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Main goals of the lecture

Main goal of this lecture is study of Markov chains and Markov
processes, their generalizations and applications.
We will concentrate (in more or less details) on:

Notion of recurrence in theory of probability

Random walks

Markov chains with discrete states and discrete time

Markov processes with discrete states and continuous time

Birth and death models

Poisson process

Durbin – Watson process

Basics of queuing models
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Events to be considered

Assume a sequence of repeated (not necessarily independent) trials,
each of them having the same finite or countable set of possible
outcomes

{
Ej

}
j∈J

, where usually J ≡ N0, N or Z. Let{
Ej1 ,Ej2 , . . . ,Ejn

}
(1)

denotes an event that first trial finished with the result Ej1 , second trial
finished with the result Ej2 , . . . , n-th trial finished with the result Ejn .

Let for all finite sequences (1):
P
(
Ej1 , . . . ,Ejn−1

)
=

∑∞
k=0 P

(
Ej1 , . . . ,Ejn−1 ,Ek

)
, 1 < n < ∞

About each sequence (1) it can be decided whether it has or does
not have a “property ξ”

Rem. 1: Recall that if the events
{
Ej1 ,Ej2 , . . . ,Ejn

}
are independent, then

P
({

Ej1 ,Ej2 , . . . ,Ejn

})
=

n∏
k=1

P
(
Ejk

)
(2)
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Recurrent events

Def. 1: Statement ξ occurred on the n-th place of (finite or infinite)
sequence Ej1 ,Ej2 , . . . means that the sequence Ej1 ,Ej2 , . . . ,Ejn has the
property ξ.

Def. 2: We will call property ξ a recurrent event, if:

1 ξ occurred on the n-th and n + m-th place place of the sequence
Ej1 ,Ej2 , . . . ,Ejn+m if and only both the sequence Ej1 , . . . ,Ejn and the
sequence Ejn+1 , . . . ,Ejn+m have property ξ

2 In such a case it holds:

P
( A︷       ︸︸       ︷
Ej1 , . . . ,Ejn︸       ︷︷       ︸

ξ

,

B︷             ︸︸             ︷
Ejn+1 , . . . ,Ejn+m︸             ︷︷             ︸

ξ

)
= P

( A︷       ︸︸       ︷
Ej1 , . . . ,Ejn︸       ︷︷       ︸

ξ

)
·P

( B︷             ︸︸             ︷
Ejn+1 , . . . ,Ejn+m︸             ︷︷             ︸

ξ

)
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Examples of recurrent events

Ex. 1: Assume a sequence of independent trials with dichotomous
(alternative) response as, e.g., flips of the coin with P(success) = p.
We say that recurrent event ξ occurred in time n, if number of successes
and failures after n trials are equal.

Ex. 2: Consider particle moving on grid points of the plane. In each step
particle moves up, down, left or right randomly and independently from
previous steps. Assume, moreover, that different directions do not arrive
necessarily with the same probability.
We say that recurrent event ξ occurred in time n if we are back in the
starting point after n steps.

Ex. 3: Consider a particle moving on grid points of the space. In each
step particle moves up, down, left, right, backwards or forward randomly
and independently from previous steps. Assume, moreover, that different
directions do not arrive necessarily with the same probability.
We say that recurrent event ξ occurred in time n if we are back in the
starting point after n steps.
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Probabilities {un}, {fn} and their interrelation

Def. 3: To each recurrent event ξ we assign two sequences of numbers

un = P
(
ξ occurred in the nth trial

)
1 ≤ n < ∞

fn = P
(
ξ occurred in the nth trial for the first time

)
1 ≤ n < ∞

We define formally u0 = 1, f0 = 0 and introduce generating functions
F(x) =

∑∞
n=0 fnxn and U(x) =

∑∞
n=0 unxn.

Thm. 1: Between probabilities {un} and {fn}, respectively between
corresponding generating functions F(x) and U(x), following relations
hold

un = f0un + f1un−1 + . . . + fnu0 ∀ n ≥ 1

U(x) − 1 = F(x)U(x) − 1 < x < 1
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Examples of recurrent events

Ex. 4: Assume Rubik’s cube, i.e. mechanical puzzle composed of
smaller sub-cubes. An internal pivot mechanism enables each face to
turn independently, thus mixing up the colors. Most typical model is
3 × 3 × 3, for which we have 43 252 003 274 489 856 000 ≈ 43.25 × 1018

possible combinations (https://en.wikipedia.org/wiki/Rubik’s Cube).
Generally, for the puzzle to be solved, each face must be returned to
have only one color.
We say that recurrent event ξ occurred in time n if we are back in starting
position after n steps.

Ex. 5: Assume a sequence of independent trials with alternative
response, as, e.g., flips of the coin, with probability of success p.
We say that recurrent event ξ occurred in time n if some prescribed
pattern, e.g. ZZZ or ZZNZN, occurred after n trials.

Ex. 6: “Random walks” on vertexes of graphs, vertexes of
multidimensional cubes, etc., can be often described using the theory of
recurrent events.
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Repeated occurrences of recurrent events

Rem. 2:

If f =
∑

n fn = 1, then {fn} correspond to a random variable T1

describing waiting time of the first occurrence of ξ.

If f < 1, then waiting time T1 is so called improper random variable,
which with the positive probability (= 1− f ) attains improper value∞,
being interpreted as the recurrent event that ξ did not came up.

Thm. 2: Denote by f (r)
n , 1 ≤ n < ∞, probability of the event that ξ

occurred for the r th time in time n, and denote f (r)
0 = 0. Then it holds{

f (r)
n

}
=

{
fn
}r?
,

where
{
f (r)
n

}
denote r-th convolution of

{
fn
}
.

Thm. 3: Probability that event ξ will occurred in infinitely long sequence
of trials at least r-times is equal to f r , where f =

∑
n fn.
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Another approach to introducing recurrent events

Let Ti , 1 ≤ i ≤ r , are independent integer valued rv’s with the same
distribution {fn}, where Ti is interpreted as the time between (i − 1)-st and
i-th occurrence of ξ (so called return time). Then

T (r) = T1 + . . . + Tr

can be interpreted as the waiting time to the r-th occurrence of ξ.

Notion of recurrent event can be introduced in the following way.

Def. 4: Let T1,T2, . . . be independent integer valued random variables
with the same distribution {fn}. Then:

We match the statement recurrent event ξ occurred in time n with
the statement there exists r such that T1 + T2 + . . . + Tr = n.

We match the statement recurrent event occurred in time n for the
r-th time with the statement T1 + T2 + . . . + Tr = n.
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Classification of recurrent events

Def. 5: Event ξ is called recurrent if f = 1, respectively transient if f < 1,
where f =

∑
n fn.

Thm. 4: Probability, that an event ξ will occurred infinitely many times in
infinitely long series of trials is one for recurrent events and zero for a
transient events.

Thm. 5: An event ξ is transient if and only if
∑∞

n=0 un < +∞. In such a
case f = (u − 1)/u, where u =

∑∞
n=0 un.

Def. 6: If f = 1, then we denote µ = E T1 =
∑∞

n=0 nfn and interpret is as
the mean renewal (return) time of ξ.

Def. 7:
An event ξ is called positive recurrent if µ < +∞.
An event ξ is called null recurrent if µ = +∞.

Def. 8: An event ξ is called periodical if there exists natural λ > 1 such
that un = 0 ∀n which are not divisible by λ. Largest λ with this property is
called a period of ξ.
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Examples of recurrent events

Ex. 7: Assume a sequence of independent trials with dichotomous
(yes/no) response, where P(yes) = p. We say that recurrent event ξ
occurred in time n if the number of positive trials is equal to the number
of negative trials. Show that it is a periodical recurrent event for which it
holds:

if p = 1/2 then ξ is null recurrent
if p , 1/2 then ξ is transient
calculate probabilities un and fn and their approximations
U(x) =

∑∞
n=0

(
2n
n

)(
pqx2

)n
= 1√

1−4pqx2

F(x) = 1 −
√

1 − 4pqx2

f2n−1 = 0, f2n = 2
n

(
2n−2
n−1

)
pnqn, n = 1, 2, . . .

if p = 1/2 then un ≈ 1/
√
πn

simulate couple of random walks of a length at least 105 for different
values of p (including p = 1/2)
plot corresponding graphs of simulated random walks
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Examples of recurrent events

Ex. 8: Return to the Examples 2 and 3. Calculate probabilities un and
their approximations.

Hint. Recall multinomial distribution and Law of total probability.
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Limit theorem

Thm. 6: Let an event ξ is recurrent and non periodical. Then it holds:

lim
n→∞

un =

1
µ µ < ∞

0 µ = ∞

Thm. 7: Let an event ξ is recurrent and periodical with period λ. Then it
holds:

lim
n→∞

unλ =

λ
µ µ < ∞

0 µ = ∞

Proof: Follows from Thm. 47 and Rmk 49.
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Asymptotic distribution of frequencies of recurrent
events

Thm. 8: Let ξ be a positive recurrent event. DenoteNn number of
occurrences of ξ up to the time n and T (r) waiting time till the r th

occurrence of ξ. Then the events [Nn ≥ r] and [T (r) ≤ n], 1 ≤ r ≤ n < ∞,
are equivalent. Assume, moreover, that E T1 = µ and
var T1 = σ2 < +∞. Then it holds:

Nn
D
∼ N

(
n
µ ,

nσ2

µ3

)
and T (r) D∼ N

(
rµ, rσ2

)
, i.e.

lim
n→∞

P

 Nn − n/µ√
nσ2/µ3

≤ x

 = Φ(x) ∀x ∈ R1

lim
r→∞

P
(
T (r) − rµ
√

rσ2
≤ x

)
= Φ(x) ∀x ∈ R1

where

Φ(x) =

∫ x

−∞

1
√

2π
e−t2/2 dt
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Asymptotic distribution of frequencies of recurrent
events

Thm. 9: Let ξ be a positive recurrent event. Then E Nn ≈ n/µ as n → ∞,
where µ = E T1 is the mean renewal (return) time of ξ.

Rem. 4: Let ξ be a null recurrent. Then E Nn is not generally of the order
n1. An example has been described in Ex. 7. Show that in such a case
E N2n ≈ 2

√
n/π.
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Recurrent events with delay

Recurrent events with delay can be introduced in the same way as
indicated above.

Def. 9: Assume independent integer valued random variables T1,T2, . . .,
where T1 has distribution

{
bn

}
, while T2,T3, . . . have distribution

{
fn
}
. We

say that recurrent event with delay ξ occurred in time n for the r-th time, if

T1 + T2 + . . . + Tr = n (3)

Analogously, recurrent event with delay ξ occurred in time n if there
exists r such that (3) holds.

Rem. 5: In Def. 9 is random variable T1 interpreted as time to the first
arrival of ξ, while T2,T3, . . . as renewal (return) times.

Ex. 9: Assume again Rubik’s cube from Example 4, which is at the
beginning arbitrarily scrambled. Then delay T1 describes time to the first
arrival when each face have only one color (initial position). Return times
T2,T3, . . . correspond to the returns to the initial position.
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Recurrent events with delay (cont.)

Thm. 10: Let un denotes probability of the event that ξ occurred at
time n. Let u0 = f0 = b0 = 0. Then

un = bn + f0un + . . . + fnu0, i.e.
{
un

}
=

{
bn

}
+

{
fn
}
?

{
un

}
.

Rem. 6: Recall equivalence between following events[
ξ occurred at time n

]
≡

n−1⋃
k=1

[
ξ occurred at time n and the last occurrence

before that event at time k
]

∪
[
ξ occurred at time n for the first time

]
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Renewal equation

Rem. 7: Limit theorems of the previous paragraphs can be considered as
a special case of a general theorem, which can be formulated analytically
without the use of probability. However, under appropriate assumptions
about the sequences which enter, it can have also a probability meaning.

Def. 10: Let a0, a1, a2, . . . and b0, b1, b2, . . . be two sequences of real
numbers such that
a0 = 0, 0 ≤ an ≤ 1, bn ≥ 0, n = 0, 1, 2, . . . ,

∑∞
i=n bn < ∞. Put

un = bn + a0un + a1un−1 . . . + anu0, n = 0, 1, 2, . . ., i.e.{
un

}
=

{
bn

}
+

{
an

}
?

{
un

}
(4)

Relation (4) is in the literature usually called renewal equation.

Rem. 8: For generating functions of sequences introduced in Def. 10
it holds

U(x) = B(x) + A(x)U(x) ≡ U(x) =
B(x)

1 − A(x)
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Renewal equation (cont.)

Def. 11: We call sequence {an} periodic if there exist λ > 1 such that
an = 0 ∀ n not divisible by λ. Largest λ with this property is called period.

Thm. 11: Let sequence {an} is aperiodic. Then it holds:

1 If
∑∞

n=1 an < 1 then
∑∞

n=1 un < ∞.
2 If

∑∞
n=1 an = 1, i.e. we can consider {an} to be distribution of some

rv describing return time of some aperiodic recurrent event ξ, then

lim
n→∞

un =


∑∞

n=0 bn

/∑∞
n=1 nan,

∑∞
n=1 nan < ∞,

0,
∑∞

n=1 nan = ∞.

3 If
∑∞

n=1 an > 1 then it holds for n → ∞

un ≈
B(x)

xn+1A>(x)

∣∣∣∣∣∣∣
x=1

,

where x < 1 is the only root of equation A(x) = 1.
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Renewal equation (cont.)

Thm. 12: Let sequence {an} is periodical with period λ. Then it holds:

1 If
∑∞

n=1 an < 1 then
∑∞

n=1 un < ∞.

2 If µ = ∞ then limn→∞ un = 0.

3 If µ < ∞ and
∑∞

n=1 an = 1, i.e. if {an} describes distribution of return
time of some periodic recurrent event ξ, then it holds for any
0 ≤ j < λ:

lim
n→∞

unλ+j =
λ
∑∞

k=0 bkλ+j

µ
& lim

n→∞

1
n

∑n

j=1
uj =

∑∞
k=0 bk

µ
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Markov chains

Def. 12: A sequence of trials, each of them having the same finite or
infinite set of possible outcomes, will be called a Markov chain (MC), if
probability of each finite sequence of results is given by

P
(
Ej0 ,Ej1 , . . . ,Ejn

)
= aj0pj0j1 . . . pjn−1jn , (5)

where ak , k = 1, 2, . . . are probabilities of the starting outcome (zero’s
trial) and pjk , 1 ≤ j, k < +∞, is (for all trials the same) conditional
probability of the outcome Ek given the outcome Ej in previous trial.

Rem. 9: A sequence {ak } is called an initial distribution and probabilities
pjk are called transition probabilities. Recall that for independent events it
is enough to know just probabilities pi , while for a description of MC we
need top know a ≡ {ak } and P ≡

{
pjk

}
. Notice that

∑
j pij = 1 ∀i ∈ N.
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Examples of Markov chains

1 Random walk on line.
2 Random walk on line with reflecting barriers.
3 Random walk on line with absorbing barriers.
4 Ehrenfest’s imaginary model. Let a distinguishable molecules are

randomly placed into two containers denoted A and B. In each step
we select randomly one molecule with the probability 1/a and move
it to the other container. State of the system is number of molecules
in container A .

5 Modified Ehrenfest’s imaginary model. Let a non distinguishable
molecules are randomly placed into two containers denoted
A and B. In each step we select randomly one container with the
probability 1/2 and move one randomly selected molecule from this
container to the other one. State of the system is number of
molecules in container A .

6 Sequence of independent random trials.
7 Gambler’s ruin problem. Rubick’s cube. Etc.
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Higher order probabilities

Thm. 13: Transition probability from state Sj to the state Sk after n-steps,
denoted p(n)

jk , is (j, k)-th element of matrix Pn. We define P0 = I.
Rem. 10: Matrix Pn can be calculated using, e.g.

“Sequential” power raising of transition matrix P .
Directly from principle.
Using Perron’s formula that uses eigenvalues of P. Etc.

Def. 13: Aside conditional probabilities p(n)
jk we introduce non conditional

(absolute) probability a(n)
k as probability of event describing that system

is in time n at state Sk .
Rem. 11: Evidently it holds:

a(0)
k = ak , a(n)

k =
∑

j
ajp

(n)
jk and a(n+m)

k =
∑

j
a(m)

j p(n)
jk

If there exists limn→∞ p(n)
jk independent on j, then there exists also

limn→∞ a(n)
k and are equal each to other.
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Notation

f (n)
jj . . . probability of the first return to state Sj in time n,

provided in time 0 we were in state Sj

f (n)
ij . . . probability of the first return to state Sj in time n,

provided in time 0 we were in state Si

p(n)
jj . . . probability of the event that system is in time n

at state Sj , provided at time 0 has been at state Sj

p(n)
ij . . . probability of the event that system is in time n

at state Sj , provided at time 0 has been at state Si

Thm. 14: Put f (0)
jj = 0, f (0)

ij = 0, p(0)
jj = 1, p(0)

ij = 0, p(1)
jj = pjj . Then it

holds

p(n)
jj = f (0)

jj p(n)
jj + f (1)

jj p(n−1)
jj + . . . + f (n−1)

jj pjj + f (n)
jj p(0)

jj , 1 ≤ n < ∞{
p(n)

ij

}
=

{
f (n)
ij

}
+

{
f (n)
jj

}
?

{
p(n)

ij

}



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

Classification of states of MC

Thm. 15: Let us fix in a MC a state Sj .
a If the system is at the beginning at state Sj , then each visit to

state Sj is recurrent event.
b If the system is at the beginning at state Si , then each visit to

state Sj is recurrent event with delay.

Theory of Markov chains is in principle theory of recurrent events.
New is the fact that we study many recurrent events in parallel !!!
Notions concerning classification of recurrent events naturally
transfer to the states of MC.

Thm. 16: Let us fix in a Markov chain state Sj .

State Sj is transient⇔
∑∞

n=1 p(n)
jj < ∞. In such a case∑∞

n=1 p(n)
ij < ∞ ∀i.

State Sj is null recurrent⇔
∑∞

n=1 p(n)
jj = ∞ and limn→∞ p(n)

jj = 0. In

such a case limn→∞ p(n)
ij = 0 ∀i.
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Classification of states of MC (cont.)

Thm. 17: Let us fix in a Markov chain state Sj .
If state Sj is positive recurrent, then

lim
n→∞

p(n)
jj =

1
µj
, lim

n→∞
p(n)

ij =
fij
µj
, i , j, where fij =

∑∞

n=1
f (n)
ij

If state Sj is positive recurrent with period λ, then

lim
n→∞

p(nλ)
jj =

λ

µj

and for all i , j and 0 ≤ ν ≤ λ − 1

lim
n→∞

p(nλ+ν)
ij =

λ
∑∞

k=0 f (kλ+ν)
ij

µj

Further, it holds:

lim
n→∞

p(n)
ij =

fij
µj
, where p(n)

ij =
1
n

∑∞

k=1
p(k)

ij
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Reducible and irreducible MC

Def. 14: We say that state Sk is accessible from state Sj , if there
exists n ≥ 0 such that p(n)

jk > 0.

Rem. 12: In the sense of Def. 14 is each state accessible from itself,
because p0

jj = 1.

Def. 15: Nonempty set of events C is called closed, if no state outside
of C is accessible from any state inside C. Smallest closed set
containing given set of states is called its closure.

Thm. 18: Set of states C is closed⇔ pjk = 0 for all Sj ∈ C and Sk < C.

Def. 16: If a set with one point {Sj} is closed, i.e. if pjj = 1, then state Sj is
called absorbing state.

Rem. 13: If we omit in a matrix of transitional probabilities P of given
Markov chain all rows and columns corresponding to the states outside
closed set C, we obtain again stochastic matrix. Thus, C correspond
also to some markov chains, usually called subchain of the original
Markov chain.
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Reducible and irreducible MC (cont.)

Def. 17: MC is called irreducible if is does not contain aside the set of all
states another closed set of states. Otherwise it is called reducible.

Thm. 19: MC is irreducible⇔ each of its states is accessible from any
other state.

Thm. 20: Markov chain with finitely many states is reducible⇔
corresponding matrix of transitional probabilities P can be, after eventual
renumeration of states, written in the form

P =

(
P1 0
A B

)
where on diagonal we have square matrices.

Rem. 14: We say that states Sj and Sk are of the same type, if both are
transient, or both are null recurrent or positive recurrent, and in parallel
are both either periodical or non periodical with the same period λ.
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Reducible and irreducible MC (cont.)

Thm. 21: If state Sk is accessible from state Sj and state Sj is accessible
from state Sk , then they are of the same type.

Thm. 22: In the irreducible MC all the states are of the same type.

Thm. 23: In MC with finitely many states there does not exist null states
and it is not possible, that all states are transient ones.
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Stationary distribution

Def. 18: Assume irreducible MC described by a matrix of transitional
probabilities P. A distribution {vj} is called stationary distribution of this
chain if ∀j

vj =
∑

i
vipij (6)

This relation can be written in the matrix form as v = P>v, where
P> denotes transposed matrix P.

Thm. 24: In irreducible MC there exists a stationary distribution⇔ all
states are positive recurrent. This stationary distribution v is unique and
∀ i, j it holds:

vj = lim
n→∞

p(n)
ij > 0 in periodical case

vj = lim
n→∞

1
n

∑n

k=1
p(k)

ij > 0 in non periodical case
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Stationary distribution (cont.)

Rem. 15: In an irreducible MC with finitely many states stationary
distribution exits, compare Thm. 23.

Def. 19: Matrix with non negative elements such that all row’s and
column’s sums are equal to one is called doubly stochastic.

Thm. 25: Assume irreducible MC with doubly stochastic matrix P. If
number of states n if finite, then stationary distribution {vj} is discrete
uniform, i.e. vi = 1/n for 1 ≤ i ≤ n. If number of states is infinite, then
stationary distribution does not exists.
Ex. 10:

Find stationary distribution for a random walk with two reflecting
barriers.
Decide for which values of p there exists a stationary distribution for
a random walk with one reflecting barrier in zero.
Find stationary distribution for Ehrenfest’s imaginary models.
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Reversible Markov chains

Def. 20: Assume irreducible MC (P , a). If there exist positive numbers πi

such that πipij = πjpji ∀i, j, we say that this MC is reversible.

Rem. 16: Assume irreducible reversible MC (P , a). Then it holds

P(X0 = i,X1 = j,X2 = k) = P(X0 = k ,X1 = j,X2 = i) ∀ i, j, k

Thm. 26: If MC (P ,A) is reversible, then corresponding vector π is its
stationary distribution.

Rem. 17: Thm. 26 does not hold in opposite direction, i.e., existence of
the stationary distribution does not imply that corresponding MC is
reversible.
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More general definition of Markov chain

Assume MC with states S1,S2, . . ., initial distribution {aj} and matrix of
transition probabilities P ≡

{
pij

}
. Introduce integer valued random

variables (ivrv’s) Xn, 0 ≤ n < ∞, using the equivalence
Xn has value j ⇔ MC is in time n in state Sj

Then it holds ∀i0, i1, . . . , in−1, i, j and ∀n ∈ N0

P
(
X0 = j

)
= aj

P
(
Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = x1,X0 = i0

)
= pij

Rem. 18: MC is then usually identified with a sequence of ivrv’s
constructed above. If we require fulfillment of the second equation only,
we get:
Def. 21: Sequence of ivrv’s Xn, n ∈ N0, is called Markov chain, if
∀i0, i1, . . . , in−1, i, j and ∀n ∈ N0 it holds

P
(
Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = x1,X0 = i0

)
= P

(
Xn+1 = j |Xn = i

)
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More general definition of Markov chain (cont.)

Rem. 19: Markov chains considered up to now had the property that pij

do not depend on n. Such MC are called homogeneous.
If P

(
Xn+1 = j |Xn = i

)
depends on n, we will denote it pij(n, n + 1) and to

call them non homogeneous Markov chains.
Rem. 20: Probabilities

P
(
X0 = j0,X1 = j1, . . . ,Xn = jn

)
= aj0pj0j1 . . . pjn−1jn

change

P
(
X0 = j0,X1 = j1, . . . ,Xn = jn

)
= aj0(0, 1)pj0j1(1, 2) . . . pjn−1jn (n − 1, n)

Ex. 11: Let Yk , 1 ≤ k < ∞, are independent ivrv’s and Xn =
∑n

k=1 Yk .
Then sequence

{
Xn

}
, 1 ≤ n < ∞ forms Markov chain. Prove it.

Ex. 12: Let Yk , 1 ≤ k < ∞, are independent ivrv’s and assume a
sequence of moving sums X?

n =
∑r

k=1 Yn+k , r being fixed. Then a
sequence

{
X?

n , 1 ≤ n < ∞
}

generally does not form Markov chain.
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Reducible Markov chains

Rem. 21: Recall that nonempty set of states C is called closed, if no one
of states outside C is accessible from any state in C. Smallest closed set
containing a given set of states is called its closure.
Thm. 27: Assume irreducible MC with finitely many states. Then
probability that chain will be absorbed in any closed subset of states
converges to 1 for n → ∞, and it does not matter in which state we
started.
Rem. 22: Assume irreducible MC with finitely many states described by
matrix of transitional probabilities P, and construct sequentially matrices
P2, P3, . . . (

S 0
R Q

)
︸   ︷︷   ︸

P

(
S2 0

RS + QR Q2

)
︸                 ︷︷                 ︸

P2

(
S3 0
. . . Q3

)
︸      ︷︷      ︸

P3

. . .

Then limn→∞QN = 0 and pn
ij → 0 exponentially fast for each two

states Si and Sj which are transient.
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Reducible Markov chains (cont.)

Rem. 23: For each reducible MC described by matrix of transitional

probabilities P =

(
S 0
R Q

)
corresponding matrix I − Q has inversion and it

holds

I + Q + Q2 + . . . =
∞∑

k=0

Qk =
(
I − Q

)−1

Matrix
(
I − Q

)−1
is called fundamental matrix.
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Transient states

Assume MC containing both transient and recurrent states. Let T
denotes a set of all transient states and C is any irreducible closed set of
recurrent states.
Let us fix state Sj ∈ T and denote:

xj = P
(
Sj → C

)
probability of absorption in C provided we started in

transient state Sj

1 − xj is probability of event that system, which is at the beginning at
state Sj ∈ T , either stay forever in T or will be absorbed in some
other closed set of states

x(1)
j =

∑
k∈C pjk is probability of absorption (in C) in the first step

yj is probability of the event that system, which is at the beginning at
state Sj ∈ T , will stay in T forever
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Transient states (cont.)

Thm. 28: Probabilities xj , j ∈ T , satisfy a set of equations

ξj −
∑

ν∈T
pjνξν = x(1)

j (7)

Thm. 29: Probabilities yj , j ∈ T , satisfy a set of equations

ηj =
∑

ν∈T
pjνην (8)

Thm. 30: Set of equations (7) has unique bounded solution⇔ set of
equations (8) does not have other bounded solution than the trivial one.

Thm. 31: Probabilities yj are equal to zero ∀ j ∈ T ⇔ a set of
equations (8) does not have other solution than the trivial one.

Thm. 32: In a chain with finitely many states all yj = 0 and xj form unique
solution of set of equations (7).
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Transient states (cont.)

Thm. 33: In a chain with states S0,S1,S2, . . . are all states transient⇔
set of equations

ηj =
∑∞

ν=1
pjνην, 1 ≤ j < ∞, (9)

has nontrivial bounded solution.
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Ising model – Notation

G . . . graph

V . . . vertexes of given graph

|V | = card(V)

E . . . edges of given graph

[i ↔ j] . . . indicator of edge between vertices i and j

Simplest situation : Each vertex i has two states σi ∈ {−1,+1} (black
and white)

Generally we assume states {1, . . . ,K } which can describe levels of
gray or colors, |V | = card(V), etc.

σ =
(
σ1, . . . , σ|V |

)
describes states of the system

State space S is {−1,+1}|V |, respectively {1, . . . ,K }|V |, etc.
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Ising model

Def. 22: Ising model is probability distribution π(β) on state space
S = {−1,+1}|V |, where

π(β) =
e−βH(σ)

Cβ
, (10)

H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
and Cβ =

∑
σ?∈S

e−βH(σ?)

Rem. 24: Function H(σ) is called (in physics) Hamiltonian and
represents “energy” of system’s configuration σ.
Rem. 25: For β > 0 are less probable those configurations σ having
H(σ) small, being a case that many neighbors have the same value
(spin). We often say that they have small energy (small information).
Def. 23: Mean spin (mean energy) of the configuration σ is

M(σ) =
1
|V |

∑
i∈V

σi
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Modifications of Ising model

Classical Ising model:

S = {−1,+1}|V | a H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
.

1 1 1
0 1 0
1 0 1

⇒
1 0 1
3 3 3
2 3 2


1 1 1
0 0 0
1 0 1

⇒
1 1 1
2 1 2
2 2 2


S H(S) S H(S)

Ising model with outside field:

S = {−1,+1}|V | a H(σ, h) =
∑

[i↔j]∈E
I
[
σi , σj

]
− h

∑
i∈V

σi .

For all β > 0 and h > 0 are the values of +1 preferred to the
values −1.
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Modifications of Ising model (cont.)

Pot’s model for “random patching” of images:

S = {1, . . . ,K }|V | a H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
.

Ising model for gray-scale images:

S = {1, . . . ,K }|V | a H(σ) =
∑

[i↔j]∈E
f
(
σi , σj

)
,

a f(.) is any suitable distance, e.g.:

f(σi , σj) =
∣∣∣σi − σj

∣∣∣p , p ≥ 1.

Vertexes typically represent pixels and, unlike as in Pot’s model,
desire is that neighboring pixels have similar value of “gray”, not
being identical.



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

Application in image analysis

Problem:

Assume image represented by a matrix of pixels of size L1 × L2

Vertexes correspond to pixels

Edges connect neighboring pixels

States {1, . . . ,K } represent grey levels

State space S = {1, . . . ,K }V

Image is represented by configuration σ =
(
σ1, . . . , σ|V |

)
∈ S

We observe image Y including noise, i.e.
Y = σ + ε, where ε1, . . . , ε|V | ∼ N

(
0, δ2

)
Problem: To reconstruct true image σ provided we observe Y and
assume that σ has prior distribution C−1

β e−βH(σ).

Basic tool: Bayesian statistics and Markov chains including random
walk on graph(s).
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Application in image analysis (cont.)

Joint distribution of the vector (σ,Y) is

L(σ,Y) ∼
e−βH(σ) ·

∏
i∈V exp

{
− (Yi − σi)

2/2δ2
}

constant that depends on (σ,Y)

Posterior distribution is

L(σ |Y) ∼
exp

[
− βH(σ) +

(
2δ2)−1 ∑

i∈V

(
2Yiσi − σ

2
i

)]
function depending on (σ,β,Y)

What can we do:
To generate from a posterior distribution (σ |Y). Large enough
sample representing configurations that can be considered likely
representations of image.
An alternative is to find the most likely image, i.e. to find the
configuration σ̂ that maximizes P(σ |Y).
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Exponential distribution – repetition

Def. 24: We say that random variable (rv) X follows exponential
distribution (X ∼ Exp(λ)), if corresponding density has the form

f(x; λ) =

λe−λx x > 0, λ > 0

0 otherwise

Thm. 34: Let X ∼ Exp(λ). Then F(x) = 1 − e−λx , E X = λ−1 and
var X = λ−2.
Thm. 35: No memory property. Let X ∼ Exp(λ). We interpret X as
description of (random) life time of some unit. Then probability of the
event that unit will survive time y(> 0) conditioned by the event that
survived time x(> 0), does not depend on x, i.e.

P(X > x + y |X > x) = P(X > y), ∀ x, y > 0 (11)

Rem. 26: Exponential distribution is the only continuous distribution for
which (11) holds. Among discrete distributions the only one with the
same property is geometric distribution.
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Intensity function

Def. 25: Let rv X has density f(x) and df F(x). Then the function

Λ(x) =
f(x)

1 − F(x)
, x ∈ R1.

is called intensity function.

Rem. 27: Let rv X , which we interpret as a survival time of some
process, has density f(x) and distribution function F(x). Then it holds:

P
(
x < X ≤ x + ∆ |X > x

)
=

P(x < X ≤ x + ∆)

P(X > x)
=

F(x + ∆) − F(x)

1 − F(x)

=
F(x + ∆) − F(x)

1 − F(x)

∆

∆

∆→0
≈ ∆

f(x)

1 − F(x)

Rem. 28: Let rv X ∼ Exp(λ). Then Λ(x) = λ. Exponential distribution is
the only continuous distribution with constant intensity.
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Linear process of birth and death

Assume a system with finitely or countably many states. Assume,
moreover, that from a given state Sn we can move with non negligible
probability only to the neighboring states, i.e.

Sn → Sn+1 . . . birth

Sn → Sn−1 . . . death

As concerns other neighbors, we can move to them only with
probability infinitesimally small.

Let the transitional probabilities in a small time interval (t , t + h) are

P
(
Sn → Sn+1

)
= λnh + o(h)

P
(
Sn → Sn−1

)
= µnh + o(h)

P
(
Sn → Sn±j , j > 1

)
= o(h)
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Linear process of birth and death (cont.)

Denote Pn(t) probability of the event that system is in time t in state Sn.
Goal is to determine Pn(t + h) and to find pn = limt→∞ Pn(t).

Probabilities Pn(t) satisfy following system of differential equations:

P′0(t) = −λ0P0(t) + µ1P1(t) (12)

P′n(t) = −
(
λn + µn

)
Pn(t) + µn+1Pn+1(t) + λn−1Pn−1(t), n ≥ 1

If system is at time 0 at state Si , then following initial conditions hold:
Pi(0) = 1 and Pn(0) = 0 for n , i.
Probabilities pn exist, do not depend on initial conditions and satisfy
system of linear equations

0 = −λ0p0 + µ1p1 (13)

0 = −
(
λn + µn

)
pn + µn+1pn+1 + λn−1pn−1 n ≥ 1

which we receive if we set in (12) P′n(t) = 0, n ≥ 0, and replace
Pn(∞) by pn.
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Linear process of birth and death (cont.)

Model. Assume system composed of elements which can both split and
vanish. Assume that in a small time interval of the length h probability of
the event, that one element will split into two is equal to λh + o(h), and
probability that will vanish (die) is equal to µh + o(h), where λ and µ are
constants characterizing behavior of the elements of considered system.
Rem. 29: When behavior of individuals (elements) of system is
independent each from other, we have model of birth and death with
parameters λn = nλ, µn = nµ.
Thm. 36: System of equations (12) for considered process has solution

P0(t) = A(t)

Pn(t) =
(
1 − A(t)

)(
1 − B(t)

)(
B(t)

)n−1
, n ≥ 1

A(t) =
µ
(
e(λ−µ)t − 1

)
λe(λ−µ)t − µ

and B(t) =
λ
(
e(λ−µ)t − 1

)
λe(λ−µ)t − µ
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Linear process of growth and death (cont.)

Model
P
(
Sn → Sn+1

)
= λnh + o(h)

P
(
Sn → Sn−1

)
= µnh + o(h)

P
(
Sn → Sn±j , j > 1

)
= o(h)

Q =

S0 S1 S2 S3 . . .
S0 · λ0 · · ·

S1 µ1 · λ1 · ·

S2 · µ2 · λ2 ·

S3 · · µ3 · λ3

Q? =

S0 S1 S2 S3 S4 . . .
∑

S0 −λ0 λ0 0 0 . . . . . . 0
S1 µ1 −(λ1 + µ1) λ1 0 0 . . . 0
S2 0 µ2 −(λ2 + µ2) λ2 0 . . . 0
S3 0 0 µ3 −(λ3 + µ3) λ3 . . . 0
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Linear process of growth and death (cont.)

Pn(t) is probability of event that system is in time t in state Sn

P′0(t) = −λ0P0(t) + µ1P1(t)
P′n(t) = −

(
λn + µn

)
Pn(t) + µn+1Pn+1(t) + λn−1Pn−1(t)

S0 S1 S2 S3 S4

S0 1 − λ0 µ1 0 0 0 . . .
S1 λ0 1 − (λ1 + µ1) µ2 0 0 . . .
S2 0 λ1 1 − (λ2 + µ2) µ3 0 . . .
S3 0 0 λ2 1 − (λ3 + µ3) µ3 . . .
. . . . . . . . . . . . . . . . . . . . .∑ 1 1 1 1 1 . . .︸                                                                                                    ︷︷                                                                                                    ︸

I + Q?′

System of Kolmogorov’s differential equations has the form

P′(t) =
(
I + Q?′

)
P(t) & 0 =

(
I + Q?′

)
p

P′(t) =
(
P′0(t),P′1(t), . . .

)′
, P(t) =

(
P0(t),P1(t), . . .

)′
, p =

(
p0, p1, . . .

)′
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Little’s formula

L . . . mean number of clients in system

LQ . . . mean number of clients waiting in queue

W . . . mean time client spends in system

WQ . . . mean time client spends in queue

λa . . . average arrival rate of entering customers

ARE . . . average rate at which system earns

AAP . . . average amount an entering customer pays

N(t) . . . number of clients that entered to the system until time t

Little’s formula

λa = limt→∞
N(t)

t & ARE = λa · AAP

L = λaW & LQ = λaWQ
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Telephone central with infinitely many lines

Ex. 13: Assume telephone central with infinitely many lines. We say that
system is in state Sn if exactly n lines are occupied.

Assume moreover that:

Probability of event that one telephone call will terminate during the
interval (t , t + h) is equal to µh + o(h).

Lengths of calls are mutually independent.

Probability of event that in time interval (t , t + h) new line will be
occupied is equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that limit probabilities pn follow Poisson distribution with
parameter λ/µ.



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

Telephone double-booth with unlimited queue

Ex. 14: Assume system that can serve at one moment at most two
clients as, e.g., telephone double-booth. Clients that cannot be served
form one unlimited queue. We say that the system is in state Sn if
number of clients being served and in a queue is exactly n.
Moreover, we assume that:

Probability of event that client which is served at time t will terminate
call in interval (t , t + h) is equal to µh + o(h).
Lengths of service times are independent.
Probability that during interval (t , t + h) will arrive new customer is
equal to λh + o(h).

Tasks:
Form system of differential equations for probabilities Pn(t).
Provided λ < 2µ, show that for limit probabilities pn holds

pn = p0

(
λ

µ

)n 1
2n−1 , kde p0 =

2µ − λ
2µ + λ

.
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Model of car park without a queue

Ex. 15: Assume car park with finite capacity N. State of the system is
number of cars in car park. Queue is not formed.

Moreover, we assume that:

Probability that car, which in time t parks, will depart in interval
(t , t + h) is equal to µh + o(h).

Lengths of staying at car park are independent.

Probability that during interval (t , t + h) will arrive new car is equal
to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that limit probabilities pn follow truncated Poisson distribution
with parameter λ/µ.
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Telephone booth with limited queue

Ex. 16: Assume system that can serve at one moment at most one client
as, e.g., telephone booth. Clients that cannot be served form one queue
of limited length N. We say that the system is in state Sn if number of
clients being served and in a queue is exactly n.
Moreover, we assume that:

Probability that client which is calling at time t will terminate in
interval (t , t + h) is equal to µh + o(h).
Lengths of calls are independent.
Probability that during interval (t , t + h) will arrive new customer is
equal to λh + o(h).

Tasks:
Form system of differential equations for probabilities Pn(t).
Show that for limit probabilities pn it holds

pn =

(
λ

µ

)n

p0, kde p0 = µN+1 λ − µ

λN+2 − µN+2
.
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Problem of one repairman and many machines

Ex. 17: Assume M machines serviced by one repairman. We say that
system is in state Sn if exactly n machines are not working.
Moreover, we assume that:

Probability that machine which is in time t repaired will start to work
in interval (t , t + h) is equal to µh + o(h).
Lengths of service times (repairs) are independent.
Probability that machine, which is in time t working will break in
interval (t , t + h), is equal to λh + o(h).

Tasks:
Form system of differential equations for probabilities Pn(t).
Show that limit probabilities pn follow truncated Poisson distribution
with parameter µ/λ, i.e. for k = 1, . . . ,M it holds

pM−k =
1
k !

(
µ

λ

)k
pM , kde pM =

[
1 +

∑M

k=1

1
k !

(
µ

λ

)k
]−1
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Model describing work of several welders

Ex. 18: Assume N welders which, independently each of other, take a
current in random time intervals. We say that system is in state Sn if
exactlyn welders are working.
Moreover, we assume that:

Probability that welder, which is in time t working, will stop welding
in interval (t , t + h) is equal to µh + o(h).
Lengths of service times (weldings) are independent.
Probability that welder, which in time t does not work, will start
working in interval (t , t + h) is equal to λh + o(h).

Tasks:
Form system of differential equations for probabilities Pn(t).
Show that limit probabilities pn follow binomial distribution
Bi

(
N, µ/(µ + λ)

)
, i.e.

pn =

(
N
n

) (
µ

µ + λ

)N−n (
λ

µ + λ

)n

, n = 0, 1, . . . ,N.
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Model of kinetics of irreversible chemical reaction

Ex. 19: Assume reagent A , molecules of which irreversibly change in
molecules of product B (product). Speed of reaction is described by
constant κ > 0. Let concentration of reagent A in time t is described by rv
X(t) and X(0) = n0.
From physical principle assume that:

Probability that one molecule will change in during (t , t + h)
provided n0 − n molecules changed up to time t , i.e. during
interval (0, t], is equal to nκh + o(h)
Probability of change of more than one molecule during interval
(t , t + h) is equal to zero.
Reagent A and product B are statistically independent.
Inverse reaction B → A arise with probability zero.

Tasks:
Form system of differential equations for probabilities Pn(t).
Show that limit probabilities pn follow binomial distribution
Bi

(
n0, e−κt

)
.
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Queuing system

Def. 26: Queuing system will be characterized by:

One or more parallel service station(s), to which arrive customers.
When serving is finished, customer leaves system and next one in
line, if there is any, enters service.

Clients that cannot be served (because system is fully occupied)
form one queue (line).

Times between arrivals are iid rv’s with distribution A .

Service times (time in a queue is not included) are iid rv’s with
distribution B.

Rem. 30: Distribution of arrival/service times is usually one of:

exponential . . . M (Markovian)

deterministic . . . D (Deterministic)

general . . . G (General)

Erlang Γ(n, λ) . . . Sn (Erlang)
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M/M/1, M/M/c and M/M/∞

Def. 27: Queuing system M/M/x is characterized by the fact that arrivals
of clients follow homogeneous Poisson process with intensity λ and
service times follow exponential distribution.

Thm. 37: System M/M/x can be described by the general process of
birth and death.

Rem. 31: For model:

M/M/1 : λj = λ, 0 ≤ j < ∞ and µj = µ, 1 ≤ j < ∞

M/M/c : λj = λ, 0 ≤ j < ∞, µj = jµ, 0 ≤ j ≤ c and
µj = cµ, c ≤ j < ∞

M/M/∞ : λj = λ, 0 ≤ j < ∞, µ0 = 0 and µj = jµ, 0 ≤ j < ∞

For examples and details see models describing telephone central,
telephone booths, etc.
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M/M/1, M/M/c and M/M/∞

Thm. 38: For systems M/M/x it holds:

M/M/1 : limit probabilities pn follow geometric distribution with
parameter 1 − λ/µ.

M/M/c : limit probabilitiespn follow truncated Poisson distribution with
parameters

(
c + 1, λ/µ

)
.

M/M/∞ : limit probabilities pn follow Poisson distribution with
parameter λ/µ.

Thm. 39: For system M/M/c it holds that departures from the stabilized
system with unlimited queue without any departures from it
with intensities λ (input) and µ (output) are described by homogeneous
Poisson process with parameter λ!

Rem. 32: Systems M/M/c may be “easily” combined and under the
assumption of stability can be described by appropriate Markov process.
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M/M/1

Rem. 33: Assume model M/M/1. We know from Theorem 38 that limit
(stationary) probabilities pn describing number of clients in steady state
follows geometric distribution with parameter 1 − λ/µ. It follows from
basic properties of geometric distribution that:

Mean of rv describing number of clients in system is λ
µ

/(
1 − λ

µ

)
Variance of rv describing number of clients in system is λ

µ

/(
1 − λ

µ

)2

Mean length of the queue is
∑

j jpj+1 =
(
λ
µ

)2/(
1 − λ

µ

)
Rem. 34: Notice that difference between mean number of clients in
system and mean length of the queue is λ/µ, not 1. Why?
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M/M/1 (cont.)

Rem. 35: Assume model M/M/1.
Then time Tn, which client, who entered as the n-th one, will spend in the
system follow gamma distribution Γ(n + 1, µ), because it consists of the
remaining time of client who is served and service times of waiting clients
including the entering one.

Distribution of the waiting time T of randomly chosen client is, according
to the complete probability theorem, mixture of distributions of Tn with
weights given by the steady state probabilities pn. Show that it holds:

P(T ≤ t) = 1 − e−(µ−λ)t , t ≥ 0

so that the mean time spent in the system is equal to 1
µ−λ .
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Tandem = M/M/1 + M/M/1

Serial system composed of two independent M/M/1 systems is called
tandem. Details will be added later.



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

M/M/1
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M/M/1
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M/M/1
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Counting process

Def. 28: Stochastic process N(t), t ≥ 0 is called counting process if it
represents overall number of “events” that occurred up to time t .
Rem. 36: For counting process must always hold that

N(t) ≥ 0.

N(t) is integer valued.

If s < t , then N(s) ≤ N(t).

For s < t N(t) − N(s) equals to the number of events that occur in
the interval (s, t].

Def. 29: Counting process N(t), t ≥ 0, is called process with
independent increments if number of events observed in
nonintersecting intervals are independent random variables.

Def. 30: Counting process N(t), t ≥ 0, is called process with
stationary increments if distribution of number of events in any interval
depends only on its length and not on its placement.
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Poisson process

Def. 31: Counting process N(t), t ≥ 0, is called homogeneous Poisson
process with intensity λ, λ > 0 if:

i N(0) = 0
ii Process has independent increments.
iii Number of events in any interval of length t follows Poisson

distributin with mean λt , i.e.

P
(
N(t + s) − N(s) = n

)
= e−λt (λt)n

n!
, n = 0, 1, . . .

Def. 32: Counting process N(t), t ≥ 0, is called homogeneous Poisson
process with intensity λ, λ > 0, if:

i N(0) = 0
ii Process has stationary and independent increments.
iii P

(
N(h) = 1

)
= λh + o(h)

iv P
(
N(h) ≥ 2

)
= o(h)
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Poisson process – properties

Thm. 40: Definitions 31 and 32 of Poisson process are equivalent.

Rem. 37: Conditions (ii) – (iv) can be replaced by the following set of
equivalent conditions:

iii) Process has independent increments.

iv) P
(
N(t + h) − N(t) = 1

)
= λh + o(h)

v) P
(
N(t + h) − N(t) ≥ 2

)
= o(h)

Rem. 38: Poisson process has stationary increments and EN(t) = λt .

Rem. 39: The fact that N(t) follow Poisson distribution is a consequence
of the approximation of binomial distribution by the Poisson one.
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Poisson process – times between events

Def. 33: Assume Poisson process with intensity λ. Denote by
Tn, n = 1, 2, . . . time between n-th and (n − 1)-st event, where T0 = 0.
Sequence

{
Tn

}
is called sequence of times between the events.

Thm. 41: Sequence of times between the events follow exponential
distribution with intensity λ.

Thm. 42: Assume sequence of times between events
{
Tn

}
. let

Sn =
∑n

i=1 Ti . Then Sn follows gamma distribution Γ(n, λ) with density

fSn (t ; n; λ) =
λn

(n − 1)!
tn−1e−λt = λ · e−λt (λt)n−1

(n − 1)!

Hint. Recall renewal process (10), from where

N(t) ≥ n ⇐⇒ Sn ≤ t

and differentiate corresponding distribution function.
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Poisson process as process of birth and death

Ex. 20: Assume system which changes according to some random
influences as, e.g., telephone calls, radiation, etc. Denote Pn(t)
probability of event that during time interval of the length t we observed
exactly n changes.
Assume, moreover:

We observe stationary process, i.e. observed situation depend
neither on placement on time horizon nor on its length.
Not taking into account the number of events in interval (0, t] let
probability of one change in interval (t , t + h) be λh + o(h), and
probability of more than one event be o(h).

Rem. 40: Notice that changes in intervals (0, t] and (t , t + h) are
independent.
Tasks:

Form differential equations for probabilities Pn(t).
Show that probabilities Pn(t) follow Poisson distribution with
parameter λt .



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

Branching process alias How viruses can propagate

Model. Assume individuals that can give origin to new individuals of the
same type with probabilities

P(U = j) = pj , j = 0, 1, 2, . . . (14)

and probability generating function (PGF) P(x) =
∑∞

j=0 pjx j .
At the beginning (generation 0) there exists only one individual. Let
immediate descendants of n-th generation form (n + 1)-st generation
and let descendents behave independently each from other.

Problems.

Find distribution of members in the n-th generation.

Find limit (n → ∞) probability of event that population will die out.



J. ANTOCH, KPMS MAI 060 – REMARKS AND EXAMPLES January 1, 2019, 0:00:00

Branching process (cont.)

Model. Let X0 = 1, X1(≡ U) follow (14) with PGF P1(x) ≡ P(x). Let Xn

describes number of elements in n-th generation.
Let number of descendants of each of the X1 elements of first generation
is again rv with distribution (14). Let these rv’s are mutually independent
and independent on X1, i.e.

X2 = U1 + . . . + UX1

Analogously, X3 are descendants of the second order of the individuals
of first generation, i.e. X1 rv’s with distribution as X2, resp. descendents
of X2 rv’s with distribution as X1, i.e. (14) etc.
Thm. 43: Probability generation function Pn(x) of Xn fulfil recurrent
relation

Pn+1(x) = P
(
Pn(x)

)
= Pn

(
P(x)

)
and, moreover, it holds

E Xn =
(
E X1

)n
, varXn =

σ2µn−1( 1−µn

1−µ ), µ , 1,

nσ2, µ = 1,
n = 1, 2, . . .
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Markov processes with discrete states and continuous time

Def. 34: Markov processes with discrete states and continuous time
will be for us random process which moves from one state to another
according to some Markov chain and the times which spends in different
states follow exponential distribution. Moreover, (random) times it spends
in respective states are independent rv’s.

Rem. 41: By the other words, it is a random process such that:

Time spend in state i follow exponential distribution with mean
say 1/vi .

Process leaves state i and enters to state j with probability Pij , and it
holds

Pii = 0 ∀ i &
∑

j

Pij = 1 ∀ i.
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Basic characterizations of random variables

Rem. 42: Recall that any random variable (rv) can be unambiguously
characterized by the following characteristics:

density f(x), x ∈ R1

distribution function F(x) = P(X ≤ x), x ∈ R1

characteristic function ϕ(t) = E e itX , t ∈ R1

Some “special” types of random variables (rv’s) can be also
characterized by another characteristics as, e.g.

Integer valued rv’s are unambiguously characterized by
corresponding generating function P(x) =

∑∞
i=0 pix i , x ∈ R1

Non-negative rv’s are unambiguously characterized by
corresponding reliability function (survival function)
R(x) = P(X > x) = 1 − F(x), x ∈ R1, or
intensity function λ(x) =

f(x)
1−F(x)

, x > 0, or

cumulative intensity function Λ(x) =
∫ x

0 λ(t) dt
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Basic characterizations and characteristics of random
variables

Another useful characterizations can be obtained using

characteristic function ϕ(t) = E e itX , t ∈ R1, and its logarithm

moment generating function m(t) = E etX , t ∈ R1, and its logarithm
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Conditional probability

Def. 35: Assume probability space
(
Ω,A,P

)
. Let events A ,B ∈ A and

P(B) > 0. Then conditional probability of event A under condition B is
defined as

P(A |B) =
P(A ∩ B)

P(B)
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Conditional characteristics for discrete rv’s

Def. 36: Let X and Y are two discrete rv’s. Then:
conditional density of X given that Y = y is defined by

pX |Y (x |y) = P
(
X = x |Y = y

)
=
P
(
X = x,Y = y

)
P
(
Y = y

) =
pX ,Y (x, y)

pY (y)

conditional distribution function of X given that Y = y is defined by

FX |Y (x |y) = P
(
X ≤ x |Y = y

)
=

∑
z≤x

pX |Y (z|y)

conditional expectation of X given that Y = y is defined by

E
[
X |Y = y

]
=

∑
x

x · P
(
X = x |Y = y

)
=

∑
x

x · pX |Y (x |y)

conditional variance of X given that Y = y is defined by

var
[
X |Y = y

]
= E

[(
X − E

[
X |Y = y

])2
|Y = y

]
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Conditional characteristics for continuous rv’s

Def. 37: Let X and Y are two continuous rv’s. Then:
conditional density of X given that Y = y is defined by

fX |Y (x |y) =
f(x, y)

fY (y)

conditional distribution function of X given that Y = y is defined by

FX |Y (x |y) = P
(
X ≤ x |Y = y

)
=

∫ x

−∞

pX |Y (z|y) dz

conditional expectation of X given that Y = y is defined by

E
[
X |Y = y

]
=

∫ ∞

−∞

x · fX |Y (x |y) dx

conditional variance of X given that Y = y is defined by

var
[
X |Y = y

]
= E

[(
X − E

[
X |Y = y

])2
|Y = y

]
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Generating functions

Def. 38: Let a0, a1, . . . be a sequence of real numbers. If a series
A(x) =

∑∞
j=0 ajx j converge in some neighborhood of zero, we call A(x)

corresponding generating function.

Rem. 43: If {aj} is bounded, then A(x) evidently converge at least in the
interval (−1, 1).

Def. 39: If X is integer valued rv for which P(X = j) = pj ≥ 0,
j = 0, 1, . . . ,

∑
j pj = 1, then its (probability) generating function has the

form P(x) =
∑∞

j=0 pjx j .

Rem. 44:
Generating function P(x) unambiguously characterize
corresponding random variable X .
Notice that P(t) = E tX

[
recall that E X =

∑
j pjxj and

E g(X) =
∑

j pjg(xj)
]
.

For integer valued rv X corresponding generating function always
converge in point x = 1, because P(1) =

∑
j pj = 1.
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Generating functions – examples

Ex. 21: Check the form of generating functions for following most
important discrete distributions:

Alternative . . . P(x) = q + px
Binomial . . . P(x) = (q + px)n

Poisson . . . P(x) = exp{−λ + λx}
Geometrical . . . P(x) = p/(1 − qx)

resp. = px/(1 − qx)

Negative binomial . . . P(x) =
(
p/(1 − qx)

)r

resp. =
(
px/(1 − qx)

)r

Discrete uniform . . . P(x) = (1 − xn+1)/
(
(n + 1)(1 − x)

)
resp. =

(
x(1 − xn)

)
/
(
n(1 − x)

)
Using these generating functions calculate corresponding expectations
and variances.
Rem. 45: Recall that geometric and negative binomial distributions are
the simplest models describing waiting times.
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Properties of generating functions

Thm. 44: Denote qk = P(X > k) =
∑

j>k pj , k = 0, 1, 2, . . . and
corresponding generating function Q(x) =

∑∞
j=0 qjx j . Then for −1 < x < 1

it holds that Q(x) =
(
1 − P(x)

)
/(1 − x).

Thm. 45: For integer valued random variable X it holds that

E X =
∑∞

i=0
jpj =

∑∞

j=0
qj = P′(1) = Q(1)

Thm. 46: Let generating function P(x) of integer valued rv X has radius
of convergence larger than one. Then it holds

var X = P′′(1) + P′(1) −
(
P′(1)

)2
= 2Q′(1) + Q(1) −

(
Q(1)

)2

Rem. 46: Thm. 46 holds also in the case when radius of convergence is
equal to 1, provided limx→1− Q

′′(x) < ∞ and derivatives in point x = 1
are replaced by their limits for x → 1−.
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Partial fraction decomposition

Rem. 47: Knowledge of P(x) is theoretically equivalent to knowledge of
{pj}, and vice versa. However, the use of the fact that pj = P(j)(0)/j! can
be quite complicated in practice. In such a case following approximation
can be useful.

Thm. 47: Let generating function P(x) of the sequence {pn} can be
written in the form P(x) = U(x)/V(x), where U(x) and V(x) are
polynomials without common roots, order of U(x) is smaller than order of
V(x), and the roots of polynomial V(x) are simple. Then

pn =
ρ1

xn+1
1

+ · · ·+
ρm

xn+1
m

, 0 ≤ n < ∞,

where m is order of polynomial V(x), x1, . . . , xm are its roots and
ρk = −U(xk )/V ′(xk ), 1 ≤ k ≤ m.

Rem. 48: For calculation of ρk , 1 ≤ k ≤ m, can be used decomposition
into partial fractions, embedded in programs Maple or Mathematica, e.g.
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Partial fraction decomposition

Rem. 49: Assume that x1 is that root of V(x) for which
|x1| < xk , 2 ≤ k ≤ m. Then

pn =
ρ1

xn+1
1

(
1 +

ρ2

ρ1

(x1

x2

)n+1
+ . . . +

ρm

ρ1

( x1

xm

)n+1
)
, (15)

so that for n → ∞ it holds that pn ≈ ρ1/xn+1
1 , where ρ1 = −U(x1)/V ′(x1).

Rem. 50: For validity of the assertion pn ≈ ρ1/xn+1
1 it is possible to omit

assumption that degree of U(x) is smaller than degree of V(x). Instead it
is sufficient to assume only that the root x1 is unique. Moreover, recall
that practical experience shows that the approximation (15) is
satisfactory even for small values of n.
Ex. 22: Let qn be probability that in the sequence of n trials with
dichotomous response (T,F) a subsequence FFF will not occur. Find
corresponding generating function and calculate corresponding
probabilities qn both precisely and using the above approximations.
Solution: Q(x) =

(
8 + 4x + 2x2

)
/
(
8 − 4x − 2x2 − x3

)
.
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Convolution

Def. 40: Let a0, a1, . . . and b0, b1, . . . are two sequences of real numbers.
Then a sequence c0, c1, . . . defined by relation

cn = a0bn + a1bn−1 + . . . + anb0, n = 0, 1, . . .
is called convolution of sequences {aj} and {bj}. We will write

{cj} = {aj} ? {bj}

Thm. 48: Let {aj} and {bj} are two sequences with generating functions
A(x) and B(x). Then for the generating function corresponding to their
convolution {cj} it holds

C(x) = A(x)B(x).
Rem. 51: Convolution of a sequence {aj} with itself is called convolution
power and is denoted {aj}

2?. Analogously, n-th convolution power
{aj} ? . . . ? {aj}will be denoted {aj}

n?.
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Convolution

Thm. 49: Let X1,X2, . . . ,Xn are independent identically distributed (iid)
rv’s with integer valued distribution described by probabilities {pj}.
Denote corresponding generating function by P(x). Then distribution of
their sum, i.e. distribution of X1 + X2 + . . . + Xn is described by the n-th
convolution power {pj}

n?, and corresponding generating function has the
form

P(x) . . .P(x) = Pn(x)
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Compound distributions

Thm. 50: Let X1,X2, . . . and N are independent integer valued rv’s,
Xi ’s have the same distribution {fj} and N has distribution {gj}.
Then SN = X1 + . . . + XN is also integer valued random variable with the
distribution {hj}, where

hj = P(SN = j) =
∑∞

n=0
gn · {fj}n?.

If A(x),B(x) and C(x) are generating functions corresponding to the
sequences {fj}, {gj} and {hj}, then C(x) = B

(
A(x)

)
and E SN = E X1 ·E N.

Corresponding variance o can be calculated using Thm. 46.

Rem. 52: Notice that random variable SN = X1 + . . .+ XN is nothing else
than random sum of random variables.

Ex. 23: Let number N of laid eggs follow Poisson distribution Po(λ) and
probability of arrival of individual from an egg is p, i.e. Xi follow
alternative distribution. Show that in such a case SN follows Poisson
distribution Po(λ · p).




