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1 Introduction and motivation

1.1 Operations Research/Management Science and Mathe-
matical Programming

Goal: improve/stabilize/set of a system. You can reach the goal in the following
steps:

e Problem understanding

e Problem description — probabilistic, statistical and econometric models
e Optimization — mathematical programming (formulation and solution)
e Verification — backtesting, stresstesting

e Implementation (Decision Support System)

e Decisions

1.2 Marketing — Optimization of advertising campaigns

e Goal — maximization of the effectiveness of a advertising campaign given its
costs or vice versa

e Data — “peoplemeters”, public opinion poll, historical advertising campaigns
e Target group — (potential) customers (age, region, education level ...)
e Effectiveness criteria

— GRP (TRP) — rating(s)

— Effective frequency — relative number of persons in the target group hit
k-times by the campaign

e Nonlinear (nonconvex) or integer programming

1.3 Logistic — Vehicle routing problems

e Goal — maximize filling rate of the ships (operation planning), fleet composi-
tion, i.e. capacity and number of ships (strategic planning)

¢ Rich Vehicle Routing Problem

— time windows

— heterogeneous fleet

— several depots and inter-depot trips

— several trips during the planning horizon

— non-Euclidean distances (fjords)

e Integer programming :-(, constructive heuristics and tabu search
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Literature: M.B., K. Haugen, J. Novotny, A. Olstad (2017).
Related problems with increasing complexity:

e Traveling Salesman Problem

Uncapacitated Vehicle Routing Problem (VRP)

Capacitated VRP
VRP with Time Windows

o ..
Approach to problem solution:

1. Mathematical formulation

2. Solving using GAMS based on historical data
3. Heuristic(s) implementation

4. Implementation to a Decision Support System

1.4 Scheduling — Reparations of oil platforms

e Goal — send the right workers to the oil platforms taking into account uncer-
tainty (bad weather — helicopter(s) cannot fly — jobs are delayed)

e Scheduling — jobs = reparations, machines = workers (highly educated, skilled
and costly)



Figure 2: Fixed interval schedule (assignment of 6 jobs to 2 machines) and corre-
sponding network flow
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e Integer and stochastic programming

Literature: M. Branda, J. Novotny, A. Olstad (2016), M. Branda, S. Hajek (2017)

1.5 Insurance — Pricing in nonlife insurance

e Goal — optimization of prices in MTPL/CASCO insurance taking into account
riskiness of contracts and competitiveness of the prices on the market

e Risk - compound distribution of random losses over 1y (Data-mining & GLM)
e Nonlinear stochastic optimization (probabilistic or expectation constraints)

e See Tablell

Literature and detailed information: M.B. (2012, 2014)

1.6 Power industry — Bidding, power plant operations

Energy markets
e Goal — profit maximization and risk minimization
e Day-ahead bidding from wind (power) farm
e Nonlinear stochastic programming

Power plant operations



Table 1: Multiplicative tariff of rates: final price can be obtained by multiplying the
coefficients

| GLM | SP model (ind.) || SP model (col.)

TG up to 1000 ccm || 3 805 9 318 5 305

TG 1000-1349 cem || 4 104 9979 5 563

TG 1350-1849 cem || 4 918 11 704 6 296

TG 1850-2499 ccm || 5 748 13 380 7125

TG over 2500 ccm 7792 17 453 9 169
Region Capital city 1.61 1.41 1.41
Region Large towns 1.16 1.18 1.19
Region Small towns 1.00 1.00 1.00
Region Others 1.00 1.00 1.00
Age 18-30y 1.28 1.26 1.27

Age 31-65y 1.06 1.11 1.11

Age over 66y 1.00 1.00 1.00

DL less that 5y NO 1.00 1.00 1.00
DL more that 5y YES 1.19 1.13 1.12

e (GGoal — profit maximization and risk minimization
e Coal power plants — demand seasonality, ...

e Stochastic linear programming (multistage /multiperiod)

1.7 Environment — Inverse modelling in atmosphere

e Goal — identification of the source and the amount released into the atmosphere
e Standard approach — dynamic Bayesian models

e New approach — Sparse optimization — Nonlinear /quadratic integer program-
ming (weighted least squares with nonnegativity and sparsity constraints)

e Applications: nuclear power plants accidents, volcano accidents, nuclear tests,
emission of pollutants ...

e Project homepage: http://stradi.utia.cas.cz/

Literature and detailed information: L. Adam, M.B. (2016).
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2 Introduction to optimization

Repeat

e Cones

Farkas theorem

Convexity of sets and functions

Symmetric Local Optimality Conditions (SLPO)

3 Convex sets and functions

Repeat the rules for estimating convexity of functions and sets: intersection of convex

sets, function composition, level sets of convex functions, nonnegative combinations

of convex function, first end second order derivatives, Hessian matrix, epigraph ...
For a function f : R™ — R*, we define its epigraph

epi(f) = {(z,v) e R f(z) <v}

Example 3.1. Prove the equivalence between the possible definitions of conver func-
tions f : R™ — R*:

1. epi(f) is a convex set
2. Dom(f) is a convex set and for all x,y € Dom(f) and A € (0,1) we have
fOz+ (1= Ny) <Af(@) + (1 =N f(y).
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Example 3.2. Decide if the following sets are convex:

M, = {(z,y) eR%: ye " —x>1},
My = {(z,y) eR*: z>2+y°},
M; = {(z,y) eR*: 2”7 +ylogy* <139, y > 2},
My = {(x,y) €eR®: logz+y*>1, 2>1, y >0},
M; = {(v,y) €R*: (2" +¢¥)log(a’ +¢¥) <49, y > 0},
Mg = {(z,y) eR*: zlogz +ay >0, z>1},
M; = {(z,y) €R*: 1 -2y <0, 2 >0},
1
My = {(%yaz)GR31 §($2+y2+z2)+yz§1,sz,yEO},
My = {(z,y,2) €R*: 3z —2y+2=1}.

Example 3.3. Establish conditions under which the following sets are convex:

My = {xER”: agaTxgﬁ}, for some a € R", a, 5 € R,
My = {zeR": ||[z—2°|| < |lz—yll, Vy € S}, for some S C R,
M, = {a:ER”: xTy§ 1, VyES}, for some S C R".

Example 3.4. Verify if the following functions are convex:

~N O Ot = W N =

—~ —~ N N /N /N /N /N

~— ~— ~— — N

—_
~—

Example 3.5. Let f(z,y) be a convex function and C' is a conver set.

1S convez.

filz,y) = x2y2+§, x>0,y >0,
folz,y) = wy,
f3(x,y) = log(e® +¢€Y) —logx, x>0,
fa(z,y) = exp{z®+e ¥}, >0, y>0,
fs(x,y) = —log(z+vy), z>0, y>0,
fo(z,y) = Ver+ev,
fo(z,y) = 2°+29*+ 32,
fol,y) = —loglco+dy), c,d€R,
2
fole.y) = oy >0,
fio(z,y) xylogzy, x>0,y > 0,
fu(z,y) |z +yl,
fra() sup {7y — f(y)} = f*(z), [ R" =R,
y€Dom(f)
fia(z) | Az — b||§7

g(z) =

inf f(z,y).

yeC

Then

(26)



Example 3.6. (Vector composition) Let g; : R - R, i=1,....k and h : R* - R
be conver functions. Moreover let h be nondecreasing in each argument. Then

f(@) = h(gi(x),-.., gu(2)). (27)

1S convez.
Apply to

k
s ()

where g; are convex.
Hint: compute the Hessian matriz H(x) and use the Cauchy-Schwarz inequality
(aTa)(b'b) > (a™b)? to verify that vIH(z)v > 0 for all v € R*.

Example 3.7. Verify that the geometric mean is concave:

n 1/n
flz) = (H x,) , ¢ € (0,00)". (28)

Hint: compute the Hessian matriz and use the Cauchy-Schwarz inequality (a”a)(b7b) >
(aTb)?.

4 Separation of sets

Remind: theorem about projection of a point to a convex set (obtuse angle), separa-
tion of a point and a convex set, proper and strict separability.

Using the theorem about the separation of a point and a convex set, prove the
following lemma about the existence of a supporting hyperplane.

Lemma 4.1. Let ) # K C R™ be a convex set and v € OK. Then, there is v € R",
~v # 0 such that

inf{{v,y): y € K} > (y,7).

Hint: separate a sequence x,, ¢ K which converge to the point x on the boundary.

Example 4.2. Find a separating or supporting hyperplane for the following sets and
poInts:

1= (-1,-1) Ki={(z,y); v >0,y >0},

xe = (3,1) Ky ={(z,y); 2*+y* < 10},
5123:(3,0,0) ng{(az,y,z); x2+y2+22§9},
ry=1(0,2,0) Ky={(z,y,2); x+y+2z<1}.

Hint: Use pictures.

Example 4.3. Provide a description of the circle in R? and ball in R? as a intersec-
tion of supporting halfspaces.

Prove the following theorem which gives a sufficient condition for proper separa-
bility of two convex sets.



Theorem 4.4. Let A, B C R" be non-empty convex sets. If rint(A) Nrint(B) = 0,
then A and B can be properly separated.

Hint: Separate set K = A — B and point 0. First, show that 0 ¢ rintK.

Example 4.5. Verify whether the following pairs of (convex ?) sets are properly or
strictly separable or not. If they are, suggest a possible value of ~.

A={(z,y); y > |2]}, B ={(r,y); 2y +x <0},

(z,y); xzy > 1,2 > 0}, B = {(z,y; * <0,y <0},

A:{E‘/L‘7yaz); x+y+2§1}a B:{Exvyaz); (%—2)2+(y—2)2+(2—22
y

Example 4.6. Discuss the proof of the Farkas theorem.

Hint: Use an alternative formulation of the FT.

5 Subdifferentiability and subgradient

From Introduction to optimization (or similar course), you should remember the
following property which holds for any differentiable convex function f : X — R:

Yo,y e X fly) = fo) 2 (Vf(x),y —x).

This property can be generalized by the notation of subdifferentiability. Any subgra-
dient a € R™ of function f at x € X fulfills

fy) — f(@) > (a,y —2) Yy € X.

Set of all subgradients at z is called subdifferential of f at 2 and denoted by Jf(z).
Optimality condition
0€df(x")

is necessary and sufficient for x* € X being a global minimum.

Example 5.1. Consider (do not necessiraly prove, rather think about) the following
properties of subgradient:

1. a is subgradient of f at x if and only if (a, —1) supports epi(f) at (z, f(z)).
2. if f is convex, then df (x) # 0 for all x € rint dom .

3. if f is convex and differentiable, then df(z) = {V f(x)}.

4. if 0f(x) = {g} (is singleton), then g = V f(x).
5

. 0f(x) is a closed conver set.



Example 5.2. Derive the subdifferential for the following functions:

filz) =
folz) =

f3(%?/) =

]
x? if x < -1,
—x if x € [-1,0],
x? if x>0,

|z + y|

Hint: Use pictures and the definition.

Lemma 5.3. Let fi,..., fr be convex functions and let

flx) = fil@) + -+ ful@).

Then

Hint: Use the definition.

-+ 0fu(x) € Of ().

6 Generalizations of convex functions

6.1 Quasiconvex functions

Definition 6.1. We say that a function f : R™ — R is quasiconvex, if all its level

sets are convex.

Example 6.2. Find several examples of functions which are quasiconvex, but they
are not convex. Try to find an example of function which is not continous on the

interior of its domain (thus it cannot be convex).

Example 6.3. Show that the following property is equivalent to the definition of

quasiconverity

fOx+ (1= Ny) <max{f(z), f(y)}

for all x,y and X € [0, 1].

Example 6.4. Verify that the following functions are quasiconvexr on given sets:

F(a,y) = 2y for (a,y) € Ry x R_,

alz+0b
clr+d

fx) =

Hint: Use the definition.

Lemma 6.5. Continuous function f : R — R is quasiconvez if and only if one of the

following conditions holds

e f is nondecreasing,

for "z +d >0,
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e f is nonincreasing,

e there is a ¢ € R such that f is nonincreasing on (—oo, ¢| and nondecreasing on
[c, 00).

Hint: Realize that the level sets are intervals.

Example 6.6. Let f be differentiable. Show that f is quasiconvez if and only if it
holds

fly) < flz) = V(@) (y—=z) <0
Example 6.7. Let f be a differentiable quasiconvez function. Show that the condition
V@) =0
implies that T is a local minimum of f.

Hint: Consider the previous lemma.

Example 6.8. Let f1, fo be quasiconvex functions, g be a nondecreasing function and
t >0 be a scalar. Prove that the following operations preserve quasiconvezity

o tfi,
° max{fl, fg},

® go fi.

Example 6.9. Let fi, fo be quasiconvex functions. Find counterexamples that the
following operations DO NOT preserve quasiconvezity:

o f1+ fo,
* fifa.

Example 6.10. Verify that the following functions are quasiconvexr on given sets:

i
fg(l',y) = ; on R x R++7

fulz,y) = V] +y| on R

Hint: 1-3. Use the definition. 4. Use the above rules.

11



Example 6.11. Let S be a nonempty conver subset of R", g : S — R, be convex
and h : S — (0,00) be concave. Show that the function defined by

is quasiconver on S.

Hint: Use the definition based on the level sets.

Definition 6.12. We say that a function f : R™ — R s strictly quasiconvez if

fOw + (1= A)y) <max{f(z), f(y)}

for all z,y with f(x) # f(y) and X € (0,1).

Lemma 6.13. Let [ be strictly quasiconver and S be a convex set. Then any local
minimum T of mingegs f(x) is also a global minimum.

6.2 Pseudoconvex functions

Definition 6.14. Consider S C R™ a nonempty open set. We say that differentiable
function f : S — R is pseudoconvex if it holds

Vi)' (y—2)>0 = f(y) > f(z)

forall xz,y € S.

Example 6.15. Find a pseudoconvex function which is not convex.

Hint: Consider increasing functions.

Example 6.16. Use the definition to show that the following fractional linear func-
tion is pseudoconver:

_aT:IH—b

T
_ch+dforc x+d>0.

/()

Hint: Use the definition.

Example 6.17. Consider function f as defined in Example|6.11. Moreover, let S be
open and g, h be differentiable on S. Show that f is pseudoconvex.

Example 6.18. Let f be a differentiable function. Show that if f is convex, then it

18 also pseudoconver.

Hint: Use the first order characterization of the differentiable convex functions.
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Example 6.19. Let f be a differentiable function. Show that if f is pseudoconvexr,
than it is also quasiconver.

Hint: Use the alternative definition of quasiconvex functions based on the maxi-
mum.

Example 6.20. Show that if Vf(T) = 0 for a pseudoconvex f, then T is a global
maintmum of f.

Hint: Use the definition.

Example 6.21. The following table summarizes relations between the stationary
points and minima of a differentiable function f:

f general: T global min. = T local min. = Vf(Z)=0
f quasiconvex: T global min. = T local min. — Vf(T)=0
f strictly quasiconvex: T global min. <= T local min. — Vf(T)=0
f pseudoconvex: T global min. <= T local min. <= Vf(T)=0
f convex: T global min. <= T local min. <= Vf(x)=0.

7 Optimality conditions
7.1 Optimality conditions based on directions
Example 7.1. Consider the global optimization problem

min 227 — 1129 + 15 — 311 + 27172,
Find a descent direction at point (0,0).

Hint: Compute the gradient.

Example 7.2. Verify the optimality conditions at point (2,4) for problem

min (2, —4)* + (2, — 6)?
s.t. a:f < Z9,
) S 4.

Consider the same point for the problem with the second inequality constraint in the
form
i) S 5.

Hint: Use the basic optimality conditions derived for a convex objective function
and a convex set of feasible solutions.

Example 7.3. Consider open ) #S CR", f: S — R, and define set of improving
directions of f at x € S

Frx) ={seR": s#0, 3 >0V0 <A <d: f(z+As) < f(x)}.

13



For differentiable f, define its approrimation
Fio(x) ={s e R": (Vf(x),s) <0}

Show that it holds
Fro(z) C Fy(x).

Moreover, if f is pseudoconvex at x with respect to a neighborhood of x, then
Fyo(x) = Fy(x).
If f is convex, then
Fy(z) ={aly—2): a>0, f(y) < f(z), y € S}.

Hint: Use the scalarization function.

Example 7.4. Consider the global optimization problem
min 22% — 31,75 + 5.

Derive the set of improving directions at (0,0).

Example 7.5. Consider open ) # S C R", functions g; : S — R, and the set of
feasible solutions
M={xeS: g(zr)<0,i=1,...,m}.

Define the set of feasible directions of M at x
Dy(z)={seR": s#0, 30 >0V0<A<d: z+Ase€ M}.
If M is a convex set, then
Dy(z) ={aly—2): >0, ye M, y#ua}.
For differentiable g; define

Ggo(z) ={s € R": (Vgi(x),s) <0, i € I (x)},
Grolx) ={s€R": s#0, (Vgi(r),s) <0, i € Iy(x)}.

In general, it holds
Gyol@) € Dyr(x) € Glpola).

Hint: Use the scalarization function.

Example 7.6. Discuss the above defined sets of directions for sets

Mi={(z,y): ~(x -2 >y—2, —(y—2)* >z 2},
My={(z,9): (t-2°2y—2, (y—2)" =2 -2},

at point (2,2).

14



Hint: Use pictures to decide which of the approximations are tight.

Example 7.7. Discuss the above defined sets of directions for a polyhedral set

M={zxeR": Az <b}.

Example 7.8. Discuss the above defined sets of directions for the problem

min (z; — 3)% + (zp — 2)?
s.t. 27 + 25 <5,

T1+x9 <3,

1 20, 22 >0,

at point (2,1). Apply the Farkas theorem to the conditions on directions.

Example 7.9. Discuss the above defined sets of directions for the problem
min (2, — 3)% + (2, — 3)?

s.b. 2] + a5 = 4,

at point (v/2,v/2). Then consider the set of improving directions for equality con-
straints hj(x) =0, where h; : S — R

Hpo(z) ={s € R": (Vhj(z),s) = 0}.

7.2 Karush—Kuhn—Tucker optimality conditions
7.2.1 A few pieces of the theory

Consider a nonlinear programming problem with inequality and equality con-
straints:

min f(z)
st gi(z) <0, i=1,...,m, (29)
hi(z) =0, j=1,....1,

where f,g;,h; : R® — R are differentiable functions. We denote by M the set of
feasible solutions.

Define the Lagrange function by
m l
L(z,u,v) = f(x) + Zuzgl(:v) + Zvjhj(:v), u; > 0. (30)
i=1 j=1

The Karush—Kuhn—Tucker optimality conditions are then

V.L(z,u,v) =0,

31
wigi(r) =0, u; >0, i=1,...,m. (31)
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Any point (z,wu,v) which fulfills the above conditions is called a KKT point. The
KKT point is feasible if z € M.

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions

are necessary for local optimality of a point. Basic CQ conditions are:

e Slater CQ: 37 € M such that ¢;(Z) < 0 for all ¢ and the gradients V,h;(Z),
j=1,...,1 are linearly independent.

e Linear independence CQ at © € M: all gradients
V.9i(2), i € I,(2), Vyhi(2), 7=1,...,1
are linearly independent.
These conditions are quite strong and are sufficient for weaker CQ conditions, e.g.

the Kuhn—Tucker condition (Mangasarian—-Fromovitz CQ, Abadie CQ, ...).

Consider the set of active (inequality) constraints and its partitioning

Ly(x) ={i: gi(x) =0},
ID(z) ={i: gi(x) =0, u; =0}, (32)
IF(x) ={i: gi(z) =0, u; > 0},

- I(z) = I°(z) U [} ().

We say that the second-order sufficient condition (SOSC) is fulfilled at a feasible
KKT point (z,u,v) if for all 0 # z € R™ such that

ZTVng(QJ) = 07 (S [;(Z’),
2'Vagi(x) <0, i € I(x), (33)
Z'Vagi(x) =0, i € If (x),

it holds
21V L(z,u,v)z > 0. (34)

Then z is a strict local minimum of the nonlinear programming problem (129)).

To summarize, we are going to practice the following relations:
1. Feasible KKT point and convex problem — global optimality at x.
2. Feasible KKT point and SOSC — (strict) local optimality at .

3. Local optimality at z and a constraint qualification (CQ) condition — 3(u, v)
such that (z,u,v) is a KKT point.

16



7.2.2 Karush—Kuhn—Tucker optimality conditions

Example 7.10. Consider the nonlinear programming problems from examples
7.8, Compute the Lagrange multipliers at given points.

Example 7.11. Consider the problem
min 2¢” 7 + (zy — 11)? + 23
s.t. x1xoxg < 1,
T+ 23 2> ¢
z > 0.

For which values of ¢ does * = (1,1,1) fulfill the KKT conditions? Is it a global
solution?

Example 7.12. Consider the problem
1+ 3r2+ 3
Yot 1,46
s.t. 2xy + 29 < 12,
— 1+ 219 < 4,

x1,x9 2 0.

mi1

Verify that the KK'T conditions are fulfilled for all points on the line between (0,0)
and (6,0). Are the KKT conditions sufficient for global optimality?

Example 7.13. Consider the problem

min — Z log(cv + x;)

=1

n
i=1

513@207

where a; > 0 are parameters. Using the KKT conditions find the solutions.

Example 7.14. Consider the problem

min

" 1\° 1
s.t. Zzl (xz — ﬁ) < ma
i=1

0 1 1
‘'n—1""n-1

17
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Example 7.15. Using the KKT conditions find the closest point to (0,0) in the set
defined by
M:{SL’GR2Z T+ 1o > 4, 21314‘%225}

Can several points (solutions) exist?

Hint: Formulate a nonlinear programming problem.

Example 7.16. Consider the problem

%‘257

where a;,b,cj,e > 0 are parameters. Using the KKT conditions find an optimal
solution.

Example 7.17. Consider the problem

st (x =12+ (y—1)*<
(=12 +(y+1)*<

The optimal solution is obviously the only feasible point (1,0). Why are not the KKT
conditions fulfilled?

Hint: Discuss the Constraint Qualification conditions.

Example 7.18. Consider the problem

min — 3
s.t. — (1 — 371)3 + T S 0,
i) 2 0.

Use the picture to show that (1,0) is the global optimal solution. Why are not the
KKT conditions fulfilled?

Hint: Discuss the Constraint Qualification conditions.

Example 7.19. Write the KKT conditions for a linear programming problem.

Example 7.20. Verify that the point (z,y) = (%, %) is a local/global solution of the
problem

min 22 4 y?,

s.it. 2?4 y* <5,
T+ 2y =4,
x,y > 0.

18



Example 7.21. Derive the least square estimate for coefficients in the linear regres-
ston model under linear constraints, i.e. solve the problem

min [[Y — X5,
st. AB =b.

7.2.3 Second Order Sufficient Condition (SOSC)

When the problem is not convex, then the solutions of the KKT conditions need not
to correspond to global optima. The Second Order Sufficient Condition (SOSC) can
be used to verify if the KKT point (its = part) is at least a local minimum.

Example 7.22. Consider the problem
min 2% — y?
st.x—y=1
x,y > 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

2

L(z,y,up, ug,v) = 2* — y* —wyx — upy + vz —y — 1), uy,ug > 0.

Derive the KKT conditions

oL

a—x:2x—u1+v:0,

oL

a—y:—Qy—ug—v:O, (35)
—wx =0,

— ugy = 0.

Solving this conditions together with feasibility leads to one feasible KK'T point
(l’, Y, U1, Uz, U) = <1a 07 07 27 _2)

Since the problem is non-convex, we can apply SOSC (34). We have 1,(1,0) =
I(1,0) = {2} and I)(1,0) = 0, so the conditions on 0 7& z G are:

M

Z1 — 29 :0,

—Z9 = 0.

Since no z # 0 exists, the SOSC is fulfilled. (It is not necessary to compute V2 _L.)
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Example 7.23. Consider the problem

min —zx
s.t. x2—|—y2§1
(x—1)* -y <0.

Using the KKT optimalily conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Example 7.24. Consider the problem

min — (z —2)% — (y — 3)*
s.t. 3x + 2y > 6,

—z+y <3,

r < 2.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Literature

e L. Adam, M. Branda (2016). Sparse optimization for inverse problems in
atmospheric modelling. Environmental Modelling & Software 79, 256-266.
(free Matlab codes available)

e Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear program-
ming: theory and algorithms, Wiley, Singapore, 3rd edition.

e Boyd, S., Vandenberghe, L. (2004). Convex Optimization, Cambridge Uni-
versity Press, Cambridge.

e M. Branda (2012). Underwriting risk control in non-life insurance via
generalized linear models and stochastic programming. Proceedings of
the 30th International Conference on MME 2012, 61-66.

e M. Branda (2014). Optimization approaches to multiplicative tariff of
rates estimation in non-life insurance. Asia-Pacific Journal of Operational
Research 31(5), 1450032, 17 pages, 2014.

e M. Branda, S. Héjek (2017). Flow-based formulations for operational
fixed interval scheduling problems with random delays. Computational
Management Science 14 (1), 161-177.

e M. Branda, J. Novotny, A. Olstad (2016). Fixed interval scheduling under
uncertainty - a tabu search algorithm for an extended robust coloring
formulation. Computers & Industrial Engineering 93, 45-54.

20



e M. Branda, K. Haugen, J. Novotny, A. Olstad (2017). Downstream logistics
optimization at EWOS Norway. Accepted to Mathematics for Applica-
tions.

e R.T. Rockafellar (1972). Convex analysis, Princeton University Press, New
Jersey.

21



	Introduction and motivation
	Operations Research/Management Science and Mathematical Programming
	Marketing – Optimization of advertising campaigns
	Logistic – Vehicle routing problems
	Scheduling – Reparations of oil platforms
	Insurance – Pricing in nonlife insurance
	Power industry – Bidding, power plant operations
	Environment – Inverse modelling in atmosphere

	Introduction to optimization
	Convex sets and functions
	Separation of sets
	Subdifferentiability and subgradient
	Generalizations of convex functions
	Quasiconvex functions
	Pseudoconvex functions

	Optimality conditions
	Optimality conditions based on directions
	Karush–Kuhn–Tucker optimality conditions
	A few pieces of the theory
	Karush–Kuhn–Tucker optimality conditions
	Second Order Sufficient Condition (SOSC)



