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1 Introduction

In principle, the present Lecture Notes comprehend the contents of the course
NMFM408 ”Probability for Finance and Insurance” at the Faculty of Math-
ematics and Physics of the Charles University in Prague, which serves as a
brief introduction to continuous time martingale theory and stochastic anal-
ysis for students of Finance and Insurance Mathematics.

The aim of the course (and of the notes) is to provide, in a concise form,
a relatively rigorous mathematical treatment of basic facts which are needed
in continuous time modelling in finance and insurance mathematics. The
material collected here is by no means original. It is (in author’s opinion)
a carefully selected minimal set of mathematical tools concerning stochas-
tic continuous time modelling that students of this branch of study should
possess in their portfolio.

More comprehensive treatments in this field are numerous, for example
the monographs [KS], [O], [SV], [Fr], cf. also the lecture notes [Se] (in Czech,
which may be recommended to all interested readers. The present lecture
notes were built upon a selection from these books, notably from [KS] and
[O].

There is a nonempty symmetric difference between the contents of actual
course and exam requirements on one side (which may vary from year to year)
and these Notes on the other one. Only very few proofs and just selection
of examples can be found here. On the other hand, some facts are presented
here only for better overview (in particular, Section 6 is usually not a part
of the course).
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Section 2 contains Preliminaries; some basic definitions and facts from
probability theory are recalled and some notation is introduced. Section 3
is a crash course to fundamentals of stochastic processes. Section 3 contains
motivation, definition and basic properties of the Wiener process (Brownian
motion). In Section 4 continuous-time martingales are dealt with. Section 5
provides and introduction to stochastic analysis, definition and some proper-
ties of stochastic integral, the concept of stochastic differential, Ito formula
and some applications. In Section 6, a simple existence and uniqueness result
for nonlinear stochastic differential equation is given.

2 Preliminaries

Let (Ω,F ,P) be a measure space; that is, a triple consisting of a set Ω, a σ-
algebra F ⊂ exp Ω and a measure P on F , P(Ω) = 1. The space Ω = (Ω,F ,P)
is called a probability space, the sets in F are events and P is interpreted as
probability by which the events from F are measured. The points in Ω (often
denoted by ω) are called sample points or elementary events. A property that
is true except for an event of probability zero is said to hold almost surely
(abbreviated “a.s.”). Let (E,B) be a measurable space (B is a σ-algebra
consisting of sets from exp E); a measurable mapping X : Ω → E is called
an E-valued random variable. In the sequel, E (often called a state space)
will be always a separable Banach space E = (E, ‖ · ‖) equipped with the
σ-algebra B of Borel sets (in fact, in most cases E = Rn).

Let X be an E-valued random variable. Then

F̂X := {X−1(B);B ∈ B}

is called the σ-algebra generated by X; the measure µX on B defined as

µX(A) := P(X−1(A)), A ∈ B

is called the probability distribution or the probability law of the random
variable X (we also use the notation µX = Law(X)). Thus µX is the image
of the measure P under X and for A ∈ B, µX(A) is interpreted as the
probability that X evaluates in A; another usual notation is

µX(A) = P({ω ∈ Ω; X(ω) ∈ A}) =: P[X ∈ A].
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The mathematical expectation (or the mean value) of X is defined as the
abstract Lebesgue (or Bochner) integral

EX :=

∫
Ω

X(ω)P(dω) =

∫
E

xµX(dx)

whenever it makes sense. The variance is defined as

VarX = E‖X − EX‖2 = ‖X − EX‖2
L2(Ω;E).

Definition 2.1. (i) Two events A,B ∈ F are said to be stochastically inde-
pendent if P(A ∩B) = P(A)P(B).

(ii) Two σ-algebra G1 ⊂ F and G2 ⊂ F are stochastically independent if
each two events A ∈ G1, B ∈ G2, are stochastically independent.

(iii) Two random variables X, Y defined on the same probability space
(Ω,F ,P) (not necessarily taking values in the same state space) are said
to be stochastically independent if the respective σ-algebras F̂X , F̂Y are
stochastically independent.

Next we give a definition of conditional expectation (and conditional prob-
ability), which again is one of the most important concepts in probability
theory.

Note that if G is a σ-algebra, G ⊂ F , then L2(Ω,G;E) is a closed subspace
of L2(Ω,F ;E) = L2(Ω;E).

Definition 2.2. Let X ∈ L2(Ω,F ;E) and G ⊂ F be given, where G is a
σ-algebra. Then

(i) the conditional expectation of X given G (denoted by E[X|G]) is the
orthogonal projection of X on the subspace L2(Ω,G;E).

(ii) If G = FY where Y is a random variable defined on Ω, then E[X|FY ] =:
E[X|Y ] is called the conditional expectation of X given Y .

Remark 2.3. (i) By Definition 2.2 the conditional expectation E[X|G] is a
random variable that is G-measurable and is the best approximation of X in
L2(Ω,G;E) with respect to the L2(Ω,F ;E)-norm.

(ii) In general, the conditional expectation may be defined for X ∈
L1(Ω,F ;E) (as a G-measurable r.v. such that

∫
A
X dP =

∫
A
E[X|G] dP for

each A ∈ G).
(iii) It is easy to check that
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• EX = E[X|G] if G = {∅,Ω} is trivial,

• E(E[X|G]) = EX

• E[X|G] = X iff X is G-measurable

• E[X|G] = EX if X and G are stochastically independent.

The conditional expectation may be interpreted as follows: The σ-algebra G
contains the “information” available to us, on basis of which we construct an
estimate of the random variable X.

3 Stochastic Processes - General Concepts

Our next aim is to define an E-valued stochastic process and introduce some
related concepts. In general, by E-valued stochastic (or random) process one
can understand arbitrary family (Xt)t∈Γ of E-valued random variables where
the index set Γ (usually interpreted as time) may be N, N∪ {0}, Z (discrete
time), [0, T ], Rt = [0,+∞) or R (continuous time). We are only interested in
the continuous time case when Γ = [0, T ] or Γ = R+ (if not stated otherwise)
. By a sample path (or trajectory) of the process we understand the function
t 7→ Xt(ω) for each given ω ∈ Ω. Clearly, the stochastic process may be
viewed as a mapping X : [0, T ]×Ω→ E and we are free to use the notation
X = (X(t, ω)) = (Xt). The process is called measurable if X is measurable
w.r.t. the product σ-algebra B([0, T ])×F . Clearly, the process (Xt) may be
also viewed as a random variable taking valued in a suitable path space. For
example, if X ∈ L2((0, T )×Ω;B([0, T ]×F ; dt×P;E) then X may be viewed
as L2(0, T ;E)-valued random variable.

Each stochastic process defines a family of measures, so called finite-
dimensional distributions,

µXt1,...,tn(A1 × · · · × An) = P[Xt1 ∈ A1, . . . , Xtn ∈ An], (3.1)

Aj ∈ B, tj ∈ [0, T ], j = 1, . . . , n,

for n ∈ N.
From the definition (3.1) it follows that

µXtσ(1),...,tσ(n)(A1 × · · · × An) = µt1,...,tn(Aσ−1(t1) × · · · × Aσ−1(tn)) (3.2)
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for each permutation σ on the set 1, 2, ..., n and

µXt1,...,tn(A1×· · ·×An) = µXt1,...,tn,tn+1,...,tn+k
(A1×· · ·×An×En+1×· · ·×En+k)

for k ∈ N, where Ej = E, j = n + 1, . . . , n + k. Conversely, we have the
following result:

Theorem 3.1. (Daniell-Kolmogorov extension theorem). Let a family
{µXt1,...,tn, tj ∈ [0, T ]; j = 1, 2, . . . , n; n ∈ N} of normalized measures be
given that satisfies consistency conditions (3.1) and (3.2). Then there ex-
ists a probability space (Ω,F ,P) and a family of E-valued random variables
(Xt)t∈[0,T ] on Ω such that (3.1) holds.

The above Theorem (and its proof) makes it possible to construct a
stochastic process from the family of its finite-dimensional distributions (that
must satisfy natural consistency conditions). It also explains a way to “con-
struct” a probability space for a process that is usually “given” just by its
finite-dimensional distributions. Namely, one can set

Ω = E[0,T ], F = σ{Ct1,...,tn(A1, . . . , An), tj ∈ [0, T ], Aj ∈ B}

where C denotes the cylindrical set

Ct1,...,tn(A1, . . . , An) = {ω ∈ E[0,T ]; ω(t1) ∈ A1, . . . , ω(tn) ∈ An}, (3.3)

P[Ct1,...,tn(A1, . . . , An)] := µXt1,...,tn(A1 × · · · × An) (3.4)

( P may be extended to a measure on F) and for ω ∈ Ω = E[0,T ],

X(t, ω) := ω(t)

(X is often called a “canonical” process).
The space E[0,T ] is very large and sometimes it may be convenient to

choose a smaller “space of possible sample paths” for Ω, when we have a
good reason to believe that the paths really do live in such a space.

Now we should try to formalize the general feeling that changing the
process on P-measure zero does not mean so much. As we have uncountable
many “times”, there is a reason to be careful.

Definition 3.2. Let (Xt), (Yt) be stochastic processes defined on a proba-
bility space (Ω,F ,P).
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(i) The process (Yt) is a version (modification) of a process (Xt) if

∀ t ∈ [0, T ] P[Xt 6= Yt] = 0.

(ii) The processes X and Y are indistinguishable if

P[Xt = Yt ∀ t ∈ [0, T ]] = 1.

We have the following simple result:

Proposition 3.3. Let X be a modification of Y and suppose that both X, Y
have P-a.s. right- or left-continuous paths. Then X and Y are indistinguish-
able.

The finite-dimensional distributions in principle cannot provide enough
information to verify such properties like path continuity. So we need to
find a relatively simple criterion that would make it possible to verify that
the process has a continuous modification. Such a tool is provided in the
following theorem that is often called a Kolmogorov-Chentsov theorem (or
the Kolmogorov continuity test):

Theorem 3.4. Let there exist K > 0, m > 0, α > 0 such that

E‖Xt −Xs‖m ≤ K|t− s|1+α, t, s ∈ [0, T ]. (3.5)

Then the process (Xt) has a version with β-Hölder continuous paths for β <
α
m

(in particular, it has a version with continuous paths).

Note that the left side of (3.5) is determined just by finite-dimensional
distributions of the process (Xt) (in particular, by the measure µXt,s on B×B).

4 Brownian motion

In the present Section the standard Wiener process (or Brownian motion)
is defined and some of its basic properties are listed. The Wiener process
is a special stochastic process that is, in a sense, one of the central notions
in Stochastic Analysis. At first some motivations and historical remarks are
given.
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4.1 Historical remarks and heuristics

With a little bit of exaggeration we may say that two main areas of applica-
tion of stochastic analysis are physics (and more generally, science), where it
serves as a useful model of diffusive behaviour and of various types of ran-
dom perturbations, and finance mathematics, where it models “market” in a
broad sense, for instance stock prices. It is quite interesting that stochastic
analysis was standing on these two legs from the very beginning.

The process that is nowadays called “ Wiener process” or “Brownian
motion” was used for the first time in 1900 by L. Bachelier (who obtained it
as a limit of discrete random walks) to describe fluctuations in stock prices.
Just a few years (1905) later it has been rediscovered by A. Einstein and
Smoluchowski ([Ei], [ES]) in an attempt to study Brownian phenomena. Let
us explain their model in more details using the terminology introduced in the
previous section (rather than their original language). R. Brown in 1826–27
observed an irregular motion of pollen particles suspended in water. He noted
that the path of each particle is very irregular, having a tangent at no point,
and the motions of two distinct particles appear to be independent. Because
of the radial symmetry the “state space” of the particles is considered to be
one-dimensional (we may think of a projection of the movement on a given
straight line). Let ω denote the particle and W (t, ω) its position at time
t. The average displacement of a large numbers of particles at a given time
interval [s, t] is zero, i.e.

E(W (t, ·)−W (s, ·)) = 0 (4.1)

and as was observed, the “dispersion” of the moving particles is directly
proportional to the square root of elapsed time, that is

E(W (t, ·)−W (s, ·))2 = c(t− s), s < t. (4.2)

Under the assumption that “higher moments” are negligible on small time
intervals, i.e.

E(W (t, ·)−W (s, ·))n = o(t− s), n > 2, (4.3)

Einstein derived an equation for the density p(t, x, y) (we may interpret it as
a density of the probability distribution of the position at time t of a random
particle that starts from x at time zero), namely

∂p

∂t
(t, x, y) =

1

2
c
∂2p

∂y2
(t, x, y), (t, x, y) ∈ (0, T )× R× R, (4.4)
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with the initial condition

p(0, x, y) = δx(y) (4.5)

where δx is the Dirac function at x. PDE’s experts recognize p as the funda-
mental solution to the parabolic equation (4.4) that has the form

p(t, x, y) =
1√
2πct

exp
{−(x− y)2

2ct

}
, (4.6)

and all probabilists know that (4.6) is a formula for the Gaussian density.
This relation between PDE’s and probabilistic structures will be elaborated
in the next sections. To finish the story, Einstein computed that

c =
RT

Nf

where R is the gas constant, T is the absolute temperature, f is the friction
coefficient and N the Avogadro number. This equation and observed prop-
erties of Brownian motion allowed J. Perrin to compute N ∼ 6 · 1023 (the
number of molecules in a mole) and in fact, it helped to confirm the atomic

theory of matter (see e.g.[̇Cs] for more details on physical background of the
theory). Now we will try to approach the definition of the Wiener process
from another side, through a random perturbation of a deterministic sys-
tem. This will also motivate the form and definition of stochastic differential
equation (and stochastic integral) that are studied in subsequent sections.
We will start from a discrete time deterministic model

x(ti+1)− x(ti) = f(ti, x(ti))∆ti, i = 0, 1, 2, . . . , n, (4.7)

x(0) = x0,

where f : [0, T ] × R → R and x0 ∈ R are given, (ti) is a partition of the
interval [0, T ], t0 = 0 < t1 < t2 < · · · < tn = T and ∆ti = ti+1 − ti. Such a
system may be often derived to model some specific phenomena that are of
interest. It is trivial to “solve” the system (4.7), one has

x(tk) = x0 +
k−1∑
i=0

f(ti, x(ti))∆ti, k = 1, 2, . . . , n. (4.8)
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When max|∆ti| becomes very small, by a limiting passage in (4.7) (divided
by ∆ti) we obtain a continuous-time analogue of (4.7) that is an ordinary
differential equation

ẋ(t) = f(t, x(t)), t ∈ (0, T ) (4.9)

x(0) = x0,

the solution of which is a continuous-time analogue of (4.8),

x(t) = x0 +

∫ t

0

f(s, x(s))ds, t ∈ [0, T ]. (4.10)

Obviously, unlike the explicit recursive formula (4.8), (4.10) is again an equa-
tion that is to be solved. As is now generally accepted, we will interpret the
integral in (4.10) as the Lebesgue integral. Let us consider the “canonical”
case of random perturbations of these systems. In the discrete-time case it
should be

x(ti+1)− x(ti) = f(ti, x(ti))∆ti + σ(ti, x(ti))N(ti, ω)∆ti, (4.11)

x(0) = x0, i = 0, 1, 2, . . . , n

where σ : [0, T ] × R → R and N(ti, ω) = Nti is a discrete-time random
process (or a sequence of random variables) with the following properties:

ENti = 0 (4.12)

(otherwise we would “add” the expectation to the first term on the r.h.s. of
(4.11)),

Law(Nti) ≡ µ does not depend on i, EN2
ti

= 1 (4.13)

(i.e., the process is stationary, the probabilistic characteristics does not
change in time; the variance is finite and may be normalized) and

Nti and Ntj are independent for i 6= j. (4.14)

(i.e., the process has “no memory”).
The process with properties (4.12)–(4.14) is often called white noise

(discrete-time) and one can solve (4.11) recursively as in (4.8). However,
what is the continuous counterpart of (4.11)? Obviously, this should be the
differential equation

ẋ(t) = f(t, x(t)) + σ(t, x(t))N(t, ω), t ∈ (0, T ) (4.15)

x(0) = x0 (4.16)

where N(t, ω) = Nt(ω) is now a stochastic process satisfying the conditions
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(i) ENt = 0

(ii) Nt is stationary, EN2
t = 1

(iii) Nt and Ns are independent for any t 6= s.

The process satisfying (i)–(iii) (often used in applications) and is called a
(continuous-time) white noise. It has however one special feature: It does
not exist (as a measurable process). Indeed, we have

Proposition 4.1. Let (Nt), t ∈ [0, T ], be a stochastic process satisfying (i)–
(iii). Then the mapping N : [0, T ] × Ω → R is not measurable w.r.t. the
product σ-algebra B([0, T ])×F .

For the proof cf. [Kal].
It is apparent that a non-measurable stochastic process is of little use –

it cannot be handled by usual mathematical tools. So something must be
done here: One may introduce a class of generalized random processes where
white noise may be treated. This has been successfully done (see e.g. [Hi];
the story resembles the Dirac delta function and theory of distributions).
However, this theory is closely related to some advanced parts of functional
analysis and for our purpose we may try something simpler. Assume that the
random perturbation is written as an increment of a process, i.e. instead of
(4.11) we consider

x(ti+1)− x(ti) = f(ti, x(ti))∆ti + σ(ti, x(ti))(W (ti+1, ω)−W (ti, ω)),

x(0) = x0, i = 1, 2, . . . , n (4.17)

where W (t, ω) = Wt is a process on [0, T ] (to simplify the presentation we
may consider directly a continuous time process). The solution to (4.17) is
given recursively,

x(tk) = x0 +
k−1∑
i=0

f(ti, x(ti))∆ti (4.18)

+
k−1∑
i=0

σ(ti, x(ti))(W (ti+1, ω)−W (ti, ω)), k = 1, 2, . . . , n.

of course, we try to model the same situation as above. Therefore, roughly
speaking, “the increments of W” should analogous properties as “the values
of N”. More specifically, we assume
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(W1) W0 = 0, E(Wt −Ws) = 0, 0 ≤ s ≤ t <∞,

(W2) the process t 7→ Wt+s −Wt is stationary for each s ≥ 0 and

E(Wt −Ws)
2 = t− s, 0 ≤ s ≤ t <∞,

(W3) for each 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 the random variables Wt4 −Wt3 and
Wt2 −Wt1 are stochastically independent.

Having made a bad experience with the paths of the white noise, we
would like to ensure that the paths of W are reasonable. We might wish

(W4) The paths t 7→ W (t, ω) are continuous for P-almost all w ∈ Ω.

The following remarkable result holds true:

Proposition 4.2. The following two sets of conditions are equivalent:
(W1)–(W4) ⇔ (W1), (W2′), (W3), (W4) where

(W2′) For 0 ≤ s < t ≤ T the random variable Wt −Ws is Gaussian with the
mean zero and variance (t − s), that is, the density of its probability
law is given

dLaw(Wt −Ws)

dx
(x) =

1√
2π(t− s)

exp
{ −x2

2(t− s)

}
.

The proof of⇐ is obvious but the converse implication is not trivial at all
(cf. [KS] for the proof). It may be surprising that conditions (W1)–(W4) are
rather general, with no specific requirements on density of the law of (Wt),
but in (W2′) we already got a formula for the density!

Definition 4.3. A stochastic process (Wt) satisfying (W1)–(W4) (or, equiv-
alently, (W1), (W2′), (W3), (W4)) is called a (standard, one-dimensional)
Wiener process (or Brownian motion).

Having defined an appropriate process (Wt) we may try to guess what
the continuous-time counterparts of (4.17) and (4.18) should be. In place of
(4.17) we can easily imagine a formal differential

dx(t) = f(t, x(t))dt+ σ(t, x(t))dW (t, ω), t > 0
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x(0) = x0,

which is the common form of a stochastic differential equation. Its solution
may be defined via a continuous-time counterpart of (4.18),

x(t) = x0 +

∫ t

0

f(s.x(s))ds+

∫ t

0

σ(s, x(s))dW (s, ω), t ≥ 0,

where the first integral on the r.h.s. is the Lebesgue integral (with ω ∈ Ω as
a parameter) and the second one should be obtained as a suitable limit of
partial integral sums of Stieltjes type! This is a motivation for the definition
of stochastic integral of the Ito type studied below.

4.2 Basic properties

In this subsection some basic properties of the Wiener process are listed. Its
first (and very important) feature is that it does exist, which is a nontrivial
fact (because Wiener process is a nontrivial object).

Theorem 4.4. The Wiener process does exist.

Proof. It is possible to construct a Wiener process as an infinite series of much
simpler, “explicitly given” processes as was done by Ciesielski [Ci]. However,
we may also use the results of the previous section. The finite-dimensional
distributions of (Wt) may be guessed from (W2′) and (W3), namely

µWt1,...,tn

( n∏
j=1

(aj, bj)
)

= P[Wt1 ∈ (a1, b1), . . . ,Wtn ∈ (an, bn)] = (4.19)

=

∫ b1

a1

. . .

∫ bn

an

p(t1, x1) · p(t2 − t1, x2 − x1)

. . . p(tn − tn−1, xn − xn−1)dxn . . . dx1

where

p(t, x) =
1√
2πt

e−
x2

2t (4.20)

and aj ≤ bj, j = 1, 2, . . . , n. It may be checked that the set of measures
(µWt1,...,tn) satisfies the consistency conditions (3.1), (3.2) of the (Daniell-

Kolmogorov) Theorem 3.1, therefore there exists a process (W̃t) satisfying
(W1), (W2′) and (W3). We still need the paths continuity (W4) and to this
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end we may apply the Kolmogorov continuity test (Theorem 3.4). Indeed,
using the density (4.20) it is easy to compute

E|Wt −Ws|2m =

∫ ∞
−∞
|x|2mp(t− s, x)dx = Cm|t− s|m, m ∈ N, (4.21)

where Cm is a constant depending only on m. Therefore, taking arbitrary
m ≥ 2 we obtain (3.5) and hence there exist a version (Wt) of (W̃t) with
continuous sample paths, which is the process we are looking for. In fact,
Theorem 3.4 yields even Hölder continuity of paths with exponent β < m−1

2m
.

Since m is arbitrarily large, we arrive at

Corollary 4.5. The paths of the Wiener process are β-Hölder continuous
for β < 1

2
.

It may be worth to note that β < 1
2

is optimal: The paths of Wiener
process are not 1

2
-Hölder continuous at any point in [0, T ]. In fact, it is

possible to find exactly the modulus of continuity of paths of the Wiener
process, which is cg(δ) almost surely for c > 1, where

g(δ) = (2δ log(1/δ))1/2, δ > 0,

while for c < 1 it is is a modulus of continuity for almost no Wiener path
(cf. [KS]). This remarkable result has been proved by P.Lévy in 1937 and its
celebrated consequence is

Theorem 4.6. For P-almost every ω ∈ Ω, the sample path t 7→ W (t, ω)
is nowhere differentiable and is of infinite variation on each subinterval of
[0, T ].

What concerns the large and small time behaviour of the Wiener process,
the precise description is given in the following Theorem.

Theorem 4.7. (The Law of Iterated Logarithm, Khinchine 1933) Let (Wt)
be a Wiener process. Then

lim sup
t→∞

Wt√
2t log log t

= 1, lim inf
t→∞

Wt√
2t log log t

= −1,

lim sup
t→0+

Wt√
2t log log 1

t

= 1, lim inf
t→0+

Wt√
2t log log 1

t

= −1.
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As an immediate consequence we obtain the following statement.

Corollary 4.8. (The Strong Law of Large Numbers for Wiener process) We
have that

lim
k→∞

Wt

t
= 0, P-a.s.

Wiener process is also a particular case of processes called martingales
which are studied in the next section.

5 Martingales

5.1 Filtration and measurability

Definition 5.1. (i) A filtration on a probability space (Ω,F ,P) is an arbi-
trary system (Ft), t ≥ 0, of σ-algebras of Ω, such that Ft ⊂ F and Fs ⊂ Ft
for each 0 ≤ s ≤ t <∞.

(ii) Given a stochastic process (Xt) on (Ω,F ,P), the filtration generated
by (Xt) is defined by

F̂Xt := σ{Xs ∈ A; 0 ≤ s ≤ t, A ∈ B}

(iii) Let (Wt) and (Ft) be a Wiener process and a filtration, respectively,
on a probability space (Ω,F ,P). Then (Wt) is said to be a Wiener process
w.r.t. (Ft) is Ws is Fs-measurable and Wt − Ws and Fs are stochastically
independent for each 0 ≤ s < t <∞.

Obviously, each Wiener process (Wt) is a W.p. with respect to its own
filtration (F̂Wt ).

Given a filtration (Ft), the quadruple (Ω,F , (Ft),P) is called the stochas-
tic basis. Furthermore, for t ≥ 0 set Ft+ :=

⋂
s>t

Fs. Clearly, (Ft+) is a filtra-

tion and if Ft+ = Ft, t ≥ 0, the filtration (Ft) is said to be right-continuous.
Analogously, define Ft− := σa{

⋃
s<t

Fs}, t > 0 and the left-continuity of the

filtration (Ft) by the demand Ft− = Ft, t > 0.
We say that a fitration (Ft) satisfies the usual conditions (UC) if it is

right-continuous and F0 (hence Ft for each t ≥ 0) contains the system N =
{N ∈ F ; P(N) = 0} of all sets of probability zero.
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Proposition 5.2. Given a filtration (Ft) there exists the smallest filtration
(Gt) satisfy (UC) and containing (Ft). It holds that

Gt =
⋂
s>t

σ(Fs ∪N ), t ≥ 0.

The filtration (Gt) is called augmentation of (Ft).

For a stochastic process (Xt) we denote by (FXt ) the augmentation of

(F̂Xt ).

Note that (F̂Wt ) does not satisfy (UC), fortunately (Wt) is also Wiener
process with respect to the augmentation (FWt ).

The importance of (UC) will be seen in subsequent sections where we
work with random times.

In what follows, we introduce several concepts of measurability of a
stochastic process (Xt)t≥0 defined on a stochastic basis. To avoid ambiguities
we say that a mapping f : Y → Z is (A/B)-measurable where (Y,A) and
(Z,B) are measurable spaces, if f−1(B) ⊂ A.

Recall that (Xt)t≥0 may be understood as a map X : Rt × Ω→ Rm.
The process (Xt)t≥0 is said to be
– measurable if X : R+ × Ω→ Rm is (B(R+)⊗F)/B(Rm)-measurable
– adapted (w.r.t. (Ft)) if Xt : Ω→ Rm is Ft/B(Rm)-measurable for each

t ≥ 0
– progressively measurable (or progressive) if for each t > 0 the mapping

X : [0, t]× Ω→ Rm is (B([0, t])⊗Ft)/B(Rm)-measurable.

Remark 5.3. Each progressively measurable process is both measurable and
adapted. Each adapted, right- or left-continuous process is progressively mea-
surable (prove!). Each measurable and adapted process has a progressively
measurable version (the proof of this is difficult).

If the (UC) are satisfied, each modification of an adapted process is again
adapted. This allows to consider ALL paths of an (almost surely) continuous
process to be continuous, without loosing adaptiveness.

5.2 Martingales-Fundamentals

In this subsection we assume that a stochastic basis (Ω,F , (Ft, )P) is given.
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Definition 5.4. Let (Xt) and (Ft) be an Rn-valued stochastic process and
a filtration, respectively, such that (Xt) is (Ft)-adapted, E|Xt| <∞ for each
t ≥ 0 and

E[Xt|Fs] = Xs P-a.s., 0 ≤ s ≤ t <∞. (5.1)

Then (Xt) is called a martingale with respect to (Ft) Analogously, for n = 1,
(Xt) is called submartingale and supermartingale for ≥, ≤ in (5.1), respec-
tively. If moreover, E|Xt|2 < ∞, (Xt) is called an L2-martingale or square
integrable (sub-, super-) martingale.

Martingales have a lot of nice properties that can be found in most mono-
graphs or textbooks devoted to stochastic analysis (e.g. [KS]). Here we list
some of them.

Proposition 5.5. If ϕ : R → R is convex and E(ϕ(Xt))
+ < ∞ for each

t ≥ 0 then

(i) If (Xt) is a martingale then (ϕ(Xt)) is a submartingale.

(ii) If (Xt) is a submartingale an ϕ is nondecreasing then (ϕ(Xt)) is a
submartingale.

Proof. By a “conditional” version of Jensen inequality.

Contemplation: Compare the definition of martingale with the one of
Markov property:

E[Xt | F̂Xs ] = E[Xt | Xs] := E[Xt | F̂Xs ] P-a.s., t > s.

The filtration (Ft) may be augmented so that the “bigger” filtration satisfies
(UC) and the process (Xt) is still a martingale w.r.t. this filtration.

Theorem 5.6. Assume that (Xt) is a submartingale w.r.t. a filtration (Ft)
satisfying (UC) and the function t 7→ EXt is right-continuous (this is trivially
satifies if (Xt) is a martingale). Then (Xt) has a right-continuous modifica-
tion.

Remark. More precisely, (Xt) then has càdlàg paths (right-continuous and
such that there exist finite limits from the left); càdlàg = abbrev. of “continue
à droite, limite à gauche”.

Examples of martingales: Processes with independent increments, com-
pensated power of a Wiener process, stochastic exponential, compensated
Poisson process.
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Definition 5.7. The random variable τ : Ω → R+ ∪ {+∞} is called a
stopping time (w.r.t. (Ft)) if

{ω ∈ Ω; τ(ω) ≤ t} = [τ ≤ t] ∈ Ft,

(or, equivalently, [τ > t] ∈ Ft) for each t ≥ 0. Similarly, τ is called an
optional time if [τ < t] ∈ Ft, t ≥ 0.

Exercise. Each stopping time is optional. If (Ft) is right-continuous, the
converse is true as well.

Exercise. If τ is a stopping time (ST), σ = 2τ is a stopping time, while
κ = 1

2
τ (in general) is not.

Proposition 5.8. Let (Ft) be right-continuous. Then
(i) τ, σ are ST ⇒ τ + σ is ST (not τ − σ), τ ∧ σ τ ∨ σ are ST.
(ii) (τn) is a sequence of ST ⇒ supn τn, infn τn, lim sup τn, lim inf τn are

ST.

Theorem 5.9. Assume that (UC) are satisfied and let B ⊂ Rn be either
open or closed set, (Xt) an adapted continuous process in Rn. Let

τB := inf{t ≥ 0, Xτ ∈ B}

define the hitting time of B (= exit time of Rn \ B) with the convention
inf{∅} = +∞. Then τB is a stopping times.

Definition 5.10. Let τ be a stopping time w.r.t. (Ft)t≥0. The σ-algebra Fτ
of events taking place before time τ consists of those events A ∈ F for which

A ∩ {τ ≤ t} ∈ Ft for each t ≥ 0.

Theorem 5.11. (random stopping) Set Xτ (ω) := Xτ(ω) (assuming τ < ∞
P-a.s.). If (Xt) is progressively measurable and the “stopped process” (Yt),
Yt := Xτ∧t is progressively measurable.

Proof. A nice exercise on measurability of composition maps. In general, the
statement is false if “progressive measurability” is replaced by “adaptivity”.

Theorem 5.12. (optional sampling theorem) Let (Xt). be a right-continuous
submartingale w.r.t. filtration (Ft) satisfying (UC), τ and σ are bounded
stopping times such that σ ≤ τ P-a.s. Then
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(i)
E[Xτ | Fσ] ≥ Xσ P-a.s.

If (Xt) is a martingale, (i) holds with equality.

(ii) A stopped (sub)martingale (Yt), Yt := Xτ∧t is a (sub)martingale.

One of the most important properties of martingales is the possibility of
estimating maxima of paths by their values at the endpoints of intervals:

Theorem 5.13. (Doob maximal inequalities) Let (Xt) be a martingale or
(for n = 1) a nonnegative submartingale. Then

(i) ∀ p ≥ 1, λ > 0, T > 0

λpP[ sup
0≤t≤T

|Xt| ≥ λ] ≤ sup
t∈[0,T ]

E|Xt|p = E|XT |p

(ii) ∀ p > 1, T > 0

E|XT |p ≤ E sup
t∈[0,T ]

|Xt|p ≤
(

p

p− 1

)p
sup
t∈[0,T ]

E|Xt|p =

(
p

p− 1

)p
E|XT |p.

5.3 Doob-Meyer Decomposition

In the present subsection, (Ω,F , (Ft),P) denotes a stochastic basis satisfying
(UC).

Definition 5.14. An adapted (1-dimensional) process (At) is called increas-
ing if A0 = 0, t 7→ At are P-a.s. nondecreasing continuous functions and
EAT <∞ for each T > 0. An increasing process is called natural if

E
∫

[0,t]

MsdAs = E
∫

[0,t]

Ms−dAs, t ≥ 0,

holds for each right-continuous bounded martingale (Mt).

Remark 5.15. Let P denote the smallest σ-algebra on the product space
R+×Ω such that all left-continuous, adapted processes Y : R+×Ω→ Rn are
P-measurable (the sigma-algebra of predictable sets). A predictable process
is defined as a mapping X : R+×Ω→ Rn which is P-measurable. It may be
shown that each predictable process is progressive (In the discrete-time case,
an adapted random sequence (Xn) is predictable if Xn is Fn−1-measurable
for each n ≥ 1). It may be shown that an increasing process is natural if and
only if it is predictable.
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Definition 5.16. A right-continuous, adapted process (Xt) is said to be of
class (DL) is for each a > 0 the set (Xτ )τ∈Sa is uniformly integrable where

Sa := {τ : Ω→ [0, a], τ is a stopping time}.

Remark 5.17. If (Xt) is right-continuous one-dimensional submartingale
then

(i) (Xt ≥ 0 P-a.s. ∀ t ≥ 0)⇒ (Xt) is of class (DL).

(ii) For any increasing process (At) and a martingale (Mt), (Xt = Mt +
At ∀ t ≥ 0)⇒ (Xt) is of class (DL).

The converse is the celebrated Doob-Meyer theorem:

Theorem 5.18. (Doob-Mayer decomposition) If (Xt) is a right-continuous
one-dimensional submartingale of class (DL) then

Xt = Mt + At, t ≥ 0,

where (Mt) is a (right-continuous) martingale and (At) is an increasing pro-
cess. The process (At) may be chosen natural and with this condition is the
above decomposition unique.

Proof. Quite instructive in the discrete-time case. In the rest of this section
the processes are supposed to be one-dimensional.

Denote byM2 the linear space of L2-martingales, right-continue and such
that X0 = 0. ByMc

2 we denote the subspace ofM2 consisting of continuous
martingales.

Proposition 5.19. For (Xt) ∈M2 there is a unique decomposition

X2
t = Mt + At,

where (Mt) is a inM2 and (At) is a natural (predictable) increasing process.
If (Xt) ∈Mc

2 then (Mt), (At) are continuous.

Proof. Follows directly from Theorem 5.18 and Remark 5.16 a since (X2
t ) is

a nonnegative submartingale.

Definition 5.20. For (Xt) ∈ M2, the quadratic variation process (denoted
by (〈X〉t)) is the increasing process (At) from Proposition 5.19. Thus it is
the unique natural increasing process such that (X2

t −〈M〉t) is a martingale.
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Exercises. Compute the quadratic variation of the Wiener and comparsated
Poisson processes.

Consider an arbitrary random process (Xt).
Given a partition T = {t0, t1, . . . , tm} of the interval [0, t], 0 = t0 < t1 <

· · · < tm = t, and p > 0, set

V
(p)
t (T) :=

m∑
k=1

|Xtn −Xtk−1
|p, ‖T‖ := max

k
|tk−1 − tn|.

Theorem 5.21. Let (Xt) =Mc
2. Then

lim
‖T‖→0

V
(2)
t (T) = 〈X〉t in P

for each t ≥ 0, that is, for each ε > 0 there exists ϑ > 0 such that for each
partition T, ‖T‖ < ϑ, we have

P[|V (2)
t (T)− 〈X〉t| > ε] < ε.

Remarks. 1) The above statement may be false for discontinuous processes.
2) In general if

lim
‖T‖→0

V
(p)
t (T) = Lt in P,

and Lt ∈ (0,+∞) P a.s., t ≥ 0, then

lim
‖T‖→0

V
(q)
t (T) = 0 in P,

lim
‖T‖→0

V
(q′)
t (T) = +∞ in P

for each q > p, q′ < p. In particular, the paths of processes inMc
2 typically do

not have bounded variation and may not be used as integrators in Lebesgue-
Stieltjes integral.

3) If Xt = Wt is a Wiener process, the statement of Theorem 5.22 may be
modified: If (Tn) is a sequence of partitions of the interval [0, t]; ‖Tn‖ → 0,
then

E|V (2)
t (Tn)− t|2 → 0, n→∞.
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If, moreover, either
∑∞

n=1 ‖Tn‖ <∞ or (Tn) are nested (Tn+1 ⊃ Tn for each
n ∈ N) then

V
(2)
t (Tn)→ 〈W 〉t = t P-a.s.

We conclude the present paragraph by the following very useful result:

Theorem 5.22. (Lévy) Let (Xt) be a continuous adapted process in R such
that the process (Mt) defined by Mt := Xt − X0 is in Mc

2 and 〈M〉t = t,
t ≥ 0. Then (Mt) is the Wiener process.

6 Stochastic integration

In this section we will define a stochastic integral that is usually written in
the form ∫ T

0

ϕ(s)dWs (6.1)

where (Wt) is a Wiener process and ϕ is another stochastic process. The
form (6.1) resembles the Stieltjes integral and indeed, it will be defined as a
suitable limit of Stieltjes-type partial sums. A motivation for this definition
has been given in Section 2.1. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis and
(Wt) a standard, one-dimensional Wiener process defined on it. At first we
define a class of stochastic processes on Ω that will turn out to be “admissible
integrands”. Set

M2
w(0, T ) := {(Xt) ∈ L2((0, T )× Ω); (Xt) is (Ft)-progressive} (6.2)

and

E = Ew(0, T ) :={(Yt) ∈M2
w(0, T ); ∃ t0 = 0 < t1 < · · · < tn = T ; (6.3)

Yt ≡ Y (i) for t ∈ [ti, ti+1)}.

Alternatively,

Yt =
n−1∑
i=0

Y (i)1[ti,ti+1)(t), t ∈ [0, T ], (6.4)

where (ti) is a partition of the interval [0, T ] as in (6.3) and Y (i) are random
variables on Ω, Y (i) ∈ L2(Ω) is Fti-measurable for each i. The elements of E
are called step functions. We have the following
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Lemma 6.1. (i) M2
w(0, T ) is a closed subspace of L2((0, T )× Ω).

(ii) Ew(0, T ) is dense in M2
w(0, T ) with respect to the norm of L2((0, T )×

Ω).

While the proof of (i) is obvious, (ii) requires some technical work. The
basis idea follows the lines of standard analytical methods, using e.g. either
mollifiers or “averages over small intervals”. However, it must be made sure
that the chosen technique will produce a sequence of step functions that are
really in E , i.e., that are adapted (cf. [KS] or [O] for details).

Definition 6.2. Let Y ∈ E take the form (6.4). Then the random variable

I(Y ) =

∫ T

0

YsdWs :=
n−1∑
i=0

Y (i)(Wti+1
−Wti) (6.5)

is called the stochastic (Itô) integral of (Yt) with the driving process (inte-
grator) (Wt).

The following Proposition will help us to extend the integral (as an op-
erator) from step functions to the whole space M2

w(0, T ).

Proposition 6.3. (i) I : Ew(0, T )→ L2(Ω) is a linear operator.
(ii) For each Y ∈ E,

E
∫ T

0

YsdWs = EI(Y ) = 0. (6.6)

(iii) For each Y ∈ E,

E|I(Y )|2 = E
∣∣∣∣ ∫ T

0

YsdWs

∣∣∣∣2 = E
∫ T

0

|Ys|2ds =

∫ T

0

E|Ys|2ds, (6.7)

that is, the operator I : E → L2(Ω) is an isometry (called the Itô isometry)
when E is equipped with L2((0, T )× Ω)-norm.

Proof. The proof of (i) is obvious. In order to prove (ii) we may note that
for each i the random variables Y (i) and Wti+1

−Wti are stochastically inde-
pendent, therefore

E
∫ T

0

YsdWs = E
n−1∑
i=1

Y (i)(Wti+1
−Wti) =

n−1∑
i=1

EY (i) · E(Wti+1
−Wti) = 0
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since the process (Wt) is centered. Also, we have

E
( n−1∑

i=1

Y (i)(Wti+1
−Wti)

)2

= E
[∑

i

(Y (i))2(Wti+1
−Wti)

2 (6.8)

+ 2
∑
i<j

Y (i)Y (j)(Wti+1
−Wti)(Wtj+1

−Wtj)

]
.

By the property (W2) of the Wiener process and using again adaptiveness
of (Yt) we have

E
∑
i

(Y (i))2(Wti+1
−Wti)

2 =
∑
i

E(Y (i))2 · E(Wt+1 −Wti)
2 (6.9)

=
∑
i

E(Y (i))2(ti+1 − ti) =

∫ T

0

EY 2
t dt.

Furthermore, since ti+1 ≤ tj, the product Y (i)Y (j)(Wti+1
− Wti) is Ftj -

measurable and clearly, Wtj+1
−Wtj is independent of Ftj , which yields

E
∑
i<j

Y (i)Y (j)(Wti+1
−Wti)(Wtj+1

−Wtj) (6.10)

=
∑
i<j

EY (i)Y (j)(Wti+1
−Wti) · E(Wtj+1

−Wtj) = 0

as the last expectation on the r.h.s. of (6.10) is zero. Now, substituting (6.9)
and (6.10) into (6.8) we get

E
∣∣∣∣ ∫ T

0

YsdWs

∣∣∣∣2 = E
(∑

i

Y (i)(Wti+1
−Wti)

)2

=

∫ T

0

E|Ys|2ds,

which completes the proof of (iii).

Now we are in position to complete the definition of the stochastic inte-
gral. The linear operator I : (E , ‖ · ‖L2((0,T )×Ω))→ L2(Ω) is bounded (in fact,
isometric) by (iii) of the previous Proposition and E is dense in M2

w(0, T ) by
Lemma 6.1. Thus there exists a unique extension of I (denoted again by I) to
the space M2

w(0, T ) that is a bounded linear operator I : M2
w(0, T )→ L2(Ω).

Definition 6.4. For Y ∈M2
w(0, T ), the random variable I(Y ) is also denoted

by
∫ T

0
YsdWs and called the stochastic (Itô) integral.

23



The above definition may be reformulated in the following way: Given
Y ∈ M2

w(0, T ), there exists a sequence of step functions Yn ∈ E , Yn → Y
in L2((0, T )× Ω) (by Lemma 6.1). Obviously, (Yn) is a Cauchy sequence in

L2((0, T )×Ω) and therefore by Proposition 6.3 (iii) I(Yn) =
∫ T

0
Yn(s)dWs is

a Cauchy sequence in L2(Ω), hence convergent. The limit I(Y ) = lim I(Yn)

is the stochastic integral
∫ T

0
YsdWs.

As an immediate consequence of the above construction and Proposi-
tion 6.3 we obtain the following

Corollary 6.5. The operator I : M2
w(0, T ) → L2(Ω) is linear and for Y ∈

M2
w(0, T ), (ii) and (iii) of Proposition 6.3 hold true (i.e., I is an isometry).

In most cases (in the SDE’s theory) we deal with integrands that have
continuous sample paths. In this case we have a statement that more lu-
cidly justifies the definition of stochastic integrals in models described in the
previous Section.

Remark 6.6. The concept of stochastic integral may be significantly ex-
tended in many directions. The most usual extension is to consider the
space Sw(0, T ) of all (Ft)-progressive integrands (Yt) satisfying∫ T

0

|Yt|2dt <∞ P-a.s. (6.11)

(i.e. without the mathematical expectation). The stochastic integral∫ T
0
YtdWt is then obtained as a limit in probability of integrals of approx-

imate step functions. Such an integral, however, need not satisfy (ii) and
(iii) of Proposition 6.3 (in general, it is not an element of L2(Ω) nor even
integrable on Ω.

Proposition 6.7. Let Dn = {tni } be a sequence of partitions of the interval
[0, T ] and assume that Y ∈ Sw(0, T ) has continuous sample paths. Then

∑
i

Ytni (Wtni+1
−Wtni

)→
∫ T

0

YtdWt as |Dn| → 0 in P. (6.12)

Proof. It may be easily checked that the sequence of step functions Y n(t) =
Ytni , t ∈ [tni , t

n
i+1), satisfies the conditions required in the definition of stochas-

tic integral.
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Next we list some useful properties of stochastic integrals.

Theorem 6.8. Let Y ∈ Sw(0, T ) set It(Y ) :=
∫ t

0
YsdWs, t ∈ [0, T ]

(i) (It) is a (Ft)-progressive process.
(ii) for each 0 ≤ u ≤ T we have∫ T

0

YsdWs =

∫ u

0

YsdWs +

∫ T

u

YsdWs, P-a.e.

(iii) There is a modification of (It) which has continuous paths.
(iv) If Y ∈M2

w(0, T ) then (It) is a martingale w.r.t (Ft) and

< I >t=

∫ t

0

|Ys|2ds.

(v) If Y ∈M2
w(0, T ) we have that

E
[

max
0≤t≤T

∣∣∣∣ ∫ t

0

YsdWs

∣∣∣∣2] ≤ 4E
∫ T

0

|Ys|2ds. (6.13)

Proof. The statements (i), (ii) and (iv) follow easily from the definition of the
stochastic integral. The part (iii) may be proved in a natural way by a limit
passage of integrals of simple functions (note that if (Yt) is deterministic
it also easily follows by the Kolmogorov continuity test if we use the Itô
isometry and Gaussianity of the integral). The inequality (6.13) is a simple
consequence of (iii), (iv), and the Doob maximal inequality.

Remark 6.9. (i) In the sequel, when speaking about a stochastic integral as
a process t 7→ It(Y ), we always have in mind the continuous version provided
by Theorem 6.7 (iv).
(ii) Note that if only Y ∈ Sw(0, T ) (not necessarily Y ∈ M2

w(0, T ),
cf. Remark 6.6) the stochastic integral does not have to be a martingale (the
statements of Theorem 6.8 (iv) and (v) no longer hold) because of lack of
integrability on Ω. However, it is so-called local martingale (see e.g. [KS] for
details).

Example 6.10. Compute
∫ T

0
WtdWt! Obviously, the integral does exist since

(Wt) ∈ M2
w(0, T ). The integrand has P-a.s. continuous paths, so by Propo-

sition 6.7 ∫ T

0

WtdWt = lim
|Dn|→0

n−1∑
i=0

Wtni
(Wtn+1

i
−Wtni

) (6.14)
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over a sequence of partitions Dn = {tni } of the interval [0, T ]. For clarity, we
suppress n in the notation tni = ti. Then∑

i

Wti(Wti+1
−Wti) =

∑
i

(
− 1

2
W 2
ti+1

+WtiWti+1
− 1

2
W 2
ti

)
(6.15)

+
∑
i

(1

2
W 2
ti+1
− 1

2
W 2
ti

)
= −1

2

∑
(Wti+1

−Wti)
2 +

1

2
W 2
T

and computing the L2(Ω)-limit by Theorem ?? we obtain∫ T

0

WtdWt = −1

2
T +

1

2
W 2
T . (6.16)

It is interesting to compare this result with his analogue for the Stieltjes
integral in case when the integrand (and integrator) ϕ is smooth, ϕ(0) = 0.
Then we have by integration by parts formula∫ T

0

ϕ(s)dϕ(s) =

∫ T

0

ϕ(s)ϕ′(s)ds = ϕ2(T )−
∫ T

0

ϕ′(s)ϕ(s)ds

which yields ∫ T

0

ϕ(s)dϕ(s) =
1

2
ϕ2(T ). (6.17)

Comparing (6.16) to (6.17) we can see that an extra term −1
2
T has been

obtained that is missing in the “smooth” case (6.17). This term has arisen
as a quadratic variation of the Wiener process, which is nonzero (unlike in
the case of a smooth function ϕ). A similar phenomenon will later appear in
a more general situation in the so-called Itô formula.

Remark 6.11. In the standard Stieltjes integration theory, the integral is
found as a limit of partial sums of the form

n−1∑
i=1

ϕ(τi)(Wti+1
−Wti) ≈

∫ T

0

ϕ(t)dWt (6.18)

where τi, roughly speaking, may vary in the interval [ti, ti+1]. It is easy
to demonstrate that such an approach would be fruitless in our case. Let
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t̄i = 1
2
(ti+ti+1) be the midpoints of the interval [ti, ti+1]. Proceeding similarly

as in (6.15) it is easy to see that

lim
|Dn|→0

n−1∑
i=0

Wt̄i(Wti+1
−Wti) =

1

2
W 2
T in L2(Ω) (6.19)

which is different from the right-hand side of (6.16) and seems to resemble
the “smooth” case (6.17). However, it may be easily seen that the similarity
with (6.17) is rather incidental; the influence of quadratic variation of the
process does not “disappear” (as in the smooth case) but is just “balanced”,
so at the end of the day it is cancelled out. In this way we might consider
a whole scale of stochastic integrals, depending on the position of τi inside
[ti, ti+1].

The choice τi = t̄i is quite popular and leads to the concept of so called
Stratonovich (or symmetric) integral, denoted usually

∫ T
0
Ys◦dWs, and defined

for a class of continuous integrands (Yt) as a limit of partial sums of the form

n−1∑
i=1

Yt̄i(Wti+1
−Wti) ≈

∫ T

0

Ys ◦ dWs.

Both Itô a Stratonovich integrals are commonly used in stochastic analysis.
There is a lengthy discussion which one is better in each particular instance
in applications. A major advantage of the Itô approach was illustrated in
the intuitive derivation of SDE carried out in Section 2.1 - it leads to the
Itô-type integral. An analogous procedure leading to Stratonovich integral
would mean that the noise is “looking to the future”. On the other hand,
if the paths of the Wiener process in the SDE are approximated by con-
tinuously differentiable processes (or polygons) then the solutions of such
approximative equations (interpreted as ODE’s depending on a parameter
ω ∈ Ω) converge to a solution of a SDE in which, however, the stochastic in-
tegral is understood in the Stratonovich sense. From the technical viewpoint,
the Stratonovich integrals are not martingales (unlike the Itô integrals), but
on the other hand there are no second order terms in the transformation for-
mula (like in the Itô formula below), which makes them suitable especially
when dealing with SDE’s on manifolds.

From pure mathematical viewpoint, the Itô a Stratonovich integrals are
basically mutually “convertible”, for example, in the framework of the so-
called Malliavin calculus (se e.g. [Nu]). Also the SDE’s consider in either Itô
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or Stratonovich sense may be (in reasonable case) mutually converted (after
the change of the type of integral, they will have the same “diffusion” part
but different “drift” part).

Our next aim is to cope with the situation, when the upper bound in the
stochastic integral is random, i.e.,∫ τ

0

YsdWs, τ : Ω→ R+.

It turns out that the above integral may be defined and reasonably handled
for τ which is a stopping time.
We have the following natural definition:

Definition 6.12. Let τ ≤ T be a stopping time w.r.t. (Ft), Wt a Wiener
process w.r.t. (Ft) and (Yt) ∈ Sw(0, T ). Then

Iτ (Y ) =

∫ τ

0

YtdWt :=

∫ T

0

1[τ>t]YtdWt.

Obviously the process t 7→ 1[τ>t]Yt is in Sw(0, T ), so the definition is correct.
We immediately obtain

Proposition 6.13. For a stopping time τ ≤ T , Y ∈M2
w(0, T ) we have

E
∫ τ

0

YtdWt = 0

So far we have been dealing with one-dimensional Wiener process and
stochastic integral. However, extension of the above definitions and re-
sults to a multidimensional case is quite straightforward. By an n-
dimensional, standard Wiener process we understand the Rn-valued pro-
cess Wt = (W 1

t , . . . ,W
n
t )′ the components (W i

t ) of which are standard one-
dimensional Wiener processes that are stochastically independent. For a
Hilbert space H, set M2

w(0, T ;H) = {Y ∈ L2((0, T ) × Ω;H), Y is (Ft)-
progressive} where (Ft) is a filtration such that (Wt) is a Wiener process
w.r.t. (Ft) (this concept remains the same as in one-dimensional case). The
definition of Sw(0, T ;H) is analogous. Let Y ∈ Sw(0, T ;Rm×n), Y = (Y ij);
then

I(Y ) =

∫ T

0

YtdWt :=

( n∑
j=1

∫ T

0

Y 1j
t dW j

t , . . . ,

m∑
j=1

∫ T

0

Y mj
t dW j

t

)′
.
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It is easy to modify all statements of this Section (in particular, Proposi-
tion 6.3, Corollary 6.5 [the Itô isometry!], and Theorem 6.8) for the multidi-
mensional case.

Definition 6.14. An Rm-valued process (Xt) is said to have a stochastic
differential of the form

dXt = atdt+ btdWt, t ∈ (0, T ] (6.20)

where (a(t)) ∈ Sw(0, T ;Rm), (bt) ∈ Sw(0, T ;Rm×n), (Wt) being an n-
dimensional, standard Wiener process, if

Xt = X0 +

∫ t

0

asds+

∫ t

0

bsdWs, t ∈ [0, T ], P-a.s. (6.21)

where the first integral on the r.h.s. of (6.21) is the Lebesgue integral almost
surely and the second integral is the stochastic (Itô) integral.

Next, we formulate the celebrated Itô Lemma, a chain rule for stochastic
differentials. By C1,2([0, T ]×Rm) we denote the space of functions whose first
time derivative and second space derivatives are continuous on [0, T ]× Rm.

Theorem 6.15. (the Itô formula). Let V ∈ C1,2([0, T ) × Rm) and assume
that the process (Xt) is given by the stochastic differential (6.20), where (at)
and (bt) satisfy the conditions from Definition 6.14. Set σt = (σijt ) = btb

T
t .

Then the process Yt = V (t,Xt) has a stochastic differential,

dYt =

[
∂V

∂t
(t,Xt) + 〈∇xV (t,Xt), at〉+

1

2

m∑
i,j=1

σijt
∂2V

∂xi∂xi
(t,Xt)

]
dt (6.22)

+
m∑
i=1

n∑
j=1

bijt
∂V

∂xi
(t,Xt)dW

j
t , t ∈ (0, T ).

In the one-dimensional case (n = m = 1) the formula (6.22) takes the form

dYt =
(∂V
∂t

(t,Xt) + at
∂V

∂x
(t,Xt) +

1

2
b2
t

∂2V

∂x2
(t,Xt)

)
dt (6.23)

+ bt
∂V

∂X
(t,Xt)dWt.
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The proof of Theorem 6.15 is relatively lengthy and technical, it may
be found practically in all monographs and textbooks on stochastic calculus
(e.g., [KS] or [O]).

Here we give a short “heuristic” proof (not a mathematically rigorous
proof!) in the one-dimensional case.

Let dt and dWt be the “infinitesimal” increments of time and the Wiener
process, respectively. We postulate that

(dt)k = 0, (dWt)
2 = dt, (dt)l(dWt)

r = 0 (6.24)

for k ≥ 2, l ≥ 1, r ≥ 1 (trace what is behind these postulates!). We may
write

Xt+dt−Xt = dXt = atdt+btdWt, (dXt)
2 = a2

t (dt)
2 +2atbt(dt)dWt+b

2
t (dWt)

2,
(6.25)

etc. Using the Taylor expansion we get for Yt = V (t,Xt) that

dYt =V (t+ dt,Xt+dt)− V (t,Xt) =
∂V

∂t
(t,Xt)dt+

∂V

∂x
(t,Xt)(Xt+dt −Xt)

+
1

2

(
∂2V

∂t2
(t,Xt)(dt)

2 +
∂2V

∂x2
(t,Xt)(atdt+ btdWt)

2 + 2
∂2V

∂t∂x
(t,Xt)(dXt)(dt)

)
(the higher order terms vanish, cf. (6.24). Substituting (6.25) and taking
into account (6.24) we obtain (6.23).

Example (stochastic bilinear equation). Given x0 ∈ R and f, g ∈ C(0, T )
find a process (Yt) satisfying

dYt = f(t)Ytdt+ g(t)YtdWt, Y0 = x0.

Hint: Use the Itô formula with

V (t, x) = x0exp

{∫ t

0

(f(s)− 1

2
g2(s))ds+ x

}
,

dXt = g(t)dWt, X0 = 0,

to obtain

Yt = x0exp

{∫ t

0

(f(s)− 1

2
g2(s))ds+

∫ t

0

g(s)dWs

}
, t ∈ [0, T ].
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Example (stochastic linear equation). Given x0 ∈ R, a ∈ L1(0, T ), be
L2(0, T ), show that the process

Yt := e
∫ t
0 a(s)dsx0 +

∫ t

0

e
∫ t
r a(s)dsb(r)dWr, t ∈ [0, T ]

satisfies
dYt = a(t)Ytdt+ b(t)dWt, Y0 = x0, t ∈ [0, T ].

Hint: Use the Itô formula for the product YtΦt, where

Φ̇(t) = a(t)Φ(t), Φ(t) = 1, and dXt = e−
∫ t
0 a(λ)dλσ(t)dWt, X0 = x0.

The Itô formula (6.22) is a basic tool in stochastic calculus. It is used in
most computations and in many theoretical arguments involving stochastic
differentials and SDE’s.

Example 6.16. (= Example 6.10 revisited). Using the Itô formula, we get a

quick and elegant method to compute the integral
∫ T

0
WtdWt, where (Wt) is

a 1-dimensional Wiener process. Setting Xt = Wt, V (x) = 1
2
x2, we may use

formula (6.23) where Yt = 1
2
W 2
t , at ≡ 0, bt ≡ 1, V ′(x) = x, V ′′(x) = 1, which

yields

d
(1

2
W 2
t

)
=

1

2
dt+WtdWt,

thus integrating over [0, T ],

1

2
W 2
T =

1

2
T +

∫ T

0

WtdWt,

hence ∫ T

0

WtdWt =
1

2
W 2
T −

1

2
T.

7 Stochastic differential equations: Basic re-

sults

The concept of stochastic differential equation has been motivated and heuris-
tically introduced in Section 3.1. The aim of the present Section is to define
some notions of solution to SDE’s rigorously and to present a basic result on
existence and uniqueness of solutions.
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Let b : [0, T ]×Rm → Rm and σ : [0, T ]×Rm → Rm×n be measurable map-

pings and (Wt) = (W
(j)
t ), j = 1, 2, . . . , n, a standard n-dimensional Wiener

process. The stochastic differential equation is a stochastic differential, in-
volving an unknown process (Xt), of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ (0, T ) (7.1)

amended with an initial condition

X0 = x ∈ Rm (7.2)

that may be, in general, random.

Definition 7.1. A (strong) solution to the equation (7.1)–(7.2) is an Rm-
valued stochastic process (Xt) satisfying

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (7.3)

where the first integral on the r.h.s. is understood in the Lebesgue sense P-
a.s. while the second one is an Itô stochastic integral (and both integrals are
well defined). Alternatively, (Xt) is a strong solution of (7.1)–(7.2) if X0 = x
and (Xt) has the stochastic differential of the form (7.1).

We will prove the following classical theorem on existence and uniqueness
of strong solutions, which is in principle due to K. Itô (1942):

Theorem 7.2. For T > 0, let b : [0, T ]×Rm → Rm, σ : [0, T ]×Rm → Rm×n

be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rm, t ∈ [0, T ], (7.4)

and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|, x, y ∈ Rm, t ∈ [0, T ], (7.5)

for a constant C. Then the equation (7.1)–(7.2), where the initial value
X0 = x is F0-measurable (or independent of (Wt)) and satisfying

E|X0|2 <∞ (7.6)

has a continuous solution (Xt) ∈ M2
w(0, T ). The solution is unique (if (X̂t)

is another such solution, then (Xt) and (X̂t) are indistinguishable).
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Proof. The uniqueness follows easily from the isometry (4.8) and the Lips-
chitz property (7.5):

Let Xx
t (ω) and X̂y

t (ω) be solutions with initial values x, y respectively.

Put a(s, ω) = b(s,Xx
s )−b(s, X̂y

s ) and γ(s, ω) = σ(s,Xx
s )−σ(s, X̂y

s ). Then

E[|Xx
t − X̂

y
t |2] = E

[(
x− y +

∫ t

0

ads+

∫ t

0

γdWs

)2]
≤ 3|x− y|2 + 3 · E

[(∫ t

0

ads

)2]
+ 3E

[(∫ t

0

γdWs

)2]
≤ 3|x− y|2 + 3t · E

[ ∫ t

0

a2ds

]
+ 3E

[ ∫ t

0

γ2ds

]
≤ 3|x− y|2 + 3(1 + t)C2 ·

∫ t

0

E[|Xx
s −Xy

s |2]ds.

So the function
v(t) = E[|Xx

t − X̂
y
t |2]; 0 ≤ t ≤ T

satisfies

v(t) ≤ 3|x− y|2 + A ·
∫ t

0

v(s)ds, where A = 3(1 + T )C2.

Let w(t) =
∫ t

0
v(s)ds. Then w′(t) ≤ 3|x − y|2 + A · w(t), so since w(0) = 0,

w(t) ≤ 3|x− y|2t · exp(At). (Consider f(t) = w(t)exp(−At).) Therefore

v(t) ≤ 3|x− y|2(1 + At exp(At)).

Now assume that x = y. Then v(t) = 0 for all t ≥ 0. Hence, writing

Xt = Xx
t , X̂t = X̂x

t we have

P[|Xt − X̂t| = 0 for all t ∈ Q ∩ [0, T ]] = 1,

where Q denotes the rational numbers. By continuity of t → |Xt − X̂t| it
follows that

P[|X1(t, ω)−X2(t, ω)| = 0 for all t ∈ [0, T ]] = 1,

and the uniqueness is proved.
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The proof of the existence is similar to the familiar existence proof for
ordinary differential equations: Define Y (0) = X0 and Y (k) = Y

(k)
t (ω) induc-

tively as follows

Y (k+1) = X0 +

∫ t

0

b(s, Y (k))ds+

∫ t

0

σ(s, Y (k))dWs. (7.7)

Then, similar computation as for the uniqueness above gives

E[|Y (k+1) − Y (k)|2] ≤ (1 + T )3C2 ·
∫ t

0

E[|Y (k) − Y (k−1)|2]ds,

for k ≥ 1 and

E[|Y (1) − Y (0)|2] ≤ 2C2t2(1 + E(|X0|2]) + 2C2t(1 + E[|X0|2]) ≤ A1 · t

where the constant A1 only depends on C, T and E[|X0|2]. So by induction
on k we obtain

E[|Y (k+1) − Y (k)|2] ≤ Ak+1
2 tk+1

(k + 1)!
; k ≥ 0, t ∈ [0, T ]

for some suitable constant A2 depending on C, T and E[|X0|2] and it follows
that Y (k) is a Cauchy (hence convergent) sequence in C([0, T ], L2(Ω,Rm)).
A standard limit passage in (7.7) together with the Itô isometry imply that
the limit X = limY (k) solves (7.3). By the continuous dependence on the
upper bound (Theorem 6.8 (iv)) and continuity of the Lebesgue integral we
obtain P-a.s. continuity of (Xt), which completes the proof.

Remark 7.3. (i) If the equation is autonomous, i.e. the coefficients b and σ
do not depend on t, then (7.5) obviously implies (7.4).
(ii) Conditions (7.4) and (7.5) may be substantially weakened in various
manners. The most common case is that the global Lipschitz condition (7.5)
is turned to a local one: Then the statement of the Theorem remains un-
changed (just the proof of slightly more complicated). If the linear growth
condition (7.4) is removed and the Lipschitz condition is only local, we still
may obtain existence and uniqueness of a local solution which however may
explode at a finite random time. The “linear growth” condition (7.4) basi-
cally prevents such explosions, and it also may be relaxed (a more general
condition for nonexplosion called “the Khasminskii test” may be given in
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terms of Lyapunov functions, cf. [Ch]). As examples of “almost explicitly
solved” SDE’s we may consider the linear and bilinear stochastic equations
studied in the preceding Section. The solution to the linear equation is usu-
ally called Ornstein-Uhlenbeck process. In applications, it corresponds to a
stochastic perturbation of a linear deterministic system, which is indepen-
dent of the solution (“the additive noise”). The solution (Xt) is a Gaussian
process, which easily follows from the fact that the stochastic integral of a
deterministic function is Gaussian.

The solution to bilinear equation is provided as an “explicit” solution in
terms of the paths of the Wiener process (note however that usually these
paths are not observable). The solution in case of constant coefficients is also
is called geometric Brownian motion and is often used in applications (e.g.
in finance mathematics, as a model of stock prices).
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Praha 2011.

[Sm] M. Smoluchowski, Zur Kinetischen Theorie der Brownschen Molekular-
bewegung und der Suspensionen, Ann. Physik 21 (1906), 756.

[SV] D.W. Strook and S.R.S. Varadhan, Multidimensional Diffusion Pro-
cesses, Springer-Verlag, 1979.

36


