residuals of model M is a vector

Upart,j,O — Upart,j _ Bjyj 1,.

Notes. —
* A mean of the response-mean partial residuals is the response sample mean Y, i.e.,

1 n
- z :Ufart,j7Y -v.
n

i=1

¢ A mean of the zero-mean partial residuals is zero, i.e.,

1 n
t,5,0
=Ygt — g,
n
=1

The zero-mean partial residuals are calculated by the R function residuals with its type
argument being set to "partial".
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Notes (Use of partial residuals).

A vector of partial residuals can be interpreted as a response vector from which we removed
a possible effect of all remaining regressors. Hence, dependence of UP%*J on X7 shows

* a net effect of the jth regressor on the response;

® a partial effect of the jth regressor on the response which is adjusted for the effect of the
remaining regressors.

The partial residuals are then mainly used twofold:

Diagnostic tool. As a (graphical) diagnostic tool, a scatterplot (X i pgrert ) is used. In case, the
jth regressor is correctly included in the original regression model M, i.e., if no transforma-
tion of the regressor X7 is required to achieve E(Y | Z) € M(X), points in the scatterplot
(X 3, graerty ) should lie along a line.

Visualization. Property that the estimated slope of the regression line in a model UP¥%J ~ X7
is the same as the jth estimated regression coeffient in the multiple regression model Y ~
X' is also used to visualize dependence of the response of the jth regressor by showing
a scatterplot (X i, graerti ) equipped by a line with zero intercept and slope equal to f3;.

11.2.2 Test for linearity of the effect
To examine appropriateness of the linearity of the effect of the jth regressor X7 on the response
expectation E(Y ‘ Z) by a statistical test, we can use a test on submodel (per se, requires additional
assumption of normality). Without loss of generality, assume that the jth regressor X7 is the last
column of the model matrix X and denote the remaining non-intercept columns of matrix X as
XY, That is, assume that

X = (1n, X0 Xj>.

Two classical choices of a pair model-submodel being tested in this context are the following.

More general parameterization of the jth regressor

Submodel is the model M with the model matrix X. The (larger) model is model M, obtained by
replacing column X7 in the model matrix X by a matrix V such that

X e M(V), rank(V) > 2.
That is, the model matrices of the submodel and the (larger) model are
Submodel M: (1,17 X0, Xj) =X
(Larger) model M: <1n, XO, V).
Classical choices of the matrix V are such that it corresponds to:

(i) polynomial of degree d > 2 based on the regressor X7;
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(i) regression spline of degree d > 1 based on the regressor X7. In this case, 1,, € V and
hence for practical calculations, the larger model M, is usually estimated while using a model

(27)

that does not explicitely include the intercept term which is included implicitely.

matrix

End of
Lecture #21
Categorization of the jth regressor (07/12/2016)
Start of
Let —oc0 < zl% < z"PP < oo be chosen such that interval (:Cé-ow, :L‘;tp ?) covers the values Lecture #22
Xij, ..., Xy, of the jth regressor. That is, (08/12/2016)
xé»m” < min Xj j, max X; j < x?pp.
7 (2
Let 7y, ..., Zyg be H > 1 subintervals of (xé»"w, x?pp} based on a grid
l‘é'ow <A << Ao <x?pp.
Let xp, € Zp,, h = 1,. .., H, be chosen representative values for each of the subintervals 71, ..., Zy
(e.g., their midpoints) and let
X],cut — (X{ cu e, qul,cut)
be obtained by categorization of the jth regressor using the division Z;, ..., Zy and representa-
tives x1, ..., xp,ie, ¢t =1,...,n):
ot B . B
chu—l'h = XZEI]L, h=1,...,H.
In this way, we obtained a categorical ordinal regressor X/““! whose values z1, ..., zp, can be

considered as collapsed values of the original regressor X”. Consequently, if linearity with respect
to the original regressor X7 holds then it also does (approximately, depending on chosen division
T4, ..., Iy and the representatives 1, ..., xz) with respect to the ordinal categorical regressor
X4t if this is viewed as numeric one.

Let V be an n x (H — 1) model matrix corresponding to some (pseudo)contrast parameterization
of the covariate X7 if this is viewed as categorical with H levels. We have

X7t e M(V),

and test for linearity of the jth regressor is obtained by considering the following model matrices
in the submodel and the (larger) model:

Submodel M: <1n, X0, Xj’C“t>;
(Larger) model M,: <1n, X0, V).

Additional insight concerning the correct inclusion of the jth regressor can be obtained by using
the orthonormal polynomial contrasts (Section 7.4.4) in place of the V matrix.

Drawback of tests for linearity of the effect

Remind that hypothesis of linearity of the effect of the jth regressor always forms the null hypoth-
esis of the proposed submodel tests. Hence we are only able to confirm non-linearity of the effect
(if the submodel is rejected) but are never able to confirm linearity.
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11.3 Homoscedasticity

We are again assuming a linear model
M: Y|Z~ (X8, 0’1,),
where the error terms & = Y — X3 satisfy (Lemma 1.2):
E(e|Z) =E(e) =0,, var(e|Z) =var(e) = 0L,
The assumption (A2) of homoscedasticity is, in particular,
var(Y | Z) = 0”1, var(e |Z) = o L,, (= var(e) =0’1,),

2

where 0 is unknown but most importantly constant.

11.3.1 Tests of homoscedasticity

Many tests of homoscedasticity can be found in literature. They mostly consider the following null
and alternative hypotheses: Hy: var(si ‘ Zz-) = const,

Hy: var(si ‘ Zi) = certain function of some factor(s).

A particular test is then sensitive (powerful) to detect heteroscedasticity if this expresses itself such
that the conditional variance var (e; ’ Z;) is the certain function of the factor(s) as specified by the
alternative hypothesis. The test is possibly weak to detect heteroscedasticity (weak to reject the null
hypothesis of homoscedasticity) if heteroscedasticity expresses itself in a different way compared
to the considered alternative hypothesis.

11.3.2 Score tests of homoscedasticity

A wide range of tests of homoscedasticity can be derived by assuming a (full-rank) normal linear
model, basing the alternative hypothesis on a further generalization of a general linear model and
then using an (asymptotic) maximum-likelihood theory to derive a testing procedure.

Assumptions.

For the rest of this section, we assume that model M (model under the null hypothesis) is normal
of full-rank, i.e.,
M: Y |Z~N,(XB, 0°1,), rank(Xnxx) =k,

and an alternative model is a generalization of a general normal linear model
Mhuetero: Y ‘ Z ~ Nn (XB, O'QWil),

where
W = diag(w1, ..., wy,), w =7\, 8,Z),i=1,...,n,

2

7 is a known function of A € RY, 3 € R (regression coefficients), z € RP (covariates) such that

7(0, B, z) =1, for all B € R*, z € RP.

In particular, we have under model Mpsero:

var(Yi‘Zi) = var(5i|Zi) = 0’27'()\, ,8, Zl), 1= 1,...,17,.
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That is, the 7 function models the assumed heteroscedasticity.

Model Mj,csero is then a model with unknown parameters 3, A, o> which with A = 0 simplifies
into model M. In other words, model M is a nested” model of model My ;ero and a test of
homoscedasticity corresponds to testing

H0: )\:0,

1L2)
H1 A 75 0.

Having assumed normality, both models M and My, are fully parametric models and a standard
(asymptotic) maximum-likelihood theory can now be used to derive a test of (11.2). A family of score
tests based on specific choices of the weight function 7 is derived by Cook and Weisberg (1983).

Breusch-Pagan test

A particular score test of homoscedasticity was also derived by Breusch and Pagan (1979) who
consider the following weight function (x = tx(z) is a transformation of the original covariates
that determines the regressors of model M).

(A B, 2) =7(\, B, ) =exp(Az ' B).

That is, under the heteroscedastic model, for i = 1,...,n,
var(Yi ‘ Zi) = var(ai ‘ Zi) = o2 exp()\ X:,@) = o2 exp()\IE(Yi | ZZ-)), (11.3)
and the test of homoscedasticity is testing

Hp: A =0,
H1: A#O

It is seen from the model (11.3) that the Breusch-Pagan test is sensitive (powerful to detect het-
eroscedasticity) if the residual variance is a monotone function of the response expectation.

Note (One-sided tests of homoscedasticity).

In practical situations, if it can be assumed that the residual variance is possibly a monotone
function of the response expectation then it can mostly be also assumed that it is its increasing
function. A more powerful test of homoscedasticity is then obtained by considering the one-sided
alternative

Hi: A >0.

Analogously, a test that is sensitive towards alternative of a residual variance which decreases with
the response expectation is obtained by considering the alternative H;: A < 0.

Note (Koenker'’s studentized Breusch-Pagan test).

The original Breusch-Pagan test is derived using standard maximum-likelihood theory while starting
from assumption of a normal linear model. It has been shown in the literature that the test is not
robust towards non-normality. For this reason, Koenker (1981) derived a slightly modified version of
the Breusch-Pagan test which is robust towards non-normality. It is usually referred to as (Koenker’s)
studentized Breusch-Pagan test and its use is preferred to the original test.

2 ynoteny
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Linear dependence on the regressors

Let ty : RP — R? be a given transformation, w := ty (2z), W; = tw(Z;), i = 1,...,n. The
following choice of the weight function can be considered:

T(B, A, 2) =7(A, w) = exp()\T'w).
That is, under the heteroscedastic model, for i =1,...,n,
var(Yi ‘ Zz-) = var(si ‘ Zi) = o2 exp()\TWi).
On a log-scale:
log (var(Yi ‘ Zz)> =log(c®) + AT W,.
A
0

In other words, the residual variance follows on a log-scale a linear model with regressors given by
vectors W ;.

If ty is a univariate transformation leading to w = ty(2), one-sided alternatives are again possible
reflecting assumption that under heteroscedasticity, the residual variance increases/decreases with
a value of W = ty(Z). The most common use is then such that ty(z) and related values
of Wy = tw(Z1), ..., Wy, = tw(Z,,) correspond to one of the (non-intercept) regressors from
either the model matrix X (regressors included in the model), or from the matrix V that contains
regressors currently not included in the model. The corresponding score test of homoscedasticity
then examines whether the residual variance changes/increases/decreases (depending on chosen
alternative) with that regressor.

Note (Score tests of homoscedasticity in the R software).

In the R software, the score tests of homoscedasticity are provided by functions:

(i) ncvTest (abbreviation for a “non-constant variance test”) from package car;

(ii) bptest from package lmtest.

The Koenker’s studentized variant of the test is only possible with the bptest function.

11.3.3 Some other tests of homoscedasticity
Some other tests of homoscedasticity that can be encountered in practice include the following

Goldfeld-Quandt test is an adaptation of a classical F-test of equality of the variances of the
two independent samples into a regression context proposed by Goldfeld and Quandt (1965).
It is applicable in linear models with both numeric and categorical covariates and under
the alternative, heteroscedasticity is expressed by a monotone dependence of the residual
variance on a prespecified ordering of the observations.

G-sample tests of homoscedasticity are tests applicable for linear models with only categorical
covariates (ANOVA models). They require repeated observations for each combination of
values of the covariates and basically test equality of variances of G independent random
samples. The most common tests of this type include:

Bartlett test by Bartlett (1937) which, however, is quite sensitive towards non-normality and
hence its use is not recommended. It is implemented in the R function bartlett.test;
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Levene test by Levene (1960), implemented in the R function leveneTest from package
car or in the R function levene.test from package lawstat;

Brown-Forsythe test by Brown and Forsythe (1974) which is a robustified version of the
Levene test and is implemented in the R function levene.test from package lawstat;

Fligner-Killeen test by Fligner and Killeen (1976) which is implemented in the R function
fligner.test.
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11.4 Normality

In this section, we are assuming a normal linear model

M: Y |Z ~N,(XB, 0°I,), rank(X) =r,

where the error terms e =Y — X3 = (51, ey En)T satisfy (Lemma 3.1):
& MN(0, 0%, i=1,...,n (11.4)
Our interest now lies in verifying assumption (A4) of normality of the error terms ¢;, i = 1,...,n.

Let us remind our standard notation needed in this section:

(i) Hat matrix (projection matrix into the regression space M(X)):

(ii) Projection matrix into the residual space M (X)

(iii)
(iv)
v)

(vi)

H=X(X"X)"X" = (hi)

it=1,....,n’

J_.

M =1, — H = (mi,)

i,t=1,....,n°

Residuals: U =Y — Y = MY = (Ul, .. .,Un)T;

Residual sum of squares: SS, = HU 2;

Residual mean square: MS, = nir SS..

Standardized residuals: U**¢ = (Uftd, ey Uﬁtd)—r, where
Ui

U;td: 1=1,...,n (ifmi,i>0).

\/ MSe mm"

Notes. If the normal linear model (11.4) holds then Theorems 3.2 and 4.1 provide:

(D)

(i)

For (raw) residuals:
U |Z ~ Ny (0y, 0> M).

That is, the (raw) residuals follow also a normal distribution, nevertheless, the variances of
the individual residuals Uy, ..., U, differ (a diagonal of the projection matrix M is not
necessarily constant). On top of that, the residuals are not necessarily independent (the
projection matrix M is not necessarily a diagonal matrix).

For standardized residuals (if m;; > 0 for all ¢« = 1,...,n, which is always the case in
a full-rank model):

E<Uistd|Z) — 0, var(Uftd‘Z) =1, i=1,...,n.

That is, the standardized residuals have the same mean and also the variance but are neither
necessarily normally distributed nor necessarily independent.

In summary, in a normal linear model, neither the raw residuals, nor standardized residuals form
a random sample (a set of i.i.d. random variables) from a normal distribution.
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11.4.1 Tests of normality
There exist formal tests of the null hypothesis on a normality of the error terms:

Hp: distribution of €1, ..., &, is normal, (11.5)
where a distribution of the test statistic is exactly known under the null hypothesis of normality.

Nevertheless, those tests have quite a low power and hence are only rarely used in practice.

In practice, approximate approaches are used that apply standard tests of normality on either the
raw residuals U or the standardized residuals U*!? (both of them, under the null hypothesis (11.5),
do not form a random sample from the normal distribution ). Several empirical studies showed
that such approaches maintain quite well a significance level of the test on a requested value. At
the same time, they mostly recommend to use the raw residuals U rather than the standardized
residuals U**.

Classical tests of normality include the following:
Shapiro-Wilk test implemented in the R function shapiro.test.
Lilliefors test implemented in the R function 1illie.test from package nortest.

Anderson-Darling test implemented in the R function ad.test from package nortest.
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11.5 Uncorrelated errors

In this section, we are again assuming a (not necessarily normal) linear model
M: Y |X~ (X8, 0’L,),
where the error terms € = Y — X3 satisfy (Lemma 1.2):
E(e } X) = E(s) =0,, var(s | X) = var(s) = 02In.

The assumption (A3) is, in particular,

cov(ei, g |X) =0, i #1 (= cov(e;, ) =0, i #1). (11.6)
Our interest now lies in verifying assumption (A3) of whether the error terms ¢;, i = 1,...,n, are
(conditionally) uncorrelated.

The fact that errors are (conditionally) uncorrelated often follows from a design of the study/data
collection (measurements on independently behaving units, ...) and then there is no need to
check this assumption. Situation when uncorrelated errors cannot be taken for granted is if the
observations are obtained sequentially. Typical examples are

(i) time series (time does not have to be a covariate of the model) which may lead to so called
serial depedence among the error terms of the linear model;
(ii) repeated measurements performed using one measurement unit or on one subject.
In the following, we introduce a classical procedure that is used to test a null hypothesis of un-

correlated errors against alternative of serial dependence expressed by the first order autoregressive
process.

11.5.1 Durbin-Watson test

Assumptions.
It is assumed that the ordering of the observations expressed by their indeces 1, ..., n, has
a practical meaning and may induce depedence between the error terms e1, ..., €, of the model.

Model M can also be written as

M: Y;=X/B+e, i=1,...,n,
E(e:|X) =0, var(e|X) =02 i=1,...,n, (1L7)
cor(ei, & | X) =0, i # 1.

One of the simplest stochastic processes that capture a certain form of serial dependence is the
first order autoregressive process AR(l). Assuming this for the error terms ¢1, ..., €, of the linear
model (11.7) leads to a more general model

Mar: Yi=X/B+e, i=1,...,n,
€1 =M, & =0&i—1+n, 1=2,...,1m,
E(ni|X) =0, var(n|X)=0% i=1,...,n,
cor (i, m | X) =0, i#1,

(11.8)
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where —1 < p < 1 is additional unknown parameter of the model.

Notes. It has been shown in the course Stochastic Processes 2 (NMSA409):

® £, ..., &y is a stacionary process (given X) if and only if —1 < o < 1.
e For each m > 0: cor(ei, Ei—m ‘ X)=0", i=m+1,...,n. In particular
0 = cor(g;, gi—1 | X), i=2,...,n.

Test of uncorrelated errors in model M can be now be based on testing

Ho: 0=0,
Hi: 0#0

in model M 4. Since positive autocorrelation (¢ > 0) is more common in practice, one-sided tests
(with Hy: o > 0) are used frequently as well.

Let U = (Ul, ceey Un)T be residuals from model M which corresponds to the null hypothesis.
A test statistic proposed by Durbin and Watson (1950, 1951, 1971) takes a form

n

Z(Ui —U;_1)?
DW = =2

n
2
Q.U
i=1
’

A testing procedure is based on observing that a statistic DWW is approximately equal to 2 (1 — 9)
where ¢ is an estimator of the autoregression parameter ¢ from model M 4p.

Calculations.

First remember that

E(U; | X) =0, i=1,...,n,
and this property is maintained even if the error terms of the model are not uncorrelated (see
process of the proof of Theorem 2.3).

As residuals can be considered as predictions of the error terms ¢1, ..., &,, a suitable estimator of
their (conditional) covariance of lag 1 is

o 1 ¢
01,2 = COV(&“[7 El—1 }X) = m Z Ui Ui—l-
1=2

Similarly, three possible estimators of the (conditional) variance o2 of the error terms e, ..., €,
are
1 n—1 1 n 1 n
2 _ = _ 2 2 2
o —var(sl‘X)—n_lei or n—lZUi or EZUZ
i=1 =2 i=1
Then,
DIV — > oo (Ui = Ui1)? _ S UP + 3 Ul =250, Ui Ui
Z?:l U7,2 Z?:l U’L2
-2
~Z +JA2 01,2 —2<1—J,}§2>
o o

=2(1-09).
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Use of the test statistic DW for tests of Hy: ¢ = 0 is complicated by the fact that distribution of
DW under the null hypothesis depends on the model matrix X. It is hence not possible to derive
(and tabulate) critical values in full generality. In practice, two approaches are used to calculate
approximate critical values and p-values:

() Numerical algorithm of Farebrother (1980, 1984) which is implemented in the R function
dwtest from package 1mtest;

(ii) General simulation method bootstrap (introduced by Efron, 1979) whose use for the Durbin-
Watson test is implemented in the R function durbinWatsonTest from package car.
For general principles of the bootstrap method, see the course Modern Statistical Methods
(NMST434).
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11.6 Transformation of response

Especially in situations when homoscedasticity and/or normality does not hold, it is often possible
to achieve a linear model where both those assumptions are fulfilled by a suitable (non-linear)
transformation ¢ : R — R of the response. That is, it is worked with a normal linear model

Y*‘X ~ Nn(om 0'2171);

Y* = (t(V), ..., (V) 9

where it is already assumed that both homoscedasticity and normality hold. That is, the elements
of the error terms vector

(erreove) =& = Y —XB= (1)) = X[ B, ..., t0Va) - X, B)"

are, given X, independent and A (0, 02) distributed (marginally, they are iid. N(0, 02) dis-
tributed). Disadvantage of a model with transformed response is that the corresponding regression
function m(x) = ' B provides a model for expectation of the transformed response and not of
the original response, i.e., for x € X (sample space of the regressors):

m(@) =Et(Y)|X =2) # t(E(Y|X =a)),

unless the transformation ¢ is a linear function. Similarly, regression coefficients have now inter-
pretation of an expected change of the transformed response t(Y') related to a unity increase of
the regressor.

11.6.1 Prediction based on a model with transformed response

Nevertheless, the above mentioned interpretational issue is not a problem in a situation when
prediction of a new value of the response Y,cy, given X ey = Tpew, is of interest. If this is the
case, we can base the prediction on the model (11.9) for the transormed response. In the following,
we assume that ¢ is strictly increasing, nevertheless, the procedure can be adjusted for decreasing
or even non-monotone ¢ as well:

e Construct a prediction Y, and a (1 — «) 100% prediction interval (}7“*@5, ?Jeg) for Y*

new new -

t(Ynew) based on the model (11.9).

e Trivially, an interval

(Vi Vilw) = (71 (V). 171 (V) ) (11.10)

new? new new new
covers a value of Y., with a probability of 1 — c.

o A value Yy = t* (?Jew) lies inside the prediction interval (11.10) and can be considered

as a point prediction of Y,e,. Only note that the prediction interval (?nLew, i}n[éw) is not

necessarily centered around a value of Y.

11.6.2 Log-normal model

Suitably interpretable model is obtained if the response is logarithmically transformed. Suppose
that the following model (normal linear model for log-transformed response) holds:

log(Y;) = X, B + <, i=1,...,n,

inde (11.11)
E; ‘ X Np. N(O, 0'2),
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which also implies ¢; N (0, %). We then have
)/;:exp(X;rﬁ)nZ7 7::]‘7"'77/2/7
N ‘ X indep. EN(O, 02),

which also implies 7; e (0, 0), where LN(0, o%) denotes a log-normal distribution with
location parameter 0 and a scale parameter . That is, under validity of the model (11.11) for the
log-transformed response, errors in a model for the original response are combined multiplicatively
with the regression function.

We can easily calculate the first two moments of the log-normal distribution which provides (for
1=1,...,n)
2

M =E(n;) = E(n:|X) = exp( %) > 1 (with 02 > 0),

V = var(n;) = var(m; ‘ X) = {exp(oQ) -1} exp(a?).
Hence, for x € X:
E(Y|X =x) =M exp(z'B3),

(1L12)

var(Y‘X = :c) =V exp(?azT,B) =V. <IEW:$)>2

M

A log-normal model (11.11) is thus suitable in two typical situations that cause non-normality and/or
heteroscedasticity of a linear model for the original response Y

(i) a conditional distribution of Y given X = «x is skewed. If this is the case, the log-normal
distribution which is skewed as well may provide a satisfactory model for this distribution.

(i) a conditional variance var(Y ‘ X = :B) increases with a conditional expectation E(Y } X =
a:) This feature is captured by the log-normal model as shown by (11.12). Indeed, under the
log-normal model, var(Y | X = x) increases with E(Y | X = ). It is then said that the
logarithmic transformation stabilizes the variance.

Interpretation of regression coefficients

With a log-normal model (11.11), the (non-intercept) regression coefficients have the following inter-
pretation. Let for j € {1, ..., k —1},

T = (mo, ceey T ...,xk,l)TeX, and z/(t1) .= (mo, ozt 1 ...,:):k,l)TeX,
and suppose that 3 = ([3’0, ey ﬁk,l)—r We then have

E(y ‘ X — wj(+1)) M exp(wj(H)Tﬁ)
EYV[X=2)  Mesp(@ p)

= exp(0;).

Notes.

e If ANOVA linear model with log-transformed response is fitted, estimated differences between
the group means of the log-response are equal to estimated log-ratios between the group means
of the original response.

e If a linear model with logarithmically transformed response if fitted, estimated regression coeffi-
cients, estimates of estimable parameters etc. and corresponding confidence intervals are often
reported back-transformed (exponentiated) due to above interpretation.
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Evaluation of impact of the regressors on response

Evaluation of impact of the regressors on response requires necessity to perform statistical tests on
regression coefficients or estimable parameters of a linear model. Homoscedasticity and for small
samples also normality are needed to be able to use standard t- or F-tests. Both homoscedasticity
and normality can be achieved by a log transformation of the response. Consequently performed
statistical tests still have a reasonable practical interpretation as tests on ratios of two expectations
of the (original) response.
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Consequences of a Problematic
Regression Space

As in Chapter 11, we assume that data are represented by n random vectors (Y}, ZiT )T, Z;, =
(Zz‘,h e Zm;)T €eZCRPi=1,...,n Asusual, letY = (Yl, e ,Yn)T and let Z;,», denote
a matrix with covariate vectors Z1, ..., Z, in its rows. Finally, let X;, ¢ = 1,...,n, where
X, = tx(Z;) for some transformation tx : R? — R¥, be the regressors that give rise to the
model matrix

>
Xop = | ¢ | = <X0, X'H)_
X,
It will be assumed that X° = (1, ..., 1)T (almost surely) leading to the model matrix

ank = (1717 le RN} inl)a

with explicitely included intercept term.

Primarily, we will assume that the model matrix X is sufficient to be able to assume that
E(Y‘Z) = E(Y’X) = X3 for some B = (60, e Bk,l)T € RE. That is, we will arrive
from assuming

Y |Z~ (XB, 0°L,).
It will finally be assumed in the whole chapter that the model matrix X is of full rank, i.e.,

rank(X) =k <n.

239
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12.1 Multicollinearity

A principal assumption of any regression model is correct specification of the regression function.
While assuming a linear model Y ‘ Z ~ (X8, O'QIn), this means that E(Y ’ Z) € M(X) To
guarantee this, it seems to be optimal to choose the regression space M (X) as rich as possible.
In other words, if many covariates are available, it seems optimal to include a high number & of
columns in the model matrix X. Nevertheless, as we show in this section, this approach bears
certain complications.

12.1.1 Singular value decomposition of a model matrix

We are assuming rank(XnX k) =k < n. As was shown in the course Fundamentals of Numerical
Mathematics (NMNM201), the matrix X can be decomposed as

X=UDV' = dju;jvj, D=diag(do, ..., dc1),

where
e U,xi = (uo, ey uk_l) are the first k& orthonormal eigenvectors of the n x n matrix XX,
o Viwr = (vo, e vk,l) are (all) orthonormal eigenvectors of the k x k (invertible) matrix X T X.

e dj=+/\;, j=0,...,k—1, where \g >---> \;_1 >0 are
e the first k eigenvalues of the matrix XXT:

e (all) eigenvalues of the matrix XTX, ie.,

k—1
X'X = Z)\ vjv] =VAVT, A = diag(Xo, ..., Ae_1)
7=0
k—1
=Y dvjv, =VD*V'.
j=0

The numbers dy > - -+ > dj_1 > 0 are called singular values' of the matrix X. We then have

e
I
_

(xXTx)"" = %fvj v] =VD2VT,
=0 12.1)
. =1
w{x)7) = Y
j=0 "J

Note (Moore-Penrose pseudoinverse of the matrix X' X).

The singular value decomposition of the model matrix X provides also a way to calculate the Moore-
Penrose pseudoinverse of the matrix X X if X is of less-than-full rank. If rank(ank) =r <k,
then dy > --- > d,_1 > d, = --- = dp_; = 0. The Moore-Penrose pseudoinverse of X'X is

obtained as
(xTx)" = Z g
b

Y singuldrni hodnoty
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12.1.2 Multicollinearity and its impact on precision of the LSE

It is seen from (12.1) that with dj_; — 0:

(i) the matrix X" X tends to a singular matrix, i.e., the columns of the model matrix X tend to
being linearly dependent;
(i) tr{(XTX)’l} — 0.

Situation when the columns of the (full-rank) model matrix X are close to being linearly dependent
is referred to as multicollinearity.

If a linear model Y ‘ 7 ~ (X,@, azIn), rank(X,, xx) = k is assumed, then we know from Gauss-
Markov theorem that

(i) The fitted values Y = (}/}1, e }/;n)‘l' = HY, where H = X(XTX)_le, is the best linear
unbiased estimator (BLUE) of a vector parameter pu = X3 = E(Y ‘ Z) with

var(}A’ ‘ Z) = o2 H;

(ii) The least squares estimator B = (30, . Bk,l)T = (XTX)_l XTY is the BLUE of a vector
of regression coefficients (3 with

var(B|z) = o (XTX) .
It then follows

zn:var(}?; |Z) = tr{var(? | Z)} =tr(o’H) = o? tr(H) = o* k,
i=1

e
—

var(B; | 2) = tr{var(B| 2) } = tr{0? (x"X) '} = o?ur{ (X"x) " }.

<.
Il
o

This shows that multicollinearity

(i) does not have any impact on precision of the LSE of the response expectation p = X3;

(ii) may have a serious impact on precision of the LSE of the regression coefficients 3. At
the same time, since LSE is BLUE, there exist no better linear unbiased estimator of 3. If
additionally normality is assumed there even exist no better unbiased estimator at all.

An impact of multicollinearity can also be expressed by considering a problem of estimating the
squared Euclidean norm of u = X3 and (3, respectively. As natural estimators of those squared
norms are the squared norms of the corresponding LSE’s, i.e., H?HQ and HEIHQ, respectively. As we
show, those estimators are biased, nevertheless, the amount of bias does not depend on a degree
of multicollinearity in case of HSA’H2 but depends on it in case of HBH2

End of
Lecture #22
(08/12/2016)
Start of
Lecture #23
(1412/2016)
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Lemma 12.1 Bias in estimation of the squared norms.
LetY ‘ Z ~ (XB, O‘QIn), rank(X,, %) = k. The following then holds.

B(|9]° - |%6]° | 2) = ok,

E(B] - ll8|l* | ) = o er{ (x7x)7}.

Proof. For clarity of notation, condition will be omitted from notation of most expectations and
variances. Nevertheless, all are still understood as conditional expectations and variances given the
covariate values Z.

E(|19)° - |%6]° | z)

e Let us calculate:

BY - x8]* = {3 (7~ X1} = Y var(7)

=1 =1

= tr{var(}/})} = tr(o'2 H) = o2 tr(H)= o k.

o At the same time:
E|Y - X8| =E(Y —x8) (¥ — X8)
o ) S
-=I7 s el 207 2
=E[|Y|* + [x8]" - 2||x8|"= E[|Y||* - [x8]"

e Sothat, E[|Y|*—|x8|> = o2k
Y| = [x8]° + o7k

E(]IB]° - ll8|l* | 2)

o Let us start in a similar way:

o
—
T
A

E|B-8]° =E{> (5 - 5)°} = > var(5))

<
Il
o
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o At the same time:
E|B -8l ~E(B-8) (B-8)
B3I + B8] - 267 5B
——
B
= E[8]” +|8|* - 2 |8]I"= E[18]" - [|8]|".

» sothat, BB [B° = oPe{(xTx)"'},
EBI* = o) + e {(xTx)"'}
k—1 R
var(ﬂj)
§=0
Q
12.1.3 Variance inflation factor and tolerance
Notation. For a given linear model Y | Z ~ (X8, 0°L,,), rank(X,,xx) = k, where
Y=, ....%)"
X=(1,, X' ..., X*Y, XV = (X1, ., Xay) s G=1,..,k—1,
the following (partly standard) notation, will be used:
1<
Response sample mean: Y = - Yi;
i=1
Square root of the total sum of squares: Ty = Z(YZ — ?)2 = HY -Y1, };
i=1
Fitted values: Y = (}Afl, e )Afn)T;
2 S 112
Coefficient of determination: R*> =1 — HYV;},M =1- u
Y = Y1]] Ty
Residual mean square: MS, = ! HY — ?HQ
n—=~k
Further, for each j = 1,...,k — 1, consider a linear model M;, where the vector X7 acts as

a response and the model matrix is
XD = (1,, X1, ., X9 X0t xR,

The following notation will be used:
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1 <&
Column sample mean: X = - Z Xij;
i=1

Square root of the total sum of squares from model M;:

n . .
=[S0 - ) = 0 -
i=1
Fitted values from model M;: X\j = ()?Ljv ce )?n’j)T;

Coefficient of determination from model M;:

Ix/ - X|° Ix/ - X|°
=1- 1t

R =1 — : =
R — 2
’ X7 - X1, 5
Notes.

(i) If data (response random variables and non-intercept covariates) (Yi, Xity o, Xi,k_l)T,
i =1,...,n are a random sample from a distribution of a generic random vector (Y, X1,
cey )(]C_l)T then

e The coefficient of determination R? is also a squared value of a sample coefficient of
multiple correlation between Y and X := (X 1y oes X k_l)T
e For each j =1,...,k — 1, the coefficient of determination Rjz is also a squared value of
a sample coefficient of multiple correlation between X; and X (_;) := (X1, ..., X1,
T
Xjg1, .oy Xi1)

(ii) For given j =1,...,k — 1
¢ A value of R? close to 1 means that the jth column X is almost equal to some linear combination

of the columns of the matrix X(=7) (remaining columns of the model matrix). We then say that
X7 is collinear with the remaining columns of the model matrix.

e A value of Rjz- = (0 means that

e the column X is orthognal to all remaining non-intercept regressors (non-intercept columns
of the matrix X(—=9);

¢ the jth regressor represented by the random variable X; is multiply uncorrelated with the
remaining regressors represented by the random vector X (_).

For a given linear model Y ‘ 7 ~ (X,B, 0'2In), rank(X, xx) =k,
var(Bz) = Ms, (X'x) 7.

The following Theorem shows that diagonal elements of the matrix MS, (XTX)_I, i.e., values

\7a\r(3j ‘Z) can also be calculated, for j = 1,...,k — 1, using above defined quantities Ty, T}
R?, R2.
vy
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Theorem 12.2 Estimated variances of the LSE of the regression coefficients.

For a given dataset for which a linear model Y ’ 7 ~ (X,@, azIn), rank(Xpxx) = k, X =
(ln, xt .. inl) is applied, diagonal elements of the matrix \7a\r(B ’ Z) = MS, (XTX)_l,
can also be calculated, for j =1, ..., k —1, as

s Tv\? 1-R? 1
Var(ﬁjlz):<1§> -k 1-RY
J

Proof. Proof/calculations were skipped and are not requested for the exam.

Suppose that Ty, T1, ..., Ty _1 are real constants such that the vectors
* 1 N
Y'=_—(Y-Y1,),
Ty
. 1 .
Xi*= (X -X"1 i=1,....k—1
T, ( n), J=1,...,
have all unity Euclidean norm. For a given dataset, appropriate constants Ty, 11, ..., Tx_1 are

indeed given as indicated at the beginning of Section 12.1.3. Note that since we now only want to
find an expression on how to calculate, for a given dataset, diagonal elements of a certain matrix
v/a\r(,@ } Z) = MS, (XTX)_I, randomness of Ty, 11, ..., Tp_1 will not be taken into account. In
this context, the vector Y* is also called the standardized respose vector and the vectors X7* the
standardized regressors. Further, let

Xt = (XL xR

be the matrix with the standardized non-intercept regressors in columns.
We have
e Vector Y* and all columns of X* are of unity Euclidean norm.

e Vector Y* and all columns of X* are orthogonal to a vector 1,, i.e.,

(Y*)'1, =0, (x*) "1, = 04 1.
Let us now consider a linear model based on standardized variables (as if Ty, T1, ..., Tp_1 were
pre-specified constants). Let (56, BT, ..., 6,:_1)T be the regression coefficients in a model
M*: Y*|Z 1, x*) [ 0 )21
: ‘ ~ ( n ) ,6* 7(0) n |,
with the model matrix Xy = (1n, X*). Let B3* = (,Bf, cee ,B,:_l)—r be the subvector of the

regression coefficients related to the non-intercept columns of the model matrix.

As usually, let 8 = (ﬂo, B, ..., Bk,l)—r be the regression coefficients in the original model

M: Y|Z ~ (X8, 0°1,).
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Model M can be written as

k—1
Y =Bl + ) X/Bj+e, 12.2)
j=1
where & | Z ~ (On o2 In).
That is, data satisfying model M also satisfy
k=1 ' -1
Y - Y1=Bo— V)l + D (XT = X'1,)8;+ Y X'Bj1n +e,
j=1 j=1
— (Y -Y1, 1n+ — (X7 — +—€
= )= 2o > 7 L) 726+
~ Jj= \,_/ ~——
Y* /86 va* ﬁ; E*

In other words, if data satisfy model M then the standardized data satisfy the model M* with the
error terms e* = Y* — 51,, — X*3* having ¢* ‘ Z ~ (On (0%)? In) and parameters of the two
models are in mutual relationships

Bo—=Y + 3021 X8

*
B = Ty
T} .
BJ* = Tyﬁja ]:11"'7k_1>
g
*
g = TY

That is,

* 3 is only shifted-scaled jy.

o BJ* is only scaled 3;, j =1,...,k — 1.
e o is only scaled o.

Due to linearity, the same relationships hold also for the LSE in both models. That is (now written
in the opposite direction):

o

-1

. ~ Ty~
Bo =Ty By +Y — X?;’,
j=1
N Ty ~
BJ = ? ;7 ]:17 7k_1

J

Moreover, the fitted values in both models must also be linked by the same (linear) relationship as
the standardized and original response variables. That is,

~ % 1 -~ e = 1 > X .
Y :?Y(Y_Yln)7 }/;*:Tiy(yi_y)’ i=1,...,n,

?:Ty?*—l—?ln, i}i:Ty}/}i*—l-?, 1=1,...,n.
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The residual sum of squares in model M* is then:

ss; = [[y* - ¥

n n
~ 1 ~

=D V-V = Y (Y - T V)

=1 Y =1

1 _ PO
=g DAYV Y - (VY)Y
= ) (V;-Y)?=_;SS,,

T}% Zz;( (2 Z) T}% e

where SS. is the residual sum of squares in the original model M.

Moreover, note that T3 = ||Y — ?1”“2 is also the total sum of squares SSt for the original
response vector Y. That is,
SS
SS* = =2 —1- R?, 12.3
¢ SSp 123)

where R? is the coefficient of determination of the original model M. The residual mean square in
model M* can now be written as

SS;  1—-R?

MS* =
¢ n—k n—k

Let us now explicitely express the LSE of the regression coefficients vector (ﬁg , IB*T)T in model
M* which are given as
B\a T -1 Tyr*x
5 (Xi%u) XY™
First,
n 0, ol

where Rx x := (X*)TX* = (rg’(l’x)j =1 k1) has elements

Jil S (X — X)Xy — X))
XX T

n <7 Eva
Zz’:l(Xz}j - X])(Xi,l - X )

) \/Z?:l(Xi,j - Yj)z\/Z?:l(Xi,l ~ X'y

. ogl=1,...k—1.

That is, Rx x = (X*)TX* is a sample correlation matrix (with ones on a diagonal) of the non-
intercept regressors from the original model matrix X.

We then also have,

1
_ T T
(X—;Xst) o mo %) n Ok
° 0r—1 Rxx 0 1
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Second,

(X*) TY* Xy

X;I;Y* — (1n7 X*)TY* — (ZZZlK) — ( 0 >7

where rx )y := (X*)TY* = (rg(,Y)jzl 1> has elements

oo, = Y (Xiy — X)(Yi —Y)

_ S (X = X)) (Vi - Y)
\/Z?:1(Xi,j — X2 [ (Y - Y2

, Jj=1...k—1,

That is, rxy = (X*)TY* is a vector of sample correlation coefficients between the regressors
from the model matrix X and the response Y.

~ 1

3 - 0, 0 0

~ == n = ,
B 0,1 Ry, /) \rxy Ry Txy

Hence,

R R *\2
56 = 07 Va"(ﬁg ‘ Z) = (Un) ,
B* = R;(,lx rXy var(,(Ai* ’ Z) = (U*)2 R;(,lx- (12.4)

Before we proceed, let us derive the hat matrix and the fitted values of model M*. The hat matrix
of model M* is calculated as

- LS
Hy = (15, X¥) (X;stt) 1 (15, X" = (1, X*) | n Or-1 (1, X*) 7
0p_1 R;}:p
- %171 L, + XRyy (X))
——

=: H*
Observe that
e H; is the projection matrix into M <(1n, X*)).

e H* = X*R;(IX (X*)T is the projection matrix into M (X*).
The fitted values of the model M* are then given by
v * 1 Ty * *y )k *y
Y =HyY*"=-1,1, Y* + H'Y*=H'Y".
n S~—
0
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Finally, observe that (while remembering that any hat matrix is symmetric and idempotent)

P P

@'y = (v) Yy = (v) BEY* = (Y)
Consequently,

sst = [y =Y = () Ty - (v) Y - () v+ (¥) Y

- )y - () Y. s

Let dﬂg x J=1,...,k —1 be diagonal elements of the matrix Ry.. That is, from (12.4):
var(B5|2) = (0 d¥x, j=1,....k -1

To derive the value of d{XJ v Jj=1,...,k =1, let us first consider the sample correlation matrix
based on both the response vector and the non-intercept regressors:

R 1 r)T( v
Y, X),(YV,X) = ’ .
(Y, X),(¥,X) rxy Rxx
Using Theorem A.4, we can express its inverse:

(=L R rxy) T B
vX) - &8 &)

—1
Rivx).(

Further (while also using Egs. 12.3 and 12.5),

1-— T})/R;(}XTX’Y
_ (Y*)TY* o (Y*)T X*{(X*)TX*}_I(X*)T Y*
H*
~k T~
(Y)Y - (Y) Y =55 =1-R?

where R? is coefficient of determination from the linear model M: Y | Z ~ (XB, o? In).

That is, the (Y — Y") diagonal element of matrix R(Yl’ X),(V.X) equals to (1 — R?)~!, where R? is
the coefficient of determination from a model with Y as response and the model matrix composed
of the intercept column and the original regressors X!, ..., X*~1 ie, the model matrix

X = (1, X', ..., Xk,
Now, consider for given j = 1, ..., k — 1 a linear model where the response vector is equal to X’
(the jth regressor from the original model) and the model matrix is
XD = (1, XY, L, X9 X9 xR,

The role of the matrix ]R(*Yl’ X),(Y,X)

were reordered and its (1 — 1) element is equal to d&j +» ie, to the jth diagonal element of the

would now be played by matrix ]R;(lx whose rows and columns

matrix R}IX. By the same arguments as above, we arrive at

d]?] — ,
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where RJQ- is the coefficient of determination from a linear model with X/ as response and the

model matrix X(=7),

So we have, )
A G ,
var(B} | Z) = - j=1,.... k—1.
The jth diagonal element (j =1, ..., k — 1) of the matrix var(B | Z) can now be expressed as
~ TY/\ TY 2 = TY 2 (O-*)Q

Let us now replace an unknown (0*)? by its estimator MS} = SE:;C = 17:22. We get

__ Ty\>1-R*> 1 _

i\Z) = —_— =1,..., k—1.
w617 = (7) vk im I=he

Definition 12.1 Variance inflation factor and tolerance.

For given j = 1,...,k — 1, the variance inflation factor’ and the tolerance® of the jth regressor of
the linear model Y ! 7 ~ (X,@, JQIn), rank(X,,xx) = k are values VIF; and Toler;, respectively,

defined as

1 1
1—7_R27 Tolerj:1—R2:7

VIF; = :
/ ; 7 VI

Notes.
e With R; = 0 (the jth regressor orthogonal to all remaining regressors, the j regressor multiply
uncorrelated with the remaining ones), VIF; = 1.

e With R; — 1 (the jth regressor collinear with the remaining regressors, the jth regressor
almost perfectly multiply correlated with the remaining ones), VIF; — oc.

Interpretation and use of VIF

* If we take into account the statement of Theorem 12.2, the VIF of the jth regressor (j =
1,...,k—1) can be interpreted as a factor by which the (estimated) variance of 3; is multiplied
(inflated) compared to an optimal situation when the jth regressor is orthogonal to (multiply
uncorrelated with) the remaining regressors included in the model. Hence the term wariance
inflation factor.

* Under assumption of normality, the confidence interval for 3; with a coverage of 1 — « has the
lower and the upper bounds given as

~

B; + tn_k(l - %) var (B;).

2 varianéni inflacni faktor * tolerance
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Using the statement of Theorem 12.2, the lower and the upper bounds of the confidence interval
for B; can also be written as

~ o\ Ty |1 - R?
B; + tn_k(l—)Tj VI,

2
That is, the (square root of) VIF also provides a factor by which the half-length (radius) of
the confidence interval is inflated compared to an optimal situation when the jth regressor
is orthogonal to (multiply uncorrelated with) the remaining regressors included in the model,

namely,
VOlj 2
VIF; = : (12.6)
VOlO,j
where Vol; = length (volume) of the confidence interval for 3;;
Volp,; = length (volume) of the confidence interval for 3; if it was RJQ- =0.

® Regressors with a high VIF are possibly responsible for multicollinearity. Nevertheless, the VIF
does not reveal which regressors are mutually collinear.

Generalized variance inflation factor

Beginning of
A generalized variance inflation factor was derived by Fox and Monette (1992) to evaluate a degree skipped part
of collinearity between a specified group of regressors and the remaining regressors. Let

s Jc{l,....k=1}|T|=m
* B|7) be a subvector of 3 having the elements indexed by j € J.

Under normality, a confidence ellipsoid for 87 with a coverage 1 — « is

-1

{Bre®™: (B -Br) (M) (B~ Bi) < mFuasll - )},

V[j] = (J — J) block of the matrix (XTX)_l. 12.7)

Let Vols: volume of the confidence ellipsoid (12.7);

Volp, 7:  volume of the confidence ellipsoid (12.7) would all columns of X
coresponding to 3] be orthogonal to the remaining colums of X.

A definition of the generalized variance inflation factor gVIF is motivated by (12.6) as it is given as

2
gVIF , = (VOIJ) :

It is seen that with J = {j} for some j = 1,...,k — 1, the generalized VIF simplifies into
a standard VIF, i.e.,
gVIF, = VIF;.

Notes.

¢ The generalized VIF is especially useful if 7 relates to the regression coefficients corresponding
to the reparameterizing (pseudo)contrasts of one categorical covariate. It can then be shown
that gVIF ; does not depend on a choice of the (pseudo)contrasts. gVIF; then evaluates the
magnitude of the linear dependence of a categorical variable and the remaining regressors.
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* When comparing gVIF ; for index sets J, | J | of different cardinality m, quantities

1
Vol, \ m
o7 >m 12.8)

1
VIFZ" =
& J (VOIQJ

should be compared which all relate to volume units in 1D.

* Generalized VIFs (and standard VIFs if m = 1) together with (12.8) are calculated by the R
function vif from the package car.

12.1.4 Basic treatment of multicollinearity

Especially in situations when inference on the regression coefficients is of interest, i.e., when the
primary purpose of the regression modelling is to evaluate which variables influence significantly
the response expectation and which not, multicollinearity is a serious problem. Basic treatment of
multicollinearity consists of preliminary exploration of mutual relationships between all covariates
and then choosing only suitable representatives of each group of mutually multiply correlated
covariates. Very basic decision can be based on pairwise correlation coefficients. In some (especially
“cook-book”) literature, rules of thumb are applied like “Covariates with a correlation (in absolute
value) higher than 0.80 should not be included together in one model.” Nevertheless, such rules
should never be applied in an automatic manner (why just 0.80 and not 0.79, ...?) Decision
on which covariates cause multicollinearity can additionally be based on (generalized) variance
inflation factors. Nevertheless, also those should be used comprehensively. In general, if a large set
of covariates is available to relate it to the response expectation, a deep (and often timely) analyzis
of mutual relationships and their understanding must preceed any regression modelling that is to
lead to useful results.

End of
skipped part
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12.2 Misspecified regression space

We are often in a situation when a large (potentially enormous) number p of candidate regressors
is available. The question is then which of them should be included in a linear model. As shown
in Section 12.1, inclusion of all possible regressors in the model is not necessarily optimal and may
even have seriously negative impact on the statistical inference we would like to draw using the
linear model. In this section, we explore some (additional) properties of the least squares estimators
and of the related prediction in two situations:

(i) Omitted important regressors.

(ii) Irrelevant regressors included in a model.

12.2.1 Omitted and irrelevant regressors

We will assume that possibly two sets of regressors are available:

(i) X; i=1,...,n, where X; = tx(Z;) for some transformation tx : R? — R*. They give
rise to the model matrix
x|
Xoxk = = (XO,...,kal).
X,
It will still be assumed that X° = (1, ..., 1)T (almost surely) leading to the model matrix

ank = <1n7 Xla ey inl)a

with explicitely included intercept term.

(i) Vi,i=1,...,n, where V; = ty(Z;) for some transformation ¢y, : R? — R!. They give
rise to the model matrix
Vi
anl = = (V17 ) Vl)
VT

We will assume that both matrices X and V are of a full column rank and their columns are
linearly independent, i.e., we assume

rank(ank) =k, rank(anl) =1,
for = Gpuxrqr) == (X, V), rank(G) =k+1l<n.

The matrices X and G give rise to two nested linear models:

Model Mx Y |Z ~ (X3, 0°1,,);
Model Mxy Y |Z ~ (X8 + Vv, 0?1,,).

Depending on which of the two models is a correct one and which model is used for inference, we
face two situations:
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Omitted important regressors mean that the larger model Mxy, is correct (with v # 0,,) but we
base inference on model Mx. In particular,

® (3 is estimated using model Mx;

2

* o° is estimated using model M x;

e prediction is based on the fitted model M x.
Irrelevant regressors included in a model that the smaller model Mx is correct but we base
inference on model M xy,. In particular,

* (3 is estimated (together with +) using model M xy/;

2

* o< is estimated using model M xy;

e prediction is based on the fitted model M x-.

Note that if Mx is correct then M xy/ is correct as well. Nevertheless, it includes redundant
parameters < which are known to be equal to zeros.

Notation (Quantities derived under the two models).

Quantities derived while assuming model Mx will be indicated by subscript X, quantities derived
while assuming model M xy, will be indicated by subscript X V. Namely,

(i) Quantities derived while assuming model M x:

e Least squares estimator of (3:
= ~1 > > T
Bx = (X'X)" XY = (Bxo, -, Bxp-1) ;
* Projection matrices into the regression space M (X) and into the residual space M (X)l
Hy =X(X'X)"'X", My =1, - Hy;
e Titted values (LSE of a vector X(3):
> = o S ONT
YX = ny = X,@X = (YX71, ey YX,n) 3

¢ Residuals R -
Ux=MxY =Y -Yx=Uxa, ..., Uxn) ;

* Residual sum of squares and residual mean square:

SSe x

2
M
n—k

SSe.x = | Ux]

MS@X =

(ii) Quantities derived while assuming model M x

e Least squares estimator of (ﬁT, ')/T)T:
2T ST \T Ty~ 1T
(ﬁxw ’YXV) = (G G) G'Y,
S > > T ~ ~ ~ T
Bxv = (Bxvo, -, Bxvie-1) Fxv = (xvi, -5 Axvi)
* Projection matrices into the regression space M (G) and into the residual space M (G)J‘

1

Hyy =G(G'G)  G'",  Mxy =1, Hyy;
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e Fitted values (LSE of a vector X3 + V~):
S - S S T
Y xyv =HxvY =XBxy + Vyxy = Yxvit, -, Yxvin)

¢ Residuals N -
Uxy =MxvY =Y —=Yxy = (Uxva, ..., Uxvpn) ;

* Residual sum of squares and residual mean square:

SSe xv

SSe,XV = HUXVH27 MSe,XV = m

Consequence of Lemma 11.1: Relationship between the quantities derived while
assuming the two models.
Quantities derived while assuming models M x and M xy are mutually in the following relationships:

Yxv—Yx = MxV(V MxV) 'V Uy,
= X(BXV _BX) + VA xy,
Fyy = (VIMxV) 'VU,
Bxy —Bx = — (XTX)AXTV’%(V,
SSex — SSexv = |[MxVAxy |,

Hyy = Hy + MxV (VI MxV) ' VM.

Proof. Direct use of Lemma 11.1 while taking into account the fact that now, all involved model
matrices are of full-rank.

Relationship Hyy = Hyx +MxV (VTM XV) “lyTm x was shown inside the proof of Lemma 11.1.
It easily follows from a general expression of the hat matrix if we realize that

M(X, V) = M(X, MxV),

and that XTM)(V = Ogxy.
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Theorem 12.3 Variance of the LSE in the two models.

Irrespective of whether Mx or M xv holds, the covariance matrices of the fitted values and the LSE of
the regression coefficients satisfy the following:

var(?XV ‘ Z) — var(l//\'X ‘Z) > 0,

var(,@XV‘Z)—var(f‘}X‘Z) > 0.

Proof.

var(lAfXV ‘ Z) — var(f’x ’Z) >0

We have, var(f/X ‘ Z) = var(HXY ‘ Z) = HX(U2In)]HIX
= o2 Hx (even if M x is not correct).
Val’(?xv ‘ Z) = VaI’(HX\/Y } Z) = O'QHXV
=o? {Hx + MxV(V MxV)"'V My}
=var(Yx |Z) + o*MxV(V MxV) "'V My.

positive semidefinite matrix

var(BXV } Z) — var(BX ‘ Z) >0

Proof/calculations for this part were skipped and are not requested for the
exam. Proof/calculations below are shown only for those who are interested.

First, use a formula to calculate an inverse of a matrix divided into blocks (Theorem A.4):

TYxv

Further,

—1 _
Z} , [XTX XTV {XTX—XTV(VTV)“VTX} b
=0
ViX vTv R R

var(By | Z) = var (X7X) 'XTY | 2) = (X"X) X7 (L)X (XX) !
=2 (XTX)fl (even if M x is not correct).
var(Bxy | Z) = o {XTX - XTV(VTV)*VTX}_I,

Property of positive definite matrices (‘A —B > 0 < B~! — A~! > 0”) finalizes the proof.
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Notes.

¢ Estimator of the response mean vector pu = E(Y ‘ Z) based on a (smaller) model Mx is always
(does not matter which model is correct) less or equally variable than the estimator based on the
(richer) model Mxy .

¢ Estimators of the regression coefficients 3 based on a (smaller) model M x have always lower (or
equal if X"V = 0yy,,) standard errors than the estimator based on the (richer) model M.

12.2.2 Prediction quality of the fitted model

To evaluate a prediction quality of the fitted model, we will assume that data (Y}, z! )T, Z; =

(Zi,b ey Ziyp)—r € ZCRP,i=1,...,n, are a random sample from a distribution of a generic
random vector (Y, Z T)T, Z = (Zl, cee ZP)T. Let the conditional distribution Y | Z of Y given
the covariates Z satisfies

E(Y|Z)=m(2), var(Y|Z)=o0? (12.9)

for some (regression) function m and some o2 > 0.

Replicated response

Let z1, ..., z, be the values of the covariate vectors Z1, ..., Z,, in the original data that are

T .
available to estimate the parameters of the model (12.9). Further, let (Yn+,-, Z Z Jri) ,i=1,...,n,
be independent random vectors (new or future data) being distributed as a generic random vector

(Y, Z) and being independent of the original data (V;, ZZT)T, i =1,...,n. Suppose that our

aim is to predict values of Y,,4;, i = 1,...,n, under the condition that the new covariate values
are equal to the old ones. That is, we want to predict, for i = 1,...,n, values of Y,,4; given
Zn+i = Zj.

Terminology (Replicated response).

A random vector .
Yiew = (Yn+1> cee Yn+n) )

where Y,,1; is supposed to come from the conditional distribution Y |Z = z;, i = 1,...,n, is
called the replicated response vector or replicated data.

Notes.
* The original (old) response vector Y and the replicated response vector Y., are assumed to
be independent.

® Both Y and Y, are assumed to be generated by the same conditional distribution (given Z),
where

E(Y‘lezlpu-azn:zn): 12 :E(Ynew‘zn—kl:'zh---uZn—‘rn:zn)a

var(Y ‘ Z1 =21, ..., 4, = zn) = o2, = var(Ynew | L1 =21, oy Lingn = zn),

for some o2 > 0,

and
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Prediction of replicated response

Let N N N -
Yiew = (Yn+17 SR Yn+n)

be the prediction of a vector Y ¢, based on the assumed regression model (12.9) estimated using
the original data Y with Z, = 2z, ..., Z,, = z,. That is, }A’new is some statistic of Y (and
7). Analogously to Section 5.4.3, we shall evaluate a quality of the prediction by the mean squared
error of prediction (MSEP). Nevertheless, in contrast to Section 5.4.3, the following issues will be
different:

(i) A value of a random vector rather than a value of a random variable (as in Section 5.4.3) is
predicted now. Now, the MSEP will be given as a sum of the MSEPs of the elements of the
random vector being predicted.

(ii) Since we are now interested in prediction of new response values given the covariate values
being equal to the covariate values in the original data, the MSEP now will be based on
a conditional distribution of the responses given Z (given Z; = Z,,1; = z;, i = 1,...,n).
In contrast, variability of the covariates was taken into account in Section 5.4.3.

(iii) Variability of the prediction induced by estimation of the model parameters (estimation of
the regression function) using the original data Y will also be taken into account now.
In contrast, model parameters were assumed to be known when deriving the MSEP in
Section 5.4.3.

Definition 12.2 Quantification of a prediction quality of the fitted regression model.

Prediction quality of the fitted regression model will be evaluated by the mean squared error of
prediction (MSEP)* defined as

MSEP (Y pew) = zn: E{ (Vars = Yors)* | 2}, (12.10)
=1

where the expectation is with respect to the (n + n)-dimensional conditional distribution of the vector
T
(YT, Y, ) given

new
T T
Zl Zn+1
Z = E = .
T T
Zn Zn+n

Additionally, we define the averaged mean squared error of prediction (AMSEP)® as

AMSEP (Y 1e,) = % MSEP (Y e )-

Y stredni ¢tvercoud chyba predikce ° primérnd stiedni ctvercovd chyba predikce
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Prediction of replicated response in a linear model

With a linear model, it is assumed that m(z) = =" 3 for some (known) transformation & = ¢x (z)
and a vector of (unknown) parameters 3. Hence, it is assumed that

o= ()

= E(Y‘Zl =21y -0 Zn:zn) = E(Y’new‘zn—‘rl =21 - Zn—i—n:zn)
satisfies N
p=Xp= (/B ..., 2,0) .
for a model matrix X based on the (transformed) covariate values x; = tx(z;), i = 1,...,n.

If we restrict our attention to unbiased and linear predictions of Y ¢y, ie., to predictions of
the form ?new = a + AY for some vector & € R™ and some n X n matrix A satisfying
E(i}new ‘ Z) = E(Ynew ‘ Z) = u, a variant of the Gauss-Markov theorem would show that (12.10)
is minimized for

Yow=Y, Y=XX'X)XTY,

~ ~

Yn+i:}/i Zzl,,n

That is, for ¥ pew being equal to the fitted values of the model estimated using the original data.
Note also that

~

i}new =Y = ﬁa

where p is the LSE of a vector pu = E(Y‘Zl =z1,...,4, = zn) = E(Ynew‘Zm_l =
21, '--aZn-i-n:zn)-

Lemma 12.4 Mean squared error of the BLUP in a linear model.

In a linear model, the mean squared error of the best linear unbiased prediction can be expressed as

MSEP(Y ew) = no? + Y MSE(Y:),

=1
where R ~
MSE(Y) =E{ (Vi - m)*|Z},  i=1,....n,
is the mean squared error® of Y; if this is viewed as estimator of pi;, 1 = 1,...,n.

Proof.  To simplify notation, condition will be omitted from notation of all expectations and
variances. Nevertheless, all are still understood as conditional expectations and variances given the
covariate values Z.

~

We have for ¢ = 1,...,n (remember, Y,,,; = )//\'i, i1=1,...,n)

b stredni Ctvercoud chyba
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E(?nﬂ‘ Yn+i)2 = E(Ai - Yn+i)2
=E{Y; — i — (Yo — i) }*
=E(Y; — i)* + E(Ynri — i) —2  E(Vi — p15) Yogs — i)

E(Yi — 1t3) E(Ynti — i) = E(Y; — i) - 0

= E(ﬁ — ,Ui)z + E(Ynti — ,uz')2
= MSE(Y;) + o
So that

MSEP(Y new) = O E(Vosi — Yora)? =no® + 3 MSE(Y).
i=1 =1

Notes.
e We can also write

ﬁ;MSE(ﬁ-) —E{|¥ - u|*|Z}.

Hence,
MSEP(Yoew) = no? + B{||¥ —u|*|z}.

o If the assumed linear model is a correct model for data at hand, Gauss-Markov theorem states
that Y is the BLUE of the vector p in which case

MSE(Y) =E{ (Vi - ) |2} =var(¥i]Z),  i=1,....n.

o Nevertheless, if the assumed linear model is not a correct model for data at hand, estimator Y
might be a biased estimator of the vector y, in which case

MSE(Y) =E{ (Vi - )* |2}
—var(V;|2) + {E(T i |2)} = var(%i|2) + {bias(T) ). i=1...n
« Expression of the mean squared error of prediction is
MSEP(Y pew) = no? + zn: MSE(Y:) =no? + E{||¥ - ul’| Z}.
i=1
By specification of a model for the conditonsl response expectation, i.e., by specification of

a model for 1, we can influence only the second factor E{ HI/} — u||2 ‘ Z}. The first factor (n %)

reflects the true (conditional) variability of the response which does not depend on specification
of the model for the expectation. Hence, if evaluating a prediction quality of a linear model with
respect to ability to predict replicated data, the only term that matters is

> we() = £{|7 -l |2),

that relates to the error of the fitted values being considered as an estimator of the vector p.
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12.2.3 Omitted regressors
In this section, we will assume that the correct model is model
Mxv: Y |Z~ (XB+ V7, o’L,),

with 4 # 0;. Hence all estimators derived under model M xy- are derived under the correct model
and hence have usual properties of the LSE, namely,

E(Bxv|2)

B,

E(Yxv|Z) = XB+Vy=p,

n

Z MSE(?XV’@) = Z var(?XV’i ‘ Z) = tr(var(f’xv ‘ Z)) = tr(02 HXV) (121D

=1 =1
= o*(k+1),
E(MSexv |Z) = o°

Nevertheless, all estimators derived under model Mx: Y ’ Z ~ (XB, O'QIn) are calculated while
assuming a misspecified model with omitted important regressors and their properties do not
coincide with properties of the LSE calculated under the correct model.

Theorem 12.5 Properties of the LSE in a model with omitted regressors.
Let Mxy: Y ‘ 7~ (Xﬁ + V7, O’QIn) hold, i.e, p := E(Y | Z) satisfies

pu=XgB+ Vv
for some B3 € R¥, v € R,

Then the least squares estimators derived while assuming model Mx : 'Y ‘ 7 ~ (Xﬁ, UQIn) attain
the following properties:

E(Bx|Z) = B + (XTX) X V~,

E(Yx|Z) = p — MxVs,

3 MSE(Tx) = ko? + v,
=1
[MxvA

E(MSex |Z) = o + —

Proof.  As several times before, condition will be omitted from notation of all expectations and
variances that appear in the proof. Nevertheless, all are still understood as conditional expectations
and variances given the covariate values Z.
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E(Bx|2)
By Theorem 11.1: By — By = — (XTX)AXTVQXV.

Hence, E(,@X) :E{BXV + (XTX)AXTV’AYXV}
=8+ (X'X) XV,

bias(Bx) = (X'X) 'XTV.

E(Yx |2)

By Theorem 11.1: ¥ xy — Y x = X(Bxy — Bx) + VAxv-

Hence, E(Yyx) =E(Yxv—XBxy +XBy — Vixy)
—p—XB+XB+X(XTX) X Vy — Vy
=+ {X(XTX) X" - L vy
= p—MxVy,

bias(f’X) = — MxV~.

Z:‘L:l MSE(?XJ)

Let us first calculate MSE(IA/X) = E{(?X — p,) (?X — u)T}:
I\/ISE(lA’X) = var(f"x) + bias(f’X)biaST(}A’X)
=o0’Hx + MxVyy' VI My.

Hence, Z MSE()A/X,i) = tr(MSE(lA’X))
=1
= tr(0c?Hx + MxVyy V' My)
= tr(aQ]HIX) + tr(MXV'y’yTVTMX)
=0k + tr(v VI MxMxV~)
=0’k + |MxVA|*

E(MS, x ‘ Z)

Proof/calculations for this part were skipped and are not requested for the
exam. Proof/calculations below are shown only for those who are interested.

Let us first calculate E(SSe, X) = IE(SSG, X } Z). To do that, write the linear model M xy- using
the error terms as

Y =XB+Vy+e, E(e|Z)=0,, var(e|Z)=0"1,.



12.2. MISSPECIFIED REGRESSION SPACE 263

E(SS. x) = E[MxY | = E[|Mx (X8 + Vy + &)||’
— E[|MxVy + Mxel”
= E||Mx V7| + E|Mxe|* + 2 E(y"V MxMye)

7TVTI\2{XIE5:O
= |[MxVA|* +  E(e"Mye)
———

E(tr(eTMXe)):tr(IE(MXeeT)):tr (02 MX):(72 (n—k)
= HMXV’YH2 + 0% (n—k).

Hence, IE(MSQX) = E(SSB’X>

n—k
o I
n—k
e

bias(MS&X) =

Least squares estimators

Theorem 12.5 shows that bias(,@X) = E(BX -0 ‘ Z) = (XTX)leTV% nevertheless, the
estimator 3y is not necessarily biased. Let us consider two situations.

(i) XTV = 0, which means that each column of X is orthogonal with each column in V. In
other words, regressors included in the matrix X are uncorrelated with regressors included
in the matrix V. Then

° IBX = /BXV and b|as(/8X) = Ok.
* Hence 3 can be estimated using the smaller model M x without any impact on a quality
of the estimator.

(i) XTV #£ 0pyy

. B y is a biased estimator of 3.

Further, for the fitted values Y x if those are considered as an estimator of the response vector
expectation p = X3 + V-, we have

bias(lA’X) = —MxV~.

In this case, all elements of the bias vector would be equal to zero if MixV = 0,,4;. Never-
theless, this would mean that M(V) - M(X) which is in contradition with our assumption
rank(X, V) = k + . That is, if the omitted covariates (included in the matrix V) are linearly inde-
pendent (are not perfectly multiply correlated) with the covariates included in the model matrix X,
the fitted values Y x always provide a biased estimator of the response expectation.
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Prediction

Let us compare predictions Ynew X = Y x based on a (misspecified) model M x and predictions
Ynew XV = Y xv based on a (correct) model Mxy,. Properties of the fitted values in a correct
model (Expressions (12.11)) together with results of Lemma 12.4 and Theorem 12.5 give

MSEP(?Hew’XV) = no? + ko? + lo?,
MSEP(Yew,x) = no® + ko® + ||MxVry|>

That is, the average mean squared errors of prediction are

AMSEP (Y e xv) = o2 + bor g Lo2,
n n
AMSEP (Y e, x) = 02 + %ag + %HI\\/JIXVyHQ.

We can now conclude the following.

e The term HMXV')/H2 might be huge compared to [ o2 in which case the prediction using the
model with omitted important covariates is (much) worse than the prediction using the (correct)
model.

¢ Additionally, % 02 — 0 with n — oo (while increasing the number of predictions).

¢ On the other hand, %HMXV')/HQ does not necessarily tend to zero with n — oc.

Estimator of the residual variance

Theorem 12.5 shows that the mean residual square MS, x in a misspecified model Mx is a biased
estimator of the residual variance o2 with the bias amounting to

vl

bias(MS, x) = E(MS.x —0”|Z) = n—Fk

Also in this case, bias does not necessarily tend to zero with n — oo.

12.2.4 Irrelevant regressors
In this section, we will assume that the correct model is model
Mx: Y |Z~ (X8, o’L,).
This means, that also model
Mxv: Y |Z~ (XB+Vy,o’l,)

holds, nevertheless, v = 0; and hence the regressors from the matrix V are irrelevant.
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Since both models M x and M xy hold, estimators derived under both models have usual properties
of the LSE, namely,

E(BX’Z)ZE(BXHZ) = B,

E(Yx|Z)=E(Yxv|Z) = XB=p,

n

n
Z YX’ - Z var(ffxﬂ-]Z) = tr(var(f"X‘Z)) = tr(o” Hy)
=1 i=1
= o’k
n

Z MSE YXV@) = Z var YX\/@‘Z = tr(var(YXV‘ZD = tr(0'2HX\/)
=1

= (k+l),

E(MSex |Z) =E(MS. xv |Z) = o

Least squares estimators

Both estimators 3 y and B vy are unbiased estimators of a vector 3. Nevertheless, as stated in
Theorem 12.3, their quality expressed by the mean squared error which in this case coincide with
the covariance matrix (may) differ since

MSE (Bxy) — MSE(Bxy) = E{ (Bxv —B8)(Bxv - ﬁ)T ‘ Z} - E{ (Bx —B)(Bx — 5)T ‘ Z}
= var(Byy | Z) — var(Bx | Z) > 0.
In particular, we derived during the proof of Theorem 12.3 that
var(Bxy | Z) — var(Bx | Z) = o” {{XTX = XTV(VTV)‘lvTX}_l - (XTX)‘l].
Let us again consider two situations.

(i) XTV = 0, which means that each column of X is orthogonal with each column in V. In
other words, regressors included in the matrix X are uncorrelated with regressors included
in the matrix V. Then

° /BX = /BXV and Var(ﬁX } Z) = Var(/BXV | Z)
* Hence 3 can be estimated using the model Mxy with irrelevant covariates included
without any impact on a quality of the estimator.
(i) XTV # 0pyy
e The estimator 3 xv is worse than the estimator B x in terms of its variability.

e If we take into account a fact that by including more regressors in the model, we are
increasing a danger of multicollinearity, difference between variability of 3y, and that
of B3y may become huge.



12.2. MISSPECIFIED REGRESSION SPACE 266

Prediction

Let us now compare predictions ?new’ x = Y x based on a correct model Mx and predictions
Y new,xv = Y xv based on also a correct model M xy,, where however, irrelevant covariates were
included. Properties of the fitted values in a correct model together with results of Lemma 12.4
give

MSEP(Y ew xv) = no® + (k+1)o?

MSEP(Y yew x) = no® + ko

That is, the average mean squared errors of prediction are

AMSEP (Y pew,xv) = o2 + %&,
AMSEP(Y newx) = o2 + ko2
n

The following can now be concluded.

e If n — oo, both AMSEP(?Hew’X\/) and AMSEP(}/}new,X) tend to 0. Hence on average, if
sufficiently large number of predictions is needed, both models provide predictions of practically
the same quality.

* On the other hand, by using the richer model M xy- (which for a finite n provides worse predic-
tions than the smaller model Mx), we are eliminating a possible problem of omitted important
covariates that leads to biased predictions with possibly even worse MSEP and AMSEP than
that of model M xy, .

12.2.5 Summary

Interest in estimation of the regression coefficients and inference on them

If interest lies in estimation of and inference on the regression coefficients 3 related to the regressors
included in the model matrix X, the following was derived in Sections 12.2.3 and 12.2.4.

(i) If we omit important regressors which are (multiply) correlated with the regressors of main
interest included in the matrix X, the LSE of the regression coefficients is biased.

(ii) If we include irrelevant regressors which are (multiply) correlated with the regressors of main
interest in the matrix X, we are facing a danger of multicollinearity and related inflation of
the standard errors of the LSE of the regression coefficients.

(iii) Regressors which are (multiply) uncorrelated with regressors of main interest influence neither
bias nor variability of 3 irrespective of whether they are omitted or irrelevantly included.

Consequently, if a primary task of the analysis is to evaluate whether and how much the primary
regressors included in the model matrix X influence the response expectation, detailed exploration
and understanding of mutual relationships among all potential regressors and also between the
regressors and the response is needed. In particular, regressors which are (multiply) correlated with
the regressors from the model matrix X and at the same time do not have any influence on the
response expectation should not be included in the model. On the other hand, regressors which are
(multiply) uncorrelated with the regressors of primary interest can, without any harm, be included
in the model. In general, it is necessary to find a trade-off between too poor and too rich model.
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Interest in prediction

If prediction is the primary purpose of the regression analysis, results derived in Sections 12.2.3
and 12.2.4 dictate to follow a strategy to include all available covariates in the model. The reasons
are the following.

(i) If we omit important regressors, the predictions get biased and the averaged mean squared
error of prediction is possibly not tending to the optimal value of o2 with n — oo.

(ii) If we include irrelevant regressors in the model, this has, especially with n — oo, a negligible
effect on a quality of the prediction. The averaged mean squared error of prediction is still
tending to the optimal value of 2.



orrer 1.3

Asymptotic Properties of the
LSE and Sandwich Estimator

13.1 Assumptions and setup

Assumption (A0).

(@ Let (Y7, XlT)T, (Ya, X;)T, ... be a sequence of (1 + k)-dimensional independent and
identically distributed (i.i.d.) random vectors being distributed as a generic random vec-

T T T .
tor (Y, X"), (X = (Xo, X1, ..., Xp1) » Xi = (Xi0, Xits ooy Xigpo1) 5 0 =
1,2,...)

(i) Let B8 = (ﬁo, ceey 5k-1)‘|‘ be an unknown k-dimensional real parameter;

(iii) Let E(Y | X) = X '.

Notation (Error terms).
We denote ¢ =Y — X '3,

=Y, —-X!B, i=12...

Notes.
e In this chapter, all unconditional expectations must be understood as expectations with respect

to the joint distribution of a random vector (Y, X T)T (which depends on the vector 3).

* From assumption (A0), the error terms €1, €9, ... are i.i.d. with a distribution of a generic error
term ¢. The following can be concluded for their first two (conditional) moments:

E(s| X)=E(Y - X8| X) =0,
var(e!X):var(Y—XT,B‘X):var(Y}X) = 0?(X),

268
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E(e) = E(E(c| X)) = E(0) =0,

var (=) = var (E(z| X)) + E(var(z| X)) = var(0) + E{o*(X)} = E{c*(X)}.

Assumption (A1).

Let the covariate random vector X = (XO, o X k_l)T satisfy
0 E|X; X[ <oo, 4, 1=0,....,k—1
(ii) IE(X X T) = W, where W is a positive definite matrix.

Notation (Covariates second and first mixed moments).

Let W = (wjvl)jlzo k1 We have,
wi = w;; = E(X7), j=0,...,k—1,
wj; =E(X; X)), j#L
Let
. -1 _
V=W = (Uj’l)j,lzo,...,kfl'
Notation (Data of size n).
For n > 1:
T n
Y Xy Wy =X1X, =Y X, X/,
Y, =1|:], Xp=1 ¢+ |, i=1
T _
Yo Xn VYV, = (XIXn) ! (if it exists).

Lemma 13.1 Consistent estimator of the second and first mixed moments of the
covariates.

Let assumpions (A0) and (Al) hold. Then

1 5.
W, = w as n — oo,
n

nV, =% V as n — oo.




1. ASSUMPTIONS AND SETUP 270

Proof.  The statement of Lemma follows from applying, for each j = 0,...,k — 1 and | =
0,...,k—1, the strong law of large numbers for i.i.d. random variables (Theorem C.2) to a sequence

Zi g1 = Xij Xi, i=1,2,....

Q

LSE based on data of size n

Since %XI X, % W > 0 then
P(there exists ng > k such that for all n > ng rank(Xn) = k:) =1

and we define (for n > nyg)

~ _ n -1,
B, = (XIX,) "Xy, = (ZXiXZ-T) (ZXY)
i=1

I XA 2 T3
MSew = —— [V — XufB,||" = k Z —- X/B,)%

which are the LSE of 3 and the residual mean square based on the assumed linear model for data
of size n.

Myt Y, | X, ~ (XoB8, 0?1,).

Further, for n > ng any non-trivial linear combination of regression coefficients is estimable
parameter of model M,,.

¢ For a given real vector 1 = (lo, I, ..., lk,l)T =# 0;, we denote
0=18, 0,=125,.

e For a given m x k matrix L with rows 1] # 0/, ..., 1] # Ok—r we denote
£=18. & =LB,

It will be assumed that m < k and that the rows of IL are lineary independent.

Interest will be in asymptotic (as n — oo) behavior of

@)

(ii) MSe ns
(iii) 6, = ITB for given 1 # Oy;

(iv) En = ]L,Bn for given m x k matrix 1L with linearly independent rows;
under two different scenarios (two different truths)

(i) homoscedastic errors (i.e., model M,, : Y, ‘ X, ~ (Xnﬁ, o2 In) is correct);
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(i) heteroscedastic errors where var(e } X ) is not necessarily constant and perhaps depends on
the covariate values X (i.e.,, model M, is not necessarily fully correct).

Normality of the errors will not be assumed.

Assumption (A2 homoscedastic).
Let the conditional variance of the response satisfy

o3(X) = var(Y| X) = o,

where 0o > ¢ > 0 is an unknown parameter.

Assumption (A2 heteroscedastic).
Let 02(X) := var(Y ‘ X) satisfy, for each j,0 = 0,...,k — 1, the condition

E{o*(X)X; X;} < o0.

Notes.
e Condition (A2 heteroscedastic) states that the matrix

W* :=E{s*(X) XX}
is a real matrix (with all elements being finite).
o If (A0) and (Al) are assumed then

(A2 homoscedastic) = (A2 heteroscedastic).

Hence everything that will be proved under (A2 heteroscedastic) holds also under (A2 ho-
moscedastic).

¢ Under assumptions (A0) and (A2 homoscedastic), we have
E(Yi‘Xi):XiT,B, var(Y;-‘XZ-):var(ei}Xi):02, 1=1,2,...,
and for each n > 1, Yy, ..., Y, are, given X,,, independent and satisfying a linear model
Y, X, ~ (Xo8, 0°L,).
¢ Under assumptions (A0) and (A2 heteroscedastic), we have
E(Y;| X;) = X/, var(Y; | X;) = var(e; | X;) = 0*(X,), i=1,2, ...,
and for each n > 1, Y1, ..., Y, are, given X,,, independent with

o?(X1) ... 0
E(Y,|X,) =X,8, var(Y, | X,) =



13.2. CONSISTENCY OF LSE 272

13.2 Consistency of LSE

We shall show in this section:

(i) Strong consistency of Bn, §n, En (LSE'’s regression coefficients or their linear combinations).
* No need of normality;
* No need of homoscedasticity.

(i) Strong consistency of MS, ,, (unbiased estinator of the residual variance).

* No need of normality.

Theorem 13.2 Strong consistency of LSE.
Let assumptions (A0), (AD) and (A2 heteroscedastic) hold.

Then N
B, NG asmn — oo,
1'8,= 0, %50 =1"8 asn— oo,
Lﬁn: Enﬂé =Lg asn — oo.
Proof.

It is sufficient to show that ,@n 2% . The remaining two statements follow from properties of
convergence almost surely.

We have

B, = (X1%.) (X1Ya)

n n

1 -1
where A, = (X,TL Xn> 25wl by Lemma 13.1.
n

Further
LT 1 ¢ T T
B, = _X,Y, = n;Xi(Y;—XZ-LHXiB)
1=
= 1§n:X" LS x.x7
= n 4 i€ + TLZ 1xg I
=1 =1
CTL Dn

1 n
@ C, =— E Xei =2 0y, due to the SLLN (ii.d., Theorem C.2). This is justified as follows.
n
i=1

1< 1<
e The jth (j =0,...,k — 1) element of the vector — Z Xe;is — Z X j€i.
n =1 " =1
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« The random variables X; je;, i =1, 2, ... are iid. by (A0).
.« E(Xige) = E(E(Xie| X))
= E(XiE(=] X))
~ E(Xi,0)
=0
o var(Xije) = E(var(Xmgi‘Xi)) n var(E(Xmai‘Xi))
= E(X2var(si] X)) + var(Xi,0)
= E(X7;0%(X)))
< oo by (A2 heteroscedastic)

— ElX@jEi’ < Q.

1 & 1
b) D, =~ ZXiXiTB = ~W,8 =% W3 by Lemma 13.1.
n im1 n
In summary: Bn =A, (Cn + Dn)7 where A,, = W1
C, 2% 04,
D, =% W .

Hence

By “HWIWB = .

Theorem 13.3 Strong consistency of the mean squared error.
Let assumptions (A0), (Al), (A2 homoscedastic) hold.

Then
MSec.n 2 52 asn — oo.
Proof.
We have
1 n 1 < ~9
MS., = SSen = - Y, — X.B8)°.
' n—=k ’ n—=kn Z( ZB)

@
Il
—
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Since lim —k = 1, it is sufficient to show that
n—oo

—ZY—XT,@n)z &% 02 as n — oo.

We have

S|

Z i - X/8 + X/8 - X/B,)°

n

_ 1 n - % T2 1 Tia_ A 2 2 T . o
_ n;(y x7B)* + nZ{XZ (-8} + 2 (i-x78) X7 (8- B.).

=1 i=1

~~ ~~

Z 2% 52 due to the SLLN (i.i.d., Theorem C.2).

S

_ ISy xT
(a)An—nZ(E x/p)’

=1
This is justified by noting the followmg

¢ The random variables 5i, i=1,2,...are iid. by (A0).
L4 E(El) =0
= E(Ef) = var(ai) = E{O‘2(XZ’)} = E(02) = o2 by assumption (A2 homoscedastic).

J E‘E?‘ = E(E?) = 02 < oo by assumption (A2 homoscedastic).

o 1 i T 3 2 a.s. . .
b) B, = - ;{XZ (,8 - Bn)} — 0, which is seen as follows.
B, = Z x7(8 - B}
- Z 8- B.) XX (8- B
=1

= (8- 8.) (ZXXT)ﬂ B,)

- B-B) (Exgxn) (B = Ba)-

Now (B — ,/B\R) 2%, 0}, due to Theorem 13.2.

1
—X) X, 2% W due to Lemma 13.1.
n

Hence
B, %% 0] W0, =0.
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(© Cp= 2 E (YZ — X;r,@) X,/ (B - ,@n) 2%, 0, which is justified by the following.
n
=1

C. = 23 (%i-XTB)XT (8 - B.)
=1

- 23
= o0 igixj) B - B).

1 n
Now — E e X} 2% 0] as was shown in the proof of Theorem 13.2.
n
i=1

(ﬂ - :Bn) 2% 0}, due to Theorem 13.2.

Hence
C, 20/ 0, =0.

n
n—k

In summary: MS, ,, = (An + B, + Cn), where - — 1,
A, N
B, =0,
C, = 0.

Hence
MSen 22 1 (0% + 0+ 0) = o2
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13.3 Asymptotic normality of LSE under homoscedas-
ticity

We shall show in this section: asymptotic normality of ,@n, On, En (LSE’s regression coefficients or
their linear combinations) when homoscedasticity of the errors is assumed but not their normality.

Reminder. v = {IE(XXT) }71.

Theorem 13.4 Asymptotic normality of LSE in homoscedastic case.
Let assumptions (A0), (Al), (A2 homoscedastic) hold.

Then R
Vn(B, — B) 2, Ni(0g, 02V) asn — oo,
\/ﬁ(gn — 0) 2, N1(0, 6217V1) asn — oo,
\/ﬁ(En - §) L Np(0m, 62LVLT)  asn — oc.

Proof.  Will be provided jointly with Theorem 13.5.

13.3.1 Asymptotic validity of the classical inference under ho-
moscedasticity but non-normality

For given n > ng > k, the following statistics are used to infer on estimable parameters of the
linear model M,, based on the response vector Y,, and the model matrix X,, (see Chapter 3):

~

0, — 0
T, = : 13.)
YMS. 1T (XT%,) 1
~ T _ -1 <
@ - {LEx) LT @ - )
Qn = — : 13.2)
m MSe

Reminder.
.V, = (X]X,)

e Under assumptions (A0) and (Al): nV, 25V as n — oo
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Consequence of Theorem 13.4: Asymptotic distribution of t- and F-statistics.
Under assumptions of Theorem 13.4:
7, = M0, 1) asn — oo,

D
me, — an asn — oo.

Proof. 1t follows directly from Lemma 13.1, Theorem 13.4 and Cramér-Slutsky theorem (Theo-
rem C.7) as follows.

_— 1'3, —1'8  Va('B, - 17B) 5217Vl

" JMS.A 1T (X7%,) V21TV MSeal ™ {n (XT%,) 1
D ~~
— N(O, 1) i) 1

mQu = (LA, - 18) {Ms..Lixx) LT} 0B, — L)

= Va(LB, - LB)" {MSe,nLn(XIXn)_lLT}il (LB, — LB)vn

L N (0, S>LVLT) Py sLvLT L N (0, >LVLT)

Convergence to x?2, in distribution follows from a property of (multivariate) normal distribution
concerning the distribution of a quadratic form.
4

If additionaly normality is assumed, i.e., if it is assumed Y, ‘ X, ~ N, (Xn,@, aQIn) then
Theorem 3.2 (LSE under the normality) provides

Tn ~ th—k,

Qn ~ JSm,n—k-

This is then used for inference (derivation of confidence intervals and regions, construction of tests)
on the estimable parameters of a linear model under assumption of normality.

The following holds in general:

T, ~t, then 7T, N N(0, 1) as v — 00, 153

D
Qv ~ Fm,v then mQ, — X2, as v — 00.

This, together with Consequence of Theorem 13.4 then justify asymptotic validity of a classical
inference based on statistics T;, (Eq. 13.1) and @Q,, (Eq. 13.2), respectively and a Student t and F-
distribution, respectively, even if normality of the error terms of the linear model does not hold.
The only requirements are assumptions of Theorem 13.4.

That is, for example, both intervals
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0 V= <§n—u(1—a/2) \/MSM 1T (XTX,) 7', O +u(l—a/2) \/Msm lT(Xan)‘ll);

@) 7 = (00— tas(1-a/2) VMSu T (K7%,) 'L Bty (1—a/2) \/MS,,0 17 (X] %)),
satisfy, for any 09 € R (even without normality of the error terms)
P(I,/LVBQO;«9:9O)—>1—@ as n — 00,

P(I,ELBGO;G:HO)—)l—a as n — oo.

Analogously, due to a general asymptotic property of the F-distribution (Eq. 13.3), asymptotically
valid inference on the estimable vector parameter £ = L3 of a linear model can be based either
on the statistic m Q,, and the x2, distribution or on the statistic ),, and the Fm, n—r, distribution.
For example, for both ellipsoids

~ B -1 .
0Ky ={eerm: (€-8) {Ms,L(xIx) LT (6-8) < xi-a)k
~ -1 ~
) K7 = {geR™: (€-8) {MS, LK) LT} (€-8) < mFnna(l-a)},
we have for any EO € R™ (under assumptions of Theorems 13.4):
P(K%B&O;ﬁzfo)ﬁl—a as n — oo,

P(KfBSO;EZEO)Hl—a as n — oo.
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13.4 Asymptotic normality of LSE under heteroscedas-
ticity
We shall show in this section: asymptotic normality of ,@n, On, En (LSE’s regression coefficients or
their linear combinations) when even homoscedasticity of the errors is not assumed.
Reminder.
-1
- v={E(xxT)} .

e WX =E{s*(X) XX}

Theorem 13.5 Asymptotic normality of LSE in heteroscedastic case.
Let assumptions (A0), (Al), (A2 heteroscedastic) hold.

Then
\/ﬁ(,@n - B) 2, Ni(0g, VW*V) asn — oo,
VB, —0) 2 N0, TTVWXVI) asn — oo,
Vi€, — &) 2 Np(0pm, LVW*VLT)  asn — oc.

Proof. We will jointly prove also Theorem 13.4.

We have
—1
B, = (X,X,) XY,

—_——
&

n
= Vu ) XY
i=1

= V> Xi(X/B+e)

=1

That is,

n

B, —B = V,> X = nvn% > X (13.4)

i=1 i=1

nvV, — V as n — oo. (13.5)
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In the following, let us explore asymptotic behavior of the term % Yo Xei

From assumption (A0), the term % Z?:l X ,e; is a sample mean of iid. random vector X;¢;,
t=1,...,n. The mean and the covariance matrix of the distribution of those random vectors are

IE(X 5) = 0 (was shown in the proof of Theorem 13.2),
var(Xs) = E(var(Xs}X)) + var(IE(Xs ’ X))

— E(Xvar(c| X) XT) + var(X E(¢| X))

N——— N——
o2(X) 0
= E(c*(X)XX").

Depending, on whether (A2 homoscedastic) or (A2 heteroscedastic) is assumed, we have

o2 IE(XXT) = 0?W, (A2 homoscedastic),
var(Xe) = E(*(X)XX") = (13.6)
W*, (A2 heteroscedastic).

Under both (A2 homoscedastic) and (A2 heteroscedastic) all elements of the covariance matrix
var(Xe) are finite. Hence by Theorem C.5 (multivariate CLT for i.i.d. random vectors):

Ly 1§ D 2 T
\FnlezEZ = \/EZIXZ& — Nk(Ok, E(O’ (X)XX )) as 1 — oo.
1= 1=

From (13.4) and (13.5), we now have,
(I@ - B8) = aV L zn: X.e: L
n \VE \/ﬁ — 1< \/ﬁ

Py

LN <0k7 E(a2(X)XXT))

That is,
~ 1 &
\/ﬁ(/@n B) = nV, ﬁ ; Xig;
Py -

=NYA (ok, IE(U2(X)XXT))
Finally, by applying Theorem C.7 (Cramér-Slutsky):

VB, = B) > Ni(0p, VE(@A(X)XXT) V') asn oo,

By using (13.6) and realizing that V' =V, we get
Under (A2 homoscedastic)
VE(*(X)XXT) VI =V WV =02 VV V=062V

and hence
D

\/ﬁ(,@n - B) — Ni(0, O'QV) as n — 00.
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Under (A2 heteroscedastic)
VE(*(X)XXT) VI = VWXV

and hence R
\/ﬁ(ﬂn — B) 2, Nk<0k, VW*V) as n — oo.

Asymptotic normality of 0, = lT,[Ain and of §,, = ]LBn follows now from Theorem C.6 (Cramér-
Wold).

3

Notation (Residuals and related quantities based on a model for data of size n).

For n > ng > k, the following notation will be used for quantities based on the model

Myt Yo | Xy ~ (Xo8, 0°1,).

¢ Hat matrix: H, =X, (XI Xn)_l X,

* Residual projection matrix: M, =1, — H,;

* Diagonal elements of matrix H,,:  hy 1, ..., hyp;

* Diagonal elements of matrix M,,: m, 1 =1—hp1, ..., Mpn =1—hpp;

¢ Residuals: U,=M,Y, = (Un,1, ey Umn)T.
Reminder.

.« V, = (f: Xin)_1 - (X!x,) "
=1

¢ Under assumptions (A0) and (Al): nV,, 25V as n — oo

Theorem 13.6 Sandwich estimator of the covariance matrix.
Let assumptions (A0), (Al), (A2 heteroscedastic) hold. Let additionally, for each s, t, j, 1 =0,..., k—1

El?X;X)| <00, EleX.X;X)| <00, E|X;X;X;X|< o0

Then
nV, WXV, 2% VWXV  asn — oo,

where forn=1,2, ...,

n
Wx =Y U7, X:X] =X, Q,X,,
=1

Qn = diag(wn,la sy w?%n)a Wni = U2 1
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Proof.

First, remind that
VW*V = {IE(XXT)}_l E(oX(X)XX") {E(XXT)}_l,
and we know from Lemma 13.1 that
nV, = n(X/X,)"" 25 {E(XXT)}_1 —V  asn— oo
Hence, if we show that

1 1 <
SWE = SN U XX S E(Y(0)XXT) WX asno oo,
=1

the statement of Theorem will be proven.

Remember,

From here, for each j, 1 = 0,... .k — 1
E(2X; %) = E(E(X; X[ X))
~ E(X; XE(| X))

= E(0*(X)X; X))

For each j, [ =0,...,k—1,
Ele® X; X| < o0

by assumptions of Theorem. By assumption (A0), €; X; ; X;;, ¢ = 1, 2, ..., is a sequence of ii.d.
random variables. Hence by Theorem C.2 (SLLN, i.i.d.),

1 n
- Z 5? X Xig 25 E(O’2(X)Xj Xl) as n — oo.
i=1

That is, in a matrix form,

1 n
— E e2x,x!] 2 E(UQ(X)XXT) = WX as n — oo. (13.7)
n

i=1

In the following, we show that (unobservable) squared error terms EZZ in (13.7) can be replaced by
squared residuals U,QL’Z- =Y, - X T Bn)z while keeping the same limitting matrix W* as in (13.7).

We have

1 o 1 o -~
S ULXX]D = S (v - X[B,) X X]
i=1 i=1

W*

n
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n

1 ~
- S (M- X/B+X]8 - X/B,) X, X]
NN 2 T IS 337 T 3 T
- EZSZ‘ XiX; + EZ(B*Bn) XX, (B-8,) XX,
=1 i=1
A, B,
2 < T .
i=1

Gy

1 n
A, == 2x, X1 2% E(o?(X)XX") = WX due to (13.7).
@ fn =5 3 XX = B XXT) ue to (3.

(b) To work with B,, = % Z (,3 _ Bn)T b.¢0. ¢4 (,8 — Bn) X, X, we can realize that (5 —
i=1
Bn)T X, =X ;r (B — Bn) is a scalar quantity. Hence

1 & - ~
i=1
and the (7, [)th element of matrix B, (j, [ =0,...,k — 1) is
1 < — -
Bui ) = 3 (8- B.)" Xi (X5 Xi) X[ (B-B,)

n

= (6-8)" {1 S xxixT} (5-B,)

i=1

¢ From Theorem 13.2: (6 — Bn) 2% 04, as n — oo.

® Due to assumption (A0) and assumption E’Xs X X Xl’ < oo for any s, t, 4,1 =
0,...,k —1, by Theorem C.2 (SLLN, i.i.d.), for any 5,1 =0,...,k — 1:

n

(Xij Xop) X: X, =5 E(X; X, XX 7).

S|

i=1
e Hence, forany j, 1 =0,...,k—1, B,(j, 1) =% O;—E(Xj X XXT) 0 = 0 and finally,
B, = Okxk as n — oo.

Z (B - BH)TX,-SZ- X ;X and the (j, I)th element of matrix C, (j, [ =
=1

(c) (Cn =

=

2 « ~
Cn(j, 1) = - Z(ﬁ_lgn)TXiEiXi,in,l
=1

~ 1 <&
= 92 (ﬁ - ﬁn)T (n ZXiEi Xz’,in,l).
i=1
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¢ From Theorem 13.2: ([3 — Bn) 2% 04 as n — 0.
* Due to assumption (A0) and assumption E‘a X X Xl‘ < ooforanys, j, 1 =0,...,k—1,
by Theorem C.2 (SLLN, i.i.d.), for any 5, [ =0,..., k — 1:

% Z Xif‘:iXi,in,l ﬁ> E(XEXle).
i=1

e Hence, for any j, 1 =0,...,k—1, C,(j, 1) => QO;—E(XSX]-XZ) = 0 and finally,

Crn =% Opxk as n — oo.

In summary:

nV, WXV, = nV, (lwz) n Vi,

where n'V, 25y,
A, 2 WX,
IB3n ﬁ) kak;
Cn =5 Oy

Hence

nVa WXV, =% V(WX + Opxp + Opxr) V=VW*V  asn — oo.

Terminology (Heteroscedasticity consistent (sandwich) estimator of the covari-
ance matrix).

Matrix ) )
V, WXV, = (X, X,) " X} 2, X, (X, X,,)~ (13.8)

is called the heteroscedasticity consistent (HC) estimator of the covariance matrix of the LSE Bn of
the regression coefficients. Due to its form, the matrix (13.8) is also called as the sandwich estimator
composed of a bread (X;Xn)_l X! and a meat £2,,.

Notes (Alternative sorts of meat for the sandwich).
e It is directly seen that the meat matrix €2, can, for a chosen sequence vy, such that 7= — 1 as

n — oo, be replaced by a matrix
n

7 an

Un
and the statement of Theorem 13.6 remains valid. A value v, is then called degrees of freedom of
the sandwich.
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e It can also be shown (see references below) that the meat matrix €2,, can, for a chosen sequence
Vn, such that - — 1 as n — oo and a suitable sequence &, = ((5n,1, ce 5,1,”), n=12, ...,
be replaced by a matrix

HC ._ 4;
Q" = dlag(wml, R wn,n),
2
n U’IL’L 1
Wni = "= 5 i=1,...,n.
My

e The following choices of sequences v, and &, have appeared in the literature (n = 1, 2, ...,
1=1,...,n):

HCO: v, = n, 0,,; = 0, that is,
Wni = U72”

This is the choice due to White (1980) who was the first who proposed the sandwich
estimator of the covariance matrix. This choice was also used in Theorem 13.6.

HCL: v, =n —k, 0p; = 0, that is,
Lo
W — k™Y
This choice was suggested by MacKinnon and White (1985).
HC2: v, = n, d,,; = 1, that is,
Usi

Wni =

Mni
This is the second proposal of MacKinnon and White (1985).
HC3: v, =n, §,,; = 2, that is, ,
Wy = —L,
my, i

This is the third proposal of MacKinnon and White (1985).
HC4: v, =n, 0, = min{4, nhn,i/k}, that is,

2
O s — Umi
n,g — m&"‘ji .

n,i

This was proposed relatively recently by Cribari-Neto (2004). Note that k = >"" | hy, ;, and

hence
P i S
5ni:min{4, j’z}, h, = — Ry i
9 h n ; 9

n

* An extensive study towards small sample behavior of different sandwich estimators was carried
out by Long and Ervin (2000) who recommended usage of the HC3 estimator. Even better
small sample behavior, especially in presence of influential observations was later concluded by
Cribari-Neto (2004) for the HC4 estimator.

e Labels HCO, HCI, HC2, HC3, HC4 for the above sandwich estimators are used by the R package
sandwich (Zeileis, 2004) that enables for their easy calculation based on the fitted linear model.
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13.4.1 Heteroscedasticity consistent asymptotic inference

Let for given sequences v, and d,,, n = 1, 2, ..., ¢ be a sequence of the meat matrices that
lead to the heteroscedasticity consistent estimator of the covariance matrix of the LSE 3,,. Let for
given n > ng > k,

VHC .- (xTX,) T X QPOX, (XIX,) "

Finally, let the statistics 77/¢ and QX be defined as
0 — 0

\/ITV{;’CI’

e La ot w1 @, - e

m

HC . _
THC =

Note that the statistics TT{{ ¢ and Qﬁl ¢ respectively, are the usual statistics T, (Eq. 13.1) and @,

(13.2), respectively, in which the term MS. (X;Zr Xn)_l is replaced by the sandwich estimator
yHC,

Consequence of Theorems 13.5 and 13.6: Heteroscedasticity consistent asymp-
totic inference.
Under assumptions of Theorem 13.5 and 13.6:

THC 2, N1(0,1)  asn — oo,

D 2

mQHC = N2 asmn — oo.

Proof. Proof/calculations were available on the blackboard in KI.

3

Due to a general asymptotic property of the Student t-distribution (Eq. 13.3), asymptotically valid
inference on the estimable parameter # = 1" 3 of a linear model where neither normality, nor
homoscedasticity is necessarily satisfied, can be based on the statistic 7/ and either a Student
tn_r or a standard normal distribution. Under assumptions of Theorems 13.5 and 13.6, both
intervals

0) T, = @ —u(l—a/2) W, O + u(l - a/2) W);
@ T = (B — taci(l— 0/2) U VECL G, + (1 a/2) /1T VAC1),

satisfy, for any 0° € R:

PZN 6% 0=6") —1-a asn— oo,

P(EZBHO;H:OO)Hl—a as n — oo.
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Analogously, due to a general asymptotic property of the F-distribution (Eq. 13.3), asymptotically
valid inference on the estimable vector parameter £ = IL3 of a linear model can be based either on
the statistic m QX and the x2, distribution or on the statistic Q2 and the F,,, ,,_ distribution.
For example, for both ellipsoids

Ky ={eerm: (€-8) LVIUL) (-8 <xi-a)k
i) K7 = {6eR™: (€8 (LVILT) ' (§-8) < mFuns(l-a)},
we have for any £° € R™ (under assumptions of Theorems 13.5 and 13.6):
PkX2¢% ¢=¢") —1-a asn— oo,

P(ICfBEO;E:EO)Hl—a as n — oo.
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Unusual Observations

In the whole chapter, we assume a linear model
M: Y |X~ (X8, 0°L,), rank(X,x,) =1 <k,

where standard notation is considered. That is,

b= (XTX)_XTY = (bo, e bk_l)T: any solution to normal equations;

H=X(XTX)"XT = (ki)

o : the hat matrix;
i,t=1,...,n

M=I,—-H= (m”) : the residual projection matrix;

it=1,..

Y =HY = Xb= (}Afl, ey ?n)‘r: the vector of fitted values;

U=MY =Y -Y = (Ul, ceey UH)T: the residuals;

SS, = HUH2: the residual sum of squares;

e MS, = ﬁ SS. is the residual mean square;

Ustd — (Uftd, cen Ufltd)—r: vector of standardized residuals,

Ustd = Ui i=1,... n.

The whole chapter will deal with idntification of “unusual” observations in a particular dataset. Any
probabilistic statements will hence be conditioned by the realized covariate values X1 = 1, ...,
X,, = @,. The same symbol X will be used for (in general random) model matrix and its realized
counterpart, i.e.,

X

=

-
T

288
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14.1 Leave-one-out and outlier model

Notation. For chosent € {1,...,n}, we will use the following notation.
* Y (_y): vector Y without the ¢th element;
e x;: the tth row (understood as a column vector) of the matrix X;

. X(,t): matrix X without the ¢th row;

e j. vector (0, ...,0,1,0,..., O)—r of length n with 1 on the ¢th place.

Definition 14.1 Leave-one-out model.
The tth leave-one-out model' is a linear model

My Y Xy ~ (XnBs o'Tno).

Definition 14.2 Outlier model.
The tth outlier model is a linear model

MY Y| X~ (X8 + 5,0, 0°Ly).

Notation (Quantities related to the leave-one-out and outlier models).
* Quantities related to model M(_,) will be recognized by subscript (—1), i.e.,

b4, Y (—t),SSe,(—t)s MS¢ (—¢), - - -

* Quantities related to model M?“" will be recognized by subscript ¢ and superscript out, i.e.,

~out

b?Ut, Yt ,SSOM Msout

et et s
* Solutions to normal equations in model M?“! will be denoted as
T TN T
((®F") ", (™))

e If 49% is an estimable parameter of model M?%! then its LSE will be denoted as 7%

' model vynechaného ttého pozorovii * model ttého odlehlého pozorovii
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Theorem 14.1 Four equivalent statements.

The following four statements are equivalent:

(i) rank(X) = rank(X(_t)), ie, x; € M(X(T_t));
(i) myy > 0;
out

(iii) ™" is an estimable parameter of model M?“t;

(V) py = E(Yt ’ X = :ct) = mj,@ is an estimable parameter of model M _).

Proof.
(i) & @
e We will show this by showing non(i) < non(ii).
* non() means that z;, ¢ M(X[ ;) € M(XT).
M(X[ ) CM(XT) and M(X(_y) # M(XT).

& ME) T cM(XLy)T and M(XT)T £ M(X,)"
e Thatis, < 3Ja € M(X[,)" such thata ¢ M(XT)".

< Ja € R* such that aTX(Tft) =0" & a'X" #* o',

< Ja € R* such that X_ya =0 & Xa #0.

It must be

for some ¢ # 0.
& Jda € R* such that Xa = cJs, ¢ # 0.
& j; € M(X).
= th - 0.
~—
tth column of M
< my = 0.
2
= Hth =Mt = 0.
< non(ii).

m denotes the tth row of M (and also its ¢ column since M is symmetric).

(i) & @

o 2 =(0],1)" < it)
———

Vt
17
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o ~?ut is estimable parameter of MY < 1€ M ((X, jt)T).

(iv) & ()

¢ Follows directly from Theorem 2.7.

< Ja € R™ such that (OT, 1) =a' (X, jt).

& Ja e R" such that 0" =a'X & 1=4a'j,
& JdaeR” suchthat 0" =a'X & a; = 1.
& Ja € R" such that ] = — a(T_t)X(,t).

& a e M(Xy).

< ().

Theorem 14.2 Equivalence of the outlier model and the leave-one-out model.

L The residual sums of squares in models M(,t) and I\/Itm‘t are the same, i.e.,

SSe(_t) = SS4.

2. Vector b(_y) solves the normal equations of model M(_;) if and only if a vector ((bfut)T, (cf“t)—r) T
solves the normal equations of model M%“t, where

bgUt = b(ft)a
Cgut = Y;j—CL’th(_t).

Proof.

Solution to normal equations minimizes the corresponding sum of squares.

The sum of squares to be minimized w.rt. 3 and 7?“ in the outlier model M%* is

szemt (,37 ’Yfm) = HY - X8 - jt’)’fut‘f separate the tth element of the sum
= Yy =X Bl” + (Vi—a2/B—7"")’

= SS(_t)(ﬁ) + (Y} — w:/g _ ’)/fUt)2,

where SS(_;)(3) is the sum of squares to be minimized w.r.t. 3 in the leave-one-out model M(_,).

The term (Yt —x) B — %O“t)Q can for any B € R” be equal to zero if we, for given 3 € RF, take

W= Yi—a/ B
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That is
@ Blflwi;’%t SSPU(B, ) = min SS(—p) (B);
N————
S S5e,(-t)

(i) A vector b_y) € R* minimizes SS(—4(B) if and only if a vector

.
(bpy Yi—miby) €RM
\\/ H_/

out out

minimizes SS7* (3, 7244).

Notation (Leave-one-out least squares estimators of the response expectations).

If myy >0forallt =1,...,n, we will use the following notation:
i}[t} = CCth(,t), t=1,...,n,

which is the LSE of the parameter 1y = E(Y; | X; = x;) = x 3 based on the leave-one-out
model M(_y);

~

S S T
Y, = (Y[l],...,Y[n]) ,

which is an estimator of the parameter p = (,ul, R ,u,n)T = E(Y | X), where each element is
estimated using the linear model based on data with the corresponding observation being left out.

Calculation of quantities of the outlier and the leave-one-out models

Model M2 is a model with added regressor for model M. Suppose that m;; > 0 for given
t =1, ...,n. By applying Lemma 11.1, we can express the LSE of the parameter 77*' as

U

%out = (jtTth)_jtTU = (mt,t)_Ut = (mt7t)—1Ut - mtt.

Analogously, other quantities of the outlier model can be expressed using the quantities of model M.
Namely,

U, _
bt = b - — (XTX) ay,
¢ mgt ( ) !

= Y
myet
U2
SSe — S50 = —L =MSs, (Us')?
’ Myt

where m; denotes the tth column (and row as well) of the residual projection matrix M.
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Lemma 14.3 Quantities of the outlier and leave-one-out model expressed using
quantities of the original model.

Suppose that for given t € {1, ..., n}, mys > 0. The following quantities of the outlier model Mt
and the leave-one-out model M(_y are expressable using the quantities of the original model M as

follows.

~ou % U
e = Yt—thb(—t):Yt—Y[t]:mittta
ou Ut T -
b(—t) = bt t = b- mitt (X X) T,
’U2 , (14.1)
ou std
SSe’(,t) = SS&tt = SS, — m—:t = SS. — MS, (Utt ) ,
MS, (—y) _ MSZ?? on—r— (Uf"/d)2
MS, - MS. n—r—1

Proof. Equality between the quantities of the outlier and the leave-one-out model follows from
Theorem 14.2. Remaining expressions follow from previously conducted calculations.

To see the last equality in (14.1), remember that the residual degrees of freedom of both the outlier
and the leave-one-out models are equal to n — r — 1. That is, whereas in model M,

MS, — SS. ,
n—r
in the outlier and the leave-one-out model,
SSe (1) Ssout
M — 5 — €, - M out.
Se.(-1 n—r—1 n—r—1 Sci

Notes.
e Expressions in Lemma 14.3 quantify the influence of the ¢th observation on

(i) the LSE of a vector 3 of the regression coefficients (in case they are estimable);
(ii) the estimate of the residual variance.
® Lemma 14.3 also shows that it is not necessary to fit n leave-one-out (or outlier models) to

calculate their LSE-related quantities. All important quantities can be calculated directly from
the LSE-related quantities of the original model M.
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Definition 14.3 Deleted residual.

If myy > 0, then the quantity
N U,

M =Yi— Ty = -

is called the tth deleted residual of the model M.
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14.2 Outliers

By outliers® of the model M, we shall understand observations for which the response expectation
does not follow the assumed model, i.e., the tth observation (¢t € {1, ..., n}) is an outlier if

E(Y; | X: =) # 2/ B,

in which case we can write
E(Y;| X =a) = 2/ B+

As such, an outlier can be characterized as an observation with unusual response (y) value.

If myy > 0, 77" is an estimable parameter of the tth outlier model M¢“! (for which the model M

is a submodel) and decision on whether the tth observation is an outlier can be transferred into

a problem of testing
H(): "yto ut — 0

in the tth outlier model M¢“t, Note that the above null hypothesis also expresses the fact that the
submodel M of the model M¢“! holds.

If normality is assumed, this null hypothesis can be tested using a classical t-test on a value of the
estimable parameter. The corresponding t-statistic has a standard form

~out

Vt
@i (57

T, =

and under the null hypothesis follows the Student t distribution with n —r — 1 degrees of freedom
(residual degrees of freedom of the outlier model).

From Section 14.1, we have

Hence (the variance is conditional given the covariate values),

var(77% | X) = var(Ut

met

X) = %var(UﬂX) == %(ﬂmtt = —.

The equality ) holds irrespective of whether ’yf”t = 0 (and model M holds) or ’y,?”t # 0 (and
model Mf“t holds).

The estimator 77 is the LSE of a parameter of the outlier model and hence
_ MSgy
var (77 | X) = —2%,
(%) = o
and finally,
S

T, =

out
MSZY
me.¢

Two useful expressions of the statistic 7; are obtained by remembering from Section 14.1 (a)
Msg%t = |\/|567(_t) and (b) two expressions of ?f“t =Y, — Y[t] — ’y\gut - mLttt This leads
to

3

Y, -V U
oo Y T ¢

tUNS, o

3 odlehld pozorowini
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Definition 14.4 Studentized residual.
If myy > 0, then the quantity

is called the tth studentized residual® of the model M.

Notes.
e Using the last equality in (14.1), we can derive one more expression of the studentized residual

using the standardized residual
U

\ MS, mt,t‘

n—r—1 d
T = T2 Uzte.
n—r— (U")

This directly shows that it is not necessary to fit the leave-one-out or the outlier model to
calculate the studentized residual of the initial model M.

std __
U" =

Namely,

Theorem 14.4 On studentized residuals.

LetY | X ~ N, (XB, aQIn), where rank(ank) =1 < k < n. Let further n > r + 1. Let for given
te {1,...,n} m¢s > 0. Then

1 The tth studentized residual Ty follows the Student t-distribution with n —r — 1 degrees of
freedom.

2. If additionally n > r + 2 then ]E(Tt) =0.

n—r—1

3. If additionally n > r + 3 then var(Tt) = 3
n—r-—

Proof. Point (i) follows from preceeding derivations, points (ii) and (iii) follow from properties of the
Student t distribution.

Test for outliers

The studentized residual T; of the model M is the test statistic (with t,,_,_1 distribution under the
null hypothesis) of the test

Y studentizované reziduum
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Hp: " =0,

Hi: " #0
in the tth outlier model M“: Y| X ~ N, (X8 + 377", 0°L,).
The above testing problem can also be interpreted as a test of

Hgy: tth observations is not outlier of model M,

Hi: tth observations is outlier of model M,

where “outlier” means outlier with respect to model M: Y’ | X~N, (X,B, 02In):
¢ The expected value of the tth observation is different from that given by model M;

¢ The observed value of Y; is unusual under model M.

When performing the test for outliers for all observations in the dataset, we are in fact facing
a multiple testing problem and hence adjustment of the P-values resulted from comparison of the
values of the studentized residuals with the quantiles of the Student t,,_,_1 distribution are needed
to keep the rate of falsely identified outliers under the requested level of a.. For example, Bonferroni
adjustment can be used.

Notes.
e Two or more outliers next to each other can hide each other.

* A notion of outlier is always relative to considered model (also in other areas of statistics).
Observation which is outlier with respect to one model is not necessarily an outlier with respect
to some other model.

e Especially in large datasets, few outliers are not a problem provided they are not at the same
time also influential for statistical inference (see next section).

¢ In a context of a normal linear model, presence of outliers may indicate that the error distribution
is some distribution with heavier tails than the normal distribution.

e Qutlier can also suggest that a particular observation is a data-error.

¢ If some observation is indicated to be an outlier, it should always be explored:

e [s it a data-error? If yes, try to correct it, if this is impossible, no problem (under certain assumptions)
to exclude it from the data.

¢ [s the assumed model correct and it is possible to find a physical/practical explanation for occurrence
of such unusual observation?

e If an explanation is found, are we interested in capturing such artefacts by our model or not?
¢ Do the outlier(s) show a serious deviation from the model that cannot be ignored (for the purposes
of a particular modelling)?
.
e NEVER, NEVER, NEVER exclude “outliers” from the analysis in an automatic manner.

¢ Often, identification of outliers with respect to some model is of primary interest:

¢ Example: model for amount of credit card transactions over a certain period of time depending on
some factors (age, gender, income, ...).
® Model found to be correct for a “standard” population (of clients).

¢ Qutlier with respect to such model = potentially a fraudulent use of the credit card.

e If the closer analysis of “outliers” suggest that the assumed model is not satisfactory capturing
the reality we want to capture (it is not useful), some other model (maybe not linear, maybe not
normal) must be looked for.
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14.3 Leverage points

By leverage points5 of the model M, we shall understand observations with, in a certain sense,
unusual regressor (x) values. As will be shown, the fact whether the regressor values of a certain
observation are unusual is closely related to the diagonal elements h1 1, ..., Ay, of the hat matrix

H = X(XTX)_XT of the model.

Terminology (Leverage).
A diagonal element hyy (¢ = 1,...,n) of the hat matrix H is called the leverage of the tth

observation.
Interpretation of the leverage

To show that the leverage expresses how unusual the regressor values of the ¢th observations are,
let us consider a linear model with intercept, i.e., the realized model matrix is

1 k—1
X:(ln,w,...,az ),
where
x1,1 T1,k—1
2! — ’ N Zh1 —
Tn,1 Tn,k—1
Let
n n
—1 1 —k—1 __ 1 E
T = E E Til, -+ X - H Tjk—1
i=1 i=1
be the means of the non-intercept columns of the model matrix. That is, a vector
- —1 —k—1\T
z= (2, ..., 7"

provides the mean values of the non-intercept regressors included in the model matrix X and as
such is a gravity centre of the rows of the model matrix X (with excluded intercept).

Further, let X be the non-intercept part of the model matrix X with all columns being centered, i.e.,

1 k—1

r11— X T1k—1 — T

X= (a:l —-z'1,, ..., ! —fl"_lln) = : :
=1 —=k—1
Ipl1 — T v Tpk—1— T

Clearly, M(X) = ./\/l(ln, X) Hence the hat matrix H = X(XTX)fxT can also be calculated
1, X), where we can use additional property 1)X=0]_:

H= (1, %) {10 8 (1.9} @0 %)]

using the matrix (

1)1, 1'X
~—— M~ -
~ n 0, , 1,
— (1na X) _ o ST
X1, X'X X
~——
01

3 vzddlend pozorovini
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1 T
~ - o' 1
= (1m X) n B k:1 n
01 (XTX) X7
1 ~ e e~
= 1,1 + X(XTX)7XT,
That is, the tth leverage equals
1 ~r~
hiy = - + (:Bt,1 T, Typ—1 — Ek_l) (XTX) (wt,l —zt T _Ek—1)7.

The second term is then a square of the generalized distance between the non-intercept regressors
(xtyl, ce xt7k_1)T of the tth observation and the vector of mean regressors . Hence the
observations with a high value of the leverage h;; are observations with the regressor values being
far from the mean regressor values and in this sense have unusual regressor (z) values.

High value of a leverage

To evaluate which values of the leverage are high enough to call a particular observation as
a leverage point, let us remind an expression of the hat matrix using the orthonormal basis Q of
the regression space M(X), which is a vector space of dimension r = rankX. We know that
H = QQ" and hence

D hig=tr(H) =tr(QQ") =tr(Q'Q) = tr(I,) =1
=1

That is,
h =

S|

S i = (14.2)
=1 n

Several rules of thumbs can be found in the literature and software implementations concerning
a lower bound for the leverage to call a particular observation as a leverage point. Owing to (14.2),
a reasonable bound is a value higher than *. For example, the R function influence.measures

marks the tth observation as a leverage point if

3r
ht,t > —.
n

Influence of leverage points

The fact that the leverage points may constitute a problem for the least squares based statistical
inference in a linear model comes from remembering an expression for the variance (conditional
given the covariate values) of the residuals of a linear model:

Var(Ut‘X):O'tht:UQ(l—ht’t), tzl,...,n.
Remind that U; = Y; — )?t and hence also
var(Yt—fft‘X):ﬁ(l—ht,t), t=1,...,n.

That is, var(Ut ‘ X) = var(Y} — }A/} ‘ X) is low for observations with a high leverage. In other words,
the fitted values of high leverage observations are forced to be closer to the observed response
values than those of low leverage observations. In this way, the high leverage observations have
a higher impact on the fitted regression function than the low leverage observations.
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14.4 Influential diagnostics

Both outliers and leverage points do not necessarily constitute a problem. This occurs if they too
much influence statistical inference of primary interest. Also other observations (neither outliers nor
leverage points) may harmfully influence the statistical inference. In this section, several methods
of quantifying the influence of a particular, tth (t = 1,...,n) observation on statistical inference
will be introduced. In all cases, we will compare a quantity of primary interest based on the model
at hand, i.e.,

M: Y |X ~ (X8, 0°L,),  rank(X,xx) =1,
and the quantity based on the leave-one-out model
Min: Yien [ Xn ~ (KB, o7Tor).
It will overally be assumed, that m;; > 0 which implies (see Theorem 14.1) rank(X(_t)) =

rank(X) =r.

14.4.1 DFBETAS

Let r = k, i.e., both models M and I\/I(_t) are full-rank models. The LSE'’s of the vector of regression
coefficients based on the two models are

M: B = (o, Br) - X'X)'xTY,

= ~ ~ T
Mp: By = Beno - Benr) = Xen X)) XY (-
Using (14.1):
BBy = —(X'X)"a, (14.3)

which quantifies influence of the ¢th observation on the LSE of the regression coefficients. In the
. T T

following, let vy = (ono, e v()’k_l) S, Vp_q = (Uk—l,(]v e Uk—l,k—l) be the rows of

the matrix (XTX)_I, ie.,

Vg 0,0 e V0,k—1
-1 .
X'x)" =] : |=
’UT (Y (%
k—1 k—10 ~--- k—1,k—1

Expression (14.3) written elementwise lead to a quantities called DFBETA:

- U, .
DFBETA;; = f; — By, = Hv;rwt, t=1,...,n, j=0,...,k—1.

)

Note that DFBETA; ; has a scale of the jth regressor. To get a dimensionless quantity, we can divide
it by the standard error of either 3; or 5_) ;. We have

~

SE(B) = VMScvg.  SE(Bag) = MSnvings

where v(_;) ; ; is the jth diagonal element of matrix (X(,t)TX(,t))fl. In practice, a combined
quantity, namely |/MS, _;v;; is used leading to so called DFBETAS (the last “S” stands for
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“scaled”):

~

DFBETAS;; := L e COV I : v/ xy,

VMSe (1) vjj Mt \/MSe, (1) V5
t=1,...,n,5=0,... . k—1.
The reason for using \/MS, _;) v;; as a scale factor is that MS, (_; is a safer estimator of the

residual variance o2 not being based on the observation whose influence is examined but at the
same time, it can still be calculated from quantities of the full model M (see Eq. 14.1). On the other
hand, a value of v(_y) ;; (that fits with the leave-one-out residual mean square MS, (_;)) cannot,
in general, be calculated from quantities of the full model M and hence (a close) value of v; ; is
used. Consequently, all values of DFBETAS can be calculated from quantities of the full model M
and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the ¢th observation as being influential with respect
to the LSE of the jth regression coefficient if

|DFBETAS, ;| > 1.

14.4.2 DFFITS

We are assuming m;; > 0 and hence by Theorem 14.1, parameter ji; := E(Yt | X;: = mt) =x, B

is estimable in both models M and M(,t). Let as usual, b = (XTX)_XTY be any solution
to normal equations in model M (which is now not necessarily of a full-rank) and let b_;) =

(X(_t)TX(_t))7X(_t)TY(_t) be any solution to normal equations in the leave-one-out model
M_¢)- The LSE’s of 1 in the two models are
M: =x b
M- ?{ﬂ =/ b,
Using (14.1):
he

~ U. _ _
Yy = {b—m—:t(XTX) wt} = Yt_mitt (XTX) Ty = Y%_Utmitt

Difference between Y; and Y[t] is called DFFIT and quantifies influence of the tth observation on
the LSE of its own expectation:
hi

)
myet

DFFIT, = Y; Yy = t=1,....n.

Analogously to DFBETAS, also DFFIT is scaled by a quantity that resembles the standard error of
either Y; or Y[t] (remember, S.E. (Yt) = /MS¢ hy ) leading to a quantity called DFFITS:

b MSe (—) het

ht,t Ut ht,t

_ ht,t Ut _
mt’t A /MS&(_t) ht,t mt’t A /MS&(_t) mtvt mtvt

Tt, tzl,...,n,
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where T} is the tth studentized residual of the model M. Again, all values of DFFITS can be
calculated from quantities of the full model M and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the fth observation as excessively influencing the

LSE of its expectation if
|DFFITS; | > 3 \/T :
n—r

14.4.3 Cook distance

In this Section, we concentrate on evaluation of the influence of the tth observation on the LSE
of a vector parameter p := IE(Y ‘ X) = X/3. As in Section 14.4.2, let b = (XTX)fxTY be any
solution to normal equations in model M and let b_;) = (X(_t)TX(_t))_X(_t)TY(_t) be any
solution to normal equations in the leave-one-out model M(_;). The LSE’s of p in the two models
are

M: Y =Xb =HY,

M(,t) . i}(,t.) = Xb(,t)

Note. Remind that }A’(,t.), lA’[.] and lA’(,t) are three different quantities. Namely,

~

2] b Yy 21 (1)
Y i) =Xb_y) = : ) Yg=| : | = :
2 b Y @ b(n)
Finally, ?(_t) = X(~1)b(_y) is a subvector of length n — 1 of a vector f"(_t.) of length n.

Possible quantification of influence of the ¢th observation on the LSE of a vector parameter p is
obtained by considering a quantity

S S 2
[Y = Y ()l
Let us remind from Lemma 14.3:
U, _
b — b(—t) = mittt(XTX) Lt.
Hence, U
S o B B U T —
Y - Y4 = X(b-b_y) = mt’tx(x X) .
Then
[V - Ywl = ‘UtX(XTX)wt 2
Myt
= U—EmT(XTX)_XTX(XTX)_a:
= 5 Ty t
Myt
2
- U—;ht,t. (14.4)
my

The equality (14.4) follows from noting that
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() :1:;/r (XTX) _XTX(XTX) ~ x; is the tth diagonal element of matrix X(XTX) _XTX(XTX) X
(b) X(XTX)_XTX(XTX)_XT = X(XTX)_XT = H by the five matrices rule (Theorem A.2).
The so called Cook distance of the ¢th observation is (14.4) modified to get a unit-free quantity.

Namely, the Cook distance is defined as

1~ .
D= eI = Yl

Expression (14.4) shows that it is again not necessary to fit the leave-one-out model to calculate the
Cook distance. Moreover, we can express it as follows

1 ht,t Ut2 1 htt

D, = =
r mg s MSemy T My

Notes.

* We are assuming m;; > 0. Hence hyy = 1 —my; € (0, 1) and the term hy¢/my; increases
with the leverage h:; (having a limit of co with h,; — 1). The “hy¢/my,” part of the Cook
distance thus quantifies how much is the ¢th observation the leverage point.

e The “Uf'? part of the Cook distance increases with the distance between the observed and
fitted value which is high for outliers.

* The Cook distance is thus a combined measure being high for observations which are either
leverage points or outliers or both.
Cook distance in a full-rank model
If » = k£ and both M and M(,t) are of full-rank, we have
b = B = X'X)'XTy,
2 T -1 T
by = By = Ko Xn) X Y
Then, directly from definition,
> S 2 S > 2 -~ AT T (5 -~
1Y = Y™ = X8 = XBy” = By — B) X'X(Byy — B)-
The Cook distance is then

Do By — B) XTX(B_yy — B)
L kMS, ’

which is a distance between B and B(_t) in a certain metric.

Remember now that under normality, the confidence region for parameter 3 with a coverage of
1 — «, derived while assuming model M is

Cla)={B8: (B — B)'X'X(8 — B) < kMS, Frn_r(l—a)}.

That is R
B(—y € C(a) if and only if Dy < Fiyn—k(1 —a). (14.5)
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This motivates the following rule-of-thumb.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the fth observation as excessively influencing the
LSE of the full response expectation g if

Dy > Frnr(0.50).

14.4.4 COVRATIO

In this Section, we will again assume full-rank models (r = k) and explore influence of the tth
observation on precision of the LSE of the vector of regression coefficients. The LSE’s of the vector
of regression coefficients based on the two models are

M: B = (X'x)"'xTy,

Mo By = (Ko %)

The estimated covariance matrices of 8 and B_), respectively, are
ar(B|x) = MS. (X'x)7,

Var (B | X) = MSc -y (X[ )X(p)

-1

Influence of the #th observation on the precision of the LSE of the vector of regression coefficients
is quantified by so called COVRATIO being defined as

det{var (B | %)}
COVRATIO; = — , t=1,...,n.
det{var(B| %) }

After some calculation (see below), it can be shown that

1 (n—k— (U9 *
COVRATIO; = . t=1,...,n
met n—k—1

That is, it is again not necessary to fit n leave-one-out models to calculate the COVARTIO values
for all observations in the dataset.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the ¢th observation as excessively influencing preci-
sion of the estimation of the regression coefficients if

|1 — COVRATIO;| > 3 F
n—k
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Calculation towards COVRATIO

First, remind a matrix identity (e.g., Andél, 2007, Theorem A.4): If A and ID are square invertible
matrices then

= |A| - D - CAT'B| = |D| - |A - BD'C|.

Use twice the above identity:

T
X ) o0 = KR

1-— ht,t = Myt

= 1] - XTX =z | = XXy
Sothat, g |[XTX] = [X[ X (.

Then,

det{v’a\r(,@(,t) ‘X)} - ‘MSE,(—t) (X(T,t)X(—t))_l‘
det{@(ﬁ\x)} - ‘MSe (XTX)—l’

~(MS, k‘ ‘X(Tft)x(—t)‘_l ~(MS k. 1
B MS. ‘XTX‘_I N MS. '

Expression (14.1):
MS. (s n—k— (Ust)?
MS, n—-k—1

det{var(B_y|%)} 4 (n—k— (Uftd)2>’“‘

Hence, =
n—k—1

det{var(B|x)} "

14.4.5 Final remarks

e All presented influence measures should be used sensibly.

* Depending on what is the purpose of the modelling, different types of influence are differently
harmful.

* There is certainly no need to panic if some observations are marked as “influential”!



Appendix

Matrices

A.1 Pseudoinverse of a matrix

Definition A.1 Pseudoinverse of a matrix.

The pseudoinverse of a real matrix A, is such a matrix A~ of dimension k x n that satisfies

AATA =A.

Notes.
* The pseudoinverse always exists. Nevertheless, it is not necessarily unique.

e If A is invertible then A~ = A~! is the only pseudoinverse.

Definition A.2 Moore-Penrose pseudoinverse of a matrix.

The Moore-Penrose pseudoinverse of a real matrix A,y is such a matrix A™ of dimension k x n
that satisfies the following conditions:

() AATA = A;

(i) ATAAT = AT;
i) (AAT)T = AAT;
(i) (ATA)' = ATA,

Notes.
¢ The Moore-Penrose pseudoinverse always exists and it is unique.

* The Moore-Penrose pseudoinverse can be calculated from the singular value decomposition (SVD)
of the matrix A.

306
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Theorem A.1 Pseudoinverse of a matrix and a solution of a linear system.

Let Ay« be a real matrix and let ¢, x1 be a real vector. Let there exist a solution of a linear system
Ax = ¢, i.e, the linear system Ax = c is consistent. Let A~ be the pseudoinverse of A.

A vector 1 solves the linear system Ax = c if and only if

z=A"c.

Proof. See Andél (2007, Appendix A.4).

Theorem A.2 Five matrices rule.

For a real matrix A, «y, it holds
AATA)ATA = A

That is, a matrix (ATA)_AT is a pseudoinverse of a matrix A.

Proof. See Andél (2007, Theorem A.19).
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A.2 Kronecker product

Definition A.3 Kronecker product.

Let Ayyxn and C,xq be real matrices. Their Kronecker product A ® C is a matrix Dy,.pxn.q Such
that
a171C e CLLS(C

D=A®C= : : : = (aivjc)izl, mj=1,..n"
ar,l(C ce ar75C

Note. For a € R™, b € RP, we can write

ab' =a®b'.

Theorem A.3 Properties of a Kronecker product.
It holds for the Kronecker product:

(HO0RA=0A®0=0.

(i) (A1 +A2)®C=(A1®C) + (A2 ®C).
(i) A® (C1 +Cy) = (A®Cy) + (A®Cy).
(iv) aA @ cC=ac(A®C).

® AAy ® CiCy = (A1 ®Cy) (A ® Cy).
i) (A ® (C)_l =A"1®C, if the inversions exist.

ii) (A ® (C)_ = A~ ® C—, for arbitrary pseudoinversions.
wii) (A®C) =AT@CT.

(ix) (A, C) ® D= (A®D, C®D).

(x) Upon a suitable reordering of the columns, matrices (A RC, A® D) and A ® (C, ]D)) are
the same.

(xi) rank(A@ C) = rank(A) rank((C).

Proof. See Rao (1973, Section 1b.8).
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Definition A.4 Elementwise product of two vectors.

Let a = (al, . ,ap)T € RP, c = (bl, e ,bp)T € RP. Their elementwise product' is a vector
(a1 Cly -y Gy cp)T that will be denoted as a : c. That is,
al C1
a:c=
ap Cp

Definition A.5 Columnwise product of two matrices.
Let
Apyp = (al, e ap) and Cpxq = (cl, e cq)

be real matrices. Their columnwise product® A : C is a matrix Dy p.q such that

]D):A:(C:(alzcl,...,ap:cl,...,alch,...,ap:cq).
Notes.
o If we write
al cf
A= ) C= : )
a, c,

the columnwise product of two matrices can also be written as a matrix rows of which are
obtained as Kronecker products of the rows of the two matrices:

clT b2 alT
A:C= : . (A

e It perhaps looks more logical to define the columnwise product of two matrices as
alT & clT
A:C= : :(alzcl,...7alch,...,af”:c1 ...,ap:c"")7
a, @c,

which only differs by ordering of the columns of the resulting matrix. Our definition (A.l) is
motivated by the way in which an operator : acts in the R software.

v soucin po slozkdch * soucin po sloupcich
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A.3 Additional theorems on matrices

Theorem A.4 Inverse of a matrix divided into blocks.

Let
A B
M =
BT D

be a positive definite matrix divided in blocks A, B, .
Then the following holds:

(i) Matrix Q = A —BD BT is positive definite.
(i) MatrixP =D —BTA 1B is positive definite.

(iii) The inverse to M is

. Qfl _ Qflﬁﬂ)fl
M~ =
—-DBTQ! D!+ D 'B'TQ'BD!
Al + ATIBPIBTA! — A-IBP!
N _pIlBTA! p-1 '

Proof. See Andél (2007, Theorem A.10 in Appendix A.2).




Appendix

Distributions

B.1 Non-central univariate distributions

Definition B.1 Non-central Student t-distribution.

Let U ~ N(0, 1), let V ~ x2 for some v > 0 and let U and V be independent. Let A € R. Then

we say that a random variable

r-UtA

<<

follows a non-central Student t-distribution! with v degrees of freedom® and a non-centrality param-
eter > \. We shall write

T ~t,(N).

Notes.
¢ Non-central t-distribution is different from simply a shifted (central) t-distribution.

¢ Directly seen from definition: t,(0) = t,.

o Moments of a non-central Student t-distribution:

vt
E(T) = e re ot

does not exist, if v < 1.

v(1+X) VV{F(W}? 1> 2
var(T') = v—2 2 7 7

does not exist, if v <2.

' necentrdlni Studentovo t-rozdéleni * stupné volnosti * parametr necentrality
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Definition B.2 Non-central 2 distribution.

Let Uy, ..., Uy beindependent random variables. Let further U; ~ N (u;, 1),i=1,...,k, for some
iy -5 ik € R That is U = (Ul,...,Uk)T ~ ./\/'k(u, Ik), where p = (,ul,...,,uk)T. Then we
say that a random variable

k
x=3 v =|ul
i=1

vllows a non-central chi-squared distribution* with k degrees of freedom and a non-centrality pa-
q g Y p

rameter N
A= =pl
i=1

We shall write
X ~xi(N).

Notes.
e It can easily be proved that the distribution of the random variable X from Definition B.2 indeed
depends only on k£ and A = Zle 12 and not on the particular values of s, ..., fi.

* As an exercise for the use of a convolution theorem, we can derive a density of the x2())
distribution which is

The non-central x? distribution with general degrees of freedom v € (0, 00) is defined as
a distribution with the density given by the above expression with % replaced by v.

x2(0) = X2

Moments of a non-central x? distribution:

E(X)=v+ A,

var(X) =2 (v + 2\).

Y necentrdlni chi-kvadrat rozdéleni
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Definition B.3 Non-central F-distribution.

Let X ~ X2 (X\), wherevy, X > 0. LetY ~ X2 , where v, > 0. Let further X andY be independent.
Then we say that a random variable

X

_
9=y
1}

follows a non-central F-distribution® with vy and vy degrees of freedom and a noncentrality parameter
A. We shall write

Q ~ FV1,V2 ()‘)

Notes.
* Directly seen from definition: F,, 1, (0) = Fy, 1,.

* Moments of a non-central F-distribution:
vy (V1 + A)
BQ) ={ n2=2)

does not exist, if 15 < 2.

if vy > 2,

var(Q) = (v2 —2)% (2 —4)

does not exist, if vy < 4.

141

) B 2
) (1 +A)° + (1 +2)) (v — 2) <l/2> , if vy > 4,

5 necentrdlni F-rozdéleni
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B.2 Multivariate distributions

Definition B.4 Multivariate Student t-distribution.

Let U ~ N,(0,, X), where X, is a positive semidefinite matrix. Let further V ~ x? for some
v > 0 and let U and V be independent. Then we say that a random vector

T=U,/-
-

follows a p-dimensional multivariate Student t-distribution® with v degrees of freedom and a scale
matrix" 3. We shall write

T ~ mvt, ,(X%).

Notes.
e Directly seen from definition: mvt; , (1) = t,.

o If 3 is a regular (positive definite) matrix, then the density (with respect to the p-dimensional
Lebesgue measure) of the mvt,, ,(3) distribution is

T (%2 1 Tl "
ft) = (2p - [ 2{1+ } . teRe
o) vint z
* Expectation and a covariance matrix of T ~ mvt), ,(X) are
0,, ifv>1,
E(T) =
does not exist, if v < 1.
v 5 3, if v > 2,
var(T)=4{ ¥~

does not exist, if v < 2.

Lemma B.1 Marginals of the multivariate Student t-distribution.

Let T = (Ty,... ,Tp)T ~ mvt,,(X), where the scale matrix X has positive diagonal elements
o? >0, ...,012, > 0. Then
T

— ~t, ]:1’7])
gj

Proof.
[v
e From definition of the multivariate t-distribution, T" can be written as T = U 7 where

T

U= (U,...,Up) ~Ny(0,, =) and V ~ x2 are independent.

8 vicerozmérné Studentovo t-rozdéleni 7 méfitkovd matice
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e Thenforall j =1,...,p:

L_U v _
O'j_O'j V_

where Z; ~ N(0, 1) is independent of V ~ x2.

S
NI s
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B.3 Some distributional properties

Lemma B.2 Property of a normal distribution.

Let Z ~ N,(0,0%1,). Let T : R® — R be a measurable function satisfying T(cz) =
T(z) for all c > 0 and z € R". The random variables T(Z) and || Z|| are then independent.

Proof.

e Consider spherical coordinates:

Z1 = R cos(¢1),
Zy = R sin(¢1) cos(¢2),
Z5 = R sin(¢1) sin(¢2) cos(¢s),

Zn—1 = R sin(¢1) - - sin(¢n—2) cos(¢dn_1),
Zy = R sin(¢1) - - sin(¢p—2) sin(¢p_1).

e Distance from origin: R = || Z|).
e Direction: ¢ = (<l51, ce gbn,l)—r.

e Exercise for the 3rd year bachelor students:
If Z ~ N, (0, 0%1,,) then distance R from the origin and direction ¢ are independent.

e R = ||Z|| (distance from origin itself), 7(Z) depends on the direction only (since T'(Z) =
T(cZ) for all ¢ > 0) and hence || Z|| and T'(Z) are independent.
a
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Asymptotic Theorems

Theorem C.1 Strong law of large numbers (SLLN) for i.n.n.i.d. random variables.
Let 71, Zs, ... be a sequence of independent not necessarily identically distributed (i.n.n.i.d.) ran-
dom variables. Let B(Z;) = p;, var(Z;) = 0%, i=1,2, .... Let

i’
3% <o
(42 ’
=1
Then
1 n
—Z(Zi—ui) %00 asn — oo.
n
i=1

Proof.  See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study
programme).
d

Theorem C.2 Strong law of large numbers (SLLN) for i.i.d. random variables.
Let Zy, Zs, ... be a sequence of independent identically distributed (i.i.d.) random variables.

Then
1 {~,, as
— ZZZ- — U asn — oo
n =1
for some i € R if and only if
E‘Zl‘ < 00,
in which case yn = E(Zl).
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Proof.  See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study

programme).
d
Theorem C.3 Central limit theorem (CLT), Lyapunov.
Let Zy, Zs, ... be a sequence of i.n.n.i.d. random variables with
E(Z,) = i, oo>var(Zi) :al-2>0, 1=1,2,...
Let for some 6 > 0
im1 | Zi — i
Xt Bl 'ZJ& — 0 asn— oo.
(Z?:l o7 ) ’
Then n (g
2imi(Zi = i) 2, N(0,1) asn — co.
>y 07
Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme). 0

Theorem C.4 Central limit theorem (CLT), i.i.d..

Let Zy, Zs, ... be a sequence of i.i.d. random variables with
E(Zz‘):/% OO>var(Z¢):(72>0, 1=1,2,....

Let 7n = %Z?:l Z;.
Then

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Be. study programme).
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Theorem C.5 Central limit theorem (CLT), i.i.d. multivariate.

Let Z1, Zo, ... be a sequence of i.i.d. p-dimensional random vectors with
E(Z;) =p, var(Z;) =%, i=1,2 ...

where X is a real positive semidefinite matrix. Let Z,, = % Yoy Z.

Then - -
Vn(Z, —p) — Np(0p, ).

If 32 is positive definite then also

1 n
n Z B2 (Z2i —n) — Np(Op, Ip).
i=1

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

Q

Theorem C.6 Cramér-Wold.

Let Z1, Z,, ... be a sequence of p-dimensional random vectors. Let Z be a p-dimensional random
vector.

D
Z, — 7Z asn — 0o

if and only if for all 1 € RP
lTZn A 17 asmn — oo.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Be. study programme).

3
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Theorem C.7 Cramér-Slutsky.

Let Z+1, Z,, ... be a sequence of random vectors such that
D
Z, —7Z as n — oo,
where Z be a random vector. Let S1, Sa, ... be a sequence of random variables such that
P
Sp — S as n — oo,

where S € R is a real constant.

Then

(i) SnanSZ as n — oo.

1 1
Gi) — Z, 25

S, EZ asn — oo, if S # 0.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Be. study programme).

See also Shao (2003, Theorem 111 in Section 1.5).
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