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1 Clippings from the asymptotic theory

1.1 The convergence of random vectors

Let X be a k-dimensional random vector (with the cumulative distribution function Fx) and
{X,}.2, be a sequence of k-dimensional random vectors (with the cumulative distribution

functions Fx,,).

Definition 1. We say that X, 4 x (i.e. X, converges in distribution to X), if
n—oo

lim Fx (x)= Fx(x) (1)

n—oo

for each point x of the continuity of Fx.
Let d be a metric in R*, e.g. the Euclidean metric d(x,y) = Zle(xi —yi)?.
Definition 2. We say that

e X, P x (i.e. X, converges in probability to X), if

n—o0

Ve >0 lim P [w cd(Xp(w), X (w)) > 5} =0;

Im. 1 . .
e X, % X (i.e. X, converges almost surely to X), if
n—oo

P [w: lim d(X,(w), X (w)) = 0} ~ 1.

n—0o0

Remark 1. For random vectors the convergence in probability and almost surely can be defined

also component-wise. That is let X,, = (Xn1,..., Xpuk)" and X = (X1,...,X%)". Then

Xn P X (Xn alm. surely X) if an P Xj (Xn] alm. surely Xj), Vj _ 17 o ,k’.
n—00 n—00 n—00 n—00

But this is not true for the convergence in distribution for which we have the Cramér-Wold

theorem that states

X, 25 X = ATX, 2 ATX, VAcRE

n—oo n—oo

Theorem 1. (Continuous Mapping Theorem, CMT) Let g : R¥ — R™ be continuous
in each point of an open set C C R¥ such that P(X € C) = 1. Then

alm. surely alm. surely

(1) Xn X = g(Xn) g(X);

n—oo n—oo

.. P P
(ii) X, m X = g(X,) — g(X);

n—oo



(i) X ——= X = g(X,) —— g(X).

Proof. (i) Almost sure convergence.

Plw: lim d(g(Xaw)),g(X () = 0]

n—o0

> P [w : lim d(g(X (), g(X () =0, X (w) € 0}

n—oo

=P [w: lim d(X,(w), X (@) =0, X(w) €C] =1,

n—oo

as C' is an open set and P(X € C) = 1.
(ii) Convergence in probability. Let € > 0. Then for each § > 0
Plo: d(g(Xn()), g(X(w)) > ]
<P [d(g(X,), 8(X)) > £,d(X0, X) < 6| +P [d(X,, X) > 9]

<P[X e B +P[dX,, X) > 9],

—0,Y6>0

where B® = {x € R¥;Jy e R* : d(x,y) < 4, d(g(x),8(y)) > ¢}. Further
PXeB|<P[XeB XeC|+P[XeB X¢C|
=P[XeB' NC|+0
and P [X e BN C] can be made arbitrarily small as B N C — () for § \, 0.

(iii) See for instance proof of Theorem 13.6 in Lachout (2004).

Theorem 2. (Cramér-Slutsky, CS) Let X, —— X, Y, ——— c, then
n—oo n—od
(i) Xn+Y, —25 X +c
n—oo
(i) Y X —25cX,
n—oo

where Y ,, can be a sequence of random variables or vectors or matrices of appropriate dimen-
sions (R or RF or R™**) and analogously c can be either a number or a vector or a matriz

of an appropriate dimension.

Proof. Note that it is sufficient to prove

(X0, Y,) —2 (X, c). (2)

n—oo

Then the statement of the theorem follows from Continuous Mapping Theorem (Theorem 1).



To prove (2) note that
A((X,. Y. (X)) = d(Yie) 0.

Thus by Theorem 13.7 in Lachout (2004) or Theorem 2.7 (iv) of van der Vaart (2000) it is
sufficient to show that (X, c) %) (X, c). But this follows immediately with the help of
the Cramér-Wold theorem. O

Definition 3. Let {X ”}20:1 be a sequence of random vectors and {rn} a sequence of

oS
n=1

positive constants. We write that
. o X P T - . . k
(i) Xn =op(rp), if =2 ——— 0y, where 03, = (0,...,0)" is a zero point in R¥;
™ n—o0

(i) X, = Op(ry), if

Ve > 0 3K < oo supP(”’f—””>K)<e,
neN "

where || - || stands for instance for the Euclidean norm.
Remark 2. Note that

(i) X, NS¢ implies X,, = Op(1) (Prohorov’s theorem);

n—0o0

(i) X, —% 0 implies X,, = op(1);

n—o0

(iil) (rn Xn) P o X or (rn Xn) . x implies X, = Op( )
n—oo n—oo

1

Tn
Remark 3. Further note that the calculus with (the possible random) quantities op(1) and
Op(1) is analogous to the calculus in with the (deterministic) quantities o(1) and O(1) in

mathematical analysis. Thus, among others it holds that
(i) op(1) +op(1) = op(1);
(if) op(1) Op(1) = op(1);
(iii) op(1) + Op(1) = Op(1);
(iv) op(1) +o(1) = op(1);
(v) Op(1) +O(1) = Op(1).

Proof of (ii): Let {X,},{Yn} be such that X,, = Op(1),Y,, = op(1) and X, Y, makes
sense. Let € > 0 be given. Then one can find K < oo such that sup,cy P (HXnH > K) <s.
Thus for all sufficiently large n € N

P (||XnYn|| > 5) <P (||XnYnH > g, || X < K) + P (HXHH > K)

g g
<P<Yn 7) £ <.,
<P (||Y,]] > +2_€



as Y, =op(1).

For more details about the calculus with 0,(1) and Op(1) see for instance Chapter 3.4 of
Jiang (2010).

1.2 A-theorem

Let Ty, = (T1, - -+, Tnp) " be an estimator of a p-dimensional parameter g = (p1,. .., pp) " and
g = (g91,--.,9m) be a function from RP — R™. Denote the Jacobi matrix of the function g

at the point x as Dg(x), i.e.

dg1(x Og1(x
Vo (x) at) ... gk
Dg(x) = = :
Ogm (x Ogm (x
Vg (X) folx) 798362 )

Theorem 3. (A-theorem) Let \/n (T, —p) = Op(1). Further g: A — R™, where A C RP,
e is an interior point of A and g has continuous first-order partial derivatives in a neigh-
bourhood of . Then

(i) v/ (&(Ts) — g(w)) — Dg(p) Vi (Ty — ) = op(1);
(ii) moreover if \/n (T, — ) ﬁ N, (0p, %), then

Vi (8(Ts) — g(1)) —2 Npy (04, Dg (1) SDy(1)). (3)

n—oo

Proof. Statement (i):. For j = 1,...,m consider g; : A — R (the j-th coordinate of the
function g). From the assumptions of the theorem there exists a neighbourhood Us(p) of
point p such that the function g; has continuous partial derivatives in this neighbourhood

and P (T,, € Us(pn)) —— 1. Thus without loss of generality we can assume that T,, € Us(p).
n—oo

Using this together with the mean value theorem there exists uf{k which lies between T,, and

o such that

V(95 (Tn) — gj (1)) = Vg; (" )V (Ty — )
= Vg;()vn (Tn — ) + [Vg;(d’) = Vgi ()] vV (Tn — ). (4)

Further T, ., o implies that p,%* LN p. Now the continuity of the partial derivatives
n—00 n—00
of gj in Us(p) and CMT (Theorem 1) imply that

Vi(ph) = Vg;(p) = op(1),
which together with v/n (T,, — ) = Op(1) further gives

[Vo;(uf) = Vg;()] v (T — ) = op(1). ()



Now combining (4) and (5) yields that for each j =1,...,m

v (9j(Tn) = gj (k) = Vg;()vn (Ty — p) + op(1),
which implies the first statement of the theorem.

Statement (ii):. By the first statement of the theorem one gets

Vn (8(Tn) — g(n)) = Dg(p) vn (Ty — p) +op(1).

Now for the term Dg(p)/n (Ty — p) one can use the second statement of CS (Theorem 2)
with Y,, = Dg(p) and X,, = /n (T,, — p). Further, using now the first statement of CS with

c = 0, one can see that adding the term op(1) does not alter the asymptotic distribution of
Dg() v/t (T — o). =

Remark 4. Instead of the continuity of the partial derivatives in a neighbourhood of u, it
would be sufficient to assume the existence of the total differential of the function g at the

point p.

Sometimes instead of (3) we write shortly g(T},) x N, (g(p), 1Dg(p) = D;(u)). The quan-
tity 1Dg(p) Z]D);(u) is then called the asymptotic variance matrix of g(T,) and it is
denoted as avar (g(Tn)). Do not confuse the asymptotic variance and the variance of g(T),).

As the following example shows these quantities can be substantially different.

Example 1. A random sample Xi,...,X,, from a zero-mean distribution with finite and
positive variance. Find the asymptotic distribution of Y,, = X, exp{—fi}. Further compare
var(Y,) and avar(Y,,) when X is distributed as N(0, 1)

Example 2. Suppose you have a random sample Xi,..., X, from a Bernoulli distribution

with parameter px and you are interested in estimating the logarithm of the odd, i.e. Ox =
Xn )
1-X,/"

log (lf ;fx ) Compare the variance and the asymptotic variance of 7] x = log (

Example 3. Suppose you have two independent random samples from Bernoulli distribution.

Derive the asymptotic distribution of the logarithm of odds-ratio.

Example 4. Derive the asymptotic distribution of the standard (Pearson’s) correlation co-

efficient.

Example 5. Consider a random sample from the Bernoulli distribution with the parame-
ter px. Derive the asymptotic distribution of the estimator of 0x = px (1 — px) (variance of
the Bernoulli distribution) given by (/9\” =X, (1-X,).

n—1



Example 6. Suppose that we observe X1i,..., X, of a moving average sequence of order 1
given by
X =Y +0Yi1, tel,

where {Y;,t € Z} is a white noise sequence such that EY; = 0 and var(Y;) = o2.

Derive the asymptotic distribution of the estimator of 8 given by

5 _ 1= V1- 470

" 27,(1) ’

where 7, (1) is the sample autocorrelation function at lag 1.

Hint. Note that by Bartlett’s formula

Vi (7u(1) = r(1)) —2= N(0,5%(8)),

n—oo

where

1.3 Moment estimators

Suppose that the random vector X has a density f(x;8) with respect to a o-finite measure p
and that the density is known up to unknown p-dimensional parameter 8 = (61, ... ,Gp)T € 0.
Let Ox be the true value of this unknown parameter. Let X1,..., X, be a random sample
from this distribution and ¢1,...,t, be given real functions. For instance if the observations
are one-dimensional one can take ¢;(x) = 2/, j=1,...,p. For j = 1,...,p define the function

7;: 0 = Ras
75(0) = Eot;(X1) = [ 1,60f(:0)du(x), =1.....p

Then the moment estimator En of the parameter 0 is a solution to the estimating equations

n

%Ztl(Xz) = Tl(b\n),. RPN % th(Xl) = Tp(/én).
i=1

=1

Example 7. Moment estimation in Beta distribution

Put
To= (030X, S (x0) (6)
=1 =1

and define the mapping 7 : © — RP as 7(0) = (11(0), ... ,Tp(O))T. Note that provided there

1

exists an inverse mapping 7~ - one can write

Jn (én - oX) —Vn (T—l(Tn) - T—l(T(ex))). (7)



Thus the asymptotic normality of the moment estimator b\n would follow by the A-theorem

(Theorem 3) with g = 7~ 1. This is formalized in the following theorem.

Theorem 4. Let Ox be an interior point of © and max;—1,.  p,varg(t;(X1)) < co. Further let
the function T have continuous first-order partial derivatives in a neighbourhood of Ox and

the Jacobi matriz D (0x) is regular. Then
Vi (8 = 0x) —— N, (0, D7 (6x) B(6x) [D7 ' (8)]").
where £(0x) = varg, (t1(X1),...,tp(X1)).

Proof. By the assumptions of the theorem and the implicit function theorem there exists an
open neighbourbood U containing @ x and an open neighbourbood V' containing 7(0x) such
that 7 : U — V is a differentiable bijection with a differentiable inverse 7! : V + U. Further
note that T), defined in (6) satisfies P (T, € V) — 1. Thus one can use (7) and apply
the A-theorem (Theorem 3) with g =771, = 7(0x) and A =V to get

Vi (80 = 0x) 1 N, (0,11 (7(8x)) B(0x) [P (7(8x))] ).
The statement of the theorem now follows from the identity

D1 (T(6x)) =D (0x).

The asymptotic variance of én is usually estimated as
7 D7 (6n) 3(6n) D7 (6,)] "

Alternatively the matrix X(€x) can be also estimated as

where Zz = (tl(Xi)y oo ,tp(Xi))T.

Example 8. Let Xi,..., X, be independent identically distributed random variables from

the discrete distribution given as
P(X;=0)=p* PXi=1)=1-p"—p, PXi=2)=p,

where p € (0, %) Consider the moment estimator of the parameter p and derive its asymptotic

distribution. Based on these results derive the confidence interval for the parameter p.



1.4 Confidence intervals and asymptotic variance-stabilising transformation

In this section we are interested in constructing a confidence interval for (one-dimensional)

parameter fx. Suppose we have an estimator é\n of parameter 6x such that
~ d 9
\/ﬁ(an—OX) mN(O,U (HX))7 (8)
where 02(+) is a function continuous in the true value of the parameter (6x).
Asymptotic confidence interval of ‘Wald’ type

This interval is based on the fact that

\/ﬁ(an —0x) 4

= N(0,1
and thus ~ ~
i~ Ul —o/ O’(en) i~ Ul —o/ 0’(971)
(977, - — \/25 7971 + ! \/QH ) (9)

is a confidence interval for parameter 0x with the asymptotic coverage 1 — a.

Asymptotic confidence interval of ‘Wilson’ type
This interval is based directly on (8) and it is given implicitly by

Asymptotic variance stabilising transformation

Let the function g be such that [¢'(8)]? 02(6) does not depend on . Put v? := [¢'(0)] 02(0).
Then with the help (8) and A-theorem it holds y/n (g(é\n) —g(6x)) % N(0,v?). Thus

(57 (060 - 25207 (0(Bu) + 52 (1)
is a confidence interval for the parameter 0x with the asymptotic coverage 1 — .

Example 9. A random sample from Poisson distribution. Find the transformation that sta-
bilises the asymptotic variance of X,, and based on this transformation derive the asymptotic

confidence intervals for \.

Example 10. Fisher Z-transformation and various confidence intervals for the correlation

coefficient.

10



Example 11. Consider a random sample from Bernoulli distribution. Find the asymptotic
variance-stabilizing transformation for X,, and construct the confidence interval based on this

transformation.

Literature: van der Vaart (2000) — Chapters 2.1, 2.2, 3.1, 3.2 and 4.1. In particular Theo-
rems 2.3, 2.4, 2.8 and 3.1.

11



2 Maximum likelihood methods

Suppose we have a random sample of random vectors X1, ..., X, being distributed as the
generic vector X = (X1,...,X})T that has a density f(x; 8) with respect to a o-finite measure
v and that the density is known up to unknown p-dimensional parameter @ = (61, ...,60,)7 €

O. Let O0x = (0x1, ... ,9Xp)T be the true value of the parameter.

Define the likelihood function as

and the log-likelihood function as

0n(0) =log L(6) = Y _log f(X;6).
=1

The maximum likelihood estimator of parameter 0 x is defined as

0, = arg max L,(0).
6co

The (exact) distribution of 0, is usually too difficult or even impossible to calculate. Thus

to make the inference about 6 x we need to derive the asymptotic distribution of §n

2.1 Asymptotic normality of maximum likelihood estimator

Regularity assumptions

Let I(0) = Ey dlog f(X;0) dlog f(X;6)

50 o7 be the Fisher information matrix.

[RO] For any 61, O3 € © it holds that f(x;01) = f(x;602) p-almost surely if and only if
0, =0,.

[R1] The number of parameters p in the model is constant.

[R2] The support set S = {X € R : f(x;0) > O} does not depend on the value of the

parameter 6.
[R3] (The true value of the parameter) @ is an interior point of the parameter space ©.

[R4] The density f(x;6) is three-times differentiable with respect to € on an open neigh-
bourhood U of @x. Further for each j, k,l in {1,...,p} there exists s function M;(x)

such that
‘1 03log f(x; 0)
b | 06, 00, 06,

ocU

< M (%),

12



for p-almost all x and

EGXMjkl(X) < Q.
[R5] The Fisher information matrix 7(0) is finite, regular, and positive definite in Ox.

[R6] The order of differentiation and integration can be interchanged in expressions such as
9 / h(x;0)du(x) = /ah(X' 0) du(x)

60 ) /‘L - ao ? l’l/ )

where h(x;0) is either f(x;0) or f(x;0)/00.

Note that thanks to assumption [R6] one can calculate the Fisher information matrix as

o 8210gf(X;0)]
1) = E”[ 00007 |

see for instance Theorem 7.27 of Andél (2007).

Remark 5. Note that in particular assumption [R4] is rather strict. There are ways how
to arrive at the asymptotic normality of the maximum likelihood estimator under less strict

assumptions but that would require concepts that are out of the scope of this course.

The score function of the i-th observation X; for the parameter @ is defined as

Olog f(X;; 0
U(X;;0) = 8(9 )

The random vector

U.(0) = 3 Ux,0) = 3 2108/ (Xi0)
=1 i=1

is called the score statistic.
We search for the maximum likelihood estimator En as a solution of the system of likelihood

equations
~

Further define the observed information matriz as

()= 200 Ls"ix 0,

n -
=1

where
_0logU(X;60)  9log f(X4;6)

007" 00007
is the contribution of the i-th observation to the information matrix.

I(X;0) =

In what follows it will be useful to prove that I,, (én) % I(0x) =EI(X1;0) (provided

that 6, SN x). The following technical lemma is a generalization of this result that will
n—oo

be convenient in the proofs of the several theorems that will follow.

13



Lemma 1. Suppose that assumptions [RO]-[R6]| hold. Let the matriz I} be a matriz with
the dimension p X p and with the elements
1 —0%log f(X;;0)
nit = 5 2 .

’i . = — ~ A
mogk 90; 00}, o=ty

n-

where ?S’“) % Ox for each j,k € {1,...,p}. Then

I 25 1(6x).

n
n—oo

Proof. Fix j,k € {1,...,p}. Put

1 <~ —0%log f(X;;0)
.n () = — ) ’
ngk(0) = 3 ; 00,00,
and let i;(0x) be the (j, k) element of the Fisher information matrix I(6x). Note that one
can bound
i e = k(0x)| < i ik — tngk(0x)| + |injr(0x) — i5x(0x)| (13)
The second term on the right-hand side of (13) converges in probability to zero by the law
of large numbers. Now with the help of assumption [R4] the first term on the right-hand side
of (13) can be bounded by

n

" ) |1 8% log (X3 0) 1 - 0%log f(X;0)
e = g (0x)] = ‘n Z T 00,00, oo~ Z 00,00, oo
1 - :
< DY Mu(X) [T — i
=1 [=1

where f%k) is the [-th element of €££ k), O

Theorem 5. Suppose that assumptions [RO]-[R6] hold. Then with probability tending to one

as n — oo there exists a consistent solution 6, of the likelihood equations (12) such that
~ 11 &
Vi (8, —6x) = [I(6x)] " NG > UX:0x) +op(D), (14)
i=1

which further implies that

Vi (8 — 6x) == N, (0,,171(6x)). (15)

14



Proof. First, we need to prove the consistency, that is @n _}L 0. This can be found in
n o
the proof of Theorem 5.1 of Lehmann and Casella (1998, Chapter 6).
Once the consistency of Bn is proved then by the mean value theorem (applied to each

component of U, (0)) one gets that
0, = U, (6,) =U,(0x) —nI; (6, — 0x),

where I’ is a matrix with the elements

a1 —~ —9%log f(X;6)
ik T . 90,00y
=1

‘0:}:(]) 9 j?ke{]""'?p}?

with fﬁf ) being between /O\H and Ox. Thus the consistency of gn implies that fﬁf ) L> Ox

n—oo
and one can use Lemma 1 to show that

I -2 1(0x). (16)

n—o0

Thus with probability going to one there exists [I*]~! and one can write
n _rpx—1
n (0, —0x) = [I;] " Uy(6x).

Now the central limit theorem for independent identically distributed random vectors implies

that

= > UKi0x) o N,(0,.1(0). (17)
=1

Note that (17) yields that % Yo, U(X;;0x) = Op(1). Thus using (16) and CMT (Theo-
rem 1) implies that
Vi (6, - 0x) = L] ZU X 0x)
\/>
— [r—1 .
= [I"4(6x) + op(1)] ﬁ ZU(X“OX)

=17 Y(6x TZ (X 0x) + op(1).

Now (15) follows by CS (Theorem 2) and (17).
U

Remark 6. While the proof of consistency is for p = 1 relatively simple, for p > 1 it is much
more involved. The reason is that while the border of the neighbourbood in R is a two-point

set, in RP (p > 1) it is an uncountable set.
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2.2 Asymptotic efficiency of maximum likelihood estimators

Recall the Rao-Cramér inequality. Let X4,..., X, be a random sample from the regular
family of densities F = {f(x; 0);0 ¢ @}, and T,, be an unbiased estimator of Ox (based on
X1,...,X,). Then
1
T,) - —I1"%0x)>0.
var (T,) - (Ox) >

By Theorem 5 we have that (under appropriate regularity assumptions)
~ 1

avar (0,) = — I~ (0x).

n

Thus the asymptotic variance of §n attains the lower bound in Rao-Cramér inequality.

Remark 7. Note that strictly speaking comparing with the Rao-Cramér bound is not fair.
Generally, the maximum likelihood estimator én is not unbiased. Further, Rao-Cramér in-
equality speaks about the bound on the variance, but we compare the asymptotic variance
of §n with this bound. Nevertheless it can be shown that in regular models there exists
a lower bound for the asymptotic variances of the estimators that are asymptotically normal
with zero mean and in some (natural) sense regular. And this bound is indeed given by
L 171(0x). See also Serfling (1980, Chapter 4.1.3) and the references therein.

2.3 Estimation of the asymptotic variance matrix

To do the inference about the parameter 6 x we need to have a consistent estimator of I(0x).

Usually, we use one of the following estimators

n
I(an) or In(b\n) or % ZU(XZ,b\n) UT(Xi;b\n).
i=1

The consistency of I (En) follows by CMT (Theorem 1), provided (the matrix function)
1(8) is continuous in @, which follows by assumption [R4].

The consistency of I, (5n) ﬁ I(6x) follows from Lemma 1 and Theorem 5.

On the other hand the consistency of % Yoy U(X i an)UT(X i @n) does not automatically
follow from assumptions [R0O]-[R6]. It can be proved analogously as Lemma 1 provided the

following assumption holds.

[R7] There exists an open neighbourhood U of @x such that for each j, &k in {1,...,p} there
exists s function Mj(x) such that

02 log f(x;0)
00;00y,

sup
ocU

' < Mji(x)

for p-almost all x and
EOXM]‘QJC(Xl) < 00.
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Example 12. Random sample from a uniform distribution.

Example 13. Let Xq,...,X,, be a random sample from the Pareto distribution with the

density

B
f@) =201z a), >0, a0,

where both parameters are unknown.

(i) Find the maximum likelihood estimator of 0, = (an, Bn)T of the parameter 8 = (a, 3)T
(ii) Derive the asymptotic distribution of n (&, — a).

(iii) Derive the asymptotic distribution of Bn.

Example 14. Let Xi,...,X,, be a random sample from N(u, 1) where the parameter space
for the parameter y is restricted to [0,00). Find the maximum likelihood estimator of p and

derive its asymptotic distribution.

Example 15. Let Xi,..., X, be a random sample from the mixture of distributions N(0, 1)
and N(«9, exp{—2/ 02}) with equal weights. Then the maximum likelihood estimator of 8 is

not consistent.

Literature: Andél (2007) Chapter 7.6.5, Lehmann and Casella (1998) Chapter 6.5, Kulich
(2014)

2.4 Asymptotic tests (without nuisance parameters)
Suppose we are interested in testing the null hypothesis
Hy : 0x = 6) against the alternative Hy : @x # 6.

Let I, be an estimate of the Fisher information matrix I(6x) or I(8y). Basically there are
three tests that can be considered.

Likelihood ratio test is based on the test statistic
LR, =2 (£,(6,) — £,(60)).
Wald test is based on the test statistic
Wy =1 (0, —60)" I, (6, — ).
Rao score test is based on the test statistic

1 ~
R, = - U (60) 1,1 U,(0y). (18)
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Theorem 6. Suppose that the null hypothesis holds, assumptions [RO]|-[R6] are satisfied and
fn L 1(6y). Then each of the test statistics LR,,, Wy, and R,, converges in distribution
n—oo

to x2-distribution with p degrees of freedom.

Proof. R,: Note that R, can be rewritten as

Ro= (52 0.00) (07 Un(00)). (19)

Now by the asymptotic normality of the score statistic (17), consistency of I, and CS (The-
orem 2) one gets that
1 d
Vnl,? Uy(6o) P N, (0, L),

where I, is an identity matrix of dimension p x p. Now the statement follows by using
CMT (Theorem 1).

ad W,,: One can rewrite W,, as
SR T 1 d
W, = (ﬁf,% (6, — 00)> (ﬁm (6, — 00)> — X2
n—oo

Now the statement follows by analogous reasoning as for R, as by Theorem 5 and CS (The-

orem 2) one gets

Vi iz (B, — 80) —s N(0,1,).

n—oo

ad LR,: With the help of the second order Taylor expansion around 5n one gets:

£a(80) = €4(8,) +1 U (8,) (B0 —0,) — 5 (80 — 8.) ' 1,(6;) (60 — 0.,
=0
—vp

where 0) lies between 6y and 6,. Applying Lemma 1 yields 1,(07) SN (6p). Thus

n—roo
analogously as above one gets

n—oo

O]

Remark 8. Note that using the asymptotic representation (14) of the maximum likelihood
estimator @n and the derivations done in the proof of Theorem 6 one can show that the
difference of each of the two test statistics (LR,, W, and R,) converges under the null

hypothesis to zero in probability.
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2.5 Asymptotic confidence sets

Sometimes we are interested in the confidence set for the whole vector parameter 8x or Tx.

Then we usually use the following confidence set
{0 : (/én - O)Tfn(b\n —-0) < Xf)(l - a)} ,

where fn is a consistent estimator of I(0x). Usually I, (gn) or I (/0\”) are used as fn Then

the resulting confidence set is an ellipsoid.

Confidence intervals for 0x;

In most of the applications we are interested in confidence intervals for components fx; of
the parameter O x = (0x1,... ,HXp)T.
Put /én = (am, .. .,é\np)T and Ox = (0x1,... ,QXp)T. By Theorem 5 we know that

Vi (00— 0x;) == N(0,i77(6x)),  j=1,....p,

where i/7(8x) is the j-th diagonal element of I~1(0x). Thus the asymptotic variance of @n

is given by avar (5nj) = %, which can be estimated by avar (§nj) = %, where i is the

j-th diagonal element of I,. Thus the two-sided (asymptotic) confidence interval for fx; is

~ RTIIPN 77
<9jn —u—g\/ %, Ojn +ui—g l;;) . (20)

Remark 9. The approaches presented in this section are based on the Wald test statistic. The

given by

approaches based on the other test statistics are also possible. For instance one can construct

the confidence set for 0 as

{0:2(0,(0,) — £a(0)) < X2(1—a)}.

But such a confidence set is for p > 1 very difficult to calculate. Nevertheless, as we will see
later there exists an approach to calculate the confidence interval for 6y ; with the help of the
profile likelihood.

2.6 Asymptotic tests with nuisance parameters

Denote 7 the first ¢ (1 < g < p) components of the vector 8 and 1 the remaining p — ¢
components, i.e.

0= (1", 9" =(01,...,04,041,...,0,)".

We want to test the null hypothesis that Hy : 7x = 7o against Hy : Tx # To.
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In what follows all the vectors and matrices appearing in the notation of maximum like-

lihood estimation theory are decomposed into the first ¢ (part 1) and the remaining p — ¢

5 - <f> U6 = (Umw)) |
¥, Uon(6)

1(9): Ill(e) 112(0) : In(e)z Illn(o) Il?n(e) ) (21)
121(0) 122(0) Ian(e) 12271(9)

components (part 2), i.e.

and

Lemma 2. Let ] be a symmetric reqular matriz of order p X p that can be written in the block

form as

Jii J

J— noJiz )

Jo1 Joa2

Denote
Ji12 = Ju1 — J12d55 Jon, Joo1 = Joo — Jo1J 77 T
Then
J—l B Jll Jl?
B J21 22 ’

where

11 -1 22 —1 12 -1 —1 21 -1 -1
J = Jll.ga J = J22-1a Je = _n]]ll.Q \z]]12 JQQ ) J° = _Jgg.l J21 “]]11 .

Proof. Calculate JJ~! and use the fact that by the symmetry of the matrix J it holds that
Ji2 = J4,. O

Suppose that the parametric space can be written as © = O, x O, where ©, C R? and
@¢ C RP7Y,
Denote én the estimator of @ under the null hypothesis, i.e.

~ To ~
0,=1|~" |, where 1, =argmaxL,(70,v).
¢€@¢

n

Let fﬁbl be an estimate of the corresponding block I'1(0y) in the inverse of Fisher infor-
mation matrix 7-(8x).
The three asymptotic tests of the null hypothesis Hy : 7x = T¢ are as follows.

Likelihood ratio test is based on the test statistic

LR: =2 (,(6,) — £n(65)). (22)
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Wald test is based on the test statistic
~ T -1/~
Wy=n (Tn — T()) [fu] (Tn — To).
Rao score test is based on the test statistic

R = %UL (0,) I} U1, (6,). (23)

Remark 10. As Uy, (On) = 0,_g, the test statistic of the Rao score test can be also written
in a form
* Lo g\ 71 n
R, = - U, (On) I,° U, (Hn),
which is a straightforward analogy of the test statistic of (18) of the Rao score test in case of

no nuisance parameters.

Theorem 7. Suppose that the null hypothesis holds, assumptions [RO]|-[R6] are satisfied and

j}bl L, I'Y(@x). Then each of the test statistics LR}, W and R} converges in distribution
n—oo

to x2-distribution with q degrees of freedom.

Proof. First note if the null hypothesis holds then 8 x = (TOT, 1/)})T, where 1 x stands for the

true value of 1.

W Note that by Theorem 5 /n (/H\n —0x) 4, N, (0,171(6x)), which yields
n—oQ

Vi (Fn = 70) == Ng (0,1 (8)).

Thus analogously as in the proof of Theorem 6 one can show that

(S

(?H_TO) 7 N, (0,1),

n—oo

asl
which further with the CMT (Theorem 1) implies

W = {\/ﬁ [f}ll}i (Fo — TO)}T {\/ﬁ [fil] 2 (Fn — TO)} — 2,

R} By the mean value theorem (applied to each component of Uy,,(0)) one gets

N T U(0) T Vi (), -

where I7,, is the observed Fisher matrix whose j-th row (j € {1,...,q}) is evaluated at

Ui, (0,) =

some 0%* that is between én and @x. As 921* _)L> Ox, Lemma 1 implies that
n o

. P
Ion —— 112(0x). (25)
n—oo
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Further note that '1,~bn is a maximum likelihood estimator in the model

Fo = {f(x; T0,Y); Y unknown}.

As the null hypothesis holds, using Theorem 5 one gets
1

Vi (= x) = I (0x) = Una(8x) + 0 (1) (26)
Combining (24), (25) and (26) yields
\}ﬁ Ui, (0,) = \/1% U1 (0x) — 112(0x) 155 (0x) \/1% Uy, (0x) + op(1). (27)

Now using (27) and the central limit theorem (for i.i.d. vectors), which implies that (written

in a block form)

LUn(OX) _ ( %ﬁUln(eX) ) L} Np <0p, ( 111(0)() 112(0)() )) |

vn 7 Uzn(Ox) | 77 I51(0x) Ix(0x)
one gets
L UL (B,) = = Un(0x) - 112(0x) I3} (0x) —— Una(B) + op(1)
\/?L In\Yn _\/ﬁ 1n\VX 12\V X )L99 X " 2n\VX P
1
7U1n
= (Iy, —112(0x) I3 (0x)) |
7z U2n(6x)
where

I1(0x) ©h2(0x) I,

I (0x) I22(0x) ( 15" (0x) I1(8x) >

= N1(0x) — 2112(0x) 55 (0 x) 121 (0x) + T12(0x ) I (0 x ) I22(0x ) 15 (0 x ) I21 (O x)
= In(0x) — La(0x) I3, (0x) To1 (0x) = Tri2(0x) "2 [11(0x)] .

K(0x) = (Hq,—flz(ex)fg_zl(ex))<

Thus v/n Uty (6, % N, (0, (1" (6y)] ‘1), which further with the help of CS (Theorem 2)
and CMT (Theorem 1) implies the statement of the theorem for R}.

LR} : By the second-order Taylor expansion around the point En one gets

~ ~ ~

0,(6,) = £,(6,) + U} (6,) (6., -0
:Op

where 8% is between 8,, and 6,,. Thus 0 %, 0y and Lemma 1 implies 1,,(6) L, I(0x).
n—oo n—oo
Further by Theorem 5
1

\/ﬁ(an — 9)() = 171(0)() \/'71

U, (0x) + op(1), (29)
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which together with (26) implies

\/ﬁ(b\nfén) = \/ﬁ(b\n*GX) Jr\/ﬁ(aX *Aén)

_ gL _ O 0
= 17'(6x) = Un(6x) (I;;(ex)jﬁUgn(ex) ) +op(l)
= A(ex)\/lﬁUn(aX)JFOP(l)?

where

0 0 _
A(Bx) = 17(0x) - ( v e )
O(p—q)xq I, (0x)

By the central limit theorem (for i.i.d. vectors) and the symmetry of matrix A(0x)

Vi (6, — 0,) —2— N, (0, A(0x) [(8x) A(Ox)). (30)

n—oo

Now we will use the following lemma (Andél, 2007, Theorem 4.16).

Lemma 3. Let Z ~ N,(0,,V), where V is p x p matriz. Let BV be an idempotent (nonzero)
matriz. Then ZTBZ ~ X?r(]w).
Put

B:I(Bx) and V:A(Ox)l(ax)A(ex).

Now BV =1(0x)A(0x)I(0x)A(Ox), where

[ In(0x) ©Li2(0x) 1 B Ogxqg  Ogx(p—g)
1(6x) A(6x) = ( 6s) I ) (I (6x) ( 0 ey I2M(0%) ))

-1 ( 0q><q IlZ(OX)Iggl (GX) )

=1, - 0 :

P—q)Xq Ip—q

=:D
Note that matrix ID is idempotent, thus also I, =D and BV = (I, —D)(I,, — D) are idempotent.
Now using (28), (30), CS (Theorem 2), Lemma 3 and CMT (Theorem 1) one gets

X N ~ =~ ST ~ A d
LR}, =2 (£2(00) = (n(0n)) = Vi (6 = 0,) 1(0x)V/n (0 — O2) + 0p(1) —— Xiav),
where tr(BV) = tr(l,) —tr(D) =p—(p—q) =4¢. O
Example 16. Breusch-Pagan test of heteroscedasticity

Example 17. Suppose that you observe independent identically distributed random vectors
(X1, YD), ... (XT, V)7 such that

-
X 1

eXP{Oé-I—,@ Tl} ’ P(}/lzole): — ’

L +exp{a+ B X1} 1 +exp{a+ 8 X1}

PY1=1|X,) =
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where the distribution of X1 = (X7, ... ,de)T does not depend on the unknown parameters
o a 3.
(i) Derive a test for the null hypothesis Hy : 3 = 04 against the alternative that H; : 3 #
0g4.

(ii) Find the confidence interval for the parameter §.

Literature: Andeél (2007) Chapter 8.6, Kulich (2014), Zvéara (2008) pp. 122-128.

2.7 Profile likelihood

Let 0 be divided into 7T containing the first ¢ components (1 < g < p) and 1) containing the

remaining p — ¢ components, i.e.
=" 9" =(,...,00,0041,...,0,)".

Write the likelihood of the parameter 6 as L,(0) = L,(7,v¢) and analogously for log-
likelihood, score function, Fisher information matrix, ...

The profile likelihood and the profile log-likelihood for the parameter 7 are defined subse-
quently as as

L) (1) = max Lu(T, ), (P (r) =log LP) (1) = max (7).

In the following we will show that one can work with the profile likelihood as with the
‘standard’ likelihood.

First of all note that

= argmax (P (1) = 7,
TEO,

7 Slp)

where T, stands for the first g-coordinates of the maximum likelihood estimator én

Further denote

P () = argmax by (T,9),  On(t) = (7,9 (7))"
PEOy,

and define the profile score function and profile (empirical) information matrix as

az%’ )(r 1 8U7(1p )(r
v =20 = 00T

The following lemma shows how the quantities Ul (1) and I )(7') are related with U, (0)
and 1,,(0).
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Lemma 4. Suppose that assumptions [RO]-[R6] are satisfied. Then (with probability tending

to one)
UP(1) = U, (04(7)), IP(7) = I11n (0n(7)) — L120(00(T)) Iz (00 (T)) L21n (01 (7)),
where i, (0) (for j, k € {1,2}) were introduced in (21).

Proof. 0)% )('r): Let us calculate

[U(p)(T)]T _ a&(%p) (1) 0ty (7'7‘:~bn(7'))

n

orT orT

= Ui (7,9, (7)) + UL, (1, 9,(7))

01, (7)

o T = U}—n(Ta’J)n(T))v (31)

where the last equality follows from the fact that ¢, (7) = arg maXyce,, i )(7',1/;), which
implies that Us, (T, {Ln(r)) =0,

2 (1): Note that with the help of (31)

_l@U%p) (’T) _l aUln (’7'717)”(7'))

IP(r) = n or’  n orT -
= L (T, ’lzn(T)) + lhopn (7'717’71(7')) aq’g:(TT) (32)
Further by differentiating both sides of the identity
Uap (7, ';bn(T)) = 0p—y
with respect to 77 one gets
I (7'7:%(7')) + Iz (T, 17)71(7')) &g:(TT) = 0(p—q)xq»
which implies that N
WulT) 3 (7 o) Do (. (7). (33)
Now combining (32) and (33) implies the statement of the theorem for I )(’7’). O

Tests based on profile likelihood

Define the (profile) test statistics of the null hypothesis Hy : 7x = 79 as

n

LRY = 2P (%,) — ") (1)),

W = p (T — TO)T 2 (Tn — 70),
RP) = %[ngp)(To)]T P;(lp)}*l UP) (1),

where one can use for instance Ir(Lp)(’To) or IV (Tn) as P
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Theorem 8. Suppose that the null hypothesis holds and assumptions [RO]-[R6] are sat-
isfied. Then each of the test statistics LR;” ), W7(lp ) and R%p ) converges in distribution to
x2-distribution with q degrees of freedom.

Proof. LR%p): Note that

and further

67 (r0) = max € (70,9) = ba(T0, %) = Lu(6).

Thus LRY = LRy, where LRy is the test statistic of the likelihood ratio test in the presence of

nuisance parameters given by (22). Thus the statement of the theorem follows by Theorem 7.

W,Sp ): Follows from Theorem 7 and the fact that by Lemmas 1, 2 and 4

Ly ﬁ Li(0x) — Na2(0x) I (0x) Inn(0x) = [1"(0x)] . (34)

R By Lemma 4 one has U%p)(r) = Ui, (En(r)) Thus RY = Ry with It = [fﬁbp)],
where R} is Rao score test statistic in the presence of nuisance parameters defined in (23).

The statement of the theorem now follows by (34) and Theorem 7. O

Confidence interval for 0

One of the applications of the profile likelihood is to construct a confidence interval for 0.

Let 7 = 60; and 1 contains the remaining coordinates of the parameter 8. Then the set
{622 (696, - 96)) < X301 - )}

is the asymptotic confidence interval for 6x;. Although this confidence interval is more
difficult to calculate than the Wald-type confidence interval given by (20), the simulations
show that it has better finite sample properties. In R-software these intervals for GLM models

are calculated by the function confint.

Example 18. Let X1,..., X, be a random sample from a gamma distribution with density

_ 1
)

Suppose we are interested in parameter § and parameter A is nuisance. Derive the profile

f(x) M 2P~ exp{-Az}I{z > 0}.

likelihood for parameter 5 and the Rao score test of the null hypothesis Hy : Sx = [y against
H, : Bx # Po that is based on the profile likelihood.
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Solution: The likelihood and log-likelihood are given by

n

Lo = [ e,

=1

ln(B,A) = —nlogT'(B) + nBlog A+ (B—1) Y logX; — A > _X;.
i=1 =1

For a given 3 we can find \,(3) by

Il
o

(BN nB O~
ox N 2%
B
X,
Thus the profile log-likelihood is
(P(8) = —nlogD(B) +nplog (L) + (8 —1) D log X; —nf
=1

and its corresponding score function

nI’(B) -
Uép)(ﬂ):_ I‘(ﬁ) + nlog (Xﬁn)—f—n—i—;logXi—n.
Statistic of Rao score test of the null hypothesis Hy : Sx = [y against Hy : Sx # Py is now
given by
2
RO — (U (B0)] ’
" n I (Bo)
where ®) )
p 7 /
n 0B I'(8) I'(8) B

Example 19. Box-Cox transformation. See Zvara (2008) pp. 149-151.

2.8 Some notes on maximum likelihood in case of not i.i.d. random vectors

Let observations (X1,...,X,) have a joint density f,(x1,...,X,;80) that is known up to the
unknown parameter 8 from the parametric space ©. Analogously as in ‘i.i.d case’ one can

define the likelihood function as
Ln(o) = fn(Xb s 7Xn; 0)7

the log-likelihood function as
0,(0) =log L, (0),
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the mazimum likelihood estimator (of parameter Ox) as

6,, = arg max L,(0),

6co
the score function as
0£,(0)
U,(0) = )
) =5
and the empirical Fisher information matriz as
1 9%0,(0)
1,(0) = —— .
) == g 00T

The role of the theoretical Fisher information matrix I(€) in ‘i.i.d’ settings is now taken by

the limit ‘average’ Fisher information matrix

In ‘nice (regular) models’ it holds that

Vi (8, — 0x) —2— N, (0, 17(0x)).

n—oo

The most straightforward estimator of I(0y) is I, (§n) and thus the estimator of the asymp-

totic variance matrix of 5n is
—= 1 ~ —0%(,(0) -1
avar (0,) = ~I1-1(6,) = | — 2~ )A .
ar @) = 210 0,) = | e
That is why some authors prefer to define the empirical Fisher information without % simply

* 0%0,(0)
fn 0) — 7
(©) 00007

and they speak about it as the Fisher information of all observations.

Example 20. Suppose we have K independent samples, that is for each i = 1,..., K the
random variables X;;,j = 1,...,n; are independent and identically distributed with density

fi(x;0) (with respect to some o-finite measure p). Further let all the random variables be
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independent and let lim,, o % = w;, where n =ny +... +ng. Then

K n;
L.(0) = [IIIs(X:0)
i=1j=1
K ng
0n(8) = D log fi(X;:0),
i=1 j=1
S alogf 0)
Un(O) — ZZ z ’Lj7 ’
i=1 j=1
g — _L0Ua6) _ 1 &L log fi(Xi;6)
T n 90T nt=s 06000"
=1 j=1
K
1(6) = lim EI,(6) = lim Zw, ),
= 1\/
—W;

where I (@) is Fisher information matrix of X;; (i.e. for the density fi(x;8)).

Random vs. fixed design

Sometimes in regression it is useful do distinguish random design and fixed design.
In random design we assume that the values of the covariates are realisations of random
variables. Thus (in the most simple situation) we assume that we observe independent and

identically distributed random vectors

X1 X,
(2 (%) ®

where the conditional distribution of Y;|X; is known up to the unknown parameter 6 and
the distribution of X; does not depend on 6. Put f(y;|x;;0) for the conditional density of
Y;| X = x; and fx(x) for the density of X;. Then the likelihood and the log-likelihood (for

the parameter 0) are given by

L,(0) = [[ F(Vi| X:;0) fx (X)
=1

=fy,x (Yi,X;0)

n n
= log f(Yi|X:0) + Y _log fx (X). (36)

i=1 i=1
In fixed design it is assumed that the values of the covariates x1,...,x, are fixed when
planning the experiment (before measuring the response). Now we observe Y7,...,Y,, inde-

pendent (but not identically) distributed random variables with the densities f(yi|x1;0), ...,
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f(yn|xn; @). Then the log-likelihood is given by
(n(0) = ) _log f(Yilx;: 6). (37)
=1

Comparing the log-likelihoods in (36) and (37) one can see that (once the data are observed)
they differ only by >, log fx (X;) which does not depend on 6. Thus in terms of (likelihood
based) inference for a given dataset both approaches are equivalent. The only difference is

that the theory for the fixed design is more difficult.

Example 21. (Poisson regression)

Random design approach: We assume that we observe independent identically distributed
random vectors (35) and that ¥;|X; ~ Po(A(X;)), where A\(X;) = exp{BTX,} and X; =
(Xi1,--., Xip)T. Then (provided assumptions [RO]-[R6] are satisfied)

Vi (B, = Bx) == N, (0,, 17 (Bx)), where I(By) = E [X1 X] exp { 8% X1}].

Fixed design approach: We assume that we observe independent random variables Y7,...,Y,

and we have the known constants xi,...,x, such that ¥; ~ Po(A(x;)), where A(x;) =

exp{,BTXi}. Then it can be shown (that under mild assumptions on xi,...,Xy)

\/ﬁ(,@n —,BX) ﬁ Np(Op,I_fl(,BX)), where I(Bx) = lim 1 inxiT exp {X;I—,BX}
=1

n—oo N, 4

Note that in practice both I(By) and I(By) would be estimated by
1, :liX~X-Texp{BTX‘} or /I: :lixxTexp{BTx}
n n — (] 7 n (] n n — 1 7 n<*tf-

Thus for observed data the estimators coincide. The only difference is in notation in which
you distinguish whether you think of the observed values of the covariates as the realizations

of the random vectors or as fixed constants.
Example 22. Maximum likelihood estimation in AR(1) process.
Example 23. A comparison of K independent binomial distributions.

Literature: Hoadley (1971).

2.9 Conditional and marginal likelihood

In some models the number of parameters is increasing as the sample size increases. Formally
let 8 = 0y, ... ,Hpn)T, where p,, is a non-decreasing function of n. Let 0™ be divided
into 7 containing the first ¢ (where ¢ is fixed) and ™ containing the remaining p, — ¢

components.
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Example 24. Strongly stratified sample Let Y;;, i = 1,...,N, j = 1,2 be independent
random variables such that Y;; ~ N(u;, 02). Derive the maximum likelihood estimator of 2.

Is this estimator consistent?

Note that in the previous example each observation carries information on o2, but the
maximum likelihood estimator of o2 is not even consistent. The problem is that the dimension
of nuisance parameters 1 = (u1,...,un)' is increasing to infinity (too quickly). Marginal and
conditional likelihoods are two attempts to modify the likelihood so that it yields consistent

(and hopefully also asymptotically normal) estimators of the parameters of interest 7.
Suppose that the data X can be transformed (or simply decomposed) to V and W.
Let the distribution of V depends only on parameter 7 (and not on 1p(")). Then the marginal
(log-)likelihood of parameter 7 is defined as

LM () = p(Vir), £ (7) =log (LG(1)),

n

where pr(v) is the density of V with respect to a o-finite measure pu.
Let the conditional distribution of V given W depends only on parameter 7 (and not

on ™). Then the conditional (log-)likelihood of parameter 7 is defined as
LO(T) =p(V|W;T),  69(1) =log (LO(1)),

where p(v|w;7) is the conditional density of V given W = w with respect to a o-finite
measure /.
Remark 11. (i) If V is independent of W, then p(V|W;7) = p(V;7) and thus L (1) =
(©)
Ly (7).

(ii) ‘Automatic calculation of E%C)(T)’:

N CO)
K%C)(T) _ IOg p(V,W,T,¢ )

p(W; T, 4()
where £,(7,4™) is the log-likelihod of (V, W) and £, w(r,%™) is the log-likelihod
of W.

) - fn(T, w(n)) - ‘gn,W(Ta ¢(n))a

(iii) It can be shown that (under certain regularity assumptions) one can work with L (1)
and L%C)(T) as with ‘standard’ likelihoods.

Exponential family

Let the dataset X has the density (with respect to a o-finite measure p) of the form

p(x; 7,9 ™) = exp

2

QN T+ 3 Rlr ™) 8;(x) b alr ™) h(x),
j=1

1

J
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where 7 = (11,...,7,)" and 9™ = (1%”), e }(,n) q) Put S, (X) = (5:1(X),..., Spn,q(X))T
and note that for a fixed value of 7 the statistic S,(X) is sufficient for . Thus the
conditional distribution of X given S,,(X) does not depend on ™. This implies that when

constructing the conditional likelihood A (7) one can take S,,(X) as W and X as V.
Example 25. Strongly stratified sample (cont.). Using marginal and conditional likelihood.

Example 26. Y;;,i=1,...,1, j = 0,1 be independent, Y;; ~ Bi(n;j, pij), where

log( - ):?,Z)iJrT]I{j:l}.

Suppose we are interested in testing the null hypothesis Hy : 7 = 0 against the alternative
Hy:1m#0.

Note that the standard tests based on the maximum likelihood as described in Section 2.6
requires that [ is fixed and all the sample sizes n;; tend to infinity. This implies that using
conditional likelihood is reasonable in situations when (some) n;; are small.

The Rao score test based on the conditional likelihood in this situation coincides with

Cochran-Mantel-Haenszel test and its test statistic is given by

2 2
(SL Y~ Emlvin [vi]) (S0 Yo - Vi 2)
S varg, [Vir | Yii] ZZ 1 Yir n”ZZO e lir

Ni4+— 1

R —

n

(38)

where Y;; = Yo + Yi1 and n;+ = njp + ni1. Under the null hypothesis Rgf) L> X%, where
n—oo
I 1
n=> ijo Tig-

Example 27. Consider in Example 26 the special case I = 1. Thus the model simplifies to
comparing two binomial distributions. Let Yy ~ Bi(ng,po) and Y7 ~ Bi(ni,p1). Note that
the standard approaches of testing the null hypothesis Hy : pp = p1 against the alternative
Hi : py # p1 are asymptotic.

Conditional approach offers an exact inference. Analogously as in Example 26 introduce

the parametrization
log (1) =v+7I{j=1}, j=0,L

Note that in this parametrization 7 is the logarithm of odds-ratio.

Put Y =Yy + YY) and y+ = yo + y1. Then

(%) (e

Siex (1) (yfo—z) el

where K = { max{0, y+ — no},...,min{y,ni}}.

P (Yl—k|Y+—y+)

kel (39)
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Thus the p-value of the ‘exact’ test of the null hypothesis Hy : 7 = 79 against Hy : 7 # 79

would be
p(70) = 2min { Pry (Y1 < 1| Yy = y4), Pry(Y1 2 91 [ Y3 = y4) }, (40)
where yo and y; are the observed values of Yy and Y] respectively.

By the inversion of the test one can define the ‘exact’ confidence for 7 as the set of those

values for which we do not reject the null hypothesis, i.e.
CI =, 7u)={r €R: p(1) > a}.

The confidence interval for odds-ratio calculated by the function fisher.test () is now given
by (e?L,e?U).

The special case presents testing the null hypothesis Hy : 7 = 0 against Hy : 7 # 0. Then
(39) simplifies to
GG
e (1) GIN) (y) |

This corresponds to Fisher’s exact test sometimes known also as Fisher’s factorial test. Be

Po(Y1 = kY =y4)

careful that the p-value of the test as implemented in fisher.test is not calculated by (40)

but as

p= ) Po(Vi=k[Yy =yy),
kek -

where
Ko={keK:Po(Y1=k|V; =y;) <Po(Y1=u1|Ys =yi)},

which sometimes slightly differs from p(0) as defined in (40).
Note that Fisher’s exact test presents an alternative to the y2-square test of independence

in the 2 x 2 contingency table

Yo n

no—%Y | M1 — Y1

which is an asymptotic test.

Example 28. Consider in Example 26 the special case n;o =n;; =1 foreach ¢ =1,...,1.
Introduce s
Njg=Y HYio=jYa=k}, j=01k=01
i=1

Then the test statistic (38) simplifies to

plo — (No— Nip)®
" No1 + Nio

which is known as McNemar’s test.

Literature: Pawitan (2001) Chapters 10.1-10.5.
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3 M- and Z-estimators

M -estimator

Let X4,..., X, be arandom sample from a distribution F' and one is interested in estimating
some quantity (p-dimensional parameter) of this distribution, say Ox = @(F). Let p be
a function defined on Sx x O, where Sx is the support of F' and © is a set of possible values

of 8(F) for different distributions F' (parameter space). The M-estimator is defined as

~ 1 —
0,, = argmin — Z p(X;;0).
oco N

Note that the maximum likelihood estimator can be viewed as an M-estimator with
p(x;0) = —log f(x;0).

For regression problems when one observes Z; = (X1,Y1)7,...,Z, = (X],Y,)T, one can

view the least square (LS) estimator of regression parameters as an M-estimator with
T.\2
p(z:8) = p(x,y:8) = (y — B'x)".
Also the least absolute deviation (LAD) estimator can be viewed as an M-estimator with

p(z; B) = p(x,y;8) = ‘y - IBTX|'

Z-estimator

Often the maximizing value in the definition of M-estimator is sought by setting a derivative
(or the set of partial derivatives if 0 is multidimensional) equal to zero. Thus we search for 0,

as the point that solves the set of estimating equations

1 — ~ Op(x; 0
- ;d:(X“Gn) = 0,, where P(x;0) = % (41)

Note that

P(x;0) = (1/11(X; 0), ..., ¢Pp(x; 0))T = (3/)({(;9{;0) e 8p€(;;;0)>'r.
Generally let 1 be a p-dimensional vector function (not necessarily a derivative of some
function p) defined on Sx x ©. Then we define the Z-estimator as the solution of the system
of equations (41).
Note that the maximum likelihood (ML) and the least square (LS) estimators can be also

viewed as Z-estimators with
dlog f(x; 60
YuL(x;0) = ggé)’ vrs(x,y:8) = (y— B'x) x.

Literature: van der Vaart (2000) — Chapter 5.1.
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3.1 Identifiability of parameters via /- and/or Z-estimators

When using M- or Z-estimators one should check the potential of these estimators to identify
the parameters of interest. Note that by the law of large numbers
1 « 1 «
~ > p(Xi0) =Ep(X1;0) +op(1),  — > 9(X::0) = E9p(X1;0) +0p(1).
i=1 i=1

Thus the M-estimator @n identifies (at the population level) the quantity

0x = argminE p(X1;0)
0co

and analogously Z-estimator identifies 6 x such that
E¥(X1;0x) = 0,

Example 29. Let X,..., X, be ii.d. observations from a distribution with a density f(x)
(with respect to a o-finite measure ). By assuming that f belongs to a parametric family of

densities F = { f(x;8), 8 € ©} we are estimating (identifying) 6x such that

0y = argmaxE log f(X1;0) = arg max E log [{(X1:0)]
6co ( ) 0co [f(Xl) ]

Now by Jensen’s inequality
€ og [15¢) < toe {E (£359)} = 1o { [ 48 10 aux) | =tog(1} =0,

Suppose that our (parametric) assumption is right and there exists 8y € O such that

f(x) = f(x;0¢). Then E log [}f((;.(ll‘g)))] is maximised for @ = 6y and thus x = 6y (i.e.

maximum likelihood method identifies the true value of the parameter).

Suppose that our (parametric) assumption is not right and that f ¢ F. Then

_ f(X1:0) | _ f(x:0)
0x = ar%égaxE log [ XD } = argengax/log [ 700 | f(x) du(x)

— argmin | log [-£X) x) du(x).
OgeG) / g[f(x,g)]f( ) dpu(x)

Thus O x is the point of parameter space O for which the Kullback—Leibler divergence of f(x)

from F is minimised.

3.2 Asymptotic distribution of )/ /Z-estimators

Put M(8) = Ep(X1;0), Z(6) = E4(X1;0) and Dy (x;0) = % (the Jacobi matrix of

1(x; 0) with respect to 8). Further let X; has density f with respect to a o-finite measure p.

To state the theorem about asymptotic normality we will need the following regularity
assumptions. These assumptions are analogous to assumptions [R0]-[R6] for the maximum

likelihood estimators.
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[ZO] Identifiability. For M-estimators @ x is a unique maximizer of the function M (6). For
Z-estimators for any d > 0 there exists € > 0 such that inf|g_g|>s HZ(G)H > e.

[Z1] The number of parameters p in the model is constant.
[Z2] (The true value of the parameter) O x is an interior point of the parameter space ©.

[Z3] Each component of the function v (x; ) is differentiable with respect to 6 for (u-almost
all x).

[Z4] There exists a > 0 such that for each j, k € {1,...,p} there exists an open neighbour-
hood U of 6x and a function M;(x) such that for each 8 € U

Oj(x:0)  O(x;0x)
a0y, a0y,

< Mji(x) |16 — O]
for pi-almost all x and E M, (X 1) < oo.

[Z5] The matrix
I'(0) = EDy(X1;0) (42)

is finite and positive definite in a neighbourhood of @ x.

[Z6] The variance matriz
(0x) = var ((X1;0x)) = E | (X 1;0x) 9" (X1:0x) (43)
is finite.

Theorem 9. Suppose that assumptions [Z0]|-[Z6] are satisfied. Then with probability going

to oner there exists a solution 6, to the estimating equations (41) such that
~ N
Vn (6, —0x) = —%ZF (0x)¥(Xi;0x) + op(1), (44)
i=1
which further implies that
= d _ _
Vi (8 — 0x) — N, (0,T71(8) 5(6x) T(6x) ), (45)

where the matrices T'(@x) and X(0x) are defined in (42) and (43) respectively.

Proof. Consistency: For an M-estimator this can be proved analogously as the existence of
a consistent solution of the maximum likelihood equations, see the proof of Theorem 5.1
of Lehmann and Casella (1998, Chapter 6). For a Z-estimator one can adapt the proof of
Theorem 5.1 of Jureckova et al. (2012).
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Asymptotic normality: This is proved analogously as in Theorem 5. Let En be a consistent

root of the estimating equations. By the mean value theorem applied to each component of
Z, (én) one gets
0, = Zn(0n) = Zn(6x) + T}, (0, — Ox),

where I') is (p X p)-matrix whose j-th row is the j-th row of the matrix

£y(6) = = Y Dy(X:i0)

=1

evaluated at some 2* that is between én a O x. Further, similarly as in the proof of Lemma 1

using the law of large numbers (for i.i.d. vectors) one gets

= T(Ox = (T3 = Ta(0x)) + (Ta(8x) ~ T(0x)) = (T = Tu(6x)) +0p(1).  (46)

Now using assumption [Z4]| and the law of large numbers one can bound the (j, k)-element

of the matrix on the right hand side of (46) as
< — J* o _ )
(ri - ra0x)) | Z )65 = 0x[[* = Op(1)0p(1) = 0p(1)

This combined with (46) implies I}, % I'(@x). Now with the help CS (Theorem 2) one

can write
Vi (8, —0x) = —[T5) " /i Zy( ZF P(X;0x) + op(1),

which with the help of central limit theorem (for i.i.d. random vectors) and CS (Theorem 2)

implies the second statement of the theorem. O

Asymptotic variance estimations

Note that by Theorem 9 one has
6, = N,(0x, LT7(6x) Z(0x) T 1(8x)).

Thus the most straightforward estimate of the asymptotic variance of §n is the ‘sandwich

estimator’ given by

- = 1

avar (én) = ﬁl"gl =, Tt (47)
where
1y N T(X.- B
;1%, X;;0,) and X, = ngqp(xuan)ip (X4 6,)
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Note that in the same way as in the proof of Theorem 9 one can show that by [Z4] it follows
that
T, —— T(0x).
n—oo

It is more tedious to give some general assumptions so that it also holds
P
¥, —— 3(0x).
n—oo

To arrive at such assumptions rewrite

n

= D2 [1(%00) ~$(X6:0)] [ (X 00) — (X 00)] (15)
+ ;Z (X35 0x) [ (X3:00) —9p(X::0x)]" (49)
+ = Z (X550n) — $(Xi:0x)] %" (X5 0x) (50)
+ n;wxi;ex)zﬂ(xi;ex). (51)

Now by the law of large numbers the quanity in (51) converges in probability to %(6x),
thus it is sufficient to show that the remaining terms are of order op(1). With the help of
assumption [Z4] this can be done for instance by assuming that for each j,k € {1,...,p}

EM .(X1) <oo and E‘M‘ < 00.

Confidence sets and confidence intervals

Suppose that V,, =T';1 3, T'! is a consistent estimator of T71(6x) 2(0x) T~ (0x).
Then by the Cramér-Slutsky theorem the confidence set (ellipsoid) for the parameter 6 is
given by
{0:0(0,—0)V(8.-0) <21 -a)}.
The ‘Wald-type’ (asymptotic) confidence interval for ), (the k-th coordinate of ) is given

by
~ kk /nkk
(g — MmN - Mmela V]
where é\nk is the k-th coordinate of On and vﬁk is the k-th diagonal element of the matrix V.

Literature: Sen et al. (2010) Chapter 8.2., White (1980)
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3.3 Likelihood under model misspecification

Let X1,..., X, be a random sample with a density f (with respect to a o-finite measure pu).
From Example 29 we know that when assuming f € F = {f(x;0);0 € O}, the method of the
maximum likelihood identifies the parameter
Ox = ar@g r(ralin/log [%] f(x) du(x).
€

Further by Theorem 9 we also know that
= d _ _
Vn (6, — 0x) — N, (0,,T71(0x)Z(0x)T 1 (60x)).

Suppose that our parametric assumption is right and f € F, i.e. there exists 8x € © such
that f(x) = f(x;0x). Then T'(0x) = £(0x) = I(6x) and thus T"1(0x)Z(0x)T 1 (0x) =
I71(6x). Thus one can view Theorem 5 as a special case of Theorem 9. Further, when doing
the inference about O x it is sufficient to estimate the Fisher information matrix.

Often in practice we are not completely sure that f € F. If we are not sure about the
parametric assumption then it is safer to view the estimator En as an M-estimator with
p(x;0) = —log f(x;0). The asymptotic variance of én can now be estimated with the help

of ‘sandwich estimator’ (47) where

1< ~ ~ dlog f(x;0)
., = — X50,)UT(X;6,), 10) = ——— ——,
n;U( 0,)U"(X;:6,), U(x;0) T

B 0?log f(x;0)

1< ~
r, = - 1(X;;0,), I(x;0)=
QXD 1650) = —=005

Example 30. Misspecified Poisson regression Let X; = (Xi1,...,X;p)" and

() ()

be independent and identically distributed random vectors. Assume that Y;|X; ~ Po(A(X;)),
where A(x) = B and B = (B1,---,Bp)T. The score function for the maximum likelihood

estimation is given by

n
UL(8) = > X (vi— X))
i=1
Thus one can view the maximum likelihood estimator Bn as the Z-estimator with
(x,y; B8) = x (y — ™) (52)

and Bx solves the equation
EX, (Y1 - eﬂ})‘l) ~0,
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Suppose now that ¥;|X; % Po(A(X;)) but one can still assume that there exists 3, such that
E[V1]|X,] = e?X1. Then

EXy (vi- o) —E{E | X1 (7 —eﬂgxl)‘xl}} = E [X; (A% oX0)] — 0,

Thus By identifies By which describes the effect of the covariates on the expected mean value.
The above calculation implies that when we are not sure that the conditional distribution
Y;|X; is Po(A(X;)), but we are willing to assume that E[Y;|X;] = eBoXi | we can still use
the score function (52) which identifies the parameter 3,. By Theorem 9 we know that the
estimator 3,, is asymptotically normal with the matrices T(8y) and X(B8y) given by

E(BX) = EXlXI(Yi —eBI{X1)2 and F(QX) _ EX1 XIGBI{Xl.

Thus the asymptotic variance of the estimator Eln can be estimated by

o —

avar (,@n) = %F# INE Nl

where

LS~ x xT (v — oiX) LS~ x, xTAX:
En:n;XiXi (Yi—e” ) and Fn:n;XiXie"
i= =

3.4 Asymptotic normality of ) -estimators defined by convex minimization

Let X1,..., X, be arandom sample from a distribution F' and one is interested in estimating
some quantity @x (p-dimensional parameter) of this distribution such that this parameter can
be identified as

Ox = argminE p(X4;0),
6co

where for each fixed x the functions p(x;0) is convex in 6.

Let estimate the parameter 0 x as

~ 1 &
0, = arg min — p(X;;0).
" 0co nzl (X::9)

The function p(x;0) does not have to be smooth in €, but it needs to be differentiable
at least almost everywhere. Thus we suppose that there exists a function ¥ (x; @) such that

E(X1;0x) = 0, and one can write
p(x;0x +t) — p(x; 0x) = tT9(x; 0x) + R(x; t). (53)
Theorem 10. Suppose that (53) holds and that
(i) there exists a positive definitive matriz T'(0x) such that

E[p(X1;0x +t)— p(X1;0x)] = %tTF(HX)t +o([t]]*), ast — 0,;
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(it) var (R(X1;t)) = o(|[t]|?) as t — Oy;
(iii) there exists a finite variance matriz 3(0x) = var (¥(X1;0x)).
Then the statements of Theorem 9 holds
Proof. See proof of Theorem 2.1 of Hjort and Pollard (2011). O

Note that if assumptions [Z3] and [Z4] hold then also assumptions (i) and (ii) of Theorem 10
are satisfied. The nice thing about Theorem 10 is that the matrix I'(@x) does not have to
be computed as I'(@x) = EDy (X 1;0x) but one can compute it as the Hessian matrix of the
function M (0) = E p(X1;0) at the point 8x. Thus the smooth assumptions about ¢ can be
replaced with the smooth assumptions on the distribution of X; so that the function M (8)

is sufficiently smooth.

Application to LAD regression

Suppose independent and identically distributed random vectors Z; = (X I,Yl)T,. ey =
(XTI Y,)T are observed. The LAD estimator of parameter 3 is defined as

~

1L
B, = aigeﬁlnn; !E — bTXZ-’.

To formulate the result we will assume the following (strict linear) model.

(M) The observations satisfy
Y, =8"X, +e, i=1,...,n, (54)

where €1,...,e, are independent identically distributed random variables that are in-
dependent of Xq,..., X,,.

Theorem 11. Let the model (M) hold. Further, let E|| X 1||® < oo, the matriz E XX be
positive definite, £1 have a zero median and the density f-(x) of €1 be positive and continuous
in a neighbourhood of 0. Then

n

\/ﬁ(ﬁn_ﬁ)ziz[Exlxﬂ_lX"Siigw

Vi 2 27.0) ot
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Proof. We show that the assumptions of Theorem 10 are satisfied. First

Identification of B: Note that By = argminy g(b), where g(b) = E|Y; — b" X|. Now with
the help of independence of ¢; and X (we will write shortly X 1eq)

998) _  [sign(vi — BTX1) (~X1)] = E [sign(e1) X1]

B

X _E sign(e1) EX = 0p,

(55)
as med(e1) = 0 and P(ey = 0) = 0. Thus By = 3.
Introducing 9 and R as in (53): Note that the function

p(zb+1t) =y — bTx‘
is almost everywhere differentiable with respect to b with the derivative given by
P(z;0x) = —x sign (y — bTx).
Further by the same calculation as in (55) one gets
Ev(Z1; Bx) = —E [ X1 sign(¥: — B X1)] = 0,.

Thus the function 1(z; 0 x) seems to be a reasonable candidate for the function 1 from (53)

and the ‘remainder’ function R is defined as

R(z;t) = p(z;Bx +t) — p(z; Bx) — t 9(2; Bx)
=y — (Bx +t) x| - |y — BYkx| + t"x sign (y — B%x).

Showing (i): In what follows let E x, and E., stand for the expected values with respect to

X1 and &7 respectively. With the help of this convention one can calculate

E[p(Z1;Bx +t) — p(Z1;8x)] =E [‘Yl —(Bx +t)TX 1| — | V1 - B X1

=e1—tTX, =€1
tTX,
=-E / sign(e; — s) ds
0
tTX
XiZe 1 E., si d
= —-Ex, £, Sign(e; — s) s
0

=1-P(e1>5)+(—1)-P(e1<s)=1—2Fc(s)

tT X tT X
:_EX1/0 L —2F5(s)]ds:2E/0 [F.(s) — F.(0)] ds

=2F.(0) s f=(0)+s-0(1)
52 52 tT X
=2Ex, [21‘5(0) + 20(1)] = tTE (X1 X7 )t £2(0) + o (|[t]|*) -
0

42



Thus (ii) of Theorem 10 is satisfied by putting I'(@x) = 2 f-(0) E (XlXI)

Showing (ii) Using Cauchy—Schwarz inequality (C-S ineq)

2
var (R(Zl;t)) <E [R(Zl;t)]2 =E [}51 — tTXl‘ - |51| +t7 X, sign(sl)]

=/ —sign(e1—s)...
2

tTX1
=E / —sign(e; — s)ds + t' X sign(e;)
0

tTX, 2
=E / sign(e1) — sign(e; — s)ds
0

t7X | 2
<E /—|tTX1| 1-|sign(e1) — sign(er — s)| ds]
[t7X 1]
/ [sign(e) — sign(e; — 5)]? ds] } =: (A),.

C-S ineq 67 X1 9
< E / 1°ds]| -
—[tTX ] —tTX |

Note that sign(e1) — sign(e; — s) can be different from zero only when €1 and £; — s are of

different signs, which is a subset of the event €1 € [—|s]|, |s|]. Further using independence of

X1 and €1 one gets

(A) < {QItTXl\/ltTX1 P(ler] < s)ds }

tTX1
|tTX1\ . T X
= 8EX1{|’C Xl\/ () = Fe(=s)| ds} ézExl{lt X120 %] }
|tTX1| 0
<C|s|
< 2CERTX]P <2C P E X0 = O ([t]°) = o (|It]?) , fort — 0,
N——
<oo

where we have used that by the assumptions of the theorem there exists a finite constant C'
such that for |F.(s) — F:(—s)| < C|s| for each s € R.

Showing (iii) This follows from

var (sign(e1)X1) = var (E [ X1 sign(eq) | Xl]) +E (var [ X1 sign(eq) | XlD

=0pxp +E <X1 var[sign(sl)]XI) =E (XleT)
O

Note that Theorem 11 covers an asymptotic behaviour of a sample median as a special

case. This is explicitly formulated in the following corollary.
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Corollary 1. Let Y1,...,Y,, be independent identically random variables with density f(y)

that is positive and continuous in a neighbourhood of median. Then

-1 —1 d 1
Vi (F710.5) — F1(0.5)) N<0,4f2(F1(0'5))>.

n—oo

Proof. The proof follows from Theorem 11 by taking X; = 1, &; = Y; — F~1(0.5) and noting
that f-(0) = f(F~1(0.5)) and F,1(0.5) = argminyep = S°7 | |Y; — ). O

Literature: Hjort and Pollard (2011) Section 2A

3.5 M-estimators and Z-estimators in robust statistics
In statistics the word ‘robust’ has basically two meanings.

(i) We say that a procedure is robust, if it stays (approximately) valid even when (some) of
the assumptions (under which the procedure) was derived are not satisfied. For instance
the standard ANOVA F-statistic is robust against the violation of the normality of the

observations provided that the variances of all the observations are the same.

(ii) People interested in robust statistics say that a procedure is robust, if it is not ‘too
much’ influenced by the outlying observations. In what follows we will concentrate on

this meaning of the robustness.

One of the standard measures of robustness is the breakdown point. Vaguely speaking
the breakdown point of an estimator is the smallest percentage of observations that one has
to change so that the estimator produces a nonsense value (e.g. £oo for location or regression
estimator; 0 or +00 when estimating the scale).

Let En be an M- or Z-estimator of a parameter 8 x. Note that thanks to Theorems 9 or 10

one has the following representation

0, —0x = — ZIF i) +or( ),

where TF(x) = —T"1(0x) 1 (x;0x) is called the influence function. Thus if one can ignore
the reminder term OP(L), then changing X; to X; + A results that §n changes by

n

%[IF(XZ- +A) - IF(X,)].

Thus provided that I F(x) is bounded then also this change is bounded.

Note that the above reasoning was not completely correct as the term o p(ﬁ) was ignored.
Nevertheless it can be proved that (under some mild assumptions excluding ‘singular’ cases)
that if the function (x; @) is bounded then the breakdown point of the associated M (Z)-

estimator is %
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3.5.1 Robust estimation of location

Suppose that we observe a random sample Xi,...,X, from a distribution F' and we are
interested in characterising the location.

Note that for the sample mean X,, = % Yo, X it is sufficient to change only one observa-
tion to get an arbitrary value of X,,.

On the other hand when considering the sample median X, = F71(0.5) then one needs to
change at least half of the observations so that one can for instance change the estimator to
+o0.

When deciding between a sample mean and a sample median one has to take into con-
sideration that if the distribution F is not symmetric then X, and )Zn estimate different
quantities. But when one can hope that the distribution F is symmetric, then both X,, and
)A(:n estimate the centre of the symmetry and one can be interested which of the estimators
is more appropriate. By the maximum likelihood theory we know that X,, is efficient if F is
normal while )Z'n is efficient if F' is doubly exponential.

In robust statistics it is usually assumed that most of our observations follow normal dis-
tributions but there are some outlying values. This can be formalised by assuming that the

distribution function F' of each of the observations satisfies
F(z)=(1—-¢)®(=4) +eG(x),

where ¢ is usually interpreted as probability of having an outlying observations and G is
a (hopefully symmetric) distribution of outlying observations. It was found that if ¢ is ‘small’
then using sample median is too pessimistic (and inefficient). We will mention here several

alternative options.

Huber’s estimator is defined as 05 = arg mingeg £ 31| pu(X; — 6), where
2
5 2| <k
pr () = { ’ : (56)
k(o] — %), Jz| >k

and k is a given constant. Note that the ‘score function’ i (z) = p/y(x) of the estimator is

x, lz| <k

57
k-sgn(x), |z| >k (57)

Thus one can see that for x € (—k, k) the function 1y corresponds to a score function of
a sample mean while for z € (—oo, k) U (k,00) it corresponds to a score function of a sample
median. Thus Huber’s estimator presents a compromise between a sample mean and a sample

median.
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The nice thing about Huber’s estimator is that its loss function p(x;6) = pg(x — 0) is
convex (in 6) thus 6\ is not too difficult to calculate and with the help of Theorem 10 one

can derive its asymptotic distribution.

The choice of the constant k is usually done as follows. Suppose that X, ..., X, follows
N(0,1). Then one takes the smallest k such that
o\
avar (n™) 1 5
var (X )

where § stands for the efficiency loss of Huber’s estimator under normal distributions. For
instance the common choices are § = 0.05 or § = 0.1 which corresponds approximately to
k=137 or k =1.03.

When using Huber’s estimator one has to remember that if the population is not symmetric
then 057 — £ 61 (F), which lies between E X; and F~1(0.5).

n—oo

Among other common M-estimators of location let us mention:

(i) Cauchy-pseudolikelihood: p(z;0) = —log(1 + (z — §)?). The problem with this

estimator is that the estimating equation

has usually more roots.

(ii) Tukey’s biweight:

x (1 - ﬁ)z x| <k
k2 ’ =
0, |z| >k

Y(z) =
But also here the corresponding loss function p (¢ = p') is not convex.

3.5.2 Studentized M (Z)-estimators

The problem of the M(Z)-estimators presented above is that the estimators are not scale
equivariant (i.e. §n(cX ) # c@n(X )). That is why in practice M-estimators are usually
defined as

~ 1 .
0, = argerﬁm - ZZ;/)(Xéne)’

where S, is an appropriate estimator of scale. The most common estimators of scale are as
follows.

Sample standard deviation S,, = /-7 >°.(X; — X,,)2, but this is used rather rarely as it is

not robust.
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Interquartile range:

S, =IQR = F,1(0.75) — F, 1(0.25),

where F, is the empirical distribution function (ie. F,(z) = 13" I{X; < 2}). Some
people prefer to use
~  F;710.75) — F;71(0.25)

" @1(0.75) — @1(0.25)

as it is desired that S, estimates o, when X1,..., X, is a random sample from N(u,o?).

Note that the breakdown point of this estimator is 0.25.

Median absolute deviation:

MAD = med;<ij<n|X; — Fn_l(o-5)|»

or its modification
MAD

¢-1(0.75)’
so that it estimates o for random samples from N(u, o?).

Note that the breakdown point of this estimator is 0.50.

M/_—Z/D:

Remark 12. The asymptotic distribution of studentized M-estimators is difficult to derive

and rather complex.

3.5.3 Robust estimation in linear models

Suppose we observe independent random vectors

X1 X,
The least square method results in an estimator
B, =argmin Y _ (¥; —bTX;)* = <1 ZN:X-XT>_1<1ZH:XY->
! j l Z gt o i v

Cenerally, the LS method models E[V; | X ;] as BT X .

Suppose now that that the first component of X; is 1 (i.e. the model includes an intercept)

~ ~T
and denote by X; the remaining components of X;. That is X; = (1, X, )T. Further suppose
that the following models holds

Y; = By + ,BTf)Zi + &;, where e1,...,e, areii.d. and Eij_fi. (58)

Then E[Y; | X1] = B0+ B X1 + Ecy and 3, estimates (identifies)
Bo+ Eer
Bx = ( :
B
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Note that if X, # 0 then by changing Y} one can arrive at any arbitrary value of //B\nk

Method of the least absolute deviation (LAD), i.e.

~ 1 &
= argmin — Y; — b’ X,
B, = argmi n;l ; i

is usually considered as a robust alternative to the least square method. Generally, the LAD
method models med[Y; | X 1] as 37 X 1. But if moreover model (58) holds, then med(Y; | X ;) =
Bo + ,BT/jfl + F-1(0.5), where F! is the quantile function of &1 and thus

Bx = ( 0 (05) ) .
By Theorem 11

F R ~1 _ sign(e; — FZ1(0.5))
Bt =2 (BXXT) XSy oy o ()

Thus one can expect that the change of Y; (or equivalently the change of ;) has only a bounded
effect on Bn On the other hand note that the change of X; has an unbounded effect on Bn
Thus LAD method is robust with respect to the response but not with respect to the covari-

ates.

Analogously as the Huber’s estimator of location is a compromise between a sample mean
and a sample median, Huber’s estimator of regression is a compromise between LS and LAD.

Put

n
B, = argmianPH(Yi -b'X;),

berr 1T
where pg is defined in (56). Generally, it is difficult to interpret what is being model with
Huber’s estimator of regression BT X (it is something between E (Y7 | X 1) a med(Y; | X1)).
Note that it identifies

Bx =argminE py (Y1 — bTXl).
beRP

Equivalently Bx solves
!
E[vn (Y — B X1) X1] =0y,
where ¢ is defined in (57). Thus if model (58) holds then one needs to solve

!

E [vu (8o + BTX1+e1— Bxo— B;iﬂ X1] =0, (59)

~T
where we put By = (ﬁ x0, 3 X)T. Thus Bx identifies the following parameter
Bo + O
IBX = ( 3
B
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where 0 solves Evp(e1 — 0p) .
Thus if model (58) holds then the interpretation of the regression slope coefficient (3) is
the same for each of the methods described above (LS, LAD, Huber’s regression).

Analogously as in Section 3.5.2 in practice the studentized Huber’s estimator is usually
used. This estimator is defined as
~ 1 — T
B, —argmin=3 py (M)
where S, is an estimator of scale of ¢;. For instance one can take M AD or IQR calculated

~T
from the residuals from LAD regression &; = Y; — 8,, 1 4pX-

Inference:

e With the help of Theorem 10 one can show the asymptotic normality of Bn of the

(non-Studentized) Huber’s estimator.

e If model (58) holds, then it can be shown, that the estimate of the scale influences only

the asymptotic distribution of the estimate of intercept and not of the slope.

Literature: Maronna et al. (2006) Chapters 2.1-2.2 and Chapters 4.1-4.4.

4 Bootstrap and other resampling methods

Suppose we observe independent and identically distributed random vectors X1, ..., X, from
the distribution F' and we are interested in some characteristic of F', say Ox. Let O(F) be
the quantity of interest and /O\H = O(F,,) its estimator. Now let R,, be either an appropriately

standardised version of En or a test statistics,
~ —~ - =< 71-1 ~
e Ry=vi(0,-0x) or Ry=(8.-00) [avar(®,)| (B, 60)

For doing inference about parameter 8, one needs to know the distribution of R,. Usu-
ally we are not able to derive the exact distribution of R, analytically. For instance con-
sider the distribution of \/n (én -0 X) where §n is a maximum likelihood estimator whose
formula cannot be explicitly given. In such situations the inference is often based on an
asymptotic distribution of R,,. For example for a MLE estimator in regular models one has
Vn (5n — OX) ﬁ N(O, I_I(GX)). Bootstrap presents an alternative to using the asymp-
totic normality. As we will see later, bootstrap combines the ‘Monte-Carlo principle’ and

substitution (plug-in) principle.
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4.1 Monte Carlo principle

Sometimes one knows the distribution of X = (X,...,X,) and thus he/she is (at least
theoretically) able to derive the distribution of R,, = (Rn1,..., Ru,)". But the derivations
are too complicated and/or the resulting distribution is too complex to work with. For
instance consider the standard maximum likelihood tests without nuisance parameters as in
Section 2.4.

Another way how to utilize the knowledge of data-generating mechanism of X is to use
Monte-Carlo principle, which runs as follows. Choose B sufficiently large and for each
b € {1,..., B} independently generate the samples Xj = (X7,,..., Z’b)T such that the
distribution of Xj is the same as the distribution of X. Thus we get B independent samples

1., X%, Let thb be the quantity R, calculated from the b-th sample X;. The unknown

distribution function H,(x) of R, can now be estimated as

B
1
Hyp(x) = > IR, < x}.
b=1

As R} 1,..., R}, p are independent and identically distributed random variables and each
variable has the same distribution as R,,, by the Glivenko-Cantelli Theorem (Theorem A1)
we know that

alm. surely

sup }Hn,B(X) - Hn(x)| 07 (60)

thus for a sufficiently large B one can use H, p(x) as an approximation of Hy(x).
Note that if R,, is one dimensional then also for each fixed u € (0, 1):

-1 alm. surely 1
Hn,B(u) Booo Hn (u)7

provided that H,!(u) is a unique solution of H,(z_) < u < H,(x) (see e.g. Theorem of
Section 2.1.3 in Serfling, 1980).

Further if R, is a (one-dimensional) test statistic whose large values are in favour of the
alternative hypothesis, then with the help of the Monte-Carlo principle the p-value of the test

can be estimated as 5
1+ Y2 YR, > R
PB = B +1 )

alm. surely

as PB . 1—Hy(R,-).

Example 31. Suppose we observe a random variable with the multinomial distribution
M(n;p1,...,pr). Denote p = (pl, e ,pk)T and px the true value of the parameter p. In

some applications we are interested in testing

Ho:px =p® vs. Hy:px #p,

o0



where p(® = ( go), e p,(co))T is a given vector. Explain how the Monte Carlo principle can

be used to estimate the critical value and the p-value of the y?-test of goodness of fit.

Example 32. Note that the significance of all the test statistics introduced in Section 2.4
for testing the null hypothesis Hy : Ox = 60y against the alternative Hy : @x # 0y can be
assessed with the help of Monte Carlo principle.

In the following examples we will utilize that in fact it is not necessary to know the data-
generating mechanism of X exactly, provided we are able to generate independent copies
of R,,.

Example 33. Suppose that we observe independent and identically distributed random vec-
tors (Y1, X1)T7,..., (Y, X,,)T from the bivariate normal distribution. Then the distribution
of the sample correlation coefficient p, depends only on the true value of the parameter p

which we denote by px. Thus when testing the null hypothesis

Hy : px = po, vs.  Hy:px #po

one should be able (at least theoretically) calculate the distribution of the test statistic
R, = /n(pn — po) when the null hypothesis holds. Now let r,(a) be an a-quantile of
the distribution R,, when the null distribution holds. Then one rejects the null hypothesis if

Ry <rp(a/2), or R, >ry(l1—0a/2).

Although the quantiles r,(«/2) and r,(1 — «/2) are difficult to calculate analytically, it is

straightforward to estimate them by Monte-Carlo simulations.

Example 34. Let X1,...,X, be a random sample from the logistic distribution with the

density
exp{—(z —0)}

(1+exp{—(z —0)})*

f(x) = z € R,

where 6 € R.

Let 0x be the true value of the parameter 6 and §n be for instance its maximum likelihood
estimator Then the distribution of R, = /n (@L — HX) does not depend on 6. Thus the
distribution of R, can be approximated by simulating from the logistic distribution with
¢ = 0 and calculating R} , = NG

Usually in practice we do not know the data generating process completely. But very often
we are able to estimate the distribution of X. Depending on whether this distribution is
estimated parametrically or nonparametrically we distinguish parametric or nonparametric

bootstrap.
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4.2 Standard nonparametric bootstrap

Suppose we observe independent and identically distributed random vectors X, ..., X, from
the distribution F. Let 8(F) be the quantity of interest and 8,, = (F,) its estimator with

F,, being the empirical distribution

Fy(x) = % SOI{X; < x}.

=1

Suppose we are interested in the distribution of
R, = g0 (0,,0) = g.(6(F,). 6(F)  (eg Ro=(0,-9)).

In nonparametric bootstrap the unknown F' is estimated by the empirical distribution func-
tion F,,. Now generating independent random vectors X7, ..., X from the distribution F, is
equivalent to drawing a simple random sample with replacement of size n from the observed
values X 1,...,X,. The bootstrap algorithm now runs as follows.

Choose B sufficiently large and for each b € {1, ..., B} independently generate the datasets
X = (XTps-- ,X;"L,b)T (i.e. the datasets X7,..., X} are independent). Let

w0 = 8n(0,0,00) = €0 (0(Fy,). 0(F)  (eg Ry = v (B, - 00)).

where 5;’,, is an estimator of @ based on Xj and analogously F, is an empirical distribution

function based on Xj. The unknown distribution function H,(x) of R, is now estimated by

B
1 *
b=1

*

Note that the random variables/vectors Ry, 1, ...

; R}, p are identically distributed and put

*

R/, for any of the random variables. As RJ ..

Glivenko-Cantelli Theorem

.,R:; p are also independent then by the

alm. surely

sup [, (x) — H; () 0,

B—

where
Hi(x)=P (R;; < x| x) —P (gn(e(F;),o(Fn)) < xyx) —P (gn(éj;,én) < x| X).

The crucial question for the success of the nonparametric bootstrap is whether H is ‘close’
(at least asymptotically) to H,. To answer this question it is to useful to introduce the
supremum metric on the space of distribution functions (of random vectors on R¥) as
poc(H1, Hy) = sup |Hi(x) — Ha(x)|.
x€ERF
The following lemma states that if the distribution function of the limiting distribution is

continuous, then p,, can be used for metrizing the convergence in distribution.
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Lemma 5. Suppose that Y1,Ys,... and Y be random vectors (with values in R¥) with the
corresponding distribution functions G1,Ga, ... and G. Further let the distribution function G

be continuous. Then Y, %) Y if and only if poo(Gpn,G) — 0 as n — co.

Proof. We would like to show that

Poo (G, G) —— 0 —= G, —— G.

n—00 n—00
The implication = is straightforward as supycge [Gn(y) — G(y)| — 0 implies that G, (y) —
G(y) for each y € R*.

The implication < is more difficult. By the continuity of G for each € > 0 there exists
a finite set of points B. = {y1,...,y~} such that for each y € R* one can find yr,yy € B-
that

yr<y<yuv, and G(yv)-G(yr) <5

Thus for each y € R* one can bound

Gnly) = G(y) < Gu(yv) — G(y) < Galyv) = Glyv) + 3 (61)

and analogously also

Gn(y) = G(y) 2 Gu(yr) = G(y) =2 Gn(yL) —G(yz) — 5 (62)
Now combining (61) and (62) together with G, ﬁ G one gets that for all sufficiently
large n
sp [Ga(y) = G)| < max |Cu(y) —Cly)[ +5<5+5=¢,
which implies the statement of the lemma. O

Suppose that a metric p can be used for metrizing weak convergence. Let R be a random
vector with the distribution function H. Then we say that conditionally on X1, Xo,... the

random variable R} converges in distribution to R in probability if

p(H: H) L 50 (i.e. for each e > 0 lim P [w: p(Hj(w), Hy) > €] = 0).
n— oo

n—oo
Analogously we say that conditionally on X, Xo,... the random variable R converges in
distribution to R almost surely if

0 (i.e. P[w: Tim p(H; (w), H) :0] :1).

" alm. surely
p(Hy, H)

n—o0

Theorem 12. Suppose that R, % R, where R is a random wvector with a continuous
n o

distribution function. Further suppose that

poo(H Hy) —2— 0 (or 222l ) (63)
n—oo n—oo
then conditionally on X1, X2,... one gets R} 2 “Rin probability (or almost surely).
n—oo
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Proof. By the triangular inequality, (60) and Lemma 5

poo (2 H) < poo(HE Hy) + poo(Hp, H) —2— 0 (or 2 Swely

n—o0 n—o0

0).
O

Typically we know that R, converges to a multivariate normal distribution. Thus in view
of Theorem 12 the crucial question to answer is if convergence (63) holds. The next theorem
states that (63) holds for a sample mean (for the proof see e.g. Theorem 23.4 of van der Vaart
(2000), pp. 330-331).

Theorem 13. Let X1, X9, ... be independent identically distributed random vectors such that
E||X1]? < 0o and consider R, = \/n (X, —EX1) and R}, = \/n (Y:L — X,). Then

alm. surely

poo(H;;an) 0. (64)

n—oo

Note that for X; being a p-variate random vector, then the central limit theorem im-
plies that the distribution function H,, converges weakly to the distribution function of
N, (OP,var(Xl)). Now Theorems 12 and 13 imply that conditionally on X1, Xo, ...

R; 4, N, (0,,var(X1)), almost surely.

n—o0

Thus one can say that H; estimates also the distribution function of N, (0,, var(X1)).

4.2.1 Comparison of nonparametric bootstrap and normal approximation

Note that Theorem 12 implies only the asymptotic validity of bootstrap provided that (63)
holds. The question is whether bootstrap estimate H; is a better estimate of H,, than the
asymptotic distribution of H where one estimates the unknown parameters.

To answer the above question, consider p = 1. Further let X; have a continuous distribution
and put 7 = E (%)3, where = E X1,02% = var(X1). Further let EX{l < 00. Then it can

be proved that

H(x) = P (L2522 < o) = @) + g (20 + D) + O(2), (65)

where X,, = % Yo Xi, Sy = ﬁ Yoy (X;—X,)?. Further it can be shown that an analogous

approximation also holds for H(z), i.e.

Hy(w) = P (VHOgX0) <o |X) = @(a) + 2 (20° + Do) + Op(L),  (66)

¥ * * * B i—Xn)3
where X, = 150 Xxr 62 = LS (X7 — X,)? and 1, = 2300, (XZSTLX )”. Thus

n

comparing (65) and (66) one gets

H(z) — Hyp(z) = O,(2).
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On the other if v # 0, then by the normal approximation one gets only

®(z) - Hy(x) = O(J).

Thus if 71 # 0 then one can expect that in comparison with ® the bootstrap estimator H;: is

closer to H,.

4.2.2 Smooth transformations of sample means

The standard nonparametric bootstrap also works for ‘smooth’ transformations of sample

means.

Theorem 14. Let X1, Xo,... be independent identically distributed random (p-variate) vec-
tors such that E || X1]|?> < co. Further suppose that there exists a neighbourhood U of p such

the function g : U — R™ have continuous partial derivatives in this neighbourhood. Consider
R, = 1 (g(X,) —g(w) and R;, = Vn (g(X,,) — g(X,)). Then (64) holds.

Remark 13. Suppose for simplicity that g : R? — R. Note that if VgT ()X Vg(u) = 0, then
although (64) holds, the bootstrap might be not useful as the limiting distribution of R,, is
degenerate.

To illustrate this consider p = 1. Let Xy,..., X, be a random sample from the distribution
with E X; = px. Further let g be a twice continuously differentiable function in px such that
¢'(px) =0and g"(ux) # 0. Then by Theorem 3 one gets R, = v/n (9(Xn)—g(1x)) ﬁ 0.
Thus although by Theorem 14 convergence (64) holds, one cannot say if bootstrap works as
the limiting distribution is not continuous.

Nevertheless a finer analysis shows that (see Theorem B of Section 3.1 in Serfling, 1980)

Ry =20 (9(Xn) — g(ux)) — [¢"(ux)] 0> 2.

n—oo

So the bootstrap would work if the convergence (63) holds also for B = 2n (g(YZ) —g(Xn)).
But this is not true as it is shown in Example 3.6 of Shao and Tu (1996).

Roughly speaking one can say that (64) holds provided that /én can be approximated as
a mean of independent identically distributed random vectors plus a reminder term of order
OP(ﬁ). This can be formalised through the concept of Hadamard-differentiability of the

functional @(F), but this is out of the scope of this course.

4.2.3 Limits of the standard nonparametric bootstrap

Although the standard nonparametric bootstrap often presents an interesting alternative to
the inference based on the asymptotic normality, it often fails in situations when the asymp-

totic normality does not hold. These include for instance extremal statistics and non-smooth
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transformations of sample means. Note also that the standard nonparametric bootstrap as-
sume that the observations are realisations of independent and identically distributed
random vectors. Thus among others the standard nonparametric bootstrap is not appropriate

in regression problems with fixed design or in time series problems.

Example 35. Let X1,..., X, be a random sample from the uniform distribution on R(0,0).
Then the maximum likelihood estimator of 6 is given by §n = maxi<i<n X; =: X(n). Note

that for z < 0

o+Z 1" n z
P (1(Xa) — 0) < 2) =P (X <04 2) = P, (04 2) = 5| = [14:5]" o
Thus n (X¢,) — 0) _)L> Y, where Y has a cumulative distribution function
7, <0
PY <x)= e
1, >0

On the other side

P(X(y =Xy [X) =1-P (X(m) ¢ {X7,.. . X0} X) =1 (52)" —=1—¢!

(n n n—o00
and thus (63) cannot hold for R} =n (XE*n) — X))

Literature: Praskova (2004), Shao and Tu (1996) Chapter 3.2.2, Chapter 3.6, A.10

4.3 Confidence intervals

Suppose for simplicity that §(F') is one-dimensional.

4.3.1 Basic bootstrap confidence interval

Consider R, = \/n (@n — HX). Then the quantiles r (u) of the bootstrap distribution R} =
\/ﬁ(é\; — é\n) estimate the unknown quantiles of the distribution R,,. Thus if ‘bootstrap works’
(i.e. Theorem 12 holds for R}) then

lim P [r;;(a/z) <V (B, —0) <ri(1— a/zﬂ —1-a (67)

Now with the help of (67) one can construct an asymptotic confidence interval for fx as

(é\n _ rap(ze/?) 5 TZ,B(Q/Q)), (68)

v 00n vn

where 77, p(a) is a Monte-Carlo approximation (estimate) of 7} (c). The confidence interval

in (68) is usually called basic bootstrap confidence interval.
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*
n,1s -

vn (é\;;,b — é\n) Thus the confidence interval (68) can be also rewritten as

Remark 14. Note that as 7 () is a sample a-quantile of R R} 5, where R}, =

(200 = 425 (1 = /2).20, — g5 p(0/2)) (69)
where ¢;, p(a) is a sample a-quantile calculated from the values /0\:71, ce A;‘L’ B

Sometimes in literature you can find the bootstrap confidence interval of the form

(5.5(0/2). 43 5(1 = a/2)),

which is usually called the percentile confidence interval.

4.3.2 Studentized bootstrap confidence interval

Usually it is recommended to ‘bootstrap’ a variable whose limit distribution does not depend

on the unknown parameters (such a variable is called pivot). Thus consider R,, = W,
2

= is an estimate of the asymptotic variance of \/ﬁ(gn — QX). Let 7 (u) be the u-

where o
th quantile of the distribution E:‘Z = %, where 7 is an estimate of the asymptotic
variance of \/n (5;; — (/9\71) calculated from the bootstrap sample. Thus if ‘bootstrap works’
(i.e. Theorem 12 holds), then

v (0.-6)

on

lim P [f;(a/z) <

n—oo

which yields an asymptotic confidence interval

(A 7 p(1-a/2)n

6 _ o 9. 7 5(a/2) an)7

o (70)

where 7, p(a) is a Monte-Carlo approximation of 77 (a). The confidence interval in (70) is
usually called studentized bootstrap confidence interval.
Literature: Efron and Tibshirani (1993) Chapters 15 and 16

4.4 Parametric bootstrap

Let X1,...,X, be random vectors having the joint distribution F(-;8) that is known only
up to an unknown parameter 6. In parametric bootstrap we generate the bootstrap vectors

1ps---» X0y from F(+;0,), where 6,, is a consistent estimator of 6.

Example 36. Let X;,...,X,, and Y7,...,Y,, be two independent random samples from the
the exponential distributions with the density f(z,\) = Ae **I[z > 0]. Let Ax be the true
value of the parameter for the first sample and Ay for the second sample. Find the confidence

interval for ﬁ—x .
Y
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Solution. The maximum likelihood estimators are given by h\ X = %, Xy = ?1 . Now gen-
ni ng
erate X7{,..., X} and Y7",... ¥* as two independent random samples from the exponential

distributions with the parameters h\ x and Xy respectively. Put

R :(i—x—)‘—x> and R, =|%X—2X
n Ay Ay n X v )

where Ay = YL* and Ay = % The confidence interval for the ratio 3\\—); can now be

n1 n2

calculated as

where 77 p(a) is the estimate of the a-kvantil Rj,.

Alternatively instead of bootstrap one can use A-theorem (Theorem 3), which implies that

Ax _Ax) % M1 1
(e %) BN (ox (7 +5))-
By combining A-theorem and bootstrap one can also use

Ax Ax M A
> Ay A > Ay A
R,==2_2_ and Rf = 2y Y

Ay [1. 1 X 11
AX n1+n2 l)\\} n71+n72

Goodness of fit testing

Parametric bootstrap is often used in goodness of fit testing. Let X1,..., X, be a ran-
dom sample of k-variate random vectors with the distribution function F. Suppose we are

interested in testing that F' belongs to a given parametric family, i.e.
Hy:F e F={F(x;0),0 c 0}

against the alternative
Hy:F¢/F.

As a test statistic one can use for instance

K S, = sup ’Fn(x) — F(x; /H\n)},
xERF
where Fj, is an empirical distribution function and §n is an estimate of @ under the null
hypothesis. As the asymptotic distribution of the test statistic under the null hypothesis is
rather difficult, the significance of the test statistic is derived as follows.
1. For b =1,...,B generate a random sample X; = (X7,,..., X}, ;) (of size n), where

each random vector X7, has the distribution function F'(x; én)
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2. Calculate

KS}, = sup |Ffy(x) — F(x;8,,)|.
x€RE

where F; , (x) is the empirical distribution function calculated from Xj and 5;6 is the estimate
of @ (under Hy) calculated from Xj.

3. Estimate the p-value as

L+ S8 H{KS;, > K5,)
B+1 ’

where B is usually chosen as 999 or 9999.

Remark 15. Instead of the test statistic K5, it is usually recommended to use one of the
following statistics.

Cramér-von-Mises:

CM = / (Fn(x) — F(x;an))zf(x; 0,)dx, or CM = ;Z (Fo(X5) — F(Xl,an))2

Anderson-Darling;:

Fu(x) <x;6n>>2 5 s (Fa(X) — F(X3:6,))°
AD = / » f(x;0,)dx, or AD = n; F(X, )( P ¥ )) .

x;0,)(1 — F(x;0,))
Example 37. Bootstrap estimation of the distribution of estimators of parameters in AR(p)

process.

4.5 Testing and bootstrap

Suppose that we have a test statistic 7, = T'(X1, ..., X ) and that large values of T, speaks
against the null hypothesis. Let Xj = (X7 4,..., ;“L’l)T, e X=X ;’B)T be
independently resampled datasets by a procedure that mimics generating data under the null
hypothesis. Let Ty, = T,,(Xj) be the test statistic calculated from the b-th generated sample

Xj (b=1,...,B). Then the p-value of the test is estimated as

— 1+ T, 2 T

lue = 71
pvalue Bl (71)
Comparison of expectations in two-sample problems

Let Xy,...,Xy, and Y1,...,Y,, be two independent random samples from the distributions

F and G respectively. Suppose we are interested in testing the null hypothesis

H[) . EX1 = EY1
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In what follows we will mention several options how to test for the above null hypothesis.

1. Standard t-test is based on the test statistics

T — Xp, =Y, ’
S*\ar T g
where
1 J— -
G2 _ P (1 = 1)S% + (n2 — 1)S2], 9% = — ;(Xi X)) 8 =

The crucial assumption of this test is the homoscedasticity, i.e. var X1 = varY; € (0,00) or

that “L— — 3. Then under the null hypothesis 7}, ﬁ N(0,1).

2. Welch ¢-test is based on the test statistics

. ¢
" [z sz
7X+7Y
ni no

The advantage of this test is that it does not require var X; = varYj in order to have that

under the null hypothesis T}, % N(0,1).

3. Parametric bootstrap. Suppose that F = N(u1,07) and G = N(ug,03). Thus the null

hypothesis can be written as Hy : u1 = pa. Let us generate Xib, ... ,X:;l’b and Yl’jb, .. ,Y;Zb
as independent random samples from the distributions N(0, 5% ) and N(0, SZ) respectively.
Based on these bootstrap samples calculate ]f;fﬂ, e \fn p+|. Alternatively one could use
also a test statistic Tpo = |Xpn, — Yy, ‘, but it is recommended to use a test statistic whose

asymptotic distribution under the null hypothesis does not depend on unknown parameters.

4. Standard nonparametric bootstrap. Suppose that var X7, varY; € (0,00). Let us generate

Lo X pand Y, . Y F | as independent random samples with replacement from X; —

Xpyseooy Xpy — Xpy, and Y7 — Y, ..., Yy, — Y, respectively.

4.6 Permutation tests

Permutation tests are interesting in particular in two (or more generally k) sample problems
and when testing for independence.

Two-sample problems

Let X1,...,X,1 and Y7,...,Y,2 be two independent random samples with the distribution
functions F' and G respectively. Let the null hypothesis states that the distributions functions
F and G coincide, i.e. Hy: F(x) = G(x) for all z € R.
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Put n = n; + ny and denote Z = (Z1,...,7Z,) the joint sample, that is Z; = X; for
i =1,...,n1 and Z; = Yy, fori = n1 +1,...,n. Let Zy = (Zuy,...,Z)) be the
ordered sample, that is Z1) < Z9) < ... < Z(;,). Note that under the null hypothesis the
random variables Z1, ..., Z, are independent and identically distributed. Thus the conditional
distribution of Z given Z,) is a discrete uniform distribution on the set of all permutations of

Z.y. More formally,

1
= m]l{(zl, ..+, 2p) is a permutation of (z(y), .. .,z(n))},

where 21) S 2@2) < - < 2(p)-
The samples Z7,...,Z} are now generated by randomly permuting the joint sample Z.

Now for each b € {1,..., B} the test statistic 77, is recalculated from

(Xib7"‘7 ;:lab) == (Zib,..., ;21,5)7 (Ylfb,...,Y,:%b) == (Z’:,l-i-l,b?"" ’:,b)

and the p-value is estimated by (71).

Note that the test assumes that under the null hypothesis the distribution functions F
and G coincide. Then the permutation test is called exact. In practice it is of interest to
know whether the permutation test is useful also to test for instance the null hypothesis
that EX; = EY; without assuming that F' = G. Usually it can be proved that if the test
statistic 7, under null hypothesis has a limiting distribution that does not depend on the
unknown parameters, then the permutation test holds the prescribed level asymptotically.
In this situation the permutation test is called approximate. It was shown by simulations in
many different setting that the level of the approximate permutation test is usually closer to
the prescribed value « than the level of the test that directly uses the asymptotic distribution
of T,.

Testing independence
Suppose we observe independent and identically distributed random vectors
Zy = (X0, Y1), 2y = (X, Vo)

and we are interested in testing the null hypothesis that X; is independent with Y;. Then
under the null hypothesis

(GGG = G- Co) - G2) =)

1 . .
= ]I{(yl, .-+, Yn) is a permutation of (y(y),. .. ,y(n))}.

61



Thus one can generate Z7,...,Z; by permuting Yi,...,Y, while keeping X1, ..., X, fixed.
The permutation scheme as described above can be used for instance for assessing the
significance of the test statistic based on a correlation coefficient or of the x2-test of indepen-

dence.

Example 38. Let Xi,..., X, be a random sample such that var X; € (0,00) and Hj :
E X1 = po- In this situation no permutation test is available. But one can use nonparametric
bootstrap and generate Xgil, . ,X{;n as a simple random sample with replacement from
X1 —X,,...,X,, — X,. A possible test statistic is then

\/ﬁ (Yn - MO)

T —
n Sn bl

x \/E(YZ,b—O)
and Tn,b = T

calculated from the bootstrap sample.

— .
, where X, , and S%, are the sample mean and sample deviation

Example 39. Permutation test and y2-test of independence.

Literature: Davison and Hinkley (1997) Chapters 4.1-4.4, Efron and Tibshirani (1993)
Chapters 15 and 16

4.7 Bootstrap in linear models

Suppose we observe (X71,Y1)T,..., (X[, ;)T a random sample, where, X is a p-dimensional
random vector. The standard nonparametric bootstrap generate (X371, Y7)T, ..., (X1, YT
as a simple random sample with replacement from the vectors (X1, ¥7)T,..., (X, ¥;,)T. Note
that this bootstrap method works as long as there exists an asymptotic distribution of the
estimator Bn.

In linear models we usually assume a more specific structure
Y;=8"X;+e, i=1,...,n, (72)

where €1, ...,¢, are independent and identically distributed zero-mean random variables in-
dependent of X1,...,X,,. Then the model-based boostrap runs as follows. Let Bn be the
estimate of 3. Calculate the standardized residuals as

. YQ‘—BZ—X}

&q

1=1,...

n
) ) ) )
l—hii

where hy; is the i-th diagonal element of the projection matrix H = X(XTX)~'XT. Then one

can generate the response in the bootstrap sample as

Y =8,Xi+¢, i=1,...,n,
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where €7,..., ¢} is a simple random sample with replacement from the residuals £1,...,&,.

As the covariate values are fixed the bootstrap sample is given by (X1, Y)7,... (XTI, v5)T.

The advantage of the nonparametric bootstrap is that it does not require model (72) to hold.
On the other hand if model (72) holds then the distribution of \/n (BZ —B,) from the model
based bootstrap is closer to the conditional distribution of \/n (,@n —3) given the values of the
covariates X1, ..., X, than the corresponding distribution from the nonparametric bootstrap.
Further, the model based bootstrap can be also used in the case of a fixed design. On the

other hand this method is not appropriate for instance in the presence of heteroscedasticity.

Literature: Davison and Hinkley (1997) Chapter 6.3

4.8 Variance estimation and boostrap

Often one knows that
= d
Vn (6, - 0) PR Ny (05, %),
but matrix ¥ typically depends on unknown parameters (or it might be ‘too difficult’ to

derive the analytic form of ). In such a situation a straightforward bootstrap estimation of

the asymptotic variance matrix 3J,, = % 3% is given by

B B
Sk 1 % —x% % —x T —% 1 %k
En,B = B_1 Z (en,b - on,B) (en,b - en,B) ) where Bn,B = B Z an,b‘ (73)
b=1 b=1
Note that
A;(L 5 alm. surely var (/é:; | X)
’ B—oo
Thus for a valid inference we need that
o~k P
n var (6, | X) — 3 (74)

Note that \/ﬁ(b\z - @n) LN N(0, X) generally does not imply that (74) holds. The
n—oo

reason is that var (52 | X) estimates var (En) rather than %2.

Example 40. Let Xi,..., X, be a random sample from the distribution with the density
f(z) = 2I[x > 1]. Then by the central limit theorem

Vi (Ko - 3) N0, 3)

Further consider the transformation g(z) = e*'. Then with the help of A-theorem (Theo-
rem 3) one gets
b 3 d 3)12.3
Virlo(Xa) — ()] o N (0. [0 () 5).
But it is straightforward to calculate that E (g(yn)) = oo and thus var (g(yn)) does not

i i Svd Im. 1
exist. Further it can be proved that var (g(XZ)]X) 2. surely,
n—oo
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Literature: Efron and Tibshirani (1993) Chapters 6 and 7, Shao and Tu (1996) Chapter
3.2.2

4.9 Bias reduction and bootstrap

In practice one can get unbiased estimators for only very simple models. Let én be an
estimator of @x and put b, = E/B\n — @ for the bias of @n The bias b,, can be estimated

by b} = E [/0\;|X | — 6,,. The bias corrected estimator of 8 is then defined as /B\S)C) =0, — b}.

Example 41. Let X;,...,X,, be a random sample, EX{l < oo and g : R — R be such that
g" is bounded and continuous in a neighbourbood of ¢ = EX; . Then X,, is an unbiased
estimator of y. But if ¢ is not linear then g(X,) is not an unbiased estimator of g(u). Put

02 = var(X1). Then the bias of g(X,) can be approximated by

Eg(Xn) o) = E {o/()(Kn—p) + L9I(X, — )’} + 2
- W o), (75)

where we have used that
" " ~ 473/4 1 3/4 1
[Bul < sup g ()| E[X — pf* < sup g ()| [EX0— ] = [0(2)]" =0(3).

Analogously one can calculate that

o g//(X
b, = Elg(X;) [X] = g(Xn) = = var[X] |X] +op(¢/)
9" (Xn) 55 !
= 0r (). (76)
where 62 = 122 (X — Xn)2.
Now by comparing (75) and (76) one gets that the bias of the estimator o) is given by

1 _
b — b = 5 (9" ()0? = ¢ (X0)52) +Or (737) = Or (=),
where we used that by the delta-theorem
g”(yn):g”(ﬂ)jLOP(ﬁ)’ 3721:02+0P(L).

Literature: Efron and Tibshirani (1993) Chapter 10.

4.10 Jackknife

Jackknife can be considered as an ancestor of bootstrap. It was originally suggested to reduce
bias of an estimator. Later it was found out that it can be often also used to estimate the

variance of an estimator.

64



Bias reduction

Let X4,...,X, be a random sample and denote T,, = T(X1,...,X,) the estimator of the

parameter of interest 8 x. Put
T?’L*l,l == T(X17 [N 7X’L'717 X’L+1’ “ o XTL)

for the estimate when the i-th observation is left out. Further put T,, = % >y Tpo1, Then

the bias of the estimator T, is estimated by

~

b, = (n—1) (T, — T,) (77)

and the ‘bias-corrected’ estimator is defined as

~

T =T, — b,. (78)

Remark 16. The rational of the estimator (78) is as follows. For simplicity let 6 be a one-

dimensional parameter and suppose that the bias of estimator 7T;, is given by

a b c 1

Then also analogously

S|

b ¢ 1
ETn—l,z —QX = n—1 + (’)’L— 1)3/2 + (n_ 1)2 +0((n—1)5/2>7

and the same holds true also for T,, = %Z?:l T,—1,. This further implies that

~ a b c 1
= D g e ol

a b c 1
_—— —— _O P —
n n3/2 n? (”5/2)>’

n—1) | (n_1)3
=2+0(3s)- (80)

Now combining (79) and (80) gives that

ET —0x = O(1y) while ET, —0x =O(1).

n
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Variance estimation

To estimate the variance, let us define jackknife pseudovalues as

T,i=nT,—(n—-1)T,_1,, 1=1,...,n.

Then (under some regularity assumptions) the variance of T, can be estimated as if T,, was

a mean of jackknife pseudovalues 'f‘n,l, .. ,’i‘n,n that are independent, i.e.
— 1

var(Tn):%S%n, where S%":n—lz( ZT ])< ZT J> .

1=

Literature: Shao and Tu (1996) Chapter 1.3.

Quantile regression

Generally speaking, while the least square method aims at estimating (modelling) a condi-

tional expectation, quantile regression aims at estimating (modelling) a conditional quantile.
5.1 Introduction
For a given 7 € (0,1) consider the following loss function
pr(x)=72l{z >0} + (1 —7) (—z) {zx < 0}.
Note that for x # 0 one gets
Vr(z) = p(z) =7H{x >0} — (1 — 7)[{z < 0}.
For x = 0 put ¢,(0) = 0.

Lemma 6. Let the random variable X have a cumulative distribution function F and E |X| <
0o. Then

F~Y(7) = argminE p, (X — 0). (81)
feR

Proof. Put M(0) =Ep,(X —0) — Ep;(X). One can calculate

0
0):—E/0 ¢T(X—t)dt:—/0 Er (X —t)dt

:_/97P(X>t)—(1—T)P(X<t)dt.
0

_ —/GT—TF(t)—(l—T)F(t)dt.
0

o
= —79+/ F(t)dt.
0
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Now for each § < F~1(r)
M@ )=-1+F0O-)<-—7+F(@0) <0and M'(0+) = -7+ F(0;)=—7+ F(0) <O0.

As the function M (#) is continuous, this implies that M (0) is decreasing on ( — oo, F~1(7)).
Analogously one can show that the function M (6) is non-decreasing on (F~1(7), 4+00). This
further implies that F~!(7) is the point of the global minimum of the function M (). O

Remark 17. Suppose we observe a random sample X1, ..., X, from a continuous distribution.
Then by Lemma 6

F; ( —arge?lglnEZpT Xi—0).

Let X(1), ..., X(n) be the ordered sample. Note that from the proof of Lemma 6 it also follows
that if ip = n 7 is an integer then the function M(0) = 1 3" | p-(X; —0) satisfies M'(6_) =0
for each 0 € (X(i0)7X(io+1)] and M'(64) = 0 for each 6 € [X(io)7X(io+1))‘ Thus M (0) is
minimised by any value from the interval [X (i0)> X, (i0+1)}' In this situation F, 1(7) = X (i0) 18
the left point of this interval.

5.2 Regression quantiles
Suppose that one observes independent and identically distributed random vectors

(xI v’ (xLy)T

being distributed as the generic vector (X T,Y)T,

The 7-th regression quantile is defined as

= arg min — - Z—bTXi.
Ba(7) g mi an )

At the population level the regression quantile identifies the parameter

Bx(r) = argminE p. (Y —b' X).
beRP

Note that thanks to (81)
EpT(Y—bTX):E{E[pT(Y—bTX)‘X]}
> E{E [0 (Y = Fyx (1) | X]} = Epr (¥ = Fyjx (),

where FY‘ X

is correctly specified, that is Y|X(7‘) = BT X, then Bx(1T)=p.

(7) is the 7-th conditional quantile of Y given X . Thus if the model for F. Fy, X( T)
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~T
Often in applications we assume that X; = (1,X; )T and that model (58) holds. Then
F;|1X (1) = Bo + BT X + E-(r), where F-!(7) is the 7-th quantile of the random error &.
Thus provided model (58) holds

ﬂx<r>=<5°+g€ ”>. (s2)

Thus if model (58) holds, then for 7 # 79 the regression quantiles B (71) and By (72) differ

only in the intercepts.

Example 42. Let Y7,...,Y,, be a random sample with the distribution function £ and
Yni41, -5 Yn,+n, be a random sample from the distribution function G .
Often it is assumed that G(z) = F(z + u) for each x € R. Thus alternatively we can

formulate the two-sample problem as a linear regression problem with
Y; = Bo + frzi + &, (83)
where
0, 1= 1, BN 15}
Xr; =
1, 1=n1+1,...,n1 +no

and ¢; has a cumulative distribution function F'. Usually we are interested in estimating 3.

By the LS method one gets

ni+nz

Z Y—fZY = pe — pg = B,
Nn1,M2—>00 N —

i=n1+1

where ur and ug stand for the expectation of an observation from the first and second sample
respectively.

On the other hand the quantile regression yields

[/3\(7') = argmin— ZPT i —bo — brx;)

bo,b1
ni+ng
= argmm— ZpT 7 —bo) + Z pr(Yi—bo—0b1) | ,n =n1 + no.
bo,br T i=ni+1

The first sum is minimised by

and the second sum by
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Thus we get

Bir) =G l(r) —Fl(r) 2 G 1) = F(r) = Buln).

n1,n2—00

Further if model (83) really holds, then G='(7) = F~!(r) 4 p and one gets £1(7) = u = -5
for each 7 € (0,1).

Computing regression quantiles

beR (Z )

can be rewritten with the help of linear programming as minimisation of the objective function

n n
TZT;_—F(l—T)ZTZ»_,
i=1 i=1

subject to the following constrains
P
ZXijbj-i-T;_—Ti_:Y;, 1=1,...,n,
ri >0, r; >0, t=1,...,n,
bjER, ij=1...,p.
Note that one can think of r;r and r; as the positive or negative part of the residuals, i.e.
=(Yi-b'Xy),, r=(Yi-b'X;)_

This can be solved for instance with the help of the simplex algorithm.

5.3 Inference for regression quantiles
The following theorem could be proved completely analogously as Theorem 11.

Theorem 15. Let model (58) holds and By be given by (82). Further, let E || X ||> < oo, the
matric EX X is positive definite and the density fe(z) of € is positive and continuous in
a neighbourhood of F= (7). Then

~ 1 " 1 X %ZJT(&‘ *Fs_l(T))
— ) [EXXT] 1), 84
VB =) = Ry o
which further implies that
Vit (Bu(r) = Bxc(n)) o Ny (0, [EXXT] ™ s ). (5)
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Note that (85) follows from (84) and the central limit theorem (for i.i.d. random vectors)
where we have used that
var (v (e7) X 1) = var (E [X - (e]) | X]) +E (var [X - (e]) ]X])

=0,y +E (X var[gDT(e{)]XT) —E(Xr(1-mXT"),

with €] = g1 — F (7).

Estimation of asymptotic variance of [Ai'n(r)

Note that by (85) one gets

—

avar (Bn(T)) = % (EXXT)_I%.

The matrix EX X can be estimated as %2?21 X; X ;r The difficulty is in estimating the

sparsity function s(7) = W In Chapter 4.10.1 of Koenker (2005) the author suggests
that one can use the following estimate
gn(T) — Fn_sl(T + hn) — Fn_sl(T — hn),
2 hy,

where F.(y) = s Iy, - X[ B,(7) < y} is the empirical distribution function of the

residuals and (the bandwidth) h,, is sequence going to zero as n — co. A possible choice of h,

(derived when assuming normal errors ¢, ..., &,) is given by
he — p—1/3,2/3 1502 (up) /3
n = 1—a/2 | 2uZ+1 )

where ¢ is the density of N(0, 1). For details and other possible choices of h,, see Chapter 4.10.1

in Koenker (2005) and the references therein.

An alternative option for doing the inference would be to use bootstrap.

5.4 Interpretation of the regression quantiles

Provided F;|1X (1) = BTX and the model is correctly specified then one can interpret Bnk
(the k-th element of Bn) as the estimated change of the conditional quantile of the response
when the k-th element of the explanation variable increases by 1.

It is worth noting that if one models the conditional quantile of the transformed response,

that is one assumes that Fh_&” x (1) = BT X for a given increasing transformation h, then

T=P(hY)<BTX|X) =P (Y <h7Y(BTX)|X),
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which implies that F;llx(T) = h~1(B7X). Analogously F;ﬁx(l —7) = hY(BTX) for h
decreasing. That is unlike for modelling of conditional expectation (through the least square
method), here we still have a link between 3 and and the quantile of the original (not trans-
formed) response F;ﬁx (7).

A very common and popular transformation is log-transformation, i.e. h(y) = logy. This
results in F;ﬁx (1) = B'X and e+ measures how many times the conditional quantile F;ﬁx (1)
changes when the k-th coordinate of the covariate is increased by adding one.

5.5 Asymptotic normality of sample quantiles

Suppose that you have a random sample Yi,...,Y,, where Y] has a cumulative distribution
function F. For a fixed 7 € (0,1) put
o

n

1(7’) = inf {517 : Fn(x) > T}’

where F;, is the empirical distribution function.

The following theorem is a consequence of Theorem 15.

Theorem 16. Let f(y) (the density of Y1) be positive and continuous in a neighbourhood
of F~Y(7). Then

n - -1 -
Vi () - ) = o= 3 o),

=1

which further implies that

Vi () - F7 ) N (0, 7).

n—oo

Proof. The proof follows from Theorem 11 by taking X; = 1, ¢; = Y; and noting that by
Lemma 6 and Remark 17 one has Fj; (1) = argmingeg = Y7, p,(Y; — 6). O

Literature: Koenker (2005), Sections 2.1, 2.4, 4.2. 4.10

6 EM-algorithm

It is an iterative algorithm to find the maximum likelihood estimator En in situations with
missing data. It is also often used in situations when the model can be specified with the help
of some unobserved variables and finding §n would be (relatively) simple with the knowledge

of those unobserved variables.
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Example 43. Let X1,..., X, be a random sample from the distribution with the density

G
z) =) m; f(2)
j=1

where f1,..., fo are known densities and 7y, ..., TG are unknown non-negative mizing pro-
portions such that ZJ-Gzl 7j = 1. Find the maximum likelihood estimator of the parameter r,

i.e.

TEO

T, = arg max (Hf i T ) ;

where © stands for the parametric space given by the possible values of 7.

Solution. A straightforward approach would be to maximize the log-likelihood

n n G
=3 o (am) = Y ox [ Yo (x
i=1 i=1 J=1

Using for instance the parametrization 7g = 1 — ZJG:_ll 7, the system of score equations is

given by

Oy, () = fi(Xi) Ja(X3) ! ,
Uin(m) = = — =0, j=1,....,G—1,
™ ="om, 2 !zf:mﬁ(m ¢ (X)) !

which requires some numerical routines.

Alternatively one can use the EM-algorithm, which runs as follows. Introduce Z; =
(Zi1, ..., Zic)", where

1, X; is generated from f;(z),
Zij = :
0, otherwise.

Note that one can think of our data as the realizations of the independent and identically
distributed random vectors (X1,Z{)7,...,(X,,Z1)T, where Z1,...,Z, are missing.
Put X = (X1,...,X,)". The joint density of (X1,Z{)T is given by

e
fxz(v,z;m) = fxz(v|z; ) fz(z; ™) ZZJfJ ' HWJZJ
=1

The complete log-loglikehood is given by

n G G
fc log H Z Zijfj (X,L) H 7I‘J-Zij
L J=1

=1

3

G n G
log ZZijfj(Xi) +Z ZZijlogwj

=1 j=1 i=1 |j=1
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If we knew Zi,...,Zy, then we would estimate simply 7; = ZZ 1 Zij,g = 1,...,G. The

EM algorithm runs in two steps:

(i) E-step (Expectation step): Let #*) be the current estimate of 7. In this step we

calculate
Q (m,7M) = E o [ (m) | X],

where the expectation is taken with respect to the unobserved random variables Z, ..., Z,

provided that Z; follows a multinomial distribution Mult(1,#*)).

(ii) M-step (Maximization): The updated value of the estimate of 7 is calculated as

a1 — arg max Q(ﬂ', ?r(k)).

TEO

E-step in a detail:

n G n G
0 (n,;r(k)) = Eam | D log [ S Zfi(X) | | X| +Enw | S0 Zyjlogm; | X| . (86)
i=1 J=1 i=1 j=1
Note that the first term on the right-hand side of the above equation does not depend on
7. Thus we do not need to calculate this term for M-step. To calculate the second term it
is sufficient to calculate E _ ) [Zl-j |X] To do that denote e; = (0,...,0,1,0,... ,0)T for the
Jj-th canonical vector. Now with the help of Bayes theorem for densities (see e.g. Theorem
3.21 of Andél, 2007) one can calculate

E.w[Zij|X] = E.w [Zij| Xi] = Paw (Zij = 1] Xi) = fzix (e X 7))
:fX\z<Xt|ej;A<’“>>fz<ej;?r<’“>> SOk M
Fx(Xi;w®) DOLE 0.9 Fr A

M-step in a detail: Note that with the help of the previous step and (86)

n G
Q (7r, %(k)) = const + Z Z zg-c) log 7;.

i=1 j=1

Analogously as when calculating the maximum likelihood estimator in multinomial distribu-

tion one can show that the updated value of the estimate of 7r is given by

7D — arg max Q(m, o Zz(k ;
TEO
where zgk) = (zi(f),...,zi(é))T and so 7T(k+1 =Ll z] .
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6.1 General description of the EM-algorithm

Denote the observed random variables as Y5 and the unobserved (missing) random variables
Ymis- Let f(y; @) is the joint density (with respect to a o-finite measure p) of Y = (Yps, Yonis)
and denote ¢5(0) the complete log-likelihood of Y. Our task is to maximize the observed
log-likelihood £yp5(0) = log f(Yops; @), where f(yops; @) is the density of Y 5. Note that with

the help of the complete log-likelihood one can write
gobs(e) - Eg(e) — log f(Ymis|Yobs; 0)7 (87)

where f(¥mis|Yobs; @) stands for the conditional density of Y,,;s given Yops = yops. Finally
denote

Q(G, 6) = E§ [Eg(e) |Yobs] . (88)

EM-algorithm runs as follows:
~(k ~
Let 0( ) be the result of the k-th iteration of the EM-algorithm. The next iteration 6
is computed in two steps:
~(k
E-step: Calculate Q(G,O( )).
. A(k41)
M-step: Find @

(k+1)
= argmaXgcg Q(G, 5““’).

~(k
Theorem 17. Let {,,5(0) be the observed likelihood and 0( ) be a result of the k-th iteration

of the EM-algorithm. Then
Lobs <5(k+1)> > Lobs (5(k)>-

Proof. Note that the left-hand side of (87) does not depend on Y,,;s and thus the same holds

true also for the right-hand side. So one can write

gobs(e) = Ea(k) [fg(e) ‘Yobs] - Ea(k) [IOg f@(Ymis|Y0bs) } Yobs]
= (0,6") -1 (0,6"). (89)
From the M-step one knows that
0" = aramax @ (0,6") = @ (6"".6"™) > @ (8",0"). (90)
6co
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Further with the help of Jensen’s inequality one gets

f(Ymis’Yobs§ 9)
~(k)
f(Ymis‘Yobs; 0 )

Jensen Yonisl Y 10
eSse log Ea(k) 10g f( mzs| obs/y\(k))

f (les |Yobs; 0

~(k ~(k
H (9,9( )) =Egw |log Yobs | +E 50 [logf(Ymis\Yobs;g( ))|Yobs:|

Yous | | +H <§(k) , E(k))

)

mis| Y obs; 0 ~(k ~(k) ~(k
= log f(y | ’ ,\(k)) ' f(Ymis‘Yobs§ 0( )) dﬂ(}’mis) +H (0( )7 0( )>
f(Ymis’Yobs; 0 )
s+ 1 (6%,6%) =1 (8,6 o)

Now with the help of (89), (90) and (91) one gets
Cone <§(k+1)) e <§(k)) ~-Q (a(kﬂ)’a(k)) ~Q (§(k),§(k))
B [H (§(k+1)’§(k)) T (a(k)’a(k))] >0,
which completes the proof. ]

In what follows we make the following regularity assumptions.

e The parameter space © is a subset of RP.

e The set Oy = {0 € O : lys(0) > fobs(eo)} is compact for any 8y € © such that
eobs(e()) > —00.

e /yps(0) is continuous in © and differentiable in the interior of ©.

Theorem 18. Let the function Q(6,0) defined in (83) be continuous both in 0 and 8. Then all
~(k ~(k
the limits points of any instance {0( )} are stationary points of Lops(0). Further {Eobs (0( ))}

converges monotonically to some value £* = Lys(0%), where 8% is a stationary point of Lyps(8).
Proof. See Wu (1983). O

Note that if 8 is a stationary point of £,,s(0), then

Olops(0)
00 |g_p+

—0,.

Thus by Theorem 18 the EM-algorithm finds a solution of the system of log-likelihood equa-

tions but in generally there is no guarantee that this is a global maximum of £,s(80).

Corollary 2. Let the assumptions of Theorem 18 be satisfied. Further suppose that the

—~ ~(k —~
function Lops(0) has a unique maximum 6, that is the only stationary point. Then 0( ) — 0,

as k — oo.
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6.2 Rate of convergence of EM-algorithm

Note that in the M-step of the algorithm there might not be a unique value that maximizes
~(k ~(k
Q (0, 0( )). Thus denote the set of maximizing points as M (0( )), ie.

M) = {0:@(087) = puxa (007) }
Then one needs to choose 5('“) as an element of the set M(§(k)>. Thus let M : © — O be

a mapping such that
0 Zna(a").

Let E(k) — 0" as k — oco. Assuming that M is sufficiently smooth one gets the approxima-
tion
o - (8) o)+ T (8- +o ([0 o)),
—6*
Thus
9" _gr = ag/z(f) o (5‘“ ~607) 4o (Hﬁ(k) o) (92)
and the Jacobi matrix 81{\;2(1_9) o measures approximately the rate of convergence. It can

be shown that
OM(0)

07 o 15 (6%)] 1 1,75 (6%), (93)
where .
IC(O) — _la Kn (9)
" n 960007

is the empirical Fisher information matrix from the complete data and

10%10g f (Yomis| Yobs; )
n 00007

17(6) =

9

is the empirical Fisher information matrix of the contribution of the missing data.
Note that by (92) and (93) in the presence of missing data the convergence is only linear.
Further the bigger proportion of missing data the ‘bigger’ I'™*(0) and the slower speed of

convergence.

6.3 The EM algorithm in exponential families

Let the complete data Y have a density with respect to a o-finite measure p given by

i) =] Y a(0) )} 16)cty) (94)
j=1
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and the standard choice of the parametric space is

e:{m/kw{fhmwmw}wmmw<w}
j=1

Note that T(Y) = (T1(Y),... ,Tp(Y))T is a sufficient statistic for 6.
The log-likelihood of the complete data is now given by

P
Z )+ log b(0) + const.,

which yields that the function @ from the EM-algorithm is given by

P
~(k
Q (9, 9( )) = Eb\(k) [ |Yobs Z EA(’C) ) }Yobs] + log b(a) + const.
p o~
= Z a;(0) T](k) + log b(8) + const.,
j=1
where we put T( ) = EA(k) [ ‘ Yobs]

The nice thing about exponential families is that in the E-step of the algorithm we do not

~(k
need to calculate @) <0, 0( )> for each 0 separately but it is sufficient to calculate

T(k) - E’\(k)[ ‘Yobs] J=1...,p,

and in the M-step we maximize

P
9" — arg max { Z 4 log b(O)} (95)
oco |

Interval censoring

Let —co=dg < di < ... < dpy = oo be adivision of R. Further let Y7,...,Y, be independent
and identically distributed random variables whose exact values are not observed. Instead
of each Y; we only know that Y; € (dg,—1,dy,], for some ¢; € {1,...,M}. Thus we observed
independent and identically distributed random variables Xi,..., X, such that X; = ¢; if
Y; € (dg;—1,dg;)-

Suppose now that Y; has a density f(y;0) of the form

fly —m{z% %w>w>
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Thus the joint density of the random sample Y7, ...,Y,, is of the form (94) where
n
T(Y)=> t(Y:), j=1,....p.
i=1
Thus in the E-step of the EM-algorithm it is sufficient to calculate
n
fj(’ﬂ =E.w[G(Y)] X1, X,] = Y EHM)IX], j=1,....p,
i=1

and the M-step is given by (95) where b(6) = b}(0).

Example 44. Suppose that Y; ~ Exp()\), i.e. f(y;\) = Ae ™I{y > 0}. Thus p = 1,
ti(y) =y, a1(A) = =X and b1 (\) = A.

In the E-step one needs to calculate E 5.)[Y; | X;]. Note that the conditional distribution
of Y; given that Y; € (a,b] has a density %H{y € (a,b]}. Thus with the help of the

integration by parts

dg,
Sk 1 G ) AR
Yz‘( ) = E;\(m [Yz' !Xz' = ql.] = w2 X / 2 \F) =AMz ..
e -1 — e—>\ dg; dq;,_,
—\(k) 5 (k
dg;_, € M dg;e X + !
B efj‘(k)dqifl — e_j\(k)dqi ;\(k)

and with the help of (95) one gets that

AEHD = arg max {Q ()\, 5\(]“)) } = argmax{ — )\Z?Z-(k) + nlog )\} = %k’
A>0 A>0 i— .( )

S=
]
N

6.4 Some further examples of the usage of the EM algorithm

Example 45. Let X1,..., X, be a random sample from the distribution with the density
f@) =w g o(5H) + (- w) o (*52),
where w € [0,1], p1, p2 € R, 02,03 € (0,00) are unknown parameters and
p(z) = 7= exp{-2?/2}

is the density of the standard normal distribution. Describe the EM algorithm to find the

maximum likelihood estimates of the unknown parameters.

Literature: McLachlan and Krishnan (2008) Chapters 1.4.3, 1.5.1, 1.5.3, 2.4, 2.7, 3.2, 3.4.4,
3.5.3, 3.9 and 5.9
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7 Missing data

Fori=1,...,1let Y; = (Yi,...,Yin,)" represent the data of the i-th subject that could be

ideally observed. Let R; = (R;1, ... ,Rmi)T, where
1, ifYj; is observed ,
Rij =
0, otherwise.

Let Y, represent Y;; such that R;; = 1 and Y,,;5 represent Y;; such that R;; = 0. Thus the
observed data are given by
(Yobs, R1, ..., Rr) = (Yobs, R),
where R = (Ry,...,Ry). Note that the complete data can be represented as
(Yi,....Y,R) = (Yops, Ynis R) =: (Y, R).

Suppose that the distribution of Y depends on a parameter 8 and the conditional distribu-
tion of R given Y depends on 1. Then the joint density of the complete data can be written

as
[y, r;0,9) = f(rly; ¥) f(y: 6).

Now integrating the above density with respect to ym.s yields the density of the observed

data

f(y0b87 r; 07 ’ﬁb) = /f(YObsa Ymis; 0) f(r|YOb87 Ymis; ’ﬁb) dM(Ymis)- (96)

In what follows we will say that the parameters @ and 1 are separable if 0 € Q1, ¥ € Qo
and (9,’(,0)-[_ € Q1 x Q.

7.1 Basic concepts for the mechanism of missing

Depending on what can be assumed about the conditional distribution of R given Y we

distinguish three situations.

Missing completely at random (MCAR). Suppose that R is independent of Y, thus one can
write f(r|y; %) = f(r;4) and with the help of (96) one gets

S(Yobs; 130, 9) = [(yobs; 0)f (r; ),
which further implies that the observed log-likelihood is of the form
Lobs (6, %) = log f(Yops; 0) + log f(R; ).

Note that if the parameters 8 and 1 are separable then the second term on the right-hand
side of the above equation does not depend on @ and can be ignored when one is interested

only in 6.
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Example 46. Let Y7,...,Y,, be a random sample from the exponential distribution Exp(\).
Let Rq,...,R, be a random sample independent with Y7,...,Y, and R; follows a Bernoulli
distribution with a parameter p; (e.g. p; = %)
Missing at random (MAR). Suppose that the conditional distribution of R given Y is the same
as the conditional distribution of R given Y. Thus one can write f(r|y; 1) = fu(r|yobs; ¥)
and with the help of (96)

f(}’obsa r; 0, ’¢) = f(YObs; g)f(rb’obs;"p)a

which further implies that the observed log-likelihood is of the form

gobs(ea ’l,b) = log f(Yobs; 0) + log f(R’YobSQ d))

Note that although MAR is not so strict in assumptions as MCAR, also here the second term
on the right-hand side of the above equation does not depend on 8 provided 6 and ) are

separable.

Example 47. Let (X{,Y1,R1)7,..., (X}, Yn, Ry)T be independent and identically distributed
random vectors, where the covariates X1,..., X, are always completely observed. Let R;

stands for the indicator of missing of Y; and
P(Ri =1|X;,Y;) = f(X3),

where f(x) is a given (but possibly unknown) function.

Missing not at random (MNAR). In this concept neither the distribution of R is not inde-
pendent of Y nor the conditional distribution of R given Y is independent of Y,,;5. Thus
the density of the observed data is generally given by (96). To proceed one has to make some

other assumptions about the conditional distribution of R given Y.

Example 48. Maximum likelihood estimator for the right-censored data from an exponential

distribution.

The general problem of all the concepts is that if missing is not a part of the
design of the study then any assumptions about the relationship of Y,,;; and R

cannot be verified as we do not observe Y,,;;.
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7.2 Methods for dealing with missing data
Complete case analysis (CCA)

In the analysis we use only the subjects with the full record, i.e. only subjects for which no
information is missing.

Advantages and disadvantages:

+ simplicity;

— the inference about 6 is ‘biased’ (i.e. the parameter 6 is generally not identified), if
MCAR does not hold;

— even if MCAR holds, then this method may not provide an effective use of data.

Example 49. Suppose that we have five observations on each subject. Each observation is
missing with probability 0.1 and the observations are missing independently on each other.

Thus on average only 0.9° = 0.59 per cent of the records will be complete.

Available case analysis (ACA)

In each of the analysis one uses all the data that are available for this particular analysis.

Example 50. Let X1,..., X, be a random sample from N((j1, pi2, 13)", 3x3). Then the
covariance o;; = cov(Xy;, X1;) is estimated from all the vectors X1, ..., X, for which both

the i-th and the j-th coordinate is observed.

Advantages and disadvantages:

+ simplicity;
+ more data can be used than with CCA;
— the inference about 6 is biased, if MCAR does not hold;
— it can result in estimates with strange feauters (e.g. there is no guarantee that the
estimate of the variance matrix 3 in Example 50 is positive semidefinite).
Direct (ignorable) observed likelihood

The inference is based on £p5(0) = log f(Yeps; @), that is the distribution of R is ‘ignored’.

Advantages and disadvantages:

+ If the parameters 8 and v are separable then this method is not biased and does not

loose any information provided MAR holds;

— The observed log-likelihood £,5(0) might be difficult to calculate.
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Imputation

In this method the missing observations are estimated (‘imputed’) and then one works with
the data as if there were no missing values.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimates of

the unknown parameters.
+ One can use the completed dataset also for other analyses.

— The standard estimates of the (asymptotic) variances of the estimates of the parameters
computed from the completed dataset are too optimistic (too low). The reason is that an

appropriate estimate of variance should reflect that part of the data has been imputed.

Example 51. Suppose that X, ..., X, is a random sample. Further suppose that we observe
only Xi,...,X,, for some ng < n and the remaining observations X, 11, ..., X, are missing.
For i = ng,...,n let the missing observations be estimated as X’Z = nio 7&1 Xj. Then the

standard estimate of p = E X is given by

1 no n N 1 no
=1 (Zmz m) - Lyx,
=1 1=ng+1 7j=1

and seems to be reasonable.

But the standard estimate of the variance of 1z, computed from the completed dataset

— 52 R

var(fip) = gt where 52 = (X; — fin)?

n—1
i=1

is too low. The first reason is that S2 as the estimate of var(X1) is too low as

IR ~ ng—1
Sn= 7 2 (Xi— i)’ = S, <57
=1

The second reason is that the factor % assumes that there are n independent observations,

but in fact there are only ng observations.

Multiple imputation

In this method the missing observations are imputed several times. Formally, for j =1,..., M

let S?(j )

mes

of the parameter @ from the completed data (Yobs,ﬁ?(j ) ) Then the final estimate of the

mis

be the imputed values in the j-th round. Further let /0\1, ... ,§M be the estimates

parameter 0 is given by

N 1 M
oMlezlej.
]:



The advantage of this method is that one can also estimate the (asymptotic) variance of this
estimator by

var(r1) = Vs + (1+ 37) Ba, (97)

where

_ 1 M 1 M, . N\T

V=2V, and By=——>" (ej - OMI) (0]- - oMI) ,

j=1 j=1

with \A/j being a standard estimate of the asymptotic variance calculated from the completed
data (Yops, ?(7(3125)
The rational of the formula (97) is as follows. Note that one can think of the imputed

values ?mis as a random vector and write
var (aM[) =E (var(@MI | §\{mzs)) + var (E (/éM] ‘ §{mzs))

Now the first term on right-hand side of the above equation is estimated by Vj; and the

second term is estimated by Bj;.

Example 52. In Example 51 one can for instance impute the values X;,,41,..., X, by a ran-
dom sample from N(fi,5?%), where fi = X,,, and 62 = S?ZO are the sample mean and variance

~ 2(4)
calculated from the observed data. Put V; = S

2(5) - .
— where Sn(J ) is the sample variance calcu-

lated from the j-th completed sample. Then one can show that
_ S2
lim Vy =" as., (98)
n

M—o0

Further let §j = ?7(3' ) be the sample mean calculated from the j-th completed sample. Then
it can be shown that

S’r2l() (n - nO)

Now combining (98) and (99) yields that
N 4 Q2 (2
]\}ILI(IDOVM + By = Sno(ﬁ - m) a.s.

Further it is straightforward to prove that for ng < n
2
2,2 -m) < 2,
where the right-hand side of the above inequality represents the standard estimate of the
variance of X, (that assumes MCAR). This indicates that when doing multiple imputation,
one needs to take into consideration also the variability that comes from the fact that one

uses the estimates i, 52 instead of the true values of 1 and o. This can be done very naturally

within the framework of Bayesian statistics.
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Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimate of

the unknown parameter as well of the variance of this estimate.

— Requires the knowledge of Bayesian approach to statistics to be done properly.

Re-weighting

Roughly speaking in this method each observation is given a weight (w;) that is proportional

to the inverse probability of being observed (m;), i.e.

1

w; = —=—""—, i€{j:R; =1}
Ej:Rjzl ™
All the procedures are now weighted with respect to these weights, e.g. the M-estimator of

a parameter @ is given by

En = arg min Z w; p(X ;3 0).
069 ZRlil

Example 53. Suppose we have a study where for a large number of patients some basic
and cheap measurements have been done resulting in Zi,...,Zy. Now a subsample S of
size n from these patients has been done for some more expensive measurements resulting in

{X;:i€S}, where S={j: R; =1}.

This method can be also used where one has some auxiliary variables Z, ..., Z, that can

be used to estimate the probabilities m; wit the help of for instance a logistic regression.

Literature: Little and Rubin (2014) Chapters 1.6, 3, 5.3

8 Kernel density estimation

Suppose we have independent identically distributed random variables Xy, ..., X, drawn from
a distribution with the density f(z) with respect to a Lebesgue measure and we are interested
in estimating this density nonparametrically.

As F(z+h)— F(z—h
fz) = lim . >2_h . )’

a naive estimator of f(z) would be

Fo(x+hn) = Fo(z —hn) 1 z”: {X; € (x— hp,x+ hy]}

fn(@) = 2h, ~n 2%, ’ (100)

=1
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where F,,(z) = 1 3°"  1{X; < 2} is the empirical distribution function and (the bandwidth)

n
h, is a sequence of positive constants going to zero.
It is straightforward to show

Eff;(x)m f(z)  and var(ff;(x))mo,

provided that h, — 0 and at the same time (n h,) — oco.

Note that the estimator (100) can be rewritten as

1

~ n X 1
fn<w>=2nhn;11{—1éﬁ<+1}=

— > w(), (101)
" i=1

n

where w(y) = $I{y € [-1,1)} can be viewed as the density of the uniform distribution on

[—1,1). Generalising (101) we define the kernel estimator of a density as

~ 1 <
— E K z—X; 102
fn(x) nhn £ ( Fom )7 ( )
where the function K is called a kernel function. Usually the function K is taken as a sym-

metric density of a probability distribution. The common choices of K are summarised in
Table 1.

Epanechnikov kernel: K (z) = 2(1 — 2?)I{|z| < 1}
Triangular kernel: K(z)=(1—|z|) [{|z| <1}
Uniform kernel: K(z) = I{|z| <1}

Biweight kernel: K(z)=12(1—2*)?I{|z| < 1}
Tricube kernel: K(x) = ;—(1)(1 — |23 1{|z| < 1}
Gaussian kernel: K(x) = \/%7 exp{—22/2}

Table 1: Commonly used kernel functions.

Remark 18. Note that:

(i) When compared to a histogram both estimators ﬁl(a:) and ﬁl(a:) do not require to

specify the starting point to calculate the intervals.

(ii) As we usually assume that the density f is continuous, the estimator ]?n(a;) with a con-

tinuous function K is preferred.

(iii) If K is a density of a probability distribution, then [ fn(m) dz =1.
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8.1 Consistency and asymptotic normality

Theorem 19 (Bochner’s theorem). Let the function K satisfy

+oo
(B1) / K@)y <oo,  (B2) lim |yK(y) =0.

—00 ly|—o00

Further let the function g satisfy f+ 9(y)| dy < oco. Put

+o0o
mle) = 7 / o(x) K(52) dz,

where h, (0 as n — co. Then in each point x of the continuity of g it holds that
“+o0o
lim g (z) = g(z) K(y)dy.

n—00 oo

Proof. Let x be the point of continuity g. We need to show that

lim
n—oo

Using the substitutions y = x — z and z = h one can write

-9 [KErae = o [ole—pr(E)a- 22 [K(e)ay
1

Before we proceed note that for each fixed § > 0:

) 1
— 20 and — sup }tK ‘ 0, as n — oo.
han > 5

Thus there exists a sequence of positive constants {d,} such that

)
5, -0, — o0 and sup |tK ‘ 0, as n — oo.
b, )

n t|t|>5”

Taking ¢, satisfying (105) one can bound
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Dealing with A,. As g is continuous in the point x

A< sup oo \/ )| dy = o(1 )/R\K(t)]dt—o(l), (107)

Y:ly|<on ; ,
oo; (B1)
as n — oo.
Dealing with B,,. Further one can bound B, with
1
Buso [ ol -l K(2) |dy+/ @K ()| dy.  (108)
n Jy:|y|>on ly|>dn
=:B1in =:Bop
Using the substitution ¢ = ;- and (105) one gets
Bgn:‘g(x)‘/ LK (L) | dy = |g( \/ Oldt —— 0. (100)
yily|>6n [t > pm- oo

Finally using (105)

By, = / ‘y| |K( )‘ 7‘9(93 )‘dy< sup ‘tK ‘/ ‘g(ij)‘dy
y:ly|=6 %,—/ || ly|>6 Y

t\t|>‘5n
SSUpt|t\>5” [t K(¢)|
< sup ‘tK ‘5 /‘gx— ‘dyT>0 (110)
|t > e
—f\g )| dy<co

Now combining (106), (107), (108), (109) and (110) yields the statement of the theorem. [
Remark 19. Note that:
(i) If K is density, then [ |K(y)|dy =1 and assumption (B1) holds.

(ii) Assumption (B2) holds true if K has a bounded support. Further from the last part
of the proof of Theorem 19 (dealing with Bj,) it follows that for K with a bounded

support one can drop assumption fj;o lg(y)| dy < oo from Theorem 19.

(iii) If K is a density but with an unbounded support, then assumption (B2) is satisfied for
instance when [ |y|K (y)dy < oo, that is there exists the first moment of the distribution
given by the density K.

(iv) If ¢ is uniformly continuous then one can show that also the convergence in (104) is

uniform.
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Theorem 20 (Variance and consistency of ﬁ(m)) Let the estimator fA}Z(J:) be given by (102)
and the function K satisfies (B1) and (B2) introduced in (103). Further, let [ K(y)dy =1,
supyeg [K(y)| < 00, hp (0 as n — oo and (nh,) — oo as n — oo. Then at each point of

continuity of f
(1) limy, o0 1 Ay var (ﬁl(a:)) z) [ K?(y)dy;

(ii) falz) —— f(x).

n—0o0

Proof. Let x be the point of continuity of f.

Showing (i). Let us calculate

var(fn(x)) = var[ 2 ZK(’”;?)] :#var [K(“’C;—ffl)}

S [EKQ(x_Xl) - (EK(ngl))Q] . (111)

Now using Theorem 19

FER(EE) = [ LK M0 o @) [ Ko dy =@, (12)

Analogously

—EKQ 2 4) = /K2 &) fly) dy —— (x)/KQ(y)dy. (113)

h n—oo

where we have used again Theorem 19 with K replaced by K2. Note that assumptions (B1)

and (B2) are satisfied as

ad (B1) - / )l dy < sup K ()| [ 1K)l dy < o0
—_——

<00 <o

and

ad (B2): lim |yK>(y)] < sup|K(y)] lim [yK(y)] = 0.
ly|—o0 y€eR ly|—o0

~~

<oo =0
Now combining (111), (112) and (113) yields

1 E 2 (x—X1 1 z—X1 2
nEE () - EEK( )

() [ K2(y) dy S f(x)

n hy, var (]‘A}l(z)) =

K2
n—00

Showing (ii). Note that with the help of (112)

Efa(z) = —EK(%21) —— f(2). (114)
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Now with the help of (i) and (114)

which implies the consistency of fy (). O

Remark 20. Note that Theorem 20 implies only pointwise consistency. It would be much

more difficult to show that sup,cr {fAn(a:) — f(2)| % 0.

Theorem 21 (Asymptotic normality of };(JL‘)) Let the assumptions of Theorem 20 be satis-
fied and further that f(x) > 0. Then

(@) —Efa@)

N N(0,1).
N n—oo
var (fn(x))
Proof. From Theorem 20 we know that
var (ﬁl(:c))
TR o 1, (115)

where R(K) = [ K?(y) dy. Thus thanks to CS (Theorem 2) it is sufficient to consider

) ~Efute) _ o S [KORY) “EK(FH] o
f@)R(E) f(2)R(K) i

where

K z—X; _EK r—X;
Xi = 1 ( Ton ) ( o )7 i=1... ..

Vnhn, f(@)R(K)

are independent identically random variables (with the distribution depending on n). Thus

the statement would follow from the Lindeberg-Feller central limit theorem (see e.g. Proposi-
tion 2.27 in van der Vaart, 2000), provided its assumptions are satisfied. It is straightforward

to verify the assumptions as
EXp1=-=EX,,=0 and E var(X, ;) —— 1.
n

Further for each £ > 0 for all sufficiently large n it holds that uniformly ini=1,... n:

)

1| K(R) —EK()

| Xl > e} = H{ Ny f(z)R(K)

L osup [KG) |
: H{ Vil T RE) — 6} -0
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which implies that the ‘Feller-Lindeberg condition’

n
B s -
1=
is satisfied. O

Remark 21. Note that Theorem 21 implies

falz) = f(z) 4
var (fn(z:)) e

N(0,1), (116)

only if R R
Efn(x) B f(x) _ bias(fn(x))

\/var (fn(x)) - \/var (fn(:c)) e

which depends on the rate of h,. As we will see later, typically we have

Efn -
\/var h
7’L n

and thus lim,,_,,on hg = 0 is needed to show (116). But this would require that h,, = o(n_1/5)

0,

nh5

which would exclude the optimal bandwidth choice, see the next section.

8.2 Bandwidth choice

Basically we distinguish two situations:

(i) hy, depends on x (on the point where we estimate the density f), then we speak about
the local bandwidth;

(ii) the same h,, is used for all z, then we speak about the global bandwidth.

The standard methods of choosing the bandwidth are based on the mean squared error

2

MSE(f,(x)) = var (fu(2)) + [bias(fu(z))]”.
Note that by Theorem 20

var (ﬁz(fﬂ)) _ f('r)R(K)

T +o0(=7-), (117)

where R(K) = [ K*(
To approxnnate the blas suppose that f is twice differentiable in x that is an interior

point of the support of f. Further let the kernel K be a bounded symmetric function with
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a bounded support such that [ K(t)dt =1, [t K(t)dt = 0 and [ [t?K(t)|dt < co. Then for

all sufficiently large n
Efu(z) = 2 EK (2320 Xl):/
/K f(z —thy)dt = /K z) — thof'(z) + S22 f"(x) + o(h2)] dt

= f(z) + 5 hi, f'(2) paxc + o(h7),

1

K(52) f(y) dy

where pox = [y* K(y)dy. Thus one gets

bias (o (2)) = E fo(@) — f(2) = 3 B2 " (2) pasc + o(2),

which together with (117) implies

MSE(fo(2)) = 5= f(2) ROU) + § by [£7(2) P35 + 0(55-) + o(h3). (118)

Ignoring the remainder o(-) terms in (118), AMSE (asymptotic mean squared error) of

fn(:c) is given by

AMSE (f(2)) = s f(2) RUK) + 3 by [ (@) 3¢ (119)

Minimising (119) one gets asymptotically optimal local bandwidth (i.e. bandwidth that min-
imises the AMSE)

1/5

h%opt)(x) — n71/5 |: f($) R(K) :| ) (120)
L (@)]? 13

To get a global bandwidth it is useful to define (A)MISE - (asymptotic) mean inte-

grated squared error. Introduce

MISE(f,) :/MSE(fn(az))dx :/E [Fu(2) = f(2)]? da,

and its asymptotic approximation

AMISE(f,) = / AMSE(f,(2)) de = / L (@) R(K) + L@ pt g

R(E) | o RO e
nhy, 4

(121)

where R(f") = [ [f”(a:)]de
Minimising (121) one gets asymptotically optimal global bandwidth (i.e. bandwidth that
minimises the AMISE)

(opt) _ - —1/5 | R(K) }1/5
plor) — [R(f”)u%K . (122)
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Remark 22. Note that after substitution of the optimal bandwidth (122) into (121) one gets
that the optimal AMISE is given by

5 [R(f”)] 1/5

4/5 2/5
477,4/5 [R(K)] Hop -
It can be shown that if we consider kernels that are densities of probability distributions

then [R(K )]4/ ° ,ugg is minimised for K being an Epanechnikov kernel. Further note that for

K(z) = vz K (/B2 ©) one has
=1 and [R(K)]"" = [R(K)]"® 13}

and the optimal AMISE is the same for K and K. That is why some authors prefer to use
the kernels in a standardised form so that usr = 1. Some of the most common kernels having

this property are summarised in Table 2.

(@) = 122 (- 2) L{ja] < V5)
(x) = (1~ |z I{]a| < v}
() = ;fﬂ{|x\<f}
(2) = 122=(1 — 22)? I{ja] < V7)
() =
() =

Epanechnikov kernel: K (x

=

Triangular kernel: x

=

Uniform kernel:

=

Biweight kernel:

=

Tricube kernel:

z ;ﬂ“j& — (2P 1{jal < |55}

Gaussian kernel: K(x —ﬂ exp{—z?/2}

Table 2: Some kernel functions standardised so that psg = 1.

8.2.1 Normal reference rule

The problem of asymptotically optimal bandwidths given in (120) and (122) is that the
quantities f(x), f"(x) and R(f") are unknown. Normal reference rule assumes that f(x) =

1 p(£2£), where ¢(x) is density of a standard normal distribution.

Then
fl@)=H¢'(5E), @) = 59" (1),
where
z? 22
Fe) = e T (-a) = e T,
T
@'(x) = \/T%e 2+ 5 2 = (2> = 1) p()
Thus with the help of (120) one gets
1
~ K 1 ’
ho(z) =n"5 6 R(2 )




2

where [i a o2 are some estimates of the unknown parameters p and o2, for instance ji =

X, 0% = ﬁ Z?:l(Xi - Yn)z-
For the global bandwidth choice we need to calculate
2
2 1 1,082 e
R(f") = / [f"(2)]" dz = / { [(=52)" = 1] so(g“)} dz

o3

S A[CO R COLE

dt = dz o?

1 4 2 2 1 4 2 I
= — t 2t 1)— dt = t 2t 1) — dt
0'5 ( + ) © 0'52\/77' ( + )\/77'6
—_———
~N(0,3)

1 1 2 3
S [3 (9.1 1} =
20°\/7 20°\/T () 2t 8o/
where Y ~ N (O, %) Thus the asymptotically optimal global bandwidth would be

1/5
Bt — =15 [8 ﬁf(K)] ‘
3 Mo

(Y4 —2Y2+1) =

[V

Yy
2, one gets

: , _ 1
Further if one uses a Gaussian kernel K (y) = 75:¢
oK = /yQK(y) dy =1,

RE) = [ Ky =g [ ey = gh

which results in
411/
hoP) — 5~ 1/5 [] = 1.060n /°
3

The standard normal reference rule is now given by

hn = 1.06n~Y5 min {S,, IQR, }, (123)
where
R _ ——  F;710.75) — F;1(0.25)
— . 2 —__n n
Sn n—1 > (Ni—Xap,  and  IQR, 1.34 '

i=1
It was found out that the bandwidth selector (123) works well if the true distribution is ‘very
close’ to the normal distribution. But at the same time the bandwidth is usually too large
for distributions ‘moderately’ deviating from normal distribution. That is why some authors
prefer to use

hn = 0.9n"Y5 min {S,,, IQR,}. (124)

For a more detailed argumentation see Silverman (1986), page 48.
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8.2.2 Least-squares cross-validation
By this method we choose the bandwith as

hESCYV — argmin £(hy,),

hn>0

L) = [ [Fala)] m—4zﬁ

Z?:l i K (m;j(’ ) being the kernel density estimator based on a sample

where

that leaves out the 7-th observation.

The rational behind the above method is as follows. Suppose we are interested in minimizing
MISE(ﬁ). Note that MISE(fn) can be rewritten as

mm@):/ﬂﬁ@#mQ Fub /n —2f () f(x) - fA() da

_ E/f2<m)dx—2E/fn(x)f<m)dx+/f2(x)dx

An unbiased estimator for E [ F2(z)dz is simply given by S F2(z)dz. Further the term
il f?(x) dz does not depen on h,,. Thus it remains to estimate i fn (z)f(z) dz. Let us consider

the following estimate

A=+ Y Fa(Xa),

n

where

. 1 o X
f—i(l’):m'z K( hj(])

is the estimate of f(x) that is based the sample without the i-th observation X;. In what
follows it is shown that A, is an unbiased estimator of i ﬁl(a:) f(z)dx. Note that

- 1 S
:n;Ef_i(X

Now with the help of (112) and (114)

Ef(X) — [
" j=1,5#i

- // (54) £ (@) () da dy

E / fn(a:)f(x) dz
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Thus A, is an unbiased estimator of E i fn(az)f(x) dz and L(hy,) is an unbiased estimator of
E [ f2(z)dz — 2E [ fu(z)f(z)dz.

Remark 23. Stone (1984) has proved that

(LSCV)
ISE (h ) alm. surely
ming, ISE(h,)  n—oo

L,

where ISE(h;,) = f(fn(l’) — f(x))?dx. But the simulations show that the variance of RESEV)

(for not too big sample sizes) is rather large. Thus this method cannot be used blindly.

8.2.3 Biased-cross validation

This method aims at minimizing the AMISE given by (121). Note that to estimate AMISE
it is sufficient to estimate R(f”). It was found that the straightforward estimator R(ﬁ’{) is
(positively) biased. To correct for the main term in the bias expansion it is recommended to

use R(Afl’) - Rél}fs”) instead. That is why in this method the bandwidth is chosen as

hBEV) = arg min B(hy,),
hy>0

where (K)
R(K
o +ﬁhiu%K[R(ﬁ;)—

V)
-, —— 1, where hLPY) i given by (120).
oo

R(K”)}

B(hn) = nhd

(B
Remark 24. It can be proved that huy

(opt)

8.3 Higher order kernels

By a formal calculation (for sufficiently large n, sufficiently smooth f and x an interior point

of the support) one gets

Efule) = [ K)o th)de

2) / K(t)dt — f'(x)hy, / LK () d

f”2( )hQ/ K(t)dt — fﬂ;( )h3/t3K(t)dt+....

The kernel of order p is such that [ K(t)dt =1 and

/th(t)dt:(), j=1,...,p—1, and /tpK(t)dt;éO.

But note that if the above equations holds for p > 2, then (among others) [t2K(t)dt =

0, which implies that K cannot be non-negative. As a consequence it might happen that

fn(:v) <0
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One of possible modifications of a Gaussian kernel to get a kernel of order 4 is given by

2
K(y)=56-9y") A=c v/

8.4 Mirror-reflection

The standard kernel density estimator (102) is usually not consistent in the points, where the
density f is not continuous. These might be the boundary points of the support. Even if the
density is continuous at these points, the bias at these points is usually only of order O(hy,)
and not O(h2). There are several ways how to improve the performance of fn(:n) close to the
boundary points. The most straightforward is the mirror-reflection method.

To illustrate this method suppose we know that the support of the distribution with the
density f is [0,00). The modified kernel density estimator that uses mirror-reflection is given
by

1 —X; 1 +X;
FMB) () = hn Y K(52) + a Zin K (55), 20, (125)
" 0 <0

Note that the first term on the right-hand side of (125) (for > 0) is the standard kernel
density estimator f,(z). The second term on the right-hand side of (125) is in fact also
a standard kernel density estimator ﬁl(x), but based on the ‘mirror reflected’ observations
—X1,...,—X,. This second term is introduced in order to compensate for the mass of the

standard kernel density estimator ﬁz(:v) that falls outside the support [0, c0).

Literature: Wand and Jones (1995) Chapters 2.5, 3.2, 3.3

9 Kernel regression

Suppose that one observes independent and identically distributed bivariate random vectors
(X1,Y1)T, ..., (X,,Y,)T. Our primary interest in this section is to estimate the conditional

mean function of Y] given X; = z, i.e.

without assuming any parametric form of m(x).

In what follows it will be also useful to denote the conditional variance function as

o?(z) = var[Yy | X1 = z].
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9.1 Local polynomial regression

Suppose that the function m is a p-times differentiable function at the point = then for X;

‘close’ to x one can approximate

m(X;) = m(z) +m' (@) (X; — 2) + ...+ 2@ (X, gy, (126)

Thus ‘locally’ one can view and estimate the function m(x) as a polynomial. This motivates

defininition of the local polynomial estimator as

B(z) = (Bo(x),.... By(x))"

n

2

— argminy_ [Y by — by (Xs — ) — ... — by(Xi — x)l’} K (%=, (127)
bo,...,bp i— "

where K is a given kernel function and h,, is a smoothing parameter (bandwidth) going to

ZEero as n — oo.

. =~ . () .
Comparing (126) and (127) one gets that 38;(z) estimates ™ Jj!(x). Often we are interested

only in m(x) which is estimated by Bo(z).

Put
Y1 1 (Xl—l’) (Xl—x)i”
Y — Y2 7 Xp(x) _ 1 (X2 — l’) e (X2 — .’E)p
Yo 1 (Xp—2) ... (Xp—2)P

and W(z) for the diagonal matrix with the i-th element of the diagonal given by K (X;l—;x)
Note that the optimisation problem in (127) can be written as the weighted least squares
problem
B(z) = arg min { (Y = X,(2) b) "W(z) (Y — X,(x) b) } (128)
beRpP+1

where b = (bg, by, ...,by)T. The solution of (128) can be explicitly written as
~ -1
Bl@) = (X} (2) W(2) Xp(2))  X] (@) W(a) Y,
provided that the matrix (X;(w) W(x) Xp> is regular.
The following technical lemma will be useful in deriving the properties of the local polyno-

mial estimator.

Lemma 7. Let the kernel K be bounded, symmetric around zero, positive, with a support
(—1,1) and such that [ K(z)dx =1. Forle NU{0} put

1 — o N
Snilw) = — > K(52%) (F525) -
=1
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Suppose further that h, — 0 and (nh,) — oo and that the density fx of X1 is positive and

twice differentiable in x. Then

Sy () = Ix(x) fK(t)tl dt—i—%f%(ﬂﬁ) fK(t) tl+2dt+o(h,21)—|—0p(\/ann), [ even,

] ha () [ K () dE+ o(h2) + Op(m): I odd.

Proof. Analogously as in the proof of asymptotic normality of fn(az) (Theorem 21) one can

show that

Vnhy (Sni(z) — ESp(z)) 4, N(0,0%(x)), where o?(z)= fx(z) /t2l K2(t)dt.

n—o0

Thus

Sn,l(x) = ESn,l(x) + OP(\/ann)

and it remains to calculate E S, ;(x). Using the substitution t = 4=* and the Taylor expansion

n

of the function fx(x + th,) around the point x one gets
ES,ule) = EAK(E)(50) = [ KR (52) )y
— /K(t) th fx(x + thy) dt
- / K ()t dt + o e (2) / K@+ dt + " 12 (2) / K12 dt + o(h2).

As K is symmetric, then one gets that [ K (t)#/T1dt = 0 for [ even and [ K(¢)t!*2dt = 0 for
[ odd. O

Remark 25. Note that Lemma 7 implies that

Sno(®) = fx (@) + % fi(w) par +o(h2) + Op (A=) = fx(x) +0p(1), (129)
Sn1(@) = hn f'(2) p2xc + o(h,) + Op (2=) = op(1), (130)
Sn2(@) = f(z) pex + op(1), (131)
Sns(@) = hn /() / £ K () dt + o(h2) + Op (A=) = op (). (132)

9.2 Nadaraya-Watson estimator

For p = 0 the local polynomial estimator given by (127) simplifies to
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where

oy KCED) gk k()
TSLEEE) T e

This estimator is in the context of the local polynomial regression also called a locally constant
estimator.
Put X = (Xi,...,X,) and let bias (Mmyw (2)|X) and var (myw (2)|X) stand for the condi-

tional bias and variance of the estimator myw (z) given X.

Theorem 22. Suppose that the assumptions of Lemma 7 are satisfied and further that

(nh3) — % the density is fx(x) is continuously differentiable and positive at x, the
n—oo

function m(-) is twice differentiable at the point x and the function o*(-) is continuous at the

point x. Then

bias (Finw (z)|X) = h2 pax (m o m”;@) +op(R2), (133)
~ 0'2 €T
var (myw (2)|X) = # +op (n}L ) (134)
where
K) :/K2(x) dz and MoK = /x2 K(x)dx. (135)

Proof. Showing (133). Let us calculate

E [mnw (@ Z Wi () E[Y;]X] = Z Wi () E [Y;] X,] Z Wi (@

- Z wilw) [m(@) + (X; = @) (@) + S50 m"(2) + (X, - 2)? R(Xy)]

n

2) Y wni() +m' () D wni(@)(X; — x) + m/;(x) > wni(2)(Xi — 2)?
= i=1

i=1 i=1
+ ) wp —2)?R(X;),
=1
/ m” (z)
=m(z)+m'(x) A, + 5 B, + Cy, (136)

where R(z) — 0 as z — = and

Ap = wni(@)(Xi — @), By =Y wni(2)(Xi — 2)%, Cp = > wni(@)(X; — )’ R(X;). (137)
=1 =1 =1
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Now with the help of (129) and (130)

= hn 3 iy K( o £)(X h12 hySp1(x)
A, = Wi (2)(X; — — ]
Do) (i) = == }ZI)T e
e [ fie (@) pasc + 0(h2) + Op (A= )] B2 fic(@)pase + o(h) + Op (fa=)
fx(x) +op(1) fx(x) +op(1)
_ h%fﬁ((l’)ﬂﬂ( 2 2\ i (@) par on(h2
= TS L op(h2) + Or () = s Tor(h), (138)
as (nh3) — co. Further with the help of (129) and (131)
_ - wor( X — )2 = _ h%Sn,g(x)
Bn_Z; ni(Xi — ) ==y
_ ha [fx () porc +op(1)] = 2o + op(h2). (139)

fx(x) +op(1)

Concerning C), thanks to (139) and the fact that the support of K is (—1,1) one can bound

1Cy| < Zwm(x)(Xi—x)QR(Xi) < sup \R(z)\Zwm(x)(Xi—x)2

zi|z—z|<hn

— o(1) Op(h2) = op(R2). (140)

Now combining (138), (139) and (140) one gets

n

E [Mw (2)|X] = m(x) +m' (2)h3 fk@;m L m(x)

fX(:L‘ 92 h?L:UQK + OP(th)v

which implies (133).

Showing (134). Let us calculate

var[myw (x Zw ) var[Y;| X;] Zw
_ Zi:le(T)U (Xi) 1 Vi
K (%

S el
where V,, = ﬁ Yoy KQ(X;'L—;’”)H(Xi).
Now completely analogously as in Theorem 20 it is proved that fn@) TN f(z) we will
n—oo
show that

Vi —— fx(z) o*(x) R(K), (141)

which combined with (129) implies (134).
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Showing (141). First with the help of Bochner’s theorem (Theorem 19)

EV, = hlnE K2 (52 o?(x)| (142)
— [ RGP & @i [ K.

Now it remains to show that var(V;,) —— 0. Using again Bochner’s theorem (Theorem 19)
n—oo

1T » - 2
““W)—nmEK“ﬁh)aﬂxn—(EK%%;)a%xn)]
L1 — 171 . 2
= _mEK4()%Z)U4(X1)} -~ [hnEKz(X}an)UQ(Xl)]

- nlhn :04(:c)fx(x)/K4(t) dt+o(1)] _% [UQ(x)fxm)/KQ(t) dt+o(1>]2

— 0.

n—o0

9.3 Local linear estimator

For p = 1 the local polynomial estimator given by (127) simplifies to

n

(/30('7})7/81(-75)) = argminz [YZ — by — by (X; — x):|2K(X;L;m)
i=1

By solving the above optimisation task one gets
n
Mps(z) =Y wni(r)Y, (144)
i=1

where the weights can be written in the form

e K (550) (Sna(@) — 5= 8,1 (2)
Smo(x) Snvg(x) - 5271(37) ’

wni(x7 hn) =

i=1,...,n. (145)
Theorem 23. Suppose that the assumptions of Theorem 22 hold. Then
bias (mLL(a:)\X) = h% MoK w + Op(hi), (146)

var (i (2)[X) = U0 4o, (), (147)

where R(K) and pax are given in (135).
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Proof. Showing (146) Completely analogously as in the proof of Theorem 22 one can arrive
at (136) wit the only difference that now the weights wy;(z) are given by (145). Now calculate

A__ZLM@KGﬁﬂmrwwm<%~%Z?Jd%fx&—@2

" Sn0(2)Sn2(x) — 57 1 (2)

_ Sni(®) Snpa(x) = Sp2(@) Spa(z)

T Sun(@)Suae) - i@ (148)

Further using (129), (130), (131) and (132)

2 S (SC) — Sn73(33)5n71(l‘)
"‘ZW” ) Snale) — S2(0)
_ h2 [ ftQ dt + Op( )] — Op(l)Op(l)

"(fx(@ )+0P(1))[ ) [K(t)dt +op(1)] — (op(1))?

= 7 pok + op(h). (149)

Thus it remains to show that C,, = op(h2). Put D,, = S, 0(z) Sp2(z)

— 52 | () and note that
with the help of (129)-(131) one gets

Dy = () iy +op(L). (150)

Now with the help (150) and Lemma 7 one can bound

[Cn| < sup \R(Z)\hiZ\wm(w)

12
zilz—z|<hn ; "

< h2 o(1) S2o(@) + S (@) Ty & K ()22

n nhn
n D,
— o(h2) 3 (x)u3 +op(1) —1-’013( )’[fK ]t!3dt—|—0p(1)] — op(i2)
" F%(@) paxc + op(1) PAins

which together with (137), (148) and (149) yields (146).

Showing (147). With the help of (130), (131), (141) and (150) one can calculate
var mLL Z wy,

- DQ(QZ) [n2h2 ZKQ(X;L*?) (Snﬁ(x) - Xfl;xsn,l(w))QUQ(Xi)]
n n =1

11 1 & -
— WDZ(ZC) [S?ZQ(:B) + 0p(1)] v ZK2(X}ZM )0—2(X¢)
1 1

" nhn FL(z) 12, + op(1) (% (@) 3 + op(1)] [fx(z) o?(z) R(K) + op(1)],
which implies (147).
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9.4 Locally polynomial regression (p > 1)

Analogously as for p € {0,1} one gets the estimator of m(z) in the form
() = ) wai(w)Yi,
i=1
where the weights wy;(z) are given by the first row of the matrix
T et
(37 (@) W(a) Xp(2)) X5 (@) W(a)

and satisfy that > " | wpi(z) =1 and
S wni(@)(Xi —2)' =0, £=1,....p—1.
i=1

Thus analogously as in the proofs of Theorems 22 and 23 one can show that if p is even then
the (conditional) variances of my,(x) and my41(x) are asymptotically of the order O p(ﬁ)

and it even holds that
var (ﬁp(x)\X) = var (ﬁzpﬂ(x)]X) + oP(ﬁ).

Further at the same time the biases of my,(x) and m,11(x) are of the same order (Op(RET?Y),
but the bias of myy1(x) has a simpler structure than the bias of my(x). That is why in
practice usually odd choices of p are preferred.

Literature: Fan and Gijbels (1996) Chapters 3.1 and 3.2.1

0.5 Bandwidth selection

In what follows we will consider p = 1.

9.5.1 Asymptotically optimal bandwidths

With the help of Theorem 23 one can approximate the conditional MSE (mean squared error)

of mpr(x) as

~ 0'2 T
MSE (o (7) | X) = b S0 + L 0) [m” ()P 3k + op (532) +op(Br),  (151)

Ignoring the remainder op(.) terms in (151), we get that AMSE (asymptotic mean squared

error) of myr(x) is given by

o~ 0'2 xr
AMSE (i () | X) = o A5 4 3 b0 [ (2)]P 3 (152)
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Minimising (152) one gets asymptotically optimal local bandwidth (i.e. bandwidth that
minimises the AMSE).

2 1/5
h,(fpt)(l‘) _ n—1/5 [ o (-%') R(K> ] (153)
Ix (@) [m"(2)]? p3
The integrated mean squared error (MISE) is usually defined as
MISE(ﬁzLL | X) = /MSE(ﬁ”LLL({L') |X) wo(az) fx(w) dz (154)

where wg(z) is a given weight function which is introduced in order to guarantee that the
integral is finite.

Now with the help of (152) and (154) the asymptotic integrated mean squared error
(AMISE) is defined as

AMISE (i, | X) = / AMSE (i (z) | X) wo(x) fx(z) dz

=B [ 20 wptwyaz + {rb i [ @) wo(@) fx@) e (155)

nhy,

Minimising (155) one gets asymptotically optimal global bandwidth (i.e. the bandwidth
that minimises the AMISE)

plopt) _ . —1/5 [ R(K) fcr?(x) wo(z) dz }1/5
' pig [Im"(x)]? wo(z) fx (@) da

(156)

9.5.2 Rule of thumb for bandwidth selection

Suppose that o(z) is constant. Then the asymptotically optimal global bandwidth (156) is
given by

Bt — 115 [ _R(K) 0® [wo(x)dz } v (157)
par JIm" ()] wo(z) fx (x) dz
Now let m(z) be an estimated mean function fitted by the (global) polynomial regression of
order 4 through the standard least squares method.
Now in (156) one replaces the unknown quantity o2 by 52 = % S Y- ﬁ@(Xi)]2 and
m” () by m”(z). Finally the integral [[m”(x)]? wo(z) fx(x)dz is estimated by

S X0 o (Xo),

which results in the bandwidth selector

PROT) _ =15 [ R(K)5* [wo(z)dz "7
n =n 2 1~ [~ B .
H3xe 0 2iet [T (X3)]? wo(X:)

(158)
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9.5.3 Cross-validation
hCY) = argminCV(hy,),
hp>0

where

—i(Xi)]2 wo(X;)

[
pe
>
<

[

|
i ng
=

|
3

with m_;(x) being the estimator based on a sample that leaves out the i-th observation.

The rational of the above procedure is that one aims at minimising the estimated integrated

squared error, i.e.
ISE(mpr(z)) = / (mpr(z) — m(a:))zfx(x) wo(z) dz. (159)

Now put ¢; = Y; — m(X;) and calculate

V) = 3 [er 4 m(X) — w0 ()] wo(X)
=1

n

1 ¢ 2 (g
= 5 2;512 wo(X;) + - Z;&' [m(Xz) — m(LL)(Xi) wo(X;)

£ 3" [ - @l (0] wo(x0)
i=1

Now 1 5™ | e2wy(X;) does not depend on h,, and thus it is not interesting.
Further 1 7% | [m(X;) — ﬁl(L_Ll) (Xi)]zwg(X,-) can be considered as a reasonable estimate
of (159).

Finally 237 | &;[m(X;) — ’ﬁl(L_LZ) (X;)]wo(X;) does not ‘bias’ the estimate of (159), as
E [ [m(X;) — 50 (X;)] = E{E | [m(X;) — 500y X)) |X
[ [m(X3) — iy (Xi) ] wo(Xi)] & [m(Xi) — i (Xi)wo(X5) |
= E{E[IXi] E [ [m(Xy) - ;" (X)]wo(X0) %] } =0,
where we have used that E[e;|X;] = 0 and that & and [m(X;) — ﬁzgj)(Xi)]wo(Xi) are
independent conditionally on X.
9.5.4 Nearest-neighbour bandwidth choice

Suppose that the support of the kernel function K is the interval (—1,1). Note that then
wpi(x) = 0 if | X; — x| > hy,. The aim of the nearest-neighbour bandwidth choice is to choose
such h,, so that for at least k observations |X; — z| < h,. This can be technically achieved as
follows.
Put
dy(z) = ‘Xl - :U}, conydp(z) = |Xn - :L‘l
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for the distances of the observations Xi, ..., X, from the point of interest z. Let d(;)(z) <
s Sdy () be the ordered sample of dy(z),...,d,(x). Then choose h,, as

RN () = d gy (2). (160)

n
Note that (160) presents a local bandwidth choice.

To get an insight into the bandwidth choice (160) let us approximate

1 n
- Z]I{|XZ- —z| <h}=F,(z+h)—F,(x—h)=Fx(z+h)— Fx(z—h) = fx(x)2h. (161)
i=1
By plugging h = d(;)(z) = hy(x) into (161) one gets E = fx()2hy(z) which further implies
that

W) = g

Remark 26. To derive asymptotic properties of mp; when bandwidth h,, is chosen as (160)

one needs to consider k,, — oo and %" — 0 as n — oo.

In some textbooks one can also find the following rule for the bandwidth choice

X - X
() = ) . 1=k

where X 1) <. <X (n) and X ) is the closest observation to x.

9.6 Robust locally weighted regression (LOWESS)

LOWESS is an algorithm for ‘LOcally WEighted Scatterplot Smoothing’. It is used among
others in regression diagnostics. It runs as follows.

In the first step the local linear fit /i, (x) with the tricube kernel function, K (t) = 22 (1 —
|t|3)3]l{|t| < 1}, is calculated. The bandwidth is chosen by the nearest-neighbour method
with k& = |n f], where the default choice of f is % Then for a given number of iterations the

fit is recalculated as follows.
Let
ri = Y; — m(X;), 1=1,...,n

be the residuals of the current fit. Calculate the ‘measures of outlyingness’

=B( ) it
' 6 med (|r1|,...,\rn\)

where B(t) = (1 —t2)2I{|t| < 1}. With the help of §; the outlying observations are down-
weighted and the local linear fit is recalculated as m(x) = Bo (x), where

~ ~

(Bo(z), Bi(z)) = arbgr;linz [YZ —bo—b1 (X; — x)r K(X;L;m) J;.
001 =1

By default there are 3 iterations.

106



0.7 Conditional variance estimation

Note that o?(z) = E [V?|X; = z] — m*(z), thus the most straightforward estimate is given
by

(@) =Y wni(z) Y7 — i (x), (162)
1=1

where M, (x) = > wp;(2) Y;. This estimator is usually preferred in theoretical papers as its
properties can be derived completely analogously as for m,(z). But in practice it is usually

recommended to use the following estimator
- 2
Tr(x) = wni(x) (V; — mn(X:))". (163)
i=1

Note that if the weights wy,;(x) are not non-negative, then there is generally no guaranty that

either of the estimators (162) or (163) is positive.
Literature: Fan and Gijbels (1996) Chapters 2.4.1, 3.2.3, 4.2, 4.10.1, 4.10.2

Appendix

The following theorem can be found for instance in Section 2.1.4 of Serfling (1980) as Theo-

rem A.

Theorem A1l. (Glivenko-Cantelli theorem) Suppose we observe independent and identi-
cally distributed random vectors X1, ..., X, (in R¥) from a distribution with the cumulative
distribution function F. Let
1 n
Fa(x) =~ > X <x}.
i=1

be the cumulative empirical distribution function. Then

sup ’Fn(X) _ F(X)’ alm. surely 0.
x€Rk n—oo
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