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1 Clippings from the asymptotic theory

1.1 The convergence of random vectors

Let X be a k-dimensional random vector (with the cumulative distribution function FX) and

{Xn}∞n=1 be a sequence of k-dimensional random vectors (with the cumulative distribution

functions FXn).

Definition 1. We say that Xn
d−−−→

n→∞
X (i.e. Xn converges in distribution to X), if

lim
n→∞

FXn(x) = FX(x) (1)

for each point x of the continuity of FX .

Let d be a metric in Rk, e.g. the Euclidean metric d(x,y) =
√∑k

i=1(xi − yi)2 .

Definition 2. We say that

• Xn
P−−−→

n→∞
X (i.e. Xn converges in probability to X), if

∀ε > 0 lim
n→∞

P
[
ω : d

(
Xn(ω),X(ω)

)
> ε
]

= 0;

• Xn
alm. surely−−−−−−−→
n→∞

X (i.e. Xn converges almost surely to X), if

P
[
ω : lim

n→∞
d(Xn(ω),X(ω)) = 0

]
= 1.

Remark 1. For random vectors the convergence in probability and almost surely can be defined

also component-wise. That is let Xn = (Xn1, . . . , Xnk)
T and X = (X1, . . . , Xk)

T. Then

Xn
P−−−→

n→∞
X (Xn

alm. surely−−−−−−−→
n→∞

X) if Xnj
P−−−→

n→∞
Xj (Xnj

alm. surely−−−−−−−→
n→∞

Xj), ∀j = 1, . . . , k.

But this is not true for the convergence in distribution for which we have the Cramér-Wold

theorem that states

Xn
d−−−→

n→∞
X ⇐⇒ λTXn

d−−−→
n→∞

λTX, ∀λ ∈ Rk.

Theorem 1. (Continuous Mapping Theorem, CMT) Let g : Rk → Rm be continuous

in each point of an open set C ⊂ Rk such that P(X ∈ C) = 1. Then

(i) Xn
alm. surely−−−−−−−→
n→∞

X ⇒ g(Xn)
alm. surely−−−−−−−→
n→∞

g(X);

(ii) Xn
P−−−→

n→∞
X ⇒ g(Xn)

P−−−→
n→∞

g(X);
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(iii) Xn
d−−−→

n→∞
X ⇒ g(Xn)

d−−−→
n→∞

g(X).

Proof. (i) Almost sure convergence.

P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0
]

≥ P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0,X(ω) ∈ C

]
= P

[
ω : lim

n→∞
d
(
Xn(ω)),X(ω)

)
= 0,X(ω) ∈ C

]
= 1,

as C is an open set and P(X ∈ C) = 1.

(ii) Convergence in probability. Let ε > 0. Then for each δ > 0

P
[
ω : d

(
g(Xn(ω)),g(X(ω))

)
> ε
]

≤ P
[
d
(
g(Xn),g(X)

)
> ε, d(Xn,X) ≤ δ

]
+ P

[
d(Xn,X) > δ

]
≤ P

[
X ∈ Bδ

]
+ P

[
d(Xn,X) > δ

]
︸ ︷︷ ︸

→0,∀δ>0

,

where Bδ =
{
x ∈ Rk; ∃y ∈ Rk : d(x,y) ≤ δ, d

(
g(x),g(y)

)
> ε
}

. Further

P
[
X ∈ Bδ

]
≤ P

[
X ∈ Bδ,X ∈ C

]
+ P

[
X ∈ Bδ,X /∈ C

]
= P

[
X ∈ Bδ ∩ C

]
+ 0

and P
[
X ∈ Bδ ∩ C

]
can be made arbitrarily small as Bδ ∩ C → ∅ for δ ↘ 0.

(iii) See for instance proof of Theorem 13.6 in Lachout (2004).

Theorem 2. (Cramér-Slutsky, CS) Let Xn
d−−−→

n→∞
X, Y n

P−−−→
n→∞

c, then

(i) Xn + Y n
d−−−→

n→∞
X + c;

(ii) Y nXn
d−−−→

n→∞
cX,

where Y n can be a sequence of random variables or vectors or matrices of appropriate dimen-

sions (R or Rk or Rm×k) and analogously c can be either a number or a vector or a matrix

of an appropriate dimension.

Proof. Note that it is sufficient to prove

(Xn,Y n)
d−−−→

n→∞
(X, c). (2)

Then the statement of the theorem follows from Continuous Mapping Theorem (Theorem 1).
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To prove (2) note that

d
(
(Xn,Y n), (Xn, c)

)
= d
(
Y n, c

) P−−−→
n→∞

0.

Thus by Theorem 13.7 in Lachout (2004) or Theorem 2.7 (iv) of van der Vaart (2000) it is

sufficient to show that (Xn, c)
d−−−→

n→∞
(X, c). But this follows immediately with the help of

the Cramér-Wold theorem.

Definition 3. Let
{
Xn

}∞
n=1

be a sequence of random vectors and
{
rn
}∞
n=1

a sequence of

positive constants. We write that

(i) Xn = oP (rn), if Xn
rn

P−−−→
n→∞

0k, where 0k = (0, . . . , 0)T is a zero point in Rk;

(ii) Xn = OP (rn), if

∀ε > 0 ∃K <∞ sup
n∈N

P
(
‖Xn‖
rn

> K
)
< ε,

where ‖ · ‖ stands for instance for the Euclidean norm.

Remark 2. Note that

(i) Xn
d−−−→

n→∞
X implies Xn = OP (1) (Prohorov’s theorem);

(ii) Xn
P−−−→

n→∞
0 implies Xn = oP (1);

(iii) (rnXn)
P−−−→

n→∞
X or (rnXn)

d−−−→
n→∞

X implies Xn = OP
(

1
rn

)
.

Remark 3. Further note that the calculus with (the possible random) quantities op(1) and

OP (1) is analogous to the calculus in with the (deterministic) quantities o(1) and O(1) in

mathematical analysis. Thus, among others it holds that

(i) oP (1) + oP (1) = oP (1);

(ii) oP (1)OP (1) = oP (1);

(iii) oP (1) +OP (1) = OP (1);

(iv) oP (1) + o(1) = oP (1);

(v) OP (1) +O(1) = OP (1).

Proof of (ii): Let {Xn} , {Y n} be such that Xn = OP (1),Y n = oP (1) and Xn Y n makes

sense. Let ε > 0 be given. Then one can find K < ∞ such that supn∈N P
(
‖Xn‖ > K

)
≤ ε

2 .

Thus for all sufficiently large n ∈ N

P
(
||XnY n|| > ε

)
≤ P

(
||XnY n|| > ε, ||Xn|| ≤ K

)
+ P

(
||Xn|| > K

)
≤ P

(
||Y n|| >

ε

K

)
+
ε

2
≤ ε,
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as Y n = oP (1).

For more details about the calculus with op(1) and OP (1) see for instance Chapter 3.4 of

Jiang (2010).

1.2 ∆-theorem

Let Tn = (Tn1, . . . , Tnp)
T be an estimator of a p-dimensional parameter µ = (µ1, . . . , µp)

T and

g = (g1, . . . , gm) be a function from Rp → Rm. Denote the Jacobi matrix of the function g

at the point x as Dg(x), i.e.

Dg(x) =


∇g1(x)

...

∇gm(x)

 =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xp

...
. . .

...
∂gm(x)
∂x1

. . . ∂gm(x)
∂xp

 .

Theorem 3. (∆-theorem) Let
√
n (Tn−µ) = OP (1). Further g : A→ Rm, where A ⊂ Rp,

µ is an interior point of A and g has continuous first-order partial derivatives in a neigh-

bourhood of µ. Then

(i)
√
n
(
g(Tn)− g(µ)

)
− Dg(µ)

√
n (Tn − µ) = oP (1);

(ii) moreover if
√
n (Tn − µ)

d−−−→
n→∞

Np
(
0p,Σ

)
, then

√
n
(
g(Tn)− g(µ)

) d−−−→
n→∞

Nm
(
0m,Dg(µ) ΣD

T

g(µ)
)
. (3)

Proof. Statement (i):. For j = 1, . . . ,m consider gj : A → R (the j-th coordinate of the

function g). From the assumptions of the theorem there exists a neighbourhood Uδ(µ) of

point µ such that the function gj has continuous partial derivatives in this neighbourhood

and P
(
Tn ∈ Uδ(µ)

)
−−−→
n→∞

1. Thus without loss of generality we can assume that Tn ∈ Uδ(µ).

Using this together with the mean value theorem there exists µj∗n which lies between Tn and

µ such that

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µj∗n )

√
n (Tn − µ)

= ∇gj(µ)
√
n (Tn − µ) +

[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ). (4)

Further Tn
P−−−→

n→∞
µ implies that µj∗n

P−−−→
n→∞

µ. Now the continuity of the partial derivatives

of gj in Uδ(µ) and CMT (Theorem 1) imply that

∇gj(µjn)−∇gj(µ) = oP (1),

which together with
√
n (Tn − µ) = OP (1) further gives[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ) = oP (1). (5)
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Now combining (4) and (5) yields that for each j = 1, . . . ,m

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µ)

√
n (Tn − µ) + oP (1),

which implies the first statement of the theorem.

Statement (ii):. By the first statement of the theorem one gets

√
n
(
g(Tn)− g(µ)

)
= Dg(µ)

√
n (Tn − µ) + oP (1).

Now for the term Dg(µ)
√
n (Tn − µ) one can use the second statement of CS (Theorem 2)

with Y n = Dg(µ) and Xn =
√
n (Tn−µ). Further, using now the first statement of CS with

c = 0p one can see that adding the term oP (1) does not alter the asymptotic distribution of

Dg(µ)
√
n (Tn − µ).

Remark 4. Instead of the continuity of the partial derivatives in a neighbourhood of µ, it

would be sufficient to assume the existence of the total differential of the function g at the

point µ.

Sometimes instead of (3) we write shortly g(Tn)
as
≈ Np

(
g(µ), 1

nDg(µ) ΣDT

g(µ)
)
. The quan-

tity 1
nDg(µ) ΣDT

g(µ) is then called the asymptotic variance matrix of g(Tn) and it is

denoted as avar
(
g(Tn)

)
. Do not confuse the asymptotic variance and the variance of g(Tn).

As the following example shows these quantities can be substantially different.

Example 1. A random sample X1, . . . , Xn from a zero-mean distribution with finite and

positive variance. Find the asymptotic distribution of Yn = Xn exp{−X3
n}. Further compare

var(Yn) and avar(Yn) when X1 is distributed as N(0, 1)

Example 2. Suppose you have a random sample X1, . . . , Xn from a Bernoulli distribution

with parameter pX and you are interested in estimating the logarithm of the odd, i.e. θX =

log
( pX

1−pX

)
. Compare the variance and the asymptotic variance of θ̂X = log

(
Xn

1−Xn

)
.

Example 3. Suppose you have two independent random samples from Bernoulli distribution.

Derive the asymptotic distribution of the logarithm of odds-ratio.

Example 4. Derive the asymptotic distribution of the standard (Pearson’s) correlation co-

efficient.

Example 5. Consider a random sample from the Bernoulli distribution with the parame-

ter pX . Derive the asymptotic distribution of the estimator of θX = pX(1− pX) (variance of

the Bernoulli distribution) given by θ̂n = n
n−1Xn(1−Xn).
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Example 6. Suppose that we observe X1, . . . , Xn of a moving average sequence of order 1

given by

Xt = Yt + θ Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise sequence such that EYt = 0 and var(Yt) = σ2.

Derive the asymptotic distribution of the estimator of θ given by

θ̂n =
1−

√
1− 4 r̂2

n(1)

2 r̂n(1)
,

where r̂n(1) is the sample autocorrelation function at lag 1.

Hint. Note that by Bartlett’s formula

√
n
(
r̂n(1)− r(1)

) d−−−→
n→∞

N
(
0, σ2(θ)

)
,

where

σ2(θ) =
(
1− 2 θ

1+θ2

)2
+
(

θ
1+θ2

)2
.

1.3 Moment estimators

Suppose that the random vector X has a density f(x;θ) with respect to a σ-finite measure µ

and that the density is known up to unknown p-dimensional parameter θ = (θ1, . . . , θp)
T ∈ Θ.

Let θX be the true value of this unknown parameter. Let X1, . . . ,Xn be a random sample

from this distribution and t1, . . . , tp be given real functions. For instance if the observations

are one-dimensional one can take tj(x) = xj , j = 1, . . . , p. For j = 1, . . . , p define the function

τj : Θ→ R as

τj(θ) = E θ tj(X1) =

∫
tj(x)f(x;θ) dµ(x), j = 1, . . . , p.

Then the moment estimator θ̂n of the parameter θ is a solution to the estimating equations

1

n

n∑
i=1

t1(Xi) = τ1

(
θ̂n
)
, . . . ,

1

n

n∑
i=1

tp(Xi) = τp
(
θ̂n
)
.

Example 7. Moment estimation in Beta distribution

Put

Tn =
( 1

n

n∑
i=1

t1(Xi), . . . ,
1

n

n∑
i=1

tp(Xi)
)T

(6)

and define the mapping τ : Θ 7→ Rp as τ (θ) =
(
τ1(θ), . . . , τp(θ)

)T
. Note that provided there

exists an inverse mapping τ−1 one can write

√
n
(
θ̂n − θX

)
=
√
n
(
τ−1(Tn)− τ−1

(
τ (θX)

))
. (7)
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Thus the asymptotic normality of the moment estimator θ̂n would follow by the ∆-theorem

(Theorem 3) with g = τ−1. This is formalized in the following theorem.

Theorem 4. Let θX be an interior point of Θ and maxj=1,...,p varθ(tj(X1)) <∞. Further let

the function τ have continuous first-order partial derivatives in a neighbourhood of θX and

the Jacobi matrix Dτ (θX) is regular. Then

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,D−1

τ (θX) Σ(θX) [D−1
τ (θX)]T

)
,

where Σ(θX) = varθX
(
t1(X1), . . . , tp(X1)

)
.

Proof. By the assumptions of the theorem and the implicit function theorem there exists an

open neighbourbood U containing θX and an open neighbourbood V containing τ (θX) such

that τ : U 7→ V is a differentiable bijection with a differentiable inverse τ−1 : V 7→ U . Further

note that Tn defined in (6) satisfies P
(
Tn ∈ V

)
−−−→
n→∞

1. Thus one can use (7) and apply

the ∆-theorem (Theorem 3) with g = τ−1, µ = τ (θX) and A = V to get

√
n
(
θ̂n − θX

)
d−−−→

n→∞
Np
(
0,Dτ−1

(
τ (θX)

)
Σ(θX)

[
Dτ−1

(
τ (θX)

)]T)
.

The statement of the theorem now follows from the identity

Dτ−1

(
τ (θX)

)
= D−1

τ (θX).

The asymptotic variance of θ̂n is usually estimated as

1
n D
−1
τ

(
θ̂n
)
Σ
(
θ̂n
)

[D−1
τ

(
θ̂n
)
]T.

Alternatively the matrix Σ(θX) can be also estimated as

Σ̂n =
1

n− 1

n∑
i=1

(
Zi − Zn

)(
Zi − Zn

)T
,

where Zi =
(
t1(Xi), . . . , tp(Xi)

)T
.

Example 8. Let X1, . . . , Xn be independent identically distributed random variables from

the discrete distribution given as

P(X1 = 0) = p2, P(X1 = 1) = 1− p2 −√p, P(X1 = 2) =
√
p,

where p ∈ (0, 1
2). Consider the moment estimator of the parameter p and derive its asymptotic

distribution. Based on these results derive the confidence interval for the parameter p.
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1.4 Confidence intervals and asymptotic variance-stabilising transformation

In this section we are interested in constructing a confidence interval for (one-dimensional)

parameter θX . Suppose we have an estimator θ̂n of parameter θX such that

√
n
(
θ̂n − θX

) d−−−→
n→∞

N
(
0, σ2(θX)

)
, (8)

where σ2(·) is a function continuous in the true value of the parameter (θX).

Asymptotic confidence interval of ‘Wald’ type

This interval is based on the fact that

√
n
(
θ̂n − θX

)
σ(θ̂n)

d−−−→
n→∞

N
(
0, 1
)

and thus (
θ̂n −

u1−α/2 σ(θ̂n)√
n

, θ̂n +
u1−α/2 σ(θ̂n)√

n

)
(9)

is a confidence interval for parameter θX with the asymptotic coverage 1− α.

Asymptotic confidence interval of ‘Wilson’ type

This interval is based directly on (8) and it is given implicitly by{
θ :

∣∣∣∣√n
(
θ̂n − θ

)
σ(θ)

∣∣∣∣ ≤ u1−α/2

}
. (10)

Asymptotic variance stabilising transformation

Let the function g be such that [g′(θ)]2 σ2(θ) does not depend on θ. Put v2 := [g′(θ)]2 σ2(θ).

Then with the help (8) and ∆-theorem it holds
√
n
(
g(θ̂n)− g(θX)

) d−−−→
n→∞

N
(
0, v2

)
. Thus(

g−1
(
g
(
θ̂n
)
− v u1−α/2√

n

)
, g−1

(
g
(
θ̂n
)

+
v u1−α/2√

n

))
(11)

is a confidence interval for the parameter θX with the asymptotic coverage 1− α.

Example 9. A random sample from Poisson distribution. Find the transformation that sta-

bilises the asymptotic variance of Xn and based on this transformation derive the asymptotic

confidence intervals for λ.

Example 10. Fisher Z-transformation and various confidence intervals for the correlation

coefficient.
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Example 11. Consider a random sample from Bernoulli distribution. Find the asymptotic

variance-stabilizing transformation for Xn and construct the confidence interval based on this

transformation.

Literature: van der Vaart (2000) – Chapters 2.1, 2.2, 3.1, 3.2 and 4.1. In particular Theo-

rems 2.3, 2.4, 2.8 and 3.1.
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2 Maximum likelihood methods

Suppose we have a random sample of random vectors X1, . . . ,Xn being distributed as the

generic vectorX = (X1, . . . , Xk)
T that has a density f(x;θ) with respect to a σ-finite measure

µ and that the density is known up to unknown p-dimensional parameter θ = (θ1, . . . , θp)
T ∈

Θ. Let θX = (θX1, . . . , θXp)
T be the true value of the parameter.

Define the likelihood function as

Ln(θ) =
n∏
i=1

f(Xi;θ)

and the log-likelihood function as

`n(θ) = logLn(θ) =
n∑
i=1

log f(Xi;θ).

The maximum likelihood estimator of parameter θX is defined as

θ̂n = arg max
θ∈Θ

Ln(θ).

The (exact) distribution of θ̂n is usually too difficult or even impossible to calculate. Thus

to make the inference about θX we need to derive the asymptotic distribution of θ̂n.

2.1 Asymptotic normality of maximum likelihood estimator

Regularity assumptions

Let I(θ) = E θ

[
∂ log f(X;θ)

∂θ
∂ log f(X;θ)

∂θT

]
be the Fisher information matrix.

[R0] For any θ1, θ2 ∈ Θ it holds that f(x;θ1) = f(x;θ2) µ-almost surely if and only if

θ1 = θ2.

[R1] The number of parameters p in the model is constant.

[R2] The support set S =
{
x ∈ Rk : f(x;θ) > 0

}
does not depend on the value of the

parameter θ.

[R3] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[R4] The density f(x;θ) is three-times differentiable with respect to θ on an open neigh-

bourhood U of θX . Further for each j, k, l in {1, . . . , p} there exists s function Mjkl(x)

such that

sup
θ∈U

∣∣∣∣∂3 log f(x;θ)

∂θj ∂θk ∂θl

∣∣∣∣ ≤Mjkl(x),

12



for µ-almost all x and

E θXMjkl(X) <∞.

[R5] The Fisher information matrix I(θ) is finite, regular, and positive definite in θX .

[R6] The order of differentiation and integration can be interchanged in expressions such as

∂

∂θ

∫
h(x;θ) dµ(x) =

∫
∂

∂θ
h(x;θ) dµ(x),

where h(x;θ) is either f(x;θ) or ∂f(x;θ)/∂θ.

Note that thanks to assumption [R6] one can calculate the Fisher information matrix as

I(θ) = −E θ
[
∂2 log f(X;θ)

∂θ ∂θT

]
,

see for instance Theorem 7.27 of Anděl (2007).

Remark 5. Note that in particular assumption [R4] is rather strict. There are ways how

to arrive at the asymptotic normality of the maximum likelihood estimator under less strict

assumptions but that would require concepts that are out of the scope of this course.

The score function of the i-th observation Xi for the parameter θ is defined as

U(Xi;θ) =
∂ log f(Xi;θ)

∂θ
.

The random vector

Un(θ) =
n∑
i=1

U(Xi;θ) =
n∑
i=1

∂ log f(Xi;θ)

∂θ

is called the score statistic.

We search for the maximum likelihood estimator θ̂n as a solution of the system of likelihood

equations

Un

(
θ̂n
) !

= 0. (12)

Further define the observed information matrix as

In(θ) = − 1

n

∂Un(θ)

∂θ
=

1

n

n∑
i=1

I(Xi;θ),

where

I(Xi;θ) = −∂ log U(Xi;θ)

∂θT
= −∂

2 log f(Xi;θ)

∂θ∂θT

is the contribution of the i-th observation to the information matrix.

In what follows it will be useful to prove that In
(
θ̂n
) P−−−→
n→∞

I(θX) = E I(X1;θ) (provided

that θ̂n
P−−−→

n→∞
θX). The following technical lemma is a generalization of this result that will

be convenient in the proofs of the several theorems that will follow.

13



Lemma 1. Suppose that assumptions [R0]-[R6] hold. Let the matrix I∗n be a matrix with

the dimension p× p and with the elements

i∗n,jk =
1

n

n∑
i=1

−∂2 log f(Xi;θ)

∂θj ∂θk

∣∣∣
θ=t̂

(jk)
n

,

where t̂
(jk)
n

P−−−→
n→∞

θX for each j, k ∈ {1, . . . , p}. Then

I∗n
P−−−→

n→∞
I(θX).

Proof. Fix j, k ∈ {1, . . . , p}. Put

in,jk(θ) =
1

n

n∑
i=1

−∂2 log f(Xi;θ)

∂θj∂θk
,

and let ijk(θX) be the (j, k) element of the Fisher information matrix I(θX). Note that one

can bound ∣∣i∗n,jk − ijk(θX)
∣∣ ≤ ∣∣i∗n,jk − in,jk(θX)

∣∣+
∣∣in,jk(θX)− ijk(θX)

∣∣ (13)

The second term on the right-hand side of (13) converges in probability to zero by the law

of large numbers. Now with the help of assumption [R4] the first term on the right-hand side

of (13) can be bounded by

∣∣i∗n,jk − in,jk(θX)
∣∣ =

∣∣∣∣ 1n
n∑
i=1

∂2 log f(Xi;θ)

∂θj∂θk

∣∣∣
θ=t̂

(jk)
n

− 1

n

n∑
i=1

∂2 log f(Xi;θ)

∂θj∂θk

∣∣∣
θ=θX

∣∣∣∣
≤ 1

n

n∑
i=1

p∑
l=1

Mjkl(Xi)
∣∣t̂(jk)
nl − θXl

∣∣
= oP (1)

1

n

n∑
i=1

p∑
l=1

Mjkl(Xi) = oP (1)Op(1) = oP (1),

where t̂
(jk)
nl is the l-th element of t̂

(jk)
n .

Theorem 5. Suppose that assumptions [R0]-[R6] hold. Then with probability tending to one

as n→∞ there exists a consistent solution θ̂n of the likelihood equations (12) such that

√
n
(
θ̂n − θX

)
=
[
I(θX)

]−1 1√
n

n∑
i=1

U(Xi;θX) + oP (1), (14)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
. (15)
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Proof. First, we need to prove the consistency, that is θ̂n
P−−−→

n→∞
θX . This can be found in

the proof of Theorem 5.1 of Lehmann and Casella (1998, Chapter 6).

Once the consistency of θ̂n is proved then by the mean value theorem (applied to each

component of Un(θ)) one gets that

0p = Un

(
θ̂n
)

= Un(θX)− n I∗n
(
θ̂n − θX

)
,

where I∗n is a matrix with the elements

i∗n,jk =
1

n

n∑
i=1

−∂2 log f(Xi;θ)

∂θj∂θk

∣∣∣
θ=t̂

(j)
n

, j, k ∈ {1, . . . , p},

with t̂
(j)
n being between θ̂n and θX . Thus the consistency of θ̂n implies that t̂

(j)
n

P−−−→
n→∞

θX

and one can use Lemma 1 to show that

I∗n
P−−−→

n→∞
I(θX). (16)

Thus with probability going to one there exists [I∗n]−1 and one can write

n
(
θ̂n − θX

)
= [I∗n]−1 Un(θX).

Now the central limit theorem for independent identically distributed random vectors implies

that
1√
n

n∑
i=1

U(Xi;θX)
d−−−→

n→∞
Np
(
0p, I(θX)

)
. (17)

Note that (17) yields that 1√
n

∑n
i=1 U(Xi;θX) = OP (1). Thus using (16) and CMT (Theo-

rem 1) implies that

√
n
(
θ̂n − θX

)
= [I∗n]−1 1√

n

n∑
i=1

U(Xi;θX)

=
[
I−1(θX) + oP (1)

] 1√
n

n∑
i=1

U(Xi;θX)

= I−1(θX)
1√
n

n∑
i=1

U(Xi;θX) + oP (1).

Now (15) follows by CS (Theorem 2) and (17).

Remark 6. While the proof of consistency is for p = 1 relatively simple, for p > 1 it is much

more involved. The reason is that while the border of the neighbourbood in R is a two-point

set, in Rp (p > 1) it is an uncountable set.
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2.2 Asymptotic efficiency of maximum likelihood estimators

Recall the Rao-Cramér inequality. Let X1, . . . ,Xn be a random sample from the regular

family of densities F =
{
f(x;θ);θ ∈ Θ

}
, and Tn be an unbiased estimator of θX (based on

X1, . . . ,Xn). Then

var
(
Tn

)
− 1

n
I−1(θX) ≥ 0.

By Theorem 5 we have that (under appropriate regularity assumptions)

avar
(
θ̂n
)

=
1

n
I−1(θX).

Thus the asymptotic variance of θ̂n attains the lower bound in Rao-Cramér inequality.

Remark 7. Note that strictly speaking comparing with the Rao-Cramér bound is not fair.

Generally, the maximum likelihood estimator θ̂n is not unbiased. Further, Rao-Cramér in-

equality speaks about the bound on the variance, but we compare the asymptotic variance

of θ̂n with this bound. Nevertheless it can be shown that in regular models there exists

a lower bound for the asymptotic variances of the estimators that are asymptotically normal

with zero mean and in some (natural) sense regular. And this bound is indeed given by
1
n I
−1(θX). See also Serfling (1980, Chapter 4.1.3) and the references therein.

2.3 Estimation of the asymptotic variance matrix

To do the inference about the parameter θX we need to have a consistent estimator of I(θX).

Usually, we use one of the following estimators

I
(
θ̂n
)

or In
(
θ̂n
)

or
1

n

n∑
i=1

U
(
Xi; θ̂n

)
UT(Xi; θ̂n).

The consistency of I
(
θ̂n
)

follows by CMT (Theorem 1), provided (the matrix function)

I(θ) is continuous in θX , which follows by assumption [R4].

The consistency of In
(
θ̂n
) P−−−→
n→∞

I(θX) follows from Lemma 1 and Theorem 5.

On the other hand the consistency of 1
n

∑n
i=1 U

(
Xi; θ̂n

)
UT(Xi; θ̂n) does not automatically

follow from assumptions [R0]-[R6]. It can be proved analogously as Lemma 1 provided the

following assumption holds.

[R7] There exists an open neighbourhood U of θX such that for each j, k in {1, . . . , p} there

exists s function Mjkl(x) such that

sup
θ∈U

∣∣∣∣∂2 log f(x;θ)

∂θj∂θk

∣∣∣∣ ≤Mjk(x)

for µ-almost all x and

E θXM
2
jk(X1) <∞.
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Example 12. Random sample from a uniform distribution.

Example 13. Let X1, . . . , Xn be a random sample from the Pareto distribution with the

density

f(x) =
β αβ

xβ+1
I{x ≥ α}, β > 0, α > 0,

where both parameters are unknown.

(i) Find the maximum likelihood estimator of θ̂n =
(
α̂n, β̂n

)T
of the parameter θ = (α, β)T

(ii) Derive the asymptotic distribution of n
(
α̂n − α

)
.

(iii) Derive the asymptotic distribution of β̂n.

Example 14. Let X1, . . . , Xn be a random sample from N(µ, 1) where the parameter space

for the parameter µ is restricted to [0,∞). Find the maximum likelihood estimator of µ and

derive its asymptotic distribution.

Example 15. Let X1, . . . , Xn be a random sample from the mixture of distributions N(0, 1)

and N
(
θ, exp{−2/θ2}

)
with equal weights. Then the maximum likelihood estimator of θ is

not consistent.

Literature: Anděl (2007) Chapter 7.6.5, Lehmann and Casella (1998) Chapter 6.5, Kulich

(2014)

2.4 Asymptotic tests (without nuisance parameters)

Suppose we are interested in testing the null hypothesis

H0 : θX = θ0 against the alternative H1 : θX 6= θ0.

Let În be an estimate of the Fisher information matrix I(θX) or I(θ0). Basically there are

three tests that can be considered.

Likelihood ratio test is based on the test statistic

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
.

Wald test is based on the test statistic

Wn = n
(
θ̂n − θ0

)T
În
(
θ̂n − θ0

)
.

Rao score test is based on the test statistic

Rn =
1

n
UT
n(θ0) Î−1

n Un(θ0). (18)
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Theorem 6. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied and

În
P−−−→

n→∞
I(θ0). Then each of the test statistics LRn, Wn and Rn converges in distribution

to χ2-distribution with p degrees of freedom.

Proof. Rn: Note that Rn can be rewritten as

Rn =
(

1√
n
Î
− 1

2
n Un(θ0)

)T(
1√
n
Î
− 1

2
n Un(θ0)

)
. (19)

Now by the asymptotic normality of the score statistic (17), consistency of În and CS (The-

orem 2) one gets that
√
n Î
− 1

2
n Un(θ0)

d−−−→
n→∞

Np(0, Ip),

where Ip is an identity matrix of dimension p × p. Now the statement follows by using

CMT (Theorem 1).

ad Wn: One can rewrite Wn as

Wn =

(√
n Î

1
2
n

(
θ̂n − θ0

))T(√
n Î

1
2
n

(
θ̂n − θ0

)) d−−−→
n→∞

χ2
p.

Now the statement follows by analogous reasoning as for Rn, as by Theorem 5 and CS (The-

orem 2) one gets
√
n Î

1
2
n

(
θ̂n − θ0

) d−−−→
n→∞

Np(0, Ip).

ad LRn: With the help of the second order Taylor expansion around θ̂n one gets:

`n(θ0) = `n
(
θ̂n
)

+ nUT
n

(
θ̂n
)︸ ︷︷ ︸

=0p

(
θ0 − θ̂n

)
− n

2

(
θ0 − θ̂n

)T
In(θ∗n)

(
θ0 − θ̂n

)
,

where θ∗n lies between θ0 and θ̂n. Applying Lemma 1 yields In(θ∗n)
P−−−→

n→∞
I(θ0). Thus

analogously as above one gets

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
=
√
n
(
θ̂n − θ0

)T
In(θ∗n)

√
n
(
θ̂n − θ0

) d−−−→
n→∞

χ2
p.

Remark 8. Note that using the asymptotic representation (14) of the maximum likelihood

estimator θ̂n and the derivations done in the proof of Theorem 6 one can show that the

difference of each of the two test statistics (LRn, Wn and Rn) converges under the null

hypothesis to zero in probability.
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2.5 Asymptotic confidence sets

Sometimes we are interested in the confidence set for the whole vector parameter θX or τX .

Then we usually use the following confidence set{
θ : (θ̂n − θ)TÎn(θ̂n − θ) ≤ χ2

p(1− α)
}
,

where În is a consistent estimator of I(θX). Usually In
(
θ̂n
)

or I
(
θ̂n
)

are used as În. Then

the resulting confidence set is an ellipsoid.

Confidence intervals for θXj

In most of the applications we are interested in confidence intervals for components θXj of

the parameter θX = (θX1, . . . , θXp)
T.

Put θ̂n =
(
θ̂n1, . . . , θ̂np

)T
and θX = (θX1, . . . , θXp)

T. By Theorem 5 we know that

√
n
(
θ̂nj − θXj

) d−−−→
n→∞

N
(
0, ijj(θX)

)
, j = 1, . . . , p,

where ijj(θX) is the j-th diagonal element of I−1(θX). Thus the asymptotic variance of θ̂jn

is given by avar
(
θ̂nj
)

= ijj(θX)
n , which can be estimated by

̂
avar

(
θ̂nj
)

= ijjn
n , where ijjn is the

j-th diagonal element of În. Thus the two-sided (asymptotic) confidence interval for θXj is

given by (
θ̂jn − u1−α

2

√
ijjn
n , θ̂jn + u1−α

2

√
ijjn
n

)
. (20)

Remark 9. The approaches presented in this section are based on the Wald test statistic. The

approaches based on the other test statistics are also possible. For instance one can construct

the confidence set for θ as {
θ : 2

(
`n
(
θ̂n
)
− `n(θ)

)
≤ χ2

p(1− α)
}
.

But such a confidence set is for p > 1 very difficult to calculate. Nevertheless, as we will see

later there exists an approach to calculate the confidence interval for θXj with the help of the

profile likelihood.

2.6 Asymptotic tests with nuisance parameters

Denote τ the first q (1 ≤ q < p) components of the vector θ and ψ the remaining p − q
components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

We want to test the null hypothesis that H0 : τX = τ 0 against H1 : τX 6= τ 0.
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In what follows all the vectors and matrices appearing in the notation of maximum like-

lihood estimation theory are decomposed into the first q (part 1) and the remaining p − q
components (part 2), i.e.

θ̂n =

(
τ̂n

ψ̂n

)
, Un(θ) =

(
U1n(θ)

U2n(θ)

)
,

and

I(θ) =

(
I11(θ) I12(θ)

I21(θ) I22(θ)

)
, In(θ) =

(
I11n(θ) I12n(θ)

I21n(θ) I22n(θ)

)
. (21)

Lemma 2. Let J be a symmetric regular matrix of order p×p that can be written in the block

form as

J =

(
J11 J12

J21 J22

)
.

Denote

J11·2 = J11 − J12J−1
22 J21, J22·1 = J22 − J21J−1

11 J12.

Then

J−1 =

(
J11 J12

J21 J22

)
,

where

J11 = J−1
11·2, J22 = J−1

22·1, J12 = −J−1
11·2 J12 J−1

22 , J21 = −J−1
22·1 J21 J−1

11 .

Proof. Calculate J J−1 and use the fact that by the symmetry of the matrix J it holds that

J12 = JT21.

Suppose that the parametric space can be written as Θ = Θτ × Θψ, where Θτ ⊂ Rq and

Θψ ⊂ Rp−q.
Denote θ̃n the estimator of θ under the null hypothesis, i.e.

θ̃n =

(
τ 0

ψ̃n

)
, where ψ̃n = arg max

ψ∈Θψ

Ln(τ 0,ψ).

Let Î11
n be an estimate of the corresponding block I11(θX) in the inverse of Fisher infor-

mation matrix I−1(θX).

The three asymptotic tests of the null hypothesis H0 : τX = τ 0 are as follows.

Likelihood ratio test is based on the test statistic

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))
. (22)
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Wald test is based on the test statistic

W ∗n = n
(
τ̂n − τ 0

)T [
Î11
n

]−1 (
τ̂n − τ 0

)
.

Rao score test is based on the test statistic

R∗n =
1

n
UT

1n

(
θ̃n
)
Î11
n U1n

(
θ̃n
)
. (23)

Remark 10. As U2n

(
θ̃n
)

= 0p−q, the test statistic of the Rao score test can be also written

in a form

R∗n =
1

n
UT
n

(
θ̃n
)
Î−1
n Un

(
θ̃n
)
,

which is a straightforward analogy of the test statistic of (18) of the Rao score test in case of

no nuisance parameters.

Theorem 7. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied and

Î11
n

P−−−→
n→∞

I11(θX). Then each of the test statistics LR∗n, W ∗n and R∗n converges in distribution

to χ2-distribution with q degrees of freedom.

Proof. First note if the null hypothesis holds then θX =
(
τT

0 ,ψ
T
X

)T
, where ψX stands for the

true value of ψ.

W ∗n : Note that by Theorem 5
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0, I−1(θX)

)
, which yields

√
n
(
τ̂n − τ 0

) d−−−→
n→∞

Nq
(
0, I11(θX)

)
.

Thus analogously as in the proof of Theorem 6 one can show that

√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

) d−−−→
n→∞

Nq(0, Iq),

which further with the CMT (Theorem 1) implies

W ∗n =

{√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

)}T{√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

)} d−−−→
n→∞

χ2
q .

R∗n: By the mean value theorem (applied to each component of U1n(θ)) one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I∗12n

√
n
(
ψ̃n −ψX

)
, (24)

where I∗12n is the observed Fisher matrix whose j-th row (j ∈ {1, . . . , q}) is evaluated at

some θj∗n that is between θ̃n and θX . As θj∗n
P−−−→

n→∞
θX , Lemma 1 implies that

I∗12n
P−−−→

n→∞
I12(θX). (25)
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Further note that ψ̃n is a maximum likelihood estimator in the model

F0 =
{
f(x; τ 0,ψ);ψ unknown

}
.

As the null hypothesis holds, using Theorem 5 one gets

√
n
(
ψ̃n −ψX

)
= I−1

22 (θX)
1√
n

U2n(θX) + oP (1). (26)

Combining (24), (25) and (26) yields

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1). (27)

Now using (27) and the central limit theorem (for i.i.d. vectors), which implies that (written

in a block form)

1√
n

Un(θX) =

 1√
n

U1n(θX)

1√
n

U2n(θX)

 d−−−→
n→∞

Np

(
0p,

(
I11(θX) I12(θX)

I21(θX) I22(θX)

))
,

one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1)

=
(
Iq,−I12(θX) I−1

22 (θX)
)  1√

n
U1n(θX)

1√
n

U2n(θX)

+ oP (1)
d−−−→

n→∞
Nq
(
0,K(θX)

)
,

where

K(θX) =
(
Iq,−I12(θX) I−1

22 (θX)
) ( I11(θX) I12(θX)

I21(θX) I22(θX)

)(
Iq

−I−1
22 (θX) I21(θX)

)
= I11(θX)− 2I12(θX)I−1

22 (θX)I21(θX) + I12(θX)I−1
22 (θX)I22(θX)I−1

22 (θX)I21(θX)

= I11(θX)− I12(θX) I−1
22 (θX) I21(θX) = I11·2(θX)

Lemma 2
=

[
I11(θX)

]−1
.

Thus
√
nU1n

(
θ̃n
) d−−−→
n→∞

Nq
(

0,
[
I11(θX)

]−1
)

, which further with the help of CS (Theorem 2)

and CMT (Theorem 1) implies the statement of the theorem for R∗n.

LR∗n: By the second-order Taylor expansion around the point θ̂n one gets

`n
(
θ̃n
)

= `n
(
θ̂n
)

+ UT
n

(
θ̂n
)︸ ︷︷ ︸

=0p

(
θ̃n − θ̂n

)
− n

2

(
θ̃n − θ̂n

)T
In(θ∗n)

(
θ̃n − θ̂n

)
, (28)

where θ∗n is between θ̃n and θ̂n. Thus θ∗n
P−−−→

n→∞
θX and Lemma 1 implies In(θ∗n)

P−−−→
n→∞

I(θX).

Further by Theorem 5

√
n
(
θ̂n − θX

)
= I−1(θX)

1√
n

Un(θX) + oP (1), (29)
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which together with (26) implies

√
n
(
θ̂n − θ̃n

)
=
√
n
(
θ̂n − θX

)
+
√
n (θX − θ̃n)

= I−1(θX)
1√
n

Un(θX)−

(
0q

I−1
22 (θX) 1√

n
U2n(θX)

)
+ oP (1)

= A(θX)
1√
n

Un(θX) + oP (1),

where

A(θX) = I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

)
.

By the central limit theorem (for i.i.d. vectors) and the symmetry of matrix A(θX)

√
n
(
θ̂n − θ̃n

) d−−−→
n→∞

Np
(
0,A(θX) I(θX)A(θX)

)
. (30)

Now we will use the following lemma (Anděl, 2007, Theorem 4.16).

Lemma 3. Let Z ∼ Np(0p,V), where V is p× p matrix. Let BV be an idempotent (nonzero)

matrix. Then ZTBZ ∼ χ2
tr(BV).

Put

B = I(θX) and V = A(θX) I(θX)A(θX).

Now BV = I(θX)A(θX) I(θX)A(θX), where

I(θX)A(θX) =

(
I11(θX) I12(θX)

I21(θX) I22(θX)

)(
I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

))

= Ip −

(
0q×q I12(θX)I−1

22 (θX)

0(p−q)×q Ip−q

)
︸ ︷︷ ︸

=:D

.

Note that matrix D is idempotent, thus also Ip−D and BV = (Ip−D)(Ip−D) are idempotent.

Now using (28), (30), CS (Theorem 2), Lemma 3 and CMT (Theorem 1) one gets

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))

=
√
n
(
θ̃n − θ̂n

)T
I(θX)

√
n
(
θ̃n − θ̂n

)
+ oP (1)

d−−−→
n→∞

χ2
tr(BV),

where tr(BV) = tr(Ip)− tr(D) = p− (p− q) = q.

Example 16. Breusch-Pagan test of heteroscedasticity

Example 17. Suppose that you observe independent identically distributed random vectors

(XT
1 , Y1)T, . . . , (XT

n , Yn)T such that

P(Y1 = 1 |X1) =
exp{α+ βTX1}

1 + exp{α+ βTX1}
, P(Y1 = 0 |X1) =

1

1 + exp{α+ βTX1}
,
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where the distribution of X1 = (X11, . . . , X1d)
T does not depend on the unknown parameters

α a β.

(i) Derive a test for the null hypothesis H0 : β = 0d against the alternative that H1 : β 6=
0d.

(ii) Find the confidence interval for the parameter β.

Literature: Anděl (2007) Chapter 8.6, Kulich (2014), Zvára (2008) pp. 122–128.

2.7 Profile likelihood

Let θ be divided into τ containing the first q components (1 ≤ q < p) and ψ containing the

remaining p− q components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

Write the likelihood of the parameter θ as Ln(θ) = Ln(τ ,ψ) and analogously for log-

likelihood, score function, Fisher information matrix, . . .

The profile likelihood and the profile log-likelihood for the parameter τ are defined subse-

quently as as

L(p)
n (τ ) = max

ψ∈Θψ
Ln(τ ,ψ), `(p)n (τ ) = logL(p)

n (τ ) = max
ψ∈Θψ

`n(τ ,ψ).

In the following we will show that one can work with the profile likelihood as with the

‘standard’ likelihood.

First of all note that

τ̂ (p)
n = arg max

τ∈Θτ

`(p)n (τ ) = τ̂n,

where τ̂n stands for the first q-coordinates of the maximum likelihood estimator θ̂n.

Further denote

ψ̃n(τ ) = arg max
ψ∈Θψ

`n(τ ,ψ), θ̃n(τ ) =
(
τT, ψ̃

T

n(τ )
)T

and define the profile score function and profile (empirical) information matrix as

U(p)
n (τ ) =

∂`
(p)
n (τ )

∂τ
, I(p)

n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
.

The following lemma shows how the quantities U
(p)
n (τ ) and I

(p)
n (τ ) are related with Un(θ)

and In(θ).
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Lemma 4. Suppose that assumptions [R0]-[R6] are satisfied. Then (with probability tending

to one)

U(p)
n (τ ) = U1n

(
θ̃n(τ )

)
, I(p)

n (τ ) = I11n

(
θ̃n(τ )

)
− I12n

(
θ̃n(τ )

)
I−1

22n

(
θ̃n(τ )

)
I21n

(
θ̃n(τ )

)
,

where Ijkn(θ) (for j, k ∈ {1, 2}) were introduced in (21).

Proof. U
(p)
n (τ ): Let us calculate

[
U(p)
n (τ )

]T
=
∂`

(p)
n (τ )

∂τT
=
∂`n
(
τ , ψ̃n(τ )

)
∂τT

= U1n

(
τ , ψ̃n(τ )

)
+ UT

2n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= UT

1n

(
τ , ψ̃n(τ )

)
, (31)

where the last equality follows from the fact that ψ̃n(τ ) = arg maxψ∈Θψ
`
(p)
n (τ ,ψ), which

implies that U2n

(
τ , ψ̃n(τ )

)
= 0p−q.

I
(p)
n (τ ): Note that with the help of (31)

I(p)
n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
= − 1

n

∂U1n

(
τ , ψ̃n(τ )

)
∂τT

= I11,n

(
τ , ψ̃n(τ )

)
+ I12,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
. (32)

Further by differentiating both sides of the identity

U2n

(
τ , ψ̃n(τ )

)
= 0p−q

with respect to τT one gets

I21,n

(
τ , ψ̃n(τ )

)
+ I22,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= 0(p−q)×q,

which implies that

∂ψ̃n(τ )

∂τT
= −I−1

22,n

(
τ , ψ̃n(τ )

)
I21,n

(
τ , ψ̃n(τ )

)
. (33)

Now combining (32) and (33) implies the statement of the theorem for I
(p)
n (τ ).

Tests based on profile likelihood

Define the (profile) test statistics of the null hypothesis H0 : τX = τ 0 as

LR(p)
n = 2

(
`(p)n

(
τ̂n
)
− `(p)n (τ 0)

)
,

W (p)
n = n

(
τ̂n − τ 0

)T
Î(p)
n

(
τ̂n − τ 0

)
,

R(p)
n =

1

n

[
U(p)
n (τ 0)

]T [
Î(p)
n

]−1
U(p)
n (τ 0),

where one can use for instance I
(p)
n (τ 0) or I

(p)
n (τ̂n) as Î

(p)
n .
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Theorem 8. Suppose that the null hypothesis holds and assumptions [R0]-[R6] are sat-

isfied. Then each of the test statistics LR
(p)
n , W

(p)
n and R

(p)
n converges in distribution to

χ2-distribution with q degrees of freedom.

Proof. LR
(p)
n : Note that

`(p)n (τ̂n) = `n(τ̂n, ψ̂n) = `n
(
θ̂n
)

and further

`(p)n (τ 0) = max
ψ∈Θψ

`n(τ 0,ψ) = `n(τ 0, ψ̃n) = `n(θ̃n).

Thus LR
(p)
n = LR∗n, where LR∗n is the test statistic of the likelihood ratio test in the presence of

nuisance parameters given by (22). Thus the statement of the theorem follows by Theorem 7.

W
(p)
n : Follows from Theorem 7 and the fact that by Lemmas 1, 2 and 4

Î(p)
n

P−−−→
n→∞

I11(θX)− I12(θX) I−1
22 (θX) I21(θX) =

[
I11(θX)

]−1
. (34)

R
(p)
n : By Lemma 4 one has U

(p)
n (τ ) = U1n

(
θ̃n(τ )

)
. Thus R

(p)
n = R∗n with Î

(11)
n =

[
Î

(p)
n

]
,

where R∗n is Rao score test statistic in the presence of nuisance parameters defined in (23).

The statement of the theorem now follows by (34) and Theorem 7.

Confidence interval for θXj

One of the applications of the profile likelihood is to construct a confidence interval for θXj .

Let τ = θj and ψ contains the remaining coordinates of the parameter θ. Then the set{
θj : 2

(
`(p)n (θ̂nj)− `(p)n (θj)

)
≤ χ2

1(1− α)
}

is the asymptotic confidence interval for θXj . Although this confidence interval is more

difficult to calculate than the Wald-type confidence interval given by (20), the simulations

show that it has better finite sample properties. In R-software these intervals for GLM models

are calculated by the function confint.

Example 18. Let X1, . . . , Xn be a random sample from a gamma distribution with density

f(x) =
1

Γ(β)
λβ xβ−1 exp{−λx} I{x > 0}.

Suppose we are interested in parameter β and parameter λ is nuisance. Derive the profile

likelihood for parameter β and the Rao score test of the null hypothesis H0 : βX = β0 against

H1 : βX 6= β0 that is based on the profile likelihood.
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Solution: The likelihood and log-likelihood are given by

Ln(β, λ) =
n∏
i=1

1

Γ(β)
λβXβ−1

i e−λXi ,

`n(β, λ) = −n log Γ(β) + nβ log λ+ (β − 1)

n∑
i=1

logXi − λ
n∑
i=1

Xi.

For a given β we can find λ̃n(β) by

∂`n(β, λ)

∂λ
=
nβ

λ
−

n∑
i=1

Xi
!

= 0

λ̃n(β) =
β

Xn

.

Thus the profile log-likelihood is

`(p)n (β) = −n log Γ(β) + nβ log
( β

Xn

)
+ (β − 1)

n∑
i=1

logXi − nβ

and its corresponding score function

U (p)
n (β) = −nΓ′(β)

Γ(β)
+ n log

( β

Xn

)
+ n+

n∑
i=1

logXi − n.

Statistic of Rao score test of the null hypothesis H0 : βX = β0 against H1 : βX 6= β0 is now

given by

R(p)
n =

[
U

(p)
n (β0)

]2
n I

(p)
n (β0)

,

where

I(p)
n (β) = − 1

n

∂U
(p)
n (β)

∂β
=

[
Γ′′(β)

Γ(β)
−
(

Γ′(β)

Γ(β)

)2

− 1

β

]
.

Example 19. Box-Cox transformation. See Zvára (2008) pp. 149–151.

2.8 Some notes on maximum likelihood in case of not i.i.d. random vectors

Let observations (X1, . . . ,Xn) have a joint density fn(x1, . . . ,xn;θ) that is known up to the

unknown parameter θ from the parametric space Θ. Analogously as in ‘i.i.d case’ one can

define the likelihood function as

Ln(θ) = fn(X1, . . . ,Xn;θ),

the log-likelihood function as

`n(θ) = logLn(θ),
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the maximum likelihood estimator (of parameter θX) as

θ̂n = arg max
θ∈Θ

Ln(θ),

the score function as

Un(θ) =
∂`n(θ)

∂θ
,

and the empirical Fisher information matrix as

In(θ) = − 1

n

∂2`n(θ)

∂θ ∂θT
.

The role of the theoretical Fisher information matrix I(θ) in ‘i.i.d’ settings is now taken by

the limit ‘average’ Fisher information matrix

Ī(θ) = lim
n→∞

1

n
E θ

[
−∂2`n(θ)

∂θ ∂θT

]
.

In ‘nice (regular) models’ it holds that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0, Ī−1(θX)

)
.

The most straightforward estimator of Ī(θX) is In
(
θ̂n
)

and thus the estimator of the asymp-

totic variance matrix of θ̂n is

̂
avar

(
θ̂n
)

=
1

n
I−1
n

(
θ̂n
)

=

[
−∂2`n(θ)

∂θ ∂θT

∣∣∣
θ=θ̂n

]−1

.

That is why some authors prefer to define the empirical Fisher information without 1
n simply

as

Ĩn(θ) =
−∂2`n(θ)

∂θ ∂θT

and they speak about it as the Fisher information of all observations.

Example 20. Suppose we have K independent samples, that is for each i = 1, . . . ,K the

random variables Xij , j = 1, . . . , ni are independent and identically distributed with density

fi(x;θ) (with respect to some σ-finite measure µ). Further let all the random variables be
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independent and let limn→∞
ni
n = wi, where n = n1 + . . .+ nK . Then

Ln(θ) =
K∏
i=1

ni∏
j=1

fi(Xij ;θ),

`n(θ) =

K∑
i=1

ni∑
j=1

log fi(Xij ;θ),

Un(θ) =
∂`n(θ)

∂θ
=

K∑
i=1

ni∑
j=1

∂ log fi(Xij ;θ)

∂θ
,

In(θ) = − 1

n

∂Un(θ)

∂θT
= − 1

n

K∑
i=1

ni∑
j=1

∂2 log fi(Xij ;θ)

∂θ∂θT

I(θ) = lim
n→∞

E In(θ) = lim
n→∞

K∑
i=1

ni
n︸︷︷︸
→wi

I(i)(θ) =
K∑
i=1

wi I
(i)(θ),

where I(i)(θ) is Fisher information matrix of Xi1 (i.e. for the density fi(x;θ)).

Random vs. fixed design

Sometimes in regression it is useful do distinguish random design and fixed design.

In random design we assume that the values of the covariates are realisations of random

variables. Thus (in the most simple situation) we assume that we observe independent and

identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
, (35)

where the conditional distribution of Yi|Xi is known up to the unknown parameter θ and

the distribution of Xi does not depend on θ. Put f(yi|xi;θ) for the conditional density of

Yi|Xi = xi and fX(x) for the density of Xi. Then the likelihood and the log-likelihood (for

the parameter θ) are given by

Ln(θ) =

n∏
i=1

f(Yi|Xi;θ)fX(Xi)︸ ︷︷ ︸
=fY,X(Yi,Xi;θ)

`n(θ) =

n∑
i=1

log f(Yi|Xi;θ) +

n∑
i=1

log fX(Xi). (36)

In fixed design it is assumed that the values of the covariates x1, . . . ,xn are fixed when

planning the experiment (before measuring the response). Now we observe Y1, . . . , Yn inde-

pendent (but not identically) distributed random variables with the densities f(y1|x1;θ), . . . ,
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f(yn|xn;θ). Then the log-likelihood is given by

`n(θ) =
n∑
i=1

log f(Yi|xi;θ). (37)

Comparing the log-likelihoods in (36) and (37) one can see that (once the data are observed)

they differ only by
∑n

i=1 log fX(Xi) which does not depend on θ. Thus in terms of (likelihood

based) inference for a given dataset both approaches are equivalent. The only difference is

that the theory for the fixed design is more difficult.

Example 21. (Poisson regression)

Random design approach: We assume that we observe independent identically distributed

random vectors (35) and that Yi|Xi ∼ Po
(
λ(Xi)

)
, where λ(Xi) = exp{βTXi} and Xi =

(Xi1, . . . , Xip)
T. Then (provided assumptions [R0]-[R6] are satisfied)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, I

−1(βX)
)
, where I(βX) = E

[
X1X

T
1 exp

{
βT
XX1

}]
.

Fixed design approach: We assume that we observe independent random variables Y1, . . . , Yn

and we have the known constants x1, . . . ,xn such that Yi ∼ Po
(
λ(xi)

)
, where λ(xi) =

exp{βTxi}. Then it can be shown (that under mild assumptions on x1, . . . ,xn)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, Ī

−1(βX)
)
, where Ī(βX) = lim

n→∞

1

n

n∑
i=1

xi x
T
i exp

{
xT
i βX

}
.

Note that in practice both I(βX) and Ī(βX) would be estimated by

În =
1

n

n∑
i=1

XiX
T
i exp

{
β̂
T

nXi

}
or ̂̄In =

1

n

n∑
i=1

xi x
T
i exp

{
β̂
T

nxi
}
.

Thus for observed data the estimators coincide. The only difference is in notation in which

you distinguish whether you think of the observed values of the covariates as the realizations

of the random vectors or as fixed constants.

Example 22. Maximum likelihood estimation in AR(1) process.

Example 23. A comparison of K independent binomial distributions.

Literature: Hoadley (1971).

2.9 Conditional and marginal likelihood

In some models the number of parameters is increasing as the sample size increases. Formally

let θ(n) = (θ1, . . . , θpn)T, where pn is a non-decreasing function of n. Let θ(n) be divided

into τ containing the first q (where q is fixed) and ψ(n) containing the remaining pn − q

components.
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Example 24. Strongly stratified sample Let Yij , i = 1, . . . , N , j = 1, 2 be independent

random variables such that Yij ∼ N(µi, σ
2). Derive the maximum likelihood estimator of σ2.

Is this estimator consistent?

Note that in the previous example each observation carries information on σ2, but the

maximum likelihood estimator of σ2 is not even consistent. The problem is that the dimension

of nuisance parameters ψ = (µ1, . . . , µN )T is increasing to infinity (too quickly). Marginal and

conditional likelihoods are two attempts to modify the likelihood so that it yields consistent

(and hopefully also asymptotically normal) estimators of the parameters of interest τ .

Suppose that the data X can be transformed (or simply decomposed) to V and W.

Let the distribution of V depends only on parameter τ (and not on ψ(n)). Then the marginal

(log-)likelihood of parameter τ is defined as

L(M)
n (τ ) = p(V; τ ), `(M)

n (τ ) = log
(
L(M)
n (τ )

)
,

where pτ (v) is the density of V with respect to a σ-finite measure µ.

Let the conditional distribution of V given W depends only on parameter τ (and not

on ψ(n)). Then the conditional (log-)likelihood of parameter τ is defined as

L(C)
n (τ ) = p(V |W; τ ), `(C)

n (τ ) = log
(
L(C)
n (τ )

)
,

where p(v|w; τ ) is the conditional density of V given W = w with respect to a σ-finite

measure µ.

Remark 11. (i) If V is independent of W, then p(V|W; τ ) = p(V; τ ) and thus L
(M)
n (τ ) =

L
(C)
n (τ ).

(ii) ‘Automatic calculation of `
(C)
n (τ )’:

`(C)
n (τ ) = log

(
p(V,W; τ ,ψ(n))

p(W; τ ,ψ(n))

)
= `n(τ ,ψ(n))− `n,W(τ ,ψ(n)),

where `n(τ ,ψ(n)) is the log-likelihod of (V,W) and `n,W(τ ,ψ(n)) is the log-likelihod

of W.

(iii) It can be shown that (under certain regularity assumptions) one can work with L
(M)
n (τ )

and L
(C)
n (τ ) as with ‘standard’ likelihoods.

Exponential family

Let the dataset X has the density (with respect to a σ-finite measure µ) of the form

p(x; τ ,ψ(n)) = exp


q∑
j=1

Q(τ )Tj(x) +

pn−q∑
j=1

R(τ ,ψ(n))Sj(x)

 a
(
τ ,ψ(n)

)
h(x),
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where τ = (τ1, . . . , τq)
T and ψ(n) =

(
ψ

(n)
1 , . . . , ψ

(n)
pn−q

)T
. Put Sn(X) =

(
S1(X), . . . , Spn−q(X)

)T
and note that for a fixed value of τ the statistic Sn(X) is sufficient for ψ(n). Thus the

conditional distribution of X given Sn(X) does not depend on ψ(n). This implies that when

constructing the conditional likelihood L
(C)
n (τ ) one can take Sn(X) as W and X as V.

Example 25. Strongly stratified sample (cont.). Using marginal and conditional likelihood.

Example 26. Yij , i = 1, . . . , I, j = 0, 1 be independent, Yij ∼ Bi(nij , pij), where

log
( pij

1−pij

)
= ψi + τ I{j = 1}.

Suppose we are interested in testing the null hypothesis H0 : τ = 0 against the alternative

H1 : τ 6= 0.

Note that the standard tests based on the maximum likelihood as described in Section 2.6

requires that I is fixed and all the sample sizes nij tend to infinity. This implies that using

conditional likelihood is reasonable in situations when (some) nij are small.

The Rao score test based on the conditional likelihood in this situation coincides with

Cochran-Mantel–Haenszel test and its test statistic is given by

R(c)
n =

(∑I
i=1 Yi1 − EH0 [Yi1 |Yi+]

)2

∑I
i=1 varH0 [Yi1 |Yi+]

=

(∑I
i=1 Yi1 − Yi+

ni1
ni+

)2

∑I
i=1 Yi+

ni1ni0
n2
i+

ni+−Yi+
ni+−1

, (38)

where Yi+ = Yi0 + Yi1 and ni+ = ni0 + ni1. Under the null hypothesis R
(c)
n

d−−−→
n→∞

χ2
1, where

n =
∑I

i=1

∑1
j=0 nij .

Example 27. Consider in Example 26 the special case I = 1. Thus the model simplifies to

comparing two binomial distributions. Let Y0 ∼ Bi(n0, p0) and Y1 ∼ Bi(n1, p1). Note that

the standard approaches of testing the null hypothesis H0 : p0 = p1 against the alternative

H1 : p0 6= p1 are asymptotic.

Conditional approach offers an exact inference. Analogously as in Example 26 introduce

the parametrization

log
( pj

1−pj

)
= ψ + τ I{j = 1}, j = 0, 1.

Note that in this parametrization τ is the logarithm of odds-ratio.

Put Y+ = Y0 + Y1 and y+ = y0 + y1. Then

Pτ
(
Y1 = k |Y+ = y+

)
=

(
n1

k

)(
n0

y+−k
)
eτ k∑

l∈K
(
n1

l

)(
n0

y+−l
)
eτ l

, k ∈ K, (39)

where K =
{

max{0, y+ − n0}, . . . ,min{y+, n1}
}

.
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Thus the p-value of the ‘exact’ test of the null hypothesis H0 : τ = τ0 against H1 : τ 6= τ0

would be

p(τ0) = 2 min
{
Pτ0(Y1 ≤ y1 |Y+ = y+),Pτ0(Y1 ≥ y1 |Y+ = y+)

}
, (40)

where y0 and y1 are the observed values of Y0 and Y1 respectively.

By the inversion of the test one can define the ‘exact’ confidence for τ as the set of those

values for which we do not reject the null hypothesis, i.e.

CI = [τ̂L, τ̂U ] = {τ ∈ R : p(τ) > α}.

The confidence interval for odds-ratio calculated by the function fisher.test() is now given

by
(
eτ̂L , eτ̂U

)
.

The special case presents testing the null hypothesis H0 : τ = 0 against H1 : τ 6= 0. Then

(39) simplifies to

P0(Y1 = k|Y+ = y+) =

(
n1

k

)(
n0

y+−k
)∑

l∈K
(
n1

l

)(
n0

y+−l
) =

(
n1

k

)(
n0

y+−k
)(

n1+n0

y+

) , k ∈ K.

This corresponds to Fisher’s exact test sometimes known also as Fisher’s factorial test. Be

careful that the p-value of the test as implemented in fisher.test is not calculated by (40)

but as

p̃ =
∑
k∈K−

P0(Y1 = k|Y+ = y+),

where

K− =
{
k ∈ K : P0(Y1 = k |Y+ = y+) ≤ P0(Y1 = y1 |Y+ = y+)

}
,

which sometimes slightly differs from p(0) as defined in (40).

Note that Fisher’s exact test presents an alternative to the χ2-square test of independence

in the 2× 2 contingency table

y0 y1

n0 − y0 n1 − y1

,

which is an asymptotic test.

Example 28. Consider in Example 26 the special case ni0 = ni1 = 1 for each i = 1, . . . , I.

Introduce

Njk =
I∑
i=1

I{Yi0 = j, Yi1 = k}, j = 0, 1; k = 0, 1.

Then the test statistic (38) simplifies to

R(c)
n =

(N01 −N10)2

N01 +N10
,

which is known as McNemar’s test.

Literature: Pawitan (2001) Chapters 10.1–10.5.
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3 M- and Z-estimators

M-estimator

Let X1, . . . ,Xn be a random sample from a distribution F and one is interested in estimating

some quantity (p-dimensional parameter) of this distribution, say θX = θ(F ). Let ρ be

a function defined on SX ×Θ, where SX is the support of F and Θ is a set of possible values

of θ(F ) for different distributions F (parameter space). The M-estimator is defined as

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

Note that the maximum likelihood estimator can be viewed as an M -estimator with

ρ(x;θ) = − log f(x;θ).

For regression problems when one observes Z1 = (XT
1 , Y1)T, . . . ,Zn = (XT

n , Yn)T, one can

view the least square (LS) estimator of regression parameters as an M -estimator with

ρ(z;β) = ρ(x, y;β) =
(
y − βTx

)2
.

Also the least absolute deviation (LAD) estimator can be viewed as an M -estimator with

ρ(z;β) = ρ(x, y;β) =
∣∣y − βTx

∣∣.
Z-estimator

Often the maximizing value in the definition of M -estimator is sought by setting a derivative

(or the set of partial derivatives if θ is multidimensional) equal to zero. Thus we search for θ̂n

as the point that solves the set of estimating equations

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
= 0p, where ψ(x;θ) =

∂ρ(x;θ)

∂θ
. (41)

Note that

ψ(x;θ) =
(
ψ1(x;θ), . . . , ψp(x;θ)

)T
=
(∂ρ(x;θ)

∂θ1
, . . . ,

∂ρ(x;θ)

∂θp

)T
.

Generally let ψ be a p-dimensional vector function (not necessarily a derivative of some

function ρ) defined on SX ×Θ. Then we define the Z-estimator as the solution of the system

of equations (41).

Note that the maximum likelihood (ML) and the least square (LS) estimators can be also

viewed as Z-estimators with

ψML(x;θ) =
∂ log f(x;θ)

∂θ
, ψLS(x, y;β) =

(
y − βTx

)
x.

Literature: van der Vaart (2000) – Chapter 5.1.
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3.1 Identifiability of parameters via M- and/or Z-estimators

When using M - or Z-estimators one should check the potential of these estimators to identify

the parameters of interest. Note that by the law of large numbers

1

n

n∑
i=1

ρ(Xi;θ) = E ρ(X1;θ) + op(1),
1

n

n∑
i=1

ψ(Xi;θ) = Eψ(X1;θ) + op(1).

Thus the M -estimator θ̂n identifies (at the population level) the quantity

θX = arg min
θ∈Θ

E ρ(X1;θ)

and analogously Z-estimator identifies θX such that

Eψ(X1;θX) = 0p.

Example 29. Let X1, . . . ,Xn be i.i.d. observations from a distribution with a density f(x)

(with respect to a σ-finite measure µ). By assuming that f belongs to a parametric family of

densities F =
{
f(x;θ), θ ∈ Θ

}
we are estimating (identifying) θX such that

θX = arg max
θ∈Θ

E log f(X1;θ) = arg max
θ∈Θ

E log
[f(X1;θ)
f(X1)

]
.

Now by Jensen’s inequality

E log
[f(X1;θ)
f(X1)

]
≤ log

{
E
[f(X1;θ)
f(X1)

]}
= log

{∫
f(x;θ)
f(x) f(x) dµ(x)

}
= log{1} = 0.

Suppose that our (parametric) assumption is right and there exists θ0 ∈ Θ such that

f(x) = f(x;θ0). Then E log
[ f(X1;θ)
f(X1;θ0)

]
is maximised for θ = θ0 and thus θX = θ0 (i.e.

maximum likelihood method identifies the true value of the parameter).

Suppose that our (parametric) assumption is not right and that f 6∈ F . Then

θX = arg max
θ∈Θ

E log
[
f(X1;θ)
f(X1)

]
= arg max

θ∈Θ

∫
log
[f(x;θ)
f(x)

]
f(x) dµ(x)

= arg min
θ∈Θ

∫
log
[ f(x)
f(x;θ)

]
f(x) dµ(x).

Thus θX is the point of parameter space Θ for which the Kullback–Leibler divergence of f(x)

from F is minimised.

3.2 Asymptotic distribution of M/Z-estimators

Put M(θ) = E ρ(X1;θ), Z(θ) = Eψ(X1;θ) and Dψ(x;θ) = ∂ψ(x;θ)

∂θT
(the Jacobi matrix of

ψ(x;θ) with respect to θ). Further let X1 has density f with respect to a σ-finite measure µ.

To state the theorem about asymptotic normality we will need the following regularity

assumptions. These assumptions are analogous to assumptions [R0]-[R6] for the maximum

likelihood estimators.
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[Z0] Identifiability. For M -estimators θX is a unique maximizer of the function M(θ). For

Z-estimators for any δ > 0 there exists ε > 0 such that inf‖θ−θX‖≥δ
∥∥Z(θ)

∥∥ ≥ ε.
[Z1] The number of parameters p in the model is constant.

[Z2] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[Z3] Each component of the function ψ(x;θ) is differentiable with respect to θ for (µ-almost

all x).

[Z4] There exists α > 0 such that for each j, k ∈ {1, . . . , p} there exists an open neighbour-

hood U of θX and a function Mjk(x) such that for each θ ∈ U∣∣∣∣∂ψj(x;θ)

∂θk
− ∂ψj(x;θX)

∂θk

∣∣∣∣ ≤Mjk(x) ‖θ − θX‖α

for µ-almost all x and EMjk(X1) <∞.

[Z5] The matrix

Γ(θ) = EDψ(X1;θ) (42)

is finite and positive definite in a neighbourhood of θX .

[Z6] The variance matrix

Σ(θX) = var
(
ψ(X1;θX)

)
= E

[
ψ(X1;θX)ψT(X1;θX)

]
(43)

is finite.

Theorem 9. Suppose that assumptions [Z0]-[Z6] are satisfied. Then with probability going

to oner there exists a solution θ̂n to the estimating equations (41) such that

√
n
(
θ̂n − θX

)
= − 1√

n

n∑
i=1

Γ−1(θX)ψ(Xi;θX) + oP (1), (44)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0,Γ−1(θX) Σ(θX) Γ−1(θX)

)
, (45)

where the matrices Γ(θX) and Σ(θX) are defined in (42) and (43) respectively.

Proof. Consistency: For an M -estimator this can be proved analogously as the existence of

a consistent solution of the maximum likelihood equations, see the proof of Theorem 5.1

of Lehmann and Casella (1998, Chapter 6). For a Z-estimator one can adapt the proof of

Theorem 5.1 of Jurečková et al. (2012).
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Asymptotic normality: This is proved analogously as in Theorem 5. Let θ̂n be a consistent

root of the estimating equations. By the mean value theorem applied to each component of

Zn
(
θ̂n
)

one gets

0p = Zn
(
θ̂n
)

= Zn(θX) + Γ∗n
(
θ̂n − θX

)
,

where Γ∗n is (p× p)-matrix whose j-th row is the j-th row of the matrix

Γn(θ) =
1

n

n∑
i=1

Dψ(Xi;θ)

evaluated at some θj∗n that is between θ̂n a θX . Further, similarly as in the proof of Lemma 1

using the law of large numbers (for i.i.d. vectors) one gets

Γ∗n − Γ(θX =
(
Γ∗n − Γn(θX)

)
+
(
Γn(θX)− Γ(θX)

)
=
(
Γ∗n − Γn(θX)

)
+ oP (1). (46)

Now using assumption [Z4] and the law of large numbers one can bound the (j, k)-element

of the matrix on the right hand side of (46) as∣∣∣(Γ∗n − Γn(θX)
)
jk

∣∣∣ ≤ 1

n

n∑
i=1

Mjk(Xi) ‖θj∗n − θX‖α = OP (1) oP (1) = oP (1).

This combined with (46) implies Γ∗n
P−−−→

n→∞
Γ(θX). Now with the help CS (Theorem 2) one

can write

√
n
(
θ̂n − θX

)
= −[Γ∗n]−1√nZn(θX) = − 1√

n

n∑
i=1

Γ−1(θX)ψ(Xi;θX) + oP (1),

which with the help of central limit theorem (for i.i.d. random vectors) and CS (Theorem 2)

implies the second statement of the theorem.

Asymptotic variance estimations

Note that by Theorem 9 one has

θ̂n
as
≈ Np

(
θX ,

1
nΓ−1(θX) Σ(θX) Γ−1(θX)

)
.

Thus the most straightforward estimate of the asymptotic variance of θ̂n is the ‘sandwich

estimator’ given by
̂

avar
(
θ̂n
)

=
1

n
Γ−1
n Σn Γ−1

n , (47)

where

Γn =
1

n

n∑
i=1

Dψ
(
Xi; θ̂n

)
and Σn =

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
ψT
(
Xi; θ̂n

)
.
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Note that in the same way as in the proof of Theorem 9 one can show that by [Z4] it follows

that

Γn
P−−−→

n→∞
Γ(θX).

It is more tedious to give some general assumptions so that it also holds

Σn
P−−−→

n→∞
Σ(θX).

To arrive at such assumptions rewrite

Σn =
1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

] [
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
(48)

+
1

n

n∑
i=1

ψ(Xi;θX)
[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
(49)

+
1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]
ψT(Xi;θX) (50)

+
1

n

n∑
i=1

ψ(Xi;θX)ψT(Xi;θX). (51)

Now by the law of large numbers the quanity in (51) converges in probability to Σ(θX),

thus it is sufficient to show that the remaining terms are of order oP (1). With the help of

assumption [Z4] this can be done for instance by assuming that for each j, k ∈ {1, . . . , p}

EM2
jk(X1) <∞ and E

∣∣∣∂ψj(X1;θX)
∂θk

∣∣∣2 <∞.
Confidence sets and confidence intervals

Suppose that Vn = Γ−1
n Σn Γ−1

n is a consistent estimator of Γ−1(θX) Σ(θX) Γ−1(θX).

Then by the Cramér-Slutsky theorem the confidence set (ellipsoid) for the parameter θ is

given by {
θ : n

(
θ̂n − θ

)T
V−1
n

(
θ̂n − θ

)
≤ χ2

p(1− α)
}
.

The ‘Wald-type’ (asymptotic) confidence interval for θk (the k-th coordinate of θ) is given

by [
θ̂nk −

u1−α/2
√
vkkn√

n
, θ̂nk +

u1−α/2
√
vkkn√

n

]
,

where θ̂nk is the k-th coordinate of θ̂n and vkkn is the k-th diagonal element of the matrix Vn.

Literature: Sen et al. (2010) Chapter 8.2., White (1980)
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3.3 Likelihood under model misspecification

Let X1, . . . ,Xn be a random sample with a density f (with respect to a σ-finite measure µ).

From Example 29 we know that when assuming f ∈ F = {f(x;θ);θ ∈ Θ}, the method of the

maximum likelihood identifies the parameter

θX = arg min
θ∈Θ

∫
log
[ f(x)
f(x;θ)

]
f(x) dµ(x).

Further by Theorem 9 we also know that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,Γ

−1(θX)Σ(θX)Γ−1(θX)
)
.

Suppose that our parametric assumption is right and f ∈ F , i.e. there exists θX ∈ Θ such

that f(x) = f(x;θX). Then Γ(θX) = Σ(θX) = I(θX) and thus Γ−1(θX)Σ(θX)Γ−1(θX) =

I−1(θX). Thus one can view Theorem 5 as a special case of Theorem 9. Further, when doing

the inference about θX it is sufficient to estimate the Fisher information matrix.

Often in practice we are not completely sure that f ∈ F . If we are not sure about the

parametric assumption then it is safer to view the estimator θ̂n as an M -estimator with

ρ(x;θ) = − log f(x;θ). The asymptotic variance of θ̂n can now be estimated with the help

of ‘sandwich estimator’ (47) where

Σn =
1

n

n∑
i=1

U(Xi; θ̂n)UT(Xi; θ̂n), U(x;θ) = −∂ log f(x;θ)

∂θ
,

Γn =
1

n

n∑
i=1

I(Xi; θ̂n), I(x;θ) = −∂
2 log f(x;θ)

∂θ∂θT
.

Example 30. Misspecified Poisson regression Let Xi = (Xi1, . . . , Xip)
T and(

X1

Y1

)
, . . . ,

(
Xn

Yn

)

be independent and identically distributed random vectors. Assume that Yi|Xi ∼ Po
(
λ(Xi)

)
,

where λ(x) = eβ
Tx and β = (β1, . . . , βp)

T. The score function for the maximum likelihood

estimation is given by

Un(β) =
n∑
i=1

Xi

(
Yi − eβ

TXi

)
.

Thus one can view the maximum likelihood estimator β̂n as the Z-estimator with

ψ(x, y;β) = x
(
y − eβ

Tx
)

(52)

and βX solves the equation

EX1

(
Y1 − eβ

T
XX1

)
= 0p.
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Suppose now that Yi|Xi 6∼ Po
(
λ(Xi)

)
but one can still assume that there exists β0 such that

E [Y1|X1] = eβ
T
0X1 . Then

EX1

(
Y1 − eβ

T
0X1

)
= E

{
E
[
X1

(
Y1 − eβ

T
0X1

)∣∣∣X1

]}
= E

[
X1

(
eβ

T
0X1 − eβ

T
0X1

)]
= 0p.

Thus βX identifies β0 which describes the effect of the covariates on the expected mean value.

The above calculation implies that when we are not sure that the conditional distribution

Yi|Xi is Po
(
λ(Xi)

)
, but we are willing to assume that E [Yi|Xi] = eβ

T
0Xi , we can still use

the score function (52) which identifies the parameter β0. By Theorem 9 we know that the

estimator β̂n is asymptotically normal with the matrices Γ(βX) and Σ(βX) given by

Σ(βX) = EX1X
T
1

(
Y1 − eβ

T
XX1

)2
and Γ(βX) = EX1X

T
1 eβ

T
XX1 .

Thus the asymptotic variance of the estimator β̂n can be estimated by

̂
avar

(
β̂n
)

=
1

n
Γ−1
n Σn Γ−1

n ,

where

Σn =
1

n

n∑
i=1

XiX
T
i

(
Yi − eβ̂

T
nXi

)2
and Γn =

1

n

n∑
i=1

XiX
T
i eβ̂

T
nXi .

3.4 Asymptotic normality of M-estimators defined by convex minimization

Let X1, . . . ,Xn be a random sample from a distribution F and one is interested in estimating

some quantity θX (p-dimensional parameter) of this distribution such that this parameter can

be identified as

θX = arg min
θ∈Θ

E ρ(X1;θ),

where for each fixed x the functions ρ(x;θ) is convex in θ.

Let estimate the parameter θX as

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

The function ρ(x;θ) does not have to be smooth in θ, but it needs to be differentiable

at least almost everywhere. Thus we suppose that there exists a function ψ(x;θ) such that

Eψ(X1;θX) = 0p and one can write

ρ(x;θX + t)− ρ(x;θX) = tTψ(x;θX) +R(x; t). (53)

Theorem 10. Suppose that (53) holds and that

(i) there exists a positive definitive matrix Γ(θX) such that

E
[
ρ(X1;θX + t)− ρ(X1;θX)

]
= 1

2 tTΓ(θX) t + o(‖t‖2), as t→ 0p;
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(ii) var
(
R(X1; t)

)
= o(‖t‖2) as t→ 0p;

(iii) there exists a finite variance matrix Σ(θX) = var
(
ψ(X1;θX)

)
.

Then the statements of Theorem 9 holds

Proof. See proof of Theorem 2.1 of Hjort and Pollard (2011).

Note that if assumptions [Z3] and [Z4] hold then also assumptions (i) and (ii) of Theorem 10

are satisfied. The nice thing about Theorem 10 is that the matrix Γ(θX) does not have to

be computed as Γ(θX) = EDψ(X1;θX) but one can compute it as the Hessian matrix of the

function M(θ) = E ρ(X1;θ) at the point θX . Thus the smooth assumptions about ψ can be

replaced with the smooth assumptions on the distribution of X1 so that the function M(θ)

is sufficiently smooth.

Application to LAD regression

Suppose independent and identically distributed random vectors Z1 = (XT
1 , Y1)T,. . . ,Zn =

(XT
n , Yn)T are observed. The LAD estimator of parameter β is defined as

β̂n = arg min
b∈Rp

1

n

n∑
i=1

∣∣Yi − bTXi

∣∣.
To formulate the result we will assume the following (strict linear) model.

(M) The observations satisfy

Yi = βTXi + εi, i = 1, . . . , n, (54)

where ε1, . . . , εn are independent identically distributed random variables that are in-

dependent of X1, . . . ,Xn.

Theorem 11. Let the model (M) hold. Further, let E ‖X1‖3 < ∞, the matrix EX1X
T
1 be

positive definite, ε1 have a zero median and the density fε(x) of ε1 be positive and continuous

in a neighbourhood of 0. Then

√
n
(
β̂n − β

)
=

1√
n

n∑
i=1

[
EX1X

T
1

]−1 Xi sign(εi)

2 fε(0)
+ oP (1),

which further implies that

√
n
(
β̂n − β

) d−−−→
n→∞

Np
(
0,
[
EX1X

T
1

]−1 1
4 f2ε (0)

)
.
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Proof. We show that the assumptions of Theorem 10 are satisfied. First

Identification of β: Note that βX = arg minb g(b), where g(b) = E |Y1 − bTX1|. Now with

the help of independence of ε1 and X1 (we will write shortly X1⊥ε1)

∂g(β)

∂β
= E

[
sign(Y1 − βTX1) (−X1)

]
= −E

[
sign(ε1)X1

] ε1⊥X1= −E sign(ε1)EX1 = 0p,

(55)

as med(ε1) = 0 and P(ε1 = 0) = 0. Thus βX = β.

Introducing ψ and R as in (53): Note that the function

ρ(z; b + t) =
∣∣y − bTx

∣∣
is almost everywhere differentiable with respect to b with the derivative given by

ψ(z;θX) = −x sign
(
y − bTx

)
.

Further by the same calculation as in (55) one gets

Eψ(Z1;βX) = −E
[
X1 sign(Y1 − βT

XX1)
]

= 0p.

Thus the function ψ(z;θX) seems to be a reasonable candidate for the function ψ from (53)

and the ‘remainder’ function R is defined as

R(z; t) = ρ(z;βX + t)− ρ(z;βX)− tTψ(z;βX)

=
∣∣y − (βX + t)Tx

∣∣− ∣∣y − βT
Xx
∣∣+ tTx sign

(
y − βT

Xx
)
.

Showing (i): In what follows let EX1 and E ε1 stand for the expected values with respect to

X1 and ε1 respectively. With the help of this convention one can calculate

E
[
ρ(Z1;βX + t)− ρ(Z1;βX)

]
= E

[∣∣Y1 − (βX + t)TX1︸ ︷︷ ︸
=ε1−tTX1

∣∣− ∣∣Y1 − βT
XX1︸ ︷︷ ︸

=ε1

∣∣]

= −E
∫ tTX1

0
sign(ε1 − s) ds

X1⊥ε1= −EX1

∫ tTX1

0
E ε1 sign(ε1 − s)︸ ︷︷ ︸

=1·P(ε1>s)+(−1)·P(ε1<s)=1−2Fε(s)

ds

= −EX1

∫ tTX1

0
[ 1︸︷︷︸
=2Fε(0)

−2Fε(s)] ds = 2E

∫ tTX1

0
[Fε(s)− Fε(0)]︸ ︷︷ ︸
s·fε(0)+s·o(1)

ds

= 2EX1

[
s2

2
fε(0) +

s2

2
o(1)

]tTX1

0

= tTE
(
X1X

T
1

)
t · fε(0) + o

(
‖t‖2

)
.

42



Thus (ii) of Theorem 10 is satisfied by putting Γ(θX) = 2 fε(0)E
(
X1X

T
1

)
.

Showing (ii) Using Cauchy–Schwarz inequality (C-S ineq)

var
(
R(Z1; t)

)
≤ E [R(Z1; t)]2 = E

[ ∣∣ε1 − tTX1

∣∣− ∣∣ε1

∣∣︸ ︷︷ ︸
=
∫
− sign(ε1−s)...

+ tTX1 sign(ε1)

]2

= E

[∫ tTX1

0
− sign(ε1 − s) ds+ tTX1 sign(ε1)

]2

= E

[∫ tTX1

0
sign(ε1)− sign(ε1 − s) ds

]2

≤ E

[∫ |tTX1|

−|tTX1|
1 ·
∣∣ sign(ε1)− sign(ε1 − s)

∣∣ ds]2

C-S ineq
≤ E

{[∫ |tTX1|

−|tTX1|
12 ds

]
·

[∫ |tTX1|

−|tTX1|
[sign(ε1)− sign(ε1 − s)]2 ds

]}
=: (∆), .

Note that sign(ε1) − sign(ε1 − s) can be different from zero only when ε1 and ε1 − s are of

different signs, which is a subset of the event ε1 ∈ [−|s|, |s|]. Further using independence of

X1 and ε1 one gets

(∆) ≤ EX1

{
2 |tTX1|

∫ |tTX1|

−|tTX1|
4 P

(
|ε1| ≤ s

)
ds

}
= 8EX1

{
|tTX1|

∫ |tTX1|

−|tTX1|
|Fε(s)− Fε(−s)|︸ ︷︷ ︸

≤C|s|

ds

}
≤ 2EX1

{
|tTX1| 2C

[
s2

2

]|tTX1|

0

}
≤ 2C E |tTX1|3 ≤ 2C ‖t‖3 E ‖X1‖3︸ ︷︷ ︸

<∞

= O
(
‖t‖3

)
= o

(
‖t‖2

)
, for t→ 0p,

where we have used that by the assumptions of the theorem there exists a finite constant C

such that for |Fε(s)− Fε(−s)| ≤ C |s| for each s ∈ R.

Showing (iii) This follows from

var
(

sign(ε1)X1

)
= var

(
E
[
X1 sign(ε1) |X1

])
+ E

(
var
[
X1 sign(ε1) |X1

])
= 0p×p + E

(
X1 var[sign(ε1)]XT

1

)
= E

(
X1X

T
1

)
.

Note that Theorem 11 covers an asymptotic behaviour of a sample median as a special

case. This is explicitly formulated in the following corollary.
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Corollary 1. Let Y1, . . . , Yn be independent identically random variables with density f(y)

that is positive and continuous in a neighbourhood of median. Then

√
n
(
F−1
n (0.5)− F−1(0.5)

) d−−−→
n→∞

N
(

0, 1

4 f2
(
F−1(0.5)

)).
Proof. The proof follows from Theorem 11 by taking Xi = 1, εi = Yi − F−1(0.5) and noting

that fε(0) = f
(
F−1(0.5)

)
and F−1

n (0.5) = arg minb∈R
1
n

∑n
i=1 |Yi − b|.

Literature: Hjort and Pollard (2011) Section 2A

3.5 M-estimators and Z-estimators in robust statistics

In statistics the word ‘robust’ has basically two meanings.

(i) We say that a procedure is robust, if it stays (approximately) valid even when (some) of

the assumptions (under which the procedure) was derived are not satisfied. For instance

the standard ANOVA F -statistic is robust against the violation of the normality of the

observations provided that the variances of all the observations are the same.

(ii) People interested in robust statistics say that a procedure is robust, if it is not ‘too

much’ influenced by the outlying observations. In what follows we will concentrate on

this meaning of the robustness.

One of the standard measures of robustness is the breakdown point. Vaguely speaking

the breakdown point of an estimator is the smallest percentage of observations that one has

to change so that the estimator produces a nonsense value (e.g. ±∞ for location or regression

estimator; 0 or +∞ when estimating the scale).

Let θ̂n be an M - or Z-estimator of a parameter θX . Note that thanks to Theorems 9 or 10

one has the following representation

θ̂n − θX =
1

n

n∑
i=1

IF (Xi) + oP
(

1√
n

)
,

where IF (x) = −Γ−1(θX)ψ(x;θX) is called the influence function. Thus if one can ignore

the reminder term oP
(

1√
n

)
, then changing Xi to Xi + ∆ results that θ̂n changes by

1

n

[
IF (Xi + ∆)− IF (Xi)

]
.

Thus provided that IF (x) is bounded then also this change is bounded.

Note that the above reasoning was not completely correct as the term oP
(

1√
n

)
was ignored.

Nevertheless it can be proved that (under some mild assumptions excluding ‘singular’ cases)

that if the function ψ(x;θ) is bounded then the breakdown point of the associated M(Z)-

estimator is 1
2 .

44



3.5.1 Robust estimation of location

Suppose that we observe a random sample X1, . . . , Xn from a distribution F and we are

interested in characterising the location.

Note that for the sample mean Xn = 1
n

∑n
i=1Xi it is sufficient to change only one observa-

tion to get an arbitrary value of Xn.

On the other hand when considering the sample median X̃n = F−1
n (0.5) then one needs to

change at least half of the observations so that one can for instance change the estimator to

±∞.

When deciding between a sample mean and a sample median one has to take into con-

sideration that if the distribution F is not symmetric then Xn and X̃n estimate different

quantities. But when one can hope that the distribution F is symmetric, then both Xn and

X̃n estimate the centre of the symmetry and one can be interested which of the estimators

is more appropriate. By the maximum likelihood theory we know that Xn is efficient if F is

normal while X̃n is efficient if F is doubly exponential.

In robust statistics it is usually assumed that most of our observations follow normal dis-

tributions but there are some outlying values. This can be formalised by assuming that the

distribution function F of each of the observations satisfies

F (x) = (1− ε) Φ
(x−µ

σ

)
+ εG(x),

where ε is usually interpreted as probability of having an outlying observations and G is

a (hopefully symmetric) distribution of outlying observations. It was found that if ε is ‘small’

then using sample median is too pessimistic (and inefficient). We will mention here several

alternative options.

Huber’s estimator is defined as θ̂
(H)
n = arg minθ∈R

1
n

∑n
i=1 ρH(Xi − θ), where

ρH(x) =

{
x2

2 , |x| ≤ k
k ·
(
|x| − k

2

)
, |x| > k

, (56)

and k is a given constant. Note that the ‘score function’ ψH(x) = ρ′H(x) of the estimator is

ψH(x) = ρ′H(x) =

{
x, |x| ≤ k
k · sgn(x), |x| > k

. (57)

Thus one can see that for x ∈ (−k, k) the function ψH corresponds to a score function of

a sample mean while for x ∈ (−∞, k) ∪ (k,∞) it corresponds to a score function of a sample

median. Thus Huber’s estimator presents a compromise between a sample mean and a sample

median.
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The nice thing about Huber’s estimator is that its loss function ρ(x; θ) = ρH(x − θ) is

convex (in θ) thus θ̂
(H)
n is not too difficult to calculate and with the help of Theorem 10 one

can derive its asymptotic distribution.

The choice of the constant k is usually done as follows. Suppose that X1, . . . , Xn follows

N(0, 1). Then one takes the smallest k such that

avar
(
θ̂

(H)
n

)
var
(
Xn

) ≤ 1 + δ,

where δ stands for the efficiency loss of Huber’s estimator under normal distributions. For

instance the common choices are δ = 0.05 or δ = 0.1 which corresponds approximately to

k = 1.37 or k = 1.03.

When using Huber’s estimator one has to remember that if the population is not symmetric

then θ̂
(H)
n

P−−−→
n→∞

θ(H)(F ), which lies between EX1 and F−1(0.5).

Among other common M -estimators of location let us mention:

(i) Cauchy-pseudolikelihood: ρ(x; θ) = − log(1 + (x − θ)2). The problem with this

estimator is that the estimating equation

1

n

n∑
i=1

2 (Xi − θ̂n)

1 + (Xi − θ̂n)2︸ ︷︷ ︸
ψ(x,θ̂n)

!
= 0

has usually more roots.

(ii) Tukey’s biweight:

ψ(x) =

 x
(

1− x2

k2

)2
, |x| ≤ k

0, |x| > k
.

But also here the corresponding loss function ρ (ψ = ρ′) is not convex.

3.5.2 Studentized M(Z)-estimators

The problem of the M(Z)-estimators presented above is that the estimators are not scale

equivariant (i.e. θ̂n(cX) 6= c θ̂n(X)). That is why in practice M -estimators are usually

defined as

θ̂n = arg min
θ∈R

1

n

n∑
i=1

ρ
(
Xi−θ
Sn

)
,

where Sn is an appropriate estimator of scale. The most common estimators of scale are as

follows.

Sample standard deviation Sn =
√

1
n−1

∑
i(Xi −Xn)2, but this is used rather rarely as it is

not robust.

46



Interquartile range:

Sn = IQR = F−1
n (0.75)− F−1

n (0.25),

where Fn is the empirical distribution function
(
i.e. Fn(x) = 1

n

∑n
i=1 I{Xi ≤ x}

)
. Some

people prefer to use

S̃n =
F−1
n (0.75)− F−1

n (0.25)

Φ−1(0.75)− Φ−1(0.25)
,

as it is desired that S̃n estimates σ, when X1, . . . , Xn is a random sample from N(µ, σ2).

Note that the breakdown point of this estimator is 0.25.

Median absolute deviation:

MAD = med1≤i≤n|Xi − F−1
n (0.5)|,

or its modification

M̃AD =
MAD

Φ−1(0.75)
,

so that it estimates σ for random samples from N(µ, σ2).

Note that the breakdown point of this estimator is 0.50.

Remark 12. The asymptotic distribution of studentized M -estimators is difficult to derive

and rather complex.

3.5.3 Robust estimation in linear models

Suppose we observe independent random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
.

The least square method results in an estimator

β̂n = arg min
b∈Rp

n∑
i=1

(
Yi − bTXi

)2
=

(
1

n

n∑
i=1

XiX
T
i

)−1( 1

n

n∑
i=1

XiYi

)
.

Generally, the LS method models E [Y1 |X1] as βTX1.

Suppose now that that the first component of Xi is 1 (i.e. the model includes an intercept)

and denote by X̃i the remaining components ofXi. That isXi =
(
1, X̃

T

i

)T
. Further suppose

that the following models holds

Yi = β0 + βTX̃i + εi, where ε1, . . . , εn are i.i.d. and εi⊥X̃i. (58)

Then E [Y1 |X1] = β0 + βTX̃1 + E ε1 and β̂n estimates (identifies)

βX =

(
β0 + E ε1

β

)
.
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Note that if Xik 6= 0 then by changing Yk one can arrive at any arbitrary value of β̂nk.

Method of the least absolute deviation (LAD), i.e.

β̂n = arg min
b∈Rp

1

n

n∑
i=1

|Yi − bTXi|,

is usually considered as a robust alternative to the least square method. Generally, the LAD

method models med[Y1 |X1] as βTX1. But if moreover model (58) holds, then med(Y1 |X1) =

β0 + βTX̃1 + F−1
ε (0.5), where F−1

ε is the quantile function of ε1 and thus

βX =

(
β0 + F−1

ε (0.5)

β

)
.

By Theorem 11

β̂n − βX =
1

n

n∑
i=1

(
EX1X

T
1

)−1
Xi

sign
(
εi − F−1

ε (0.5))

2fε(F
−1
ε (0.5)

) + oP
(

1√
n

)
.

Thus one can expect that the change of Yi (or equivalently the change of εi) has only a bounded

effect on β̂n. On the other hand note that the change of Xi has an unbounded effect on β̂n.

Thus LAD method is robust with respect to the response but not with respect to the covari-

ates.

Analogously as the Huber’s estimator of location is a compromise between a sample mean

and a sample median, Huber’s estimator of regression is a compromise between LS and LAD.

Put

β̂n = arg min
b∈Rp

1

n

n∑
i=1

ρH
(
Yi − bTXi

)
,

where ρH is defined in (56). Generally, it is difficult to interpret what is being model with

Huber’s estimator of regression βTX1 (it is something between E (Y1 |X1) a med(Y1 |X1)).

Note that it identifies

βX = arg min
b∈Rp

E ρH(Y1 − bTX1).

Equivalently βX solves

E
[
ψH
(
Y1 − βT

XX1

)
X1

] !
= 0p,

where ψH is defined in (57). Thus if model (58) holds then one needs to solve

E
[
ψH
(
β0 + βTX̃1 + ε1 − βX0 − β̃

T

XX̃1

)
X1

] !
= 0p, (59)

where we put βX =
(
βX0, β̃

T

X

)T
. Thus βX identifies the following parameter

βX =

(
β0 + θH

β

)
,
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where θH solves EψH(ε1 − θH)
!

= 0.

Thus if model (58) holds then the interpretation of the regression slope coefficient (β) is

the same for each of the methods described above (LS, LAD, Huber’s regression).

Analogously as in Section 3.5.2 in practice the studentized Huber’s estimator is usually

used. This estimator is defined as

β̂n = arg min
b∈Rp

1

n

n∑
i=1

ρH

(
Yi−bTXi

Sn

)
,

where Sn is an estimator of scale of εi. For instance one can take MAD or IQR calculated

from the residuals from LAD regression ε̂i = Yi − β̂
T

n,LADXi.

Inference:

• With the help of Theorem 10 one can show the asymptotic normality of β̂n of the

(non-Studentized) Huber’s estimator.

• If model (58) holds, then it can be shown, that the estimate of the scale influences only

the asymptotic distribution of the estimate of intercept and not of the slope.

Literature: Maronna et al. (2006) Chapters 2.1-2.2 and Chapters 4.1-4.4.

4 Bootstrap and other resampling methods

Suppose we observe independent and identically distributed random vectorsX1, . . . ,Xn from

the distribution F and we are interested in some characteristic of F , say θX . Let θ(F ) be

the quantity of interest and θ̂n = θ(Fn) its estimator. Now let Rn be either an appropriately

standardised version of θ̂n or a test statistics,

i.e Rn =
√
n
(
θ̂n − θX

)
or Rn =

(
θ̂n − θ0

)T[ ̂
avar(θ̂n)

]−1(
θ̂n − θ0

)
For doing inference about parameter θ, one needs to know the distribution of Rn. Usu-

ally we are not able to derive the exact distribution of Rn analytically. For instance con-

sider the distribution of
√
n
(
θ̂n − θX

)
where θ̂n is a maximum likelihood estimator whose

formula cannot be explicitly given. In such situations the inference is often based on an

asymptotic distribution of Rn. For example for a MLE estimator in regular models one has
√
n
(
θ̂n − θX

) d−−−→
n→∞

N
(
0, I−1(θX)

)
. Bootstrap presents an alternative to using the asymp-

totic normality. As we will see later, bootstrap combines the ‘Monte-Carlo principle’ and

substitution (plug-in) principle.
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4.1 Monte Carlo principle

Sometimes one knows the distribution of X = (X1, . . . ,Xn) and thus he/she is (at least

theoretically) able to derive the distribution of Rn = (Rn1, . . . , Rnk)
T. But the derivations

are too complicated and/or the resulting distribution is too complex to work with. For

instance consider the standard maximum likelihood tests without nuisance parameters as in

Section 2.4.

Another way how to utilize the knowledge of data-generating mechanism of X is to use

Monte-Carlo principle, which runs as follows. Choose B sufficiently large and for each

b ∈ {1, . . . , B} independently generate the samples X∗b = (X∗1,b, . . . ,X
∗
n,b)

T such that the

distribution of X∗b is the same as the distribution of X. Thus we get B independent samples

X∗1, . . . ,X∗B. Let R∗n,b be the quantity Rn calculated from the b-th sample X∗b . The unknown

distribution function Hn(x) of Rn can now be estimated as

Hn,B(x) =
1

B

B∑
b=1

I
{
R∗n,b ≤ x

}
.

As R∗n,1, . . . ,R
∗
n,B are independent and identically distributed random variables and each

variable has the same distribution as Rn, by the Glivenko-Cantelli Theorem (Theorem A1)

we know that

sup
x∈Rk

∣∣Hn,B(x)−Hn(x)
∣∣ alm. surely−−−−−−−→

B→∞
0, (60)

thus for a sufficiently large B one can use Hn,B(x) as an approximation of Hn(x).

Note that if Rn is one dimensional then also for each fixed u ∈ (0, 1):

H−1
n,B(u)

alm. surely−−−−−−−→
B→∞

H−1
n (u),

provided that H−1
n (u) is a unique solution of Hn(x−) ≤ u ≤ Hn(x) (see e.g. Theorem of

Section 2.1.3 in Serfling, 1980).

Further if Rn is a (one-dimensional) test statistic whose large values are in favour of the

alternative hypothesis, then with the help of the Monte-Carlo principle the p-value of the test

can be estimated as

p̂B =
1 +

∑B
b=1 I{R∗n,b ≥ Rn}
B + 1

,

as p̂B
alm. surely−−−−−−−→
B→∞

1−Hn(Rn−).

Example 31. Suppose we observe a random variable with the multinomial distribution

M(n; p1, . . . , pk). Denote p =
(
p1, . . . , pk

)T
and pX the true value of the parameter p. In

some applications we are interested in testing

H0 : pX = p(0) vs. H0 : pX 6= p(0),
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where p(0) =
(
p

(0)
1 , . . . , p

(0)
k

)T
is a given vector. Explain how the Monte Carlo principle can

be used to estimate the critical value and the p-value of the χ2-test of goodness of fit.

Example 32. Note that the significance of all the test statistics introduced in Section 2.4

for testing the null hypothesis H0 : θX = θ0 against the alternative H1 : θX 6= θ0 can be

assessed with the help of Monte Carlo principle.

In the following examples we will utilize that in fact it is not necessary to know the data-

generating mechanism of X exactly, provided we are able to generate independent copies

of Rn.

Example 33. Suppose that we observe independent and identically distributed random vec-

tors (Y1, X1)T, . . . , (Yn, Xn)T from the bivariate normal distribution. Then the distribution

of the sample correlation coefficient ρ̂n depends only on the true value of the parameter ρ

which we denote by ρX . Thus when testing the null hypothesis

H0 : ρX = ρ0, vs. H1 : ρX 6= ρ0

one should be able (at least theoretically) calculate the distribution of the test statistic

Rn =
√
n (ρ̂n − ρ0) when the null hypothesis holds. Now let rn(α) be an α-quantile of

the distribution Rn when the null distribution holds. Then one rejects the null hypothesis if

Rn ≤ rn(α/2), or Rn ≥ rn(1− α/2).

Although the quantiles rn(α/2) and rn(1 − α/2) are difficult to calculate analytically, it is

straightforward to estimate them by Monte-Carlo simulations.

Example 34. Let X1, . . . , Xn be a random sample from the logistic distribution with the

density

f(x) =
exp{−(x− θ)}(

1 + exp{−(x− θ)}
)2 , x ∈ R,

where θ ∈ R.

Let θX be the true value of the parameter θ and θ̂n be for instance its maximum likelihood

estimator Then the distribution of Rn =
√
n
(
θ̂n − θX

)
does not depend on θ. Thus the

distribution of Rn can be approximated by simulating from the logistic distribution with

θ = 0 and calculating R∗n,b =
√
n θ̂∗n.

Usually in practice we do not know the data generating process completely. But very often

we are able to estimate the distribution of X. Depending on whether this distribution is

estimated parametrically or nonparametrically we distinguish parametric or nonparametric

bootstrap.
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4.2 Standard nonparametric bootstrap

Suppose we observe independent and identically distributed random vectorsX1, . . . ,Xn from

the distribution F . Let θ(F ) be the quantity of interest and θ̂n = θ(Fn) its estimator with

Fn being the empirical distribution

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}.

Suppose we are interested in the distribution of

Rn = gn
(
θ̂n,θ

)
= gn

(
θ(Fn),θ(F )

) (
e.g. Rn =

√
n
(
θ̂n − θ

))
.

In nonparametric bootstrap the unknown F is estimated by the empirical distribution func-

tion Fn. Now generating independent random vectors X∗1, . . . ,X
∗
n from the distribution Fn is

equivalent to drawing a simple random sample with replacement of size n from the observed

values X1, . . . ,Xn. The bootstrap algorithm now runs as follows.

Choose B sufficiently large and for each b ∈ {1, . . . , B} independently generate the datasets

X∗b = (X∗1,b, . . . ,X
∗
n,b)

T (i.e. the datasets X∗1, . . . ,X∗B are independent). Let

R∗n,b = gn
(
θ̂
∗
n,b, θ̂n

)
= gn

(
θ(F ∗n,b),θ(Fn)

) (
e.g. R∗n,b =

√
n
(
θ̂
∗
n,b − θ̂n

))
,

where θ̂
∗
n,b is an estimator of θ based on X∗b and analogously F ∗n,b is an empirical distribution

function based on X∗b . The unknown distribution function Hn(x) of Rn is now estimated by

H∗n,B(x) =
1

B

B∑
b=1

I
{
R∗n,b ≤ x

}
.

Note that the random variables/vectors R∗n,1, . . . ,R
∗
n,B are identically distributed and put

R∗n for any of the random variables. As R∗n,1, . . . ,R
∗
n,B are also independent then by the

Glivenko-Cantelli Theorem

sup
x

∣∣H∗n,B(x)−H∗n(x)
∣∣ alm. surely−−−−−−−→

B→∞
0,

where

H∗n(x) = P
(
R∗n ≤ x |X

)
= P

(
gn
(
θ(F ∗n),θ(Fn)

)
≤ x |X

)
= P

(
gn
(
θ̂
∗
n, θ̂n

)
≤ x |X

)
.

The crucial question for the success of the nonparametric bootstrap is whether H∗n is ‘close’

(at least asymptotically) to Hn. To answer this question it is to useful to introduce the

supremum metric on the space of distribution functions (of random vectors on Rk) as

ρ∞(H1, H2) = sup
x∈Rk

∣∣H1(x)−H2(x)
∣∣.

The following lemma states that if the distribution function of the limiting distribution is

continuous, then ρ∞ can be used for metrizing the convergence in distribution.

52



Lemma 5. Suppose that Y 1,Y 2, . . . and Y be random vectors (with values in Rk) with the

corresponding distribution functions G1, G2, . . . and G. Further let the distribution function G

be continuous. Then Y n
d−−−→

n→∞
Y if and only if ρ∞(Gn, G)→ 0 as n→∞.

Proof. We would like to show that

ρ∞(Gn, G) −−−→
n→∞

0 ⇐⇒ Gn
w−−−→

n→∞
G.

The implication ⇒ is straightforward as supy∈Rk |Gn(y) −G(y)| → 0 implies that Gn(y) →
G(y) for each y ∈ Rk.

The implication ⇐ is more difficult. By the continuity of G for each ε > 0 there exists

a finite set of points Bε = {y1, . . . ,yN} such that for each y ∈ Rk one can find yL,yU ∈ Bε
that

yL ≤ y ≤ yU , and G(yU )−G(yL) ≤ ε
2 .

Thus for each y ∈ Rk one can bound

Gn(y)−G(y) ≤ Gn(yU )−G(y) ≤ Gn(yU )−G(yU ) + ε
2 (61)

and analogously also

Gn(y)−G(y) ≥ Gn(yL)−G(y) ≥ Gn(yL)−G(yL)− ε
2 . (62)

Now combining (61) and (62) together with Gn
w−−−→

n→∞
G one gets that for all sufficiently

large n

sup
y

∣∣Gn(y)−G(y)
∣∣ ≤ max

y∈Bε

∣∣Gn(y)−G(y)
∣∣+ ε

2 ≤
ε
2 + ε

2 = ε,

which implies the statement of the lemma.

Suppose that a metric ρ can be used for metrizing weak convergence. Let R be a random

vector with the distribution function H. Then we say that conditionally on X1,X2, . . . the

random variable R∗n converges in distribution to R in probability if

ρ(H∗n, H)
P−−−→

n→∞
0
(

i.e. for each ε > 0 lim
n→∞

P
[
ω : ρ

(
H∗n(ω), Hn

)
≥ ε
]

= 0
)
.

Analogously we say that conditionally on X1,X2, . . . the random variable R∗n converges in

distribution to R almost surely if

ρ(H∗n, H)
alm. surely−−−−−−−→
n→∞

0
(

i.e. P
[
ω : lim

n→∞
ρ
(
H∗n(ω), Hn

)
= 0
]

= 1
)
.

Theorem 12. Suppose that Rn
d−−−→

n→∞
R, where R is a random vector with a continuous

distribution function. Further suppose that

ρ∞(H∗n, Hn)
P−−−→

n→∞
0 (or

alm. surely−−−−−−−→
n→∞

0), (63)

then conditionally on X1,X2, . . . one gets R∗n
d−−−→

n→∞
R in probability (or almost surely).
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Proof. By the triangular inequality, (60) and Lemma 5

ρ∞(H∗n, H) ≤ ρ∞(H∗n, Hn) + ρ∞(Hn, H)
P−−−→

n→∞
0 (or

alm. surely−−−−−−−→
n→∞

0).

Typically we know that Rn converges to a multivariate normal distribution. Thus in view

of Theorem 12 the crucial question to answer is if convergence (63) holds. The next theorem

states that (63) holds for a sample mean (for the proof see e.g. Theorem 23.4 of van der Vaart

(2000), pp. 330–331).

Theorem 13. Let X1,X2, ... be independent identically distributed random vectors such that

E ‖X1‖2 <∞ and consider Rn =
√
n
(
Xn − EX1

)
and R∗n =

√
n
(
X
∗
n −Xn). Then

ρ∞(H∗n, Hn)
alm. surely−−−−−−−→
n→∞

0. (64)

Note that for X1 being a p-variate random vector, then the central limit theorem im-

plies that the distribution function Hn converges weakly to the distribution function of

Np
(
0p, var(X1)

)
. Now Theorems 12 and 13 imply that conditionally on X1,X2, . . .

R∗n
d−−−→

n→∞
Np
(
0p, var(X1)

)
, almost surely.

Thus one can say that H∗n estimates also the distribution function of Np
(
0p, var(X1)

)
.

4.2.1 Comparison of nonparametric bootstrap and normal approximation

Note that Theorem 12 implies only the asymptotic validity of bootstrap provided that (63)

holds. The question is whether bootstrap estimate H∗n is a better estimate of Hn than the

asymptotic distribution of H where one estimates the unknown parameters.

To answer the above question, consider p = 1. Further let X1 have a continuous distribution

and put γ1 = E
(X1−µ

σ

)3
, where µ = EX1, σ

2 = var(X1). Further let EX4
1 <∞. Then it can

be proved that

Hn(x) = P
(√

n (Xn−µ)
Sn

≤ x
)

= Φ(x) + γ1
6
√
n

(2x2 + 1)ϕ(x) +O
(

1
n

)
, (65)

whereXn = 1
n

∑n
i=1Xi, Sn = 1

n−1

∑n
i=1(Xi−Xn)2. Further it can be shown that an analogous

approximation also holds for H∗n(x), i.e.

H∗n(x) = P
(√

n (X
∗
n−Xn)
S∗n

≤ x
∣∣X) = Φ(x) + γ1n

6
√
n

(2x2 + 1)ϕ(x) +OP
(

1
n

)
, (66)

where X
∗
n = 1

n

∑n
i=1X

∗
i , S2∗

n = 1
n−1

∑n
i=1(X∗i − X

∗
n)2 and γ1n = 1

n

∑n
i=1

(
Xi−Xn
Sn

)3
. Thus

comparing (65) and (66) one gets

H∗n(x)−Hn(x) = Op
(

1
n

)
.
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On the other if γ1 6= 0, then by the normal approximation one gets only

Φ(x)−Hn(x) = O
(

1√
n

)
.

Thus if γ1 6= 0 then one can expect that in comparison with Φ the bootstrap estimator H∗n is

closer to Hn.

4.2.2 Smooth transformations of sample means

The standard nonparametric bootstrap also works for ‘smooth’ transformations of sample

means.

Theorem 14. Let X1,X2, . . . be independent identically distributed random (p-variate) vec-

tors such that E ‖X1‖2 <∞. Further suppose that there exists a neighbourhood U of µ such

the function g : U → Rm have continuous partial derivatives in this neighbourhood. Consider

Rn =
√
n
(
g(Xn)− g(µ)

)
and R∗n =

√
n
(
g(X

∗
n)− g(Xn)

)
. Then (64) holds.

Remark 13. Suppose for simplicity that g : Rp → R. Note that if ∇gT(µ)Σ∇g(µ) = 0, then

although (64) holds, the bootstrap might be not useful as the limiting distribution of Rn is

degenerate.

To illustrate this consider p = 1. Let X1, . . . , Xn be a random sample from the distribution

with EX1 = µX . Further let g be a twice continuously differentiable function in µX such that

g′(µX) = 0 and g′′(µX) 6= 0. Then by Theorem 3 one gets Rn =
√
n
(
g(Xn)−g(µX)

) P−−−→
n→∞

0.

Thus although by Theorem 14 convergence (64) holds, one cannot say if bootstrap works as

the limiting distribution is not continuous.

Nevertheless a finer analysis shows that (see Theorem B of Section 3.1 in Serfling, 1980)

R̃n = 2n
(
g(Xn)− g(µX)

) d−−−→
n→∞

[
g′′(µX)

]
σ2 χ2

1.

So the bootstrap would work if the convergence (63) holds also for R̃∗n = 2n
(
g(X

∗
n)−g(Xn)

)
.

But this is not true as it is shown in Example 3.6 of Shao and Tu (1996).

Roughly speaking one can say that (64) holds provided that θ̂n can be approximated as

a mean of independent identically distributed random vectors plus a reminder term of order

oP
(

1√
n

)
. This can be formalised through the concept of Hadamard-differentiability of the

functional θ(F ), but this is out of the scope of this course.

4.2.3 Limits of the standard nonparametric bootstrap

Although the standard nonparametric bootstrap often presents an interesting alternative to

the inference based on the asymptotic normality, it often fails in situations when the asymp-

totic normality does not hold. These include for instance extremal statistics and non-smooth
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transformations of sample means. Note also that the standard nonparametric bootstrap as-

sume that the observations are realisations of independent and identically distributed

random vectors. Thus among others the standard nonparametric bootstrap is not appropriate

in regression problems with fixed design or in time series problems.

Example 35. Let X1, . . . , Xn be a random sample from the uniform distribution on R(0, θ).

Then the maximum likelihood estimator of θ is given by θ̂n = max1≤i≤nXi =: X(n). Note

that for x < 0

P
(
n(X(n) − θ) ≤ x

)
= P

(
X(n) ≤ θ + x

n

)
= FnX1

(
θ + x

n

)
=

[
θ+

x
n
θ

]n
=
[
1 + x

nθ

]n −−−→
n→∞

e
x
θ .

Thus n (X(n) − θ)
d−−−→

n→∞
Y , where Y has a cumulative distribution function

P(Y ≤ x) =

{
e
x
θ , x < 0

1, x ≥ 0

On the other side

P(X∗(n) = X(n) |X) = 1− P
(
X(n) /∈ {X∗1 , . . . , X∗n} |X

)
= 1−

(
n−1
n

)n −−−→
n→∞

1− e−1

and thus (63) cannot hold for R∗n = n
(
X∗(n) −X(n)

)
.

Literature: Prášková (2004), Shao and Tu (1996) Chapter 3.2.2, Chapter 3.6, A.10

4.3 Confidence intervals

Suppose for simplicity that θ(F ) is one-dimensional.

4.3.1 Basic bootstrap confidence interval

Consider Rn =
√
n
(
θ̂n − θX

)
. Then the quantiles r∗n(u) of the bootstrap distribution R∗n =

√
n
(
θ̂∗n− θ̂n

)
estimate the unknown quantiles of the distribution Rn. Thus if ‘bootstrap works’

(i.e. Theorem 12 holds for R∗n) then

lim
n→∞

P
[
r∗n(α/2) ≤

√
n
(
θ̂n − θ

)
≤ r∗n(1− α/2)

]
= 1− α. (67)

Now with the help of (67) one can construct an asymptotic confidence interval for θX as(
θ̂n −

r∗n,B(1−α/2)
√
n

, θ̂n −
r∗n,B(α/2)
√
n

)
, (68)

where r∗n,B(α) is a Monte-Carlo approximation (estimate) of r∗n(α). The confidence interval

in (68) is usually called basic bootstrap confidence interval.
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Remark 14. Note that as r∗n,B(α) is a sample α-quantile of R∗n,1, . . . , R
∗
n,B, where R∗n,b =

√
n
(
θ̂∗n,b − θ̂n

)
. Thus the confidence interval (68) can be also rewritten as(

2 θ̂n − q∗n,B(1− α/2), 2 θ̂n − q∗n,B(α/2)
)
, (69)

where q∗n,B(α) is a sample α-quantile calculated from the values θ̂∗n,1, . . . , θ̂
∗
n,B.

Sometimes in literature you can find the bootstrap confidence interval of the form(
q∗n,B(α/2), q∗n,B(1− α/2)

)
,

which is usually called the percentile confidence interval.

4.3.2 Studentized bootstrap confidence interval

Usually it is recommended to ‘bootstrap’ a variable whose limit distribution does not depend

on the unknown parameters (such a variable is called pivot). Thus consider Rn =
√
n (θ̂n−θX)

σ̂n
,

where σ̂2
n is an estimate of the asymptotic variance of

√
n
(
θ̂n − θX

)
. Let r̃∗n(u) be the u-

th quantile of the distribution R̃∗n =
√
n (θ̂∗n−θ̂n)
σ̂∗n

, where σ̂∗n is an estimate of the asymptotic

variance of
√
n
(
θ̂∗n − θ̂n

)
calculated from the bootstrap sample. Thus if ‘bootstrap works’

(i.e. Theorem 12 holds), then

lim
n→∞

P
[
r̃∗n(α/2) ≤

√
n
(
θ̂n−θ

)
σ̂n

≤ r̃∗n(1− α/2)
]

= 1− α,

which yields an asymptotic confidence interval(
θ̂n −

r̃∗n,B(1−α/2) σ̂n√
n

, θ̂n −
r̃∗n,B(α/2) σ̂n√

n

)
, (70)

where r̃∗n,B(α) is a Monte-Carlo approximation of r̃∗n(α). The confidence interval in (70) is

usually called studentized bootstrap confidence interval.

Literature: Efron and Tibshirani (1993) Chapters 15 and 16

4.4 Parametric bootstrap

Let X1, . . . ,Xn be random vectors having the joint distribution F (·;θ) that is known only

up to an unknown parameter θ. In parametric bootstrap we generate the bootstrap vectors

X∗1,b, . . . ,X
∗
n,b from F (·; θ̂n), where θ̂n is a consistent estimator of θ.

Example 36. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the

the exponential distributions with the density f(x, λ) = λe−λxI[x > 0]. Let λX be the true

value of the parameter for the first sample and λY for the second sample. Find the confidence

interval for λX
λY

.
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Solution. The maximum likelihood estimators are given by λ̂X = 1
Xn1

, λ̂Y = 1
Y n2

. Now gen-

erate X∗1 , . . . , X
∗
n1

and Y ∗1 , . . . , Y
∗
n2

as two independent random samples from the exponential

distributions with the parameters λ̂X and λ̂Y respectively. Put

Rn =
(
λ̂X
λ̂Y
− λX

λY

)
and R∗n =

(
λ̂∗X
λ̂∗Y
− λ̂X

λ̂Y

)
,

where λ̂∗X = 1
X
∗
n1

and λ̂∗Y = 1
Y
∗
n2

. The confidence interval for the ratio λX
λY

can now be

calculated as (
λ̂X
λ̂Y
− r∗n,B

(
1− α

2

)
, λ̂X
λ̂Y
− r∗n,B

(
α
2

))
,

where r∗n,B(α) is the estimate of the α-kvantil R∗n.

Alternatively instead of bootstrap one can use ∆-theorem (Theorem 3), which implies that(
λ̂X
λ̂Y
− λX

λY

)
as
≈ N

(
0,

λ2X
λ2Y

(
1
n1

+ 1
n2

))
.

By combining ∆-theorem and bootstrap one can also use

R̃n =

λ̂X
λ̂Y
−λXλY

λ̂Y
λ̂X

√
1
n1

+
1
n2

, and R̃∗n =

λ̂∗X
λ̂∗Y
− λ̂X
λ̂Y

λ̂∗Y
λ̂∗X

√
1
n1

+
1
n2

.

Goodness of fit testing

Parametric bootstrap is often used in goodness of fit testing. Let X1, . . . ,Xn be a ran-

dom sample of k-variate random vectors with the distribution function F . Suppose we are

interested in testing that F belongs to a given parametric family, i.e.

H0 : F ∈ F =
{
F (x;θ), θ ∈ Θ

}
against the alternative

H1 : F /∈ F .

As a test statistic one can use for instance

KSn = sup
x∈Rk

∣∣Fn(x)− F (x; θ̂n)
∣∣,

where Fn is an empirical distribution function and θ̂n is an estimate of θ under the null

hypothesis. As the asymptotic distribution of the test statistic under the null hypothesis is

rather difficult, the significance of the test statistic is derived as follows.

1. For b = 1, . . . , B generate a random sample X∗b = (X∗1,b, . . . ,X
∗
n,b) (of size n), where

each random vector X∗i,b has the distribution function F (x; θ̂n).
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2. Calculate

KS∗n,b = sup
x∈Rk

∣∣F ∗n,b(x)− F (x; θ̂
∗
n,b)
∣∣,

where F ∗n,b(x) is the empirical distribution function calculated from X∗b and θ̂
∗
n,b is the estimate

of θ (under H0) calculated from X∗b .
3. Estimate the p-value as

1 +
∑B

b=1 I
{
KS∗n,b ≥ KSn

}
B + 1

,

where B is usually chosen as 999 or 9 999.

Remark 15. Instead of the test statistic KSn it is usually recommended to use one of the

following statistics.

Cramér-von-Mises:

CM =

∫ (
Fn(x)− F (x; θ̂n)

)2
f(x; θ̂n) dx, or CM =

1

n

n∑
i=1

(
Fn(Xi)− F (Xi; θ̂n)

)2
.

Anderson-Darling:

AD =

∫ (
Fn(x)− F (x; θ̂n)

)2
F (x; θ̂n)

(
1− F (x; θ̂n)

) f(x; θ̂n) dx, or AD =
1

n

n∑
i=1

(
Fn(Xi)− F (Xi; θ̂n)

)2
F (Xi)

(
1− F (Xi; θ̂n)

) .
Example 37. Bootstrap estimation of the distribution of estimators of parameters in AR(p)

process.

4.5 Testing and bootstrap

Suppose that we have a test statistic Tn = T (X1, . . . ,Xn) and that large values of Tn speaks

against the null hypothesis. Let X∗1 = (X∗1,1, . . . ,X
∗
n,1)T, . . . , X∗B = (X∗1,B, . . . ,X

∗
n,B)T be

independently resampled datasets by a procedure that mimics generating data under the null

hypothesis. Let T ∗n,b = Tn(X∗b) be the test statistic calculated from the b-th generated sample

X∗b (b = 1, . . . , B). Then the p-value of the test is estimated as

p̂value =
1 +

∑B
b=1 I{T ∗n,b ≥ Tn}
B + 1

. (71)

Comparison of expectations in two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the distributions

F and G respectively. Suppose we are interested in testing the null hypothesis

H0 : EX1 = EY1.
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In what follows we will mention several options how to test for the above null hypothesis.

1. Standard t-test is based on the test statistics

Tn =
Xn1 − Y n2

S∗
√

1
n1

+ 1
n2

,

where

S∗2 =
1

n1 + n2 − 2

[
(n1 − 1)S2

X + (n2 − 1)S2
Y

]
, S2

X =
1

n1 − 1

n1∑
i=1

(Xi −Xn1)2, S2
Y = . . . .

The crucial assumption of this test is the homoscedasticity, i.e. varX1 = var Y1 ∈ (0,∞) or

that n1
n1+n2

→ 1
2 . Then under the null hypothesis Tn

d−−−→
n→∞

N(0, 1).

2. Welch t-test is based on the test statistics

T̃n =
Xn1 − Y n2√

S2
X
n1

+
S2
Y
n2

.

The advantage of this test is that it does not require varX1 = var Y1 in order to have that

under the null hypothesis T̃n
d−−−→

n→∞
N(0, 1).

3. Parametric bootstrap. Suppose that F = N(µ1, σ
2
1) and G = N(µ2, σ

2
2). Thus the null

hypothesis can be written as H0 : µ1 = µ2. Let us generate X∗1,b, . . . , X
∗
n1,b

and Y ∗1,b, . . . , Y
∗
n2,b

as independent random samples from the distributions N(0, S2
X) and N(0, S2

Y ) respectively.

Based on these bootstrap samples calculate |T̃ ∗n,1|, . . . , |T̃n,B∗ |. Alternatively one could use

also a test statistic Tn0 =
∣∣Xn1 − Y n2

∣∣, but it is recommended to use a test statistic whose

asymptotic distribution under the null hypothesis does not depend on unknown parameters.

4. Standard nonparametric bootstrap. Suppose that varX1, var Y1 ∈ (0,∞). Let us generate

X∗1,b, . . . , X
∗
n1,b

and Y ∗1,b, . . . , Y
∗
n2,b

as independent random samples with replacement from X1−
Xn1 , . . . , Xn1 −Xn1 and Y1 − Y n2 , . . . , Yn2 − Y n2 respectively.

4.6 Permutation tests

Permutation tests are interesting in particular in two (or more generally k) sample problems

and when testing for independence.

Two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples with the distribution

functions F and G respectively. Let the null hypothesis states that the distributions functions

F and G coincide, i.e. H0 : F (x) = G(x) for all x ∈ R.
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Put n = n1 + n2 and denote Z = (Z1, . . . , Zn) the joint sample, that is Zi = Xi for

i = 1, . . . , n1 and Zi = Yi−n1 for i = n1 + 1, . . . , n. Let Z(·) = (Z(1), . . . , Z(n)) be the

ordered sample, that is Z(1) ≤ Z(2) ≤ . . . ≤ Z(n). Note that under the null hypothesis the

random variables Z1, . . . , Zn are independent and identically distributed. Thus the conditional

distribution of Z given Z(·) is a discrete uniform distribution on the set of all permutations of

Z(·). More formally,

P
(
Z = (z1, . . . , zn) |Z(·) = (z(1), . . . , z(n))

)
=

1

n!
I
{

(z1, . . . , zn) is a permutation of (z(1), . . . , z(n))
}
,

where z(1) ≤ z(2) ≤ . . . ≤ z(n).

The samples Z∗1, . . . ,Z∗B are now generated by randomly permuting the joint sample Z.

Now for each b ∈ {1, . . . , B} the test statistic T ∗n,b is recalculated from(
X∗1,b, . . . , X

∗
n1,b

)
=
(
Z∗1,b, . . . , Z

∗
n1,b

)
,

(
Y ∗1,b, . . . , Y

∗
n2,b

)
=
(
Z∗n1+1,b, . . . , Z

∗
n,b

)
and the p-value is estimated by (71).

Note that the test assumes that under the null hypothesis the distribution functions F

and G coincide. Then the permutation test is called exact. In practice it is of interest to

know whether the permutation test is useful also to test for instance the null hypothesis

that EX1 = EY1 without assuming that F ≡ G. Usually it can be proved that if the test

statistic Tn under null hypothesis has a limiting distribution that does not depend on the

unknown parameters, then the permutation test holds the prescribed level asymptotically.

In this situation the permutation test is called approximate. It was shown by simulations in

many different setting that the level of the approximate permutation test is usually closer to

the prescribed value α than the level of the test that directly uses the asymptotic distribution

of Tn.

Testing independence

Suppose we observe independent and identically distributed random vectors

Z1 = (X1, Y1)T, . . . ,Zn = (Xn, Yn)T

and we are interested in testing the null hypothesis that X1 is independent with Y1. Then

under the null hypothesis

P

((
X1

Y1

)
=

(
x1

y1

)
, . . . ,

(
Xn

Yn

)
=

(
xn

yn

) ∣∣∣∣
(
X1

Y(1)

)
=

(
x1

y(1)

)
, . . . ,

(
Xn

Y(n)

)
=

(
xn

y(n)

))

=
1

n!
I
{

(y1, . . . , yn) is a permutation of (y(1), . . . , y(n))
}
.
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Thus one can generate Z∗1, . . . ,Z
∗
n by permuting Y1, . . . , Yn while keeping X1, . . . , Xn fixed.

The permutation scheme as described above can be used for instance for assessing the

significance of the test statistic based on a correlation coefficient or of the χ2-test of indepen-

dence.

Example 38. Let X1, . . . , Xn be a random sample such that varX1 ∈ (0,∞) and H0 :

EX1 = µ0. In this situation no permutation test is available. But one can use nonparametric

bootstrap and generate X∗b,1, . . . , X
∗
b,n as a simple random sample with replacement from

X1 −Xn, . . . , Xn −Xn. A possible test statistic is then

Tn =

√
n (Xn − µ0)

Sn
,

and T ∗n,b =
√
n (X

∗
n,b−0)

S∗n,b
, where X

∗
n,b and S∗X,b are the sample mean and sample deviation

calculated from the bootstrap sample.

Example 39. Permutation test and χ2-test of independence.

Literature: Davison and Hinkley (1997) Chapters 4.1–4.4, Efron and Tibshirani (1993)

Chapters 15 and 16

4.7 Bootstrap in linear models

Suppose we observe (XT
1 , Y1)T, . . . , (XT

n , Yn)T a random sample, where, Xi is a p-dimensional

random vector. The standard nonparametric bootstrap generate (X∗T1 , Y ∗1 )T, . . . , (X∗Tn , Y ∗n )T

as a simple random sample with replacement from the vectors (XT
1 , Y1)T, . . . , (XT

n , Yn)T. Note

that this bootstrap method works as long as there exists an asymptotic distribution of the

estimator β̂n.

In linear models we usually assume a more specific structure

Yi = βTXi + εi, i = 1, . . . , n, (72)

where ε1, . . . , εn are independent and identically distributed zero-mean random variables in-

dependent of X1, . . . ,Xn. Then the model-based boostrap runs as follows. Let β̂n be the

estimate of β. Calculate the standardized residuals as

ε̂i =
Yi − β̂

T

nXi√
1− hii

, i = 1, . . . , n,

where hii is the i-th diagonal element of the projection matrix H = X(XTX)−1XT. Then one

can generate the response in the bootstrap sample as

Y ∗i = β̂
T

nXi + ε∗i , i = 1, . . . , n,
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where ε∗1, . . . , ε
∗
n is a simple random sample with replacement from the residuals ε̂1, . . . , ε̂n.

As the covariate values are fixed the bootstrap sample is given by (XT
1 , Y

∗
1 )T, . . . , (XT

n , Y
∗
n )T.

The advantage of the nonparametric bootstrap is that it does not require model (72) to hold.

On the other hand if model (72) holds then the distribution of
√
n (β̂

∗
n− β̂n) from the model

based bootstrap is closer to the conditional distribution of
√
n (β̂n−β) given the values of the

covariatesX1, . . . ,Xn than the corresponding distribution from the nonparametric bootstrap.

Further, the model based bootstrap can be also used in the case of a fixed design. On the

other hand this method is not appropriate for instance in the presence of heteroscedasticity.

Literature: Davison and Hinkley (1997) Chapter 6.3

4.8 Variance estimation and boostrap

Often one knows that
√
n
(
θ̂n − θ

) d−−−→
n→∞

Np
(
0p,Σ

)
,

but matrix Σ typically depends on unknown parameters (or it might be ‘too difficult’ to

derive the analytic form of Σ). In such a situation a straightforward bootstrap estimation of

the asymptotic variance matrix Σn = 1
n Σ is given by

Σ̂∗n,B =
1

B − 1

B∑
b=1

(
θ̂
∗
n,b − θ

∗
n,B

)(
θ̂
∗
n,b − θ

∗
n,B

)T
, where θ

∗
n,B =

1

B

B∑
b=1

θ̂
∗
n,b. (73)

Note that

Σ̂∗n,B
alm. surely−−−−−−−→
B→∞

var
(
θ̂
∗
n |X

)
.

Thus for a valid inference we need that

n var
(
θ̂
∗
n |X

) P−−−→
n→∞

Σ. (74)

Note that
√
n (θ̂

∗
n − θ̂n)

d−−−→
n→∞

N(0,Σ) generally does not imply that (74) holds. The

reason is that var
(
θ̂
∗
n |X

)
estimates var

(
θ̂n
)

rather than 1
nΣ.

Example 40. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = 3
x4
I[x ≥ 1]. Then by the central limit theorem

√
n
(
Xn − 3

2

) d−−−→
n→∞

N
(
0, 3

4

)
.

Further consider the transformation g(x) = ex
4
. Then with the help of ∆-theorem (Theo-

rem 3) one gets
√
n
[
g(Xn)− g

(
3
2

)] d−−−→
n→∞

N
(

0,
[
g′
(

3
2

)]2 · 3
4

)
.

But it is straightforward to calculate that E
(
g(Xn)

)
= ∞ and thus var

(
g(Xn)

)
does not

exist. Further it can be proved that var
(
g(X

∗
n)|X

) alm. surely−−−−−−−→
n→∞

∞.
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Literature: Efron and Tibshirani (1993) Chapters 6 and 7, Shao and Tu (1996) Chapter

3.2.2

4.9 Bias reduction and bootstrap

In practice one can get unbiased estimators for only very simple models. Let θ̂n be an

estimator of θX and put bn = E θ̂n − θX for the bias of θ̂n. The bias bn can be estimated

by b∗n = E [θ̂
∗
n|X]− θ̂n. The bias corrected estimator of θ is then defined as θ̂

(bc)

n := θ̂n−b∗n.

Example 41. Let X1, . . . , Xn be a random sample, EX4
1 < ∞ and g : R → R be such that

g′′′ is bounded and continuous in a neighbourbood of µ = EX1 . Then Xn is an unbiased

estimator of µ. But if g is not linear then g(Xn) is not an unbiased estimator of g(µ). Put

σ2 = var(X1). Then the bias of g(Xn) can be approximated by

E g(Xn)− g(µ) = E
{
g′(µ)(Xn − µ) + g′′(µ)

2 (Xn − µ)2
}

+
Rn
3!

=
g′′(µ)σ2

2n
+O

(
1

n3/2

)
, (75)

where we have used that

|Rn| ≤ sup
x

∣∣g′′′(x)
∣∣E ∣∣Xn − µ

∣∣3 ≤ sup
x

∣∣g′′′(x)
∣∣ [E ∣∣Xn − µ

∣∣4]3/4
=
[
O
(

1
n2

)]3/4
= O

(
1

n3/2

)
.

Analogously one can calculate that

b∗n = E [g(X
∗
n) |X]− g(Xn) =

g′′(Xn)

2n
var[X∗1 |X] +OP

(
1

n3/2

)
=
g′′(Xn) σ̂2

n

2n
+OP

(
1

n3/2

)
. (76)

where σ̂2
n = 1

n

∑n
i=1(Xi −Xn)2.

Now by comparing (75) and (76) one gets that the bias of the estimator θ̂
(bc)
n is given by

bn − b∗n =
1

2n

(
g′′(µ)σ2 − g′′(Xn)σ̂2

n

)
+OP

(
1

n3/2

)
= OP

(
1

n3/2

)
,

where we used that by the delta-theorem

g′′(Xn) = g′′(µ) +OP
(

1√
n

)
, σ̂2

n = σ2 +OP
(

1√
n

)
.

Literature: Efron and Tibshirani (1993) Chapter 10.

4.10 Jackknife

Jackknife can be considered as an ancestor of bootstrap. It was originally suggested to reduce

bias of an estimator. Later it was found out that it can be often also used to estimate the

variance of an estimator.
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Bias reduction

Let X1, . . . ,Xn be a random sample and denote Tn = T(X1, . . . ,Xn) the estimator of the

parameter of interest θX . Put

Tn−1,i = T(X1, . . . ,Xi−1,Xi+1, . . .Xn)

for the estimate when the i-th observation is left out. Further put Tn = 1
n

∑n
i=1 Tn−1,i. Then

the bias of the estimator Tn is estimated by

b̂n = (n− 1)
(
Tn −Tn

)
(77)

and the ‘bias-corrected’ estimator is defined as

T(bc)
n = Tn − b̂n. (78)

Remark 16. The rational of the estimator (78) is as follows. For simplicity let θ be a one-

dimensional parameter and suppose that the bias of estimator Tn is given by

ETn − θX =
a

n
+

b

n3/2
+

c

n2
+ o
(

1
n5/2

)
. (79)

Then also analogously

ETn−1,i − θX =
a

n− 1
+

b

(n− 1)3/2
+

c

(n− 1)2
+ o
(

1
(n−1)5/2

)
,

and the same holds true also for Tn = 1
n

∑n
i=1 Tn−1,i. This further implies that

E b̂n = (n− 1)
( a

n− 1
+

b

(n− 1)3/2
+

c

(n− 1)2
+ o
(

1
(n−1)5/2

)
− a

n
− b

n3/2
− c

n2
− o
(

1
n5/2

))
,

= (n− 1)

(
a

n(n− 1)
+
b(1− 1

n)3/2

(n− 1)3/2
+
c(1− 1

n)2

(n− 1)2

)
+O

(
1

n3/2

)
=
a

n
+O

(
1

n3/2

)
. (80)

Now combining (79) and (80) gives that

ET (bc)
n − θX = O

(
1

n3/2

)
while ETn − θX = O

(
1
n

)
.
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Variance estimation

To estimate the variance, let us define jackknife pseudovalues as

T̃n,i = nTn − (n− 1) Tn−1,i, i = 1, . . . , n.

Then (under some regularity assumptions) the variance of Tn can be estimated as if Tn was

a mean of jackknife pseudovalues T̃n,1, . . . , T̃n,n that are independent, i.e.

̂var
(
Tn

)
=

1

n
S2
Tn , where S2

Tn =
1

n− 1

n∑
i=1

(
T̃n,i −

1

n

n∑
j=1

T̃n,j

)(
T̃n,i −

1

n

n∑
j=1

T̃n,j

)T
.

Literature: Shao and Tu (1996) Chapter 1.3.

5 Quantile regression

Generally speaking, while the least square method aims at estimating (modelling) a condi-

tional expectation, quantile regression aims at estimating (modelling) a conditional quantile.

5.1 Introduction

For a given τ ∈ (0, 1) consider the following loss function

ρτ (x) = τ x I{x > 0}+ (1− τ) (−x) I{x ≤ 0}.

Note that for x 6= 0 one gets

ψτ (x) = ρ′τ (x) = τ I{x > 0} − (1− τ) I{x < 0}.

For x = 0 put ψτ (0) = 0.

Lemma 6. Let the random variable X have a cumulative distribution function F and E |X| <
∞. Then

F−1(τ) = arg min
θ∈R

E ρτ (X − θ). (81)

Proof. Put M(θ) = E ρτ (X − θ)− E ρτ (X). One can calculate

M(θ) = −E
∫ θ

0
ψτ (X − t) dt = −

∫ θ

0
Eψτ (X − t) dt

= −
∫ θ

0
τ P(X > t)− (1− τ)P(X < t) dt.

= −
∫ θ

0
τ − τ F (t)− (1− τ)F (t) dt.

= −τ θ +

∫ θ

0
F (t) dt.
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Now for each θ < F−1(τ)

M ′(θ−) = −τ + F (θ−) ≤ −τ + F (θ) < 0 and M ′(θ+) = −τ + F (θ+) = −τ + F (θ) < 0.

As the function M(θ) is continuous, this implies that M(θ) is decreasing on
(
−∞, F−1(τ)

)
.

Analogously one can show that the function M(θ) is non-decreasing on
(
F−1(τ),+∞

)
. This

further implies that F−1(τ) is the point of the global minimum of the function M(θ).

Remark 17. Suppose we observe a random sample X1, . . . , Xn from a continuous distribution.

Then by Lemma 6

F−1
n (τ) = arg min

θ∈R

1

n

n∑
i=1

ρτ (Xi − θ).

Let X(1), . . . , X(n) be the ordered sample. Note that from the proof of Lemma 6 it also follows

that if i0 = n τ is an integer then the function M(θ) = 1
n

∑n
i=1 ρτ (Xi−θ) satisfies M ′(θ−) = 0

for each θ ∈
(
X(i0), X(i0+1)

]
and M ′(θ+) = 0 for each θ ∈

[
X(i0), X(i0+1)

)
. Thus M(θ) is

minimised by any value from the interval
[
X(i0), X(i0+1)

]
. In this situation F−1

n (τ) = X(i0) is

the left point of this interval.

5.2 Regression quantiles

Suppose that one observes independent and identically distributed random vectors

(XT
1 , Y1)T, . . . , (XT

n , Yn)T

being distributed as the generic vector (XT, Y )T,

The τ -th regression quantile is defined as

β̂n(τ) = arg min
b∈Rp

1

n

n∑
i=1

ρτ (Yi − bTXi).

At the population level the regression quantile identifies the parameter

βX(τ) = arg min
b∈Rp

E ρτ (Y − bTX).

Note that thanks to (81)

E ρτ (Y − bTX) = E
{
E
[
ρτ (Y − bTX) |X

]}
≥ E

{
E
[
ρτ
(
Y − F−1

Y |X(τ)
)
|X
]}

= E ρτ
(
Y − F−1

Y |X(τ)
)
,

where F−1
Y |X(τ) is the τ -th conditional quantile of Y given X. Thus if the model for F−1

Y |X(τ)

is correctly specified, that is F−1
Y |X(τ) = βTX, then βX(τ) = β.
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Often in applications we assume that Xi =
(
1, X̃

T

i

)T
and that model (58) holds. Then

F−1
Y |X(τ) = β0 + βTX + F−1

ε (τ), where F−1
ε (τ) is the τ -th quantile of the random error ε.

Thus provided model (58) holds

βX(τ) =

(
β0 + F−1

ε (τ)

β

)
. (82)

Thus if model (58) holds, then for τ1 6= τ2 the regression quantiles βX(τ1) and βX(τ2) differ

only in the intercepts.

Example 42. Let Y1, . . . , Yn1 be a random sample with the distribution function F and

Yn1+1, . . . , Yn1+n2 be a random sample from the distribution function G .

Often it is assumed that G(x) = F (x + µ) for each x ∈ R. Thus alternatively we can

formulate the two-sample problem as a linear regression problem with

Yi = β0 + β1xi + εi, (83)

where

xi =

{
0, i = 1, . . . , n1

1, i = n1 + 1, . . . , n1 + n2

and εi has a cumulative distribution function F . Usually we are interested in estimating β1.

By the LS method one gets

β̂1 =
1

n2

n1+n2∑
i=n1+1

Yi −
1

n1

n1∑
i=1

Yi
P−→

n1,n2→∞
µG − µF︸ ︷︷ ︸

=:µ

=: βLS1 ,

where µF and µG stand for the expectation of an observation from the first and second sample

respectively.

On the other hand the quantile regression yields

β̂(τ) = arg min
b0,b1

1

n

n∑
i=1

ρτ (Yi − b0 − b1xi)

= arg min
b0,b1

1

n

(
n1∑
i=1

ρτ (Yi − b0) +

n1+n2∑
i=n1+1

ρτ (Yi − b0 − b1)

)
, n = n1 + n2.

The first sum is minimised by

β̂0(τ) = F−1
n1

(τ)

and the second sum by

̂β0(τ) + β1(τ) = G−1
n2

(τ)
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Thus we get

β̂1(τ) = G−1
n2

(τ)− F−1
n1

(τ)
P−→

n1,n2→∞
G−1(τ)− F−1(τ) := β1(τ).

Further if model (83) really holds, then G−1(τ) = F−1(τ) + µ and one gets β1(τ) = µ = βLS1

for each τ ∈ (0, 1).

Computing regression quantiles

The optimisation task

min
b∈Rp

n∑
i=1

ρτ (Yi − bTXi)

can be rewritten with the help of linear programming as minimisation of the objective function

τ
n∑
i=1

r+
i + (1− τ)

n∑
i=1

r−i ,

subject to the following constrains

p∑
j=1

Xij bj + r+
i − r

−
i = Yi, i = 1, . . . , n,

r+
i ≥ 0, r−i ≥ 0, i = 1, . . . , n,

bj ∈ R, j = 1, . . . , p.

Note that one can think of r+
i and r−i as the positive or negative part of the residuals, i.e.

r+
i =

(
Yi − bTXi

)
+
, r−i =

(
Yi − bTXi

)
− .

This can be solved for instance with the help of the simplex algorithm.

5.3 Inference for regression quantiles

The following theorem could be proved completely analogously as Theorem 11.

Theorem 15. Let model (58) holds and βX be given by (82). Further, let E ‖X‖3 <∞, the

matrix EXXT is positive definite and the density fε(x) of ε is positive and continuous in

a neighbourhood of F−1
ε (τ). Then

√
n
(
β̂n(τ)− βX(τ)

)
=

1√
n

n∑
i=1

[
EXXT

]−1 Xi ψτ
(
εi − F−1

ε (τ)
)

fε(F
−1
ε (τ))

+ oP (1), (84)

which further implies that

√
n
(
β̂n(τ)− βX(τ)

) d−−−→
n→∞

Np
(
0,
[
EXXT

]−1 τ(1−τ)

f2ε (F−1
ε (τ))

)
. (85)
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Note that (85) follows from (84) and the central limit theorem (for i.i.d. random vectors)

where we have used that

var
(
ψτ (ετ1)X1

)
= var

(
E
[
X ψτ (ετ1) |X

])
+ E

(
var
[
X ψτ (ετ1) |X

])
= 0p×p + E

(
X var[ψτ (ετ1)]XT

)
= E

(
Xτ(1− τ)XT

)
,

with ετ1 = ε1 − F−1
ε (τ).

Estimation of asymptotic variance of β̂n(τ)

Note that by (85) one gets

̂
avar

(
β̂n(τ)

)
= 1

n

(
EXXT

)−1 τ(1−τ)

f2ε (F−1
ε (τ))

.

The matrix EXXT can be estimated as 1
n

∑n
i=1XiX

T
i . The difficulty is in estimating the

sparsity function s(τ) = 1
fε(F−1

ε (τ))
. In Chapter 4.10.1 of Koenker (2005) the author suggests

that one can use the following estimate

ŝn(τ) =
F̂−1
nε (τ + hn)− F̂−1

nε (τ − hn)

2hn
,

where F̂nε(y) = 1
n

∑n
i=1 I{Yi −X

T
i β̂n(τ) ≤ y} is the empirical distribution function of the

residuals and (the bandwidth) hn is sequence going to zero as n→∞. A possible choice of hn

(derived when assuming normal errors ε, . . . , εn) is given by

hn = n−1/3 u
2/3
1−α/2

[
1.5ϕ2(uτ )

2u2τ+1

]1/3
,

where ϕ is the density of N(0, 1). For details and other possible choices of hn see Chapter 4.10.1

in Koenker (2005) and the references therein.

An alternative option for doing the inference would be to use bootstrap.

5.4 Interpretation of the regression quantiles

Provided F−1
Y |X(τ) = βTX and the model is correctly specified then one can interpret β̂nk(

the k-th element of β̂n
)

as the estimated change of the conditional quantile of the response

when the k-th element of the explanation variable increases by 1.

It is worth noting that if one models the conditional quantile of the transformed response,

that is one assumes that F−1
h(Y )|X(τ) = βTX for a given increasing transformation h, then

τ = P
(
h(Y ) ≤ βTX |X

)
= P

(
Y ≤ h−1(βTX) |X

)
,
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which implies that F−1
Y |X(τ) = h−1(βTX). Analogously F−1

Y |X(1 − τ) = h−1(βTX) for h

decreasing. That is unlike for modelling of conditional expectation (through the least square

method), here we still have a link between β and and the quantile of the original (not trans-

formed) response F−1
Y |X(τ).

A very common and popular transformation is log-transformation, i.e. h(y) = log y. This

results in F−1
Y |X(τ) = eβ

TX and eβk measures how many times the conditional quantile F−1
Y |X(τ)

changes when the k-th coordinate of the covariate is increased by adding one.

5.5 Asymptotic normality of sample quantiles

Suppose that you have a random sample Y1, . . . , Yn, where Y1 has a cumulative distribution

function F . For a fixed τ ∈ (0, 1) put

F−1
n (τ) = inf

{
x : Fn(x) ≥ τ

}
,

where Fn is the empirical distribution function.

The following theorem is a consequence of Theorem 15.

Theorem 16. Let f(y) (the density of Y1) be positive and continuous in a neighbourhood

of F−1(τ). Then

√
n
(
F−1
n (τ)− F−1(τ)

)
=

1√
n

n∑
i=1

ψτ
(
Yi − F−1(τ)

)
f(F−1(τ))

+ oP (1),

which further implies that

√
n
(
F−1
n (τ)− F−1(τ)

) d−−−→
n→∞

N
(

0, τ(1−τ)
f2(F−1(τ))

)
.

Proof. The proof follows from Theorem 11 by taking Xi = 1, εi = Yi and noting that by

Lemma 6 and Remark 17 one has F−1
n (τ) = arg minθ∈R

1
n

∑n
i=1 ρτ (Yi − θ).

Literature: Koenker (2005), Sections 2.1, 2.4, 4.2. 4.10

6 EM-algorithm

It is an iterative algorithm to find the maximum likelihood estimator θ̂n in situations with

missing data. It is also often used in situations when the model can be specified with the help

of some unobserved variables and finding θ̂n would be (relatively) simple with the knowledge

of those unobserved variables.
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Example 43. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) =

G∑
j=1

πj fj(x),

where f1, . . . , fG are known densities and π1, . . . , πG are unknown non-negative mixing pro-

portions such that
∑G

j=1 πj = 1. Find the maximum likelihood estimator of the parameter π,

i.e.

π̂n = arg max
π∈Θ

(
n∏
i=1

f(Xi;π)

)
,

where Θ stands for the parametric space given by the possible values of π.

Solution. A straightforward approach would be to maximize the log-likelihood

`n(π) =
n∑
i=1

log f(Xi;π) =
n∑
i=1

log

 G∑
j=1

πjfj(Xi)

 .

Using for instance the parametrization πG = 1 −
∑G−1

j=1 πj , the system of score equations is

given by

Ujn(π) =
∂`n(π)

∂πj
=

n∑
i=1

[
fj(Xi)∑G

l=1 πlfl(Xi)
− fG(Xi)∑G

l=1 πl fl(Xi)

]
!

= 0, j = 1, . . . , G− 1,

which requires some numerical routines.

Alternatively one can use the EM-algorithm, which runs as follows. Introduce Zi =

(Zi1, . . . , ZiG)T, where

Zij =

{
1, Xi is generated from fj(x),

0, otherwise.

Note that one can think of our data as the realizations of the independent and identically

distributed random vectors (X1,Z
T
1 )T, . . . , (Xn,Z

T
n)T, where Z1, . . . ,Zn are missing.

Put X = (X1, . . . , Xn)T. The joint density of (X1,Z
T
1 )T is given by

fX,Z(x, z;π) = fX|Z(x|z;π) fZ(z;π) =

 G∑
j=1

zjfj(x)

 ·
 G∏
j=1

π
zj
j

 .

The complete log-loglikehood is given by

`Cn (π) = log


n∏
i=1

 G∑
j=1

Zijfj(Xi)

 G∏
j=1

π
Zij
j


=

n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

+
n∑
i=1

 G∑
j=1

Zij log πj

 .
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If we knew Z1, . . . ,Zn, then we would estimate simply π̂j = 1
n

∑n
i=1 Zij , j = 1, . . . , G. The

EM algorithm runs in two steps:

(i) E-step (Expectation step): Let π̂(k) be the current estimate of π. In this step we

calculate

Q
(
π, π̂(k)

)
= E

π̂(k) [`Cn (π) |X],

where the expectation is taken with respect to the unobserved random variables Z1, . . . ,Zn

provided that Zi follows a multinomial distribution Mult(1, π̂(k)).

(ii) M-step (Maximization): The updated value of the estimate of π is calculated as

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)).

E-step in a detail:

Q
(
π, π̂(k)

)
= E

π̂(k)

 n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

∣∣∣∣∣∣ X
+ E

π̂(k)

 n∑
i=1

G∑
j=1

Zij log πj

∣∣∣∣∣∣ X
 . (86)

Note that the first term on the right-hand side of the above equation does not depend on

π. Thus we do not need to calculate this term for M-step. To calculate the second term it

is sufficient to calculate E
π̂(k)

[
Zij |X

]
. To do that denote ej = (0, . . . , 0, 1, 0, . . . , 0)T for the

j-th canonical vector. Now with the help of Bayes theorem for densities (see e.g. Theorem

3.21 of Anděl, 2007) one can calculate

E
π̂(k)

[
Zij |X

]
= E

π̂(k)

[
Zij |Xi

]
= P

π̂(k)(Zij = 1 |Xi) = fZ|X(ej |Xi; π̂
(k))

=
fX|Z(Xi|ej ; π̂(k))fZ(ej ; π̂

(k))

fX(Xi;π(k))
=

fj(Xi) π̂
(k)
j∑G

l=1 fl(Xi) π̂
(k)
l

=: z
(k)
ij .

M-step in a detail: Note that with the help of the previous step and (86)

Q
(
π, π̂(k)

)
= const+

n∑
i=1

G∑
j=1

z
(k)
ij log πj .

Analogously as when calculating the maximum likelihood estimator in multinomial distribu-

tion one can show that the updated value of the estimate of π is given by

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)) =

1

n

n∑
i=1

z
(k)
i ,

where z
(k)
i =

(
z

(k)
i1 , . . . , z

(k)
iG

)T
and so π̂

(k+1)
j = 1

n

∑n
i=1 z

(k)
ij .
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6.1 General description of the EM-algorithm

Denote the observed random variables as Yobs and the unobserved (missing) random variables

Ymis. Let f(y;θ) is the joint density (with respect to a σ-finite measure µ) of Y = (Yobs,Ymis)
and denote `Cn (θ) the complete log-likelihood of Y . Our task is to maximize the observed

log-likelihood `obs(θ) = log f(Yobs;θ), where f(yobs;θ) is the density of Yobs. Note that with

the help of the complete log-likelihood one can write

`obs(θ) = `Cn (θ)− log f(Ymis|Yobs;θ), (87)

where f(ymis|yobs;θ) stands for the conditional density of Ymis given Yobs = yobs. Finally

denote

Q(θ, θ̃) = E
θ̃

[
`Cn (θ) |Yobs

]
. (88)

EM-algorithm runs as follows:

Let θ̂
(k)

be the result of the k-th iteration of the EM-algorithm. The next iteration θ̂
(k+1)

is computed in two steps:

E-step: Calculate Q
(
θ, θ̂

(k))
.

M-step: Find θ̂
(k+1)

= arg maxθ∈ΘQ
(
θ, θ̂

(k))
.

Theorem 17. Let `obs(θ) be the observed likelihood and θ̂
(k)

be a result of the k-th iteration

of the EM-algorithm. Then

`obs

(
θ̂

(k+1)
)
≥ `obs

(
θ̂

(k)
)
.

Proof. Note that the left-hand side of (87) does not depend on Ymis and thus the same holds

true also for the right-hand side. So one can write

`obs(θ) = E
θ̂
(k) [`Cn (θ) |Yobs]− E

θ̂
(k)

[
log fθ(Ymis|Yobs)

∣∣Yobs]
=: Q

(
θ, θ̂

(k)
)
−H

(
θ, θ̂

(k)
)
. (89)

From the M -step one knows that

θ̂
(k+1)

= arg max
θ∈Θ

Q
(
θ, θ̂

(k)
)
⇒ Q

(
θ̂

(k+1)
, θ̂

(k)
)
≥ Q

(
θ̂

(k)
, θ̂

(k)
)
. (90)
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Further with the help of Jensen’s inequality one gets

H
(
θ, θ̂

(k)
)

= E
θ̂
(k)

 log

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+ E
θ̂
(k)

[
log f

(
Ymis|Yobs; θ̂

(k))
|Yobs

]
Jensen
≤ log

E
θ̂
(k)

 log

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+H
(
θ̂

(k)
, θ̂

(k)
)

= log

∫ f(ymis|Yobs;θ)

f
(
ymis|Yobs; θ̂

(k)) · f(ymis|Yobs; θ̂(k))
dµ(ymis)

+H
(
θ̂

(k)
, θ̂

(k)
)

= log(1) +H
(
θ̂

(k)
, θ̂

(k)
)

= H
(
θ̂

(k)
, θ̂

(k)
)
. (91)

Now with the help of (89), (90) and (91) one gets

`obs

(
θ̂

(k+1)
)
− `obs

(
θ̂

(k)
)

= Q
(
θ̂

(k+1)
, θ̂

(k)
)
−Q

(
θ̂

(k)
, θ̂

(k)
)

−
[
H
(
θ̂

(k+1)
, θ̂

(k)
)
−H

(
θ̂

(k)
, θ̂

(k)
)]
≥ 0,

which completes the proof.

In what follows we make the following regularity assumptions.

• The parameter space Θ is a subset of Rp.

• The set Θ0 =
{
θ ∈ Θ : `obs(θ) ≥ `obs(θ0)

}
is compact for any θ0 ∈ Θ such that

`obs(θ0) > −∞.

• `obs(θ) is continuous in Θ and differentiable in the interior of Θ.

Theorem 18. Let the function Q(θ, θ̃) defined in (88) be continuous both in θ and θ̃. Then all

the limits points of any instance
{
θ̂

(k)}
are stationary points of `obs(θ). Further

{
`obs
(
θ̂

(k))}
converges monotonically to some value `∗ = `obs(θ

∗), where θ∗ is a stationary point of `obs(θ).

Proof. See Wu (1983).

Note that if θ∗ is a stationary point of `obs(θ), then

∂`obs(θ)

∂θ

∣∣∣∣
θ=θ∗

= 0p.

Thus by Theorem 18 the EM-algorithm finds a solution of the system of log-likelihood equa-

tions but in generally there is no guarantee that this is a global maximum of `obs(θ).

Corollary 2. Let the assumptions of Theorem 18 be satisfied. Further suppose that the

function `obs(θ) has a unique maximum θ̂n that is the only stationary point. Then θ̂
(k)
→ θ̂n

as k →∞.
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6.2 Rate of convergence of EM-algorithm

Note that in the M -step of the algorithm there might not be a unique value that maximizes

Q
(
θ, θ̂

(k)
)

. Thus denote the set of maximizing points as M
(
θ̂

(k)
)

, i.e.

M
(
θ̂

(k)
)

=
{
θ̃ : Q

(
θ̃, θ̂

(k)
)

= max
θ∈Θ

Q
(
θ, θ̂

(k)
)}

Then one needs to choose θ̂
(k)

as an element of the set M
(
θ̂

(k)
)

. Thus let M : Θ → Θ be

a mapping such that

θ̂
(k+1)

= M
(
θ̂

(k)
)
.

Let θ̂
(k)
→ θ∗ as k →∞. Assuming that M is sufficiently smooth one gets the approxima-

tion

θ̂
(k+1)

= M
(
θ̂

(k)
)

= M(θ∗)︸ ︷︷ ︸
=θ∗

+
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) .
Thus

θ̂
(k+1)

− θ∗ =
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) (92)

and the Jacobi matrix ∂M(θ)

∂θT

∣∣∣
θ=θ∗

measures approximately the rate of convergence. It can

be shown that
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

= [ICn (θ∗)]−1Imisn (θ∗), (93)

where

ICn (θ) = − 1

n

∂2`Cn (θ)

∂θ ∂θT

is the empirical Fisher information matrix from the complete data and

Imisn (θ) = − 1

n

∂2 log f(Ymis|Yobs;θ)

∂θ ∂θT
,

is the empirical Fisher information matrix of the contribution of the missing data.

Note that by (92) and (93) in the presence of missing data the convergence is only linear.

Further the bigger proportion of missing data the ‘bigger’ Imisn (θ) and the slower speed of

convergence.

6.3 The EM algorithm in exponential families

Let the complete data Y have a density with respect to a σ-finite measure µ given by

f(y;θ) = exp

{ p∑
j=1

aj(θ)Tj(y)

}
b(θ) c(y) (94)

76



and the standard choice of the parametric space is

Θ =

{
θ :

∫
exp

{ p∑
j=1

aj(θ)Tj(y)

}
c(y) dµ(y) <∞

}
.

Note that T(Y) =
(
T1(Y), . . . , Tp(Y)

)T
is a sufficient statistic for θ.

The log-likelihood of the complete data is now given by

`Cn (θ) =

p∑
j=1

aj(θ)Tj(Y) + log b(θ) + const.,

which yields that the function Q from the EM-algorithm is given by

Q
(
θ, θ̂

(k)
)

= E
θ̂
(k)

[
`Cn (θ)|Yobs

]
=

p∑
j=1

aj(θ)E
θ̂
(k)

[
Tj(Y)

∣∣Yobs]+ log b(θ) + const.

=

p∑
j=1

aj(θ) T̂
(k)
j + log b(θ) + const.,

where we put T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs].
The nice thing about exponential families is that in the E-step of the algorithm we do not

need to calculate Q
(
θ, θ̂

(k)
)

for each θ separately but it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs], j = 1, . . . , p,

and in the M-step we maximize

θ̂
(k+1)

= arg max
θ∈Θ

{ p∑
j=1

aj(θ) T̂
(k)
j + log b(θ)

}
. (95)

Interval censoring

Let −∞ = d0 < d1 < . . . < dM =∞ be a division of R. Further let Y1, . . . , Yn be independent

and identically distributed random variables whose exact values are not observed. Instead

of each Yi we only know that Yi ∈ (dqi−1, dqi ], for some qi ∈ {1, . . . ,M}. Thus we observed

independent and identically distributed random variables X1, . . . , Xn such that Xi = qi if

Yi ∈ (dqi−1, dqi ].

Suppose now that Yi has a density f(y;θ) of the form

f(y;θ) = exp

{ p∑
j=1

aj(θ) tj(y)

}
b1(θ) c1(y).
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Thus the joint density of the random sample Y1, . . . , Yn is of the form (94) where

Tj(Y) =

n∑
i=1

tj(Yi), j = 1, . . . , p.

Thus in the E-step of the EM-algorithm it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣X1, . . . , Xn

]
=

n∑
i=1

E
[
tj(Yi) |Xi

]
, j = 1, . . . , p,

and the M-step is given by (95) where b(θ) = bn1 (θ).

Example 44. Suppose that Yi ∼ Exp(λ), i.e. f(y;λ) = λ e−λy I{y > 0}. Thus p = 1,

t1(y) = y, a1(λ) = −λ and b1(λ) = λ.

In the E-step one needs to calculate E λ̂(k) [Yi |Xi]. Note that the conditional distribution

of Yi given that Yi ∈ (a, b] has a density λe−λy

e−λa−e−λb
I{y ∈ (a, b]}. Thus with the help of the

integration by parts

Ŷ
(k)
i := E λ̂(k) [Yi |Xi = qi] =

1

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

∫ dqi

dqi−1

x λ̂(k)e−λ̂
(k)x dx

=
dqi−1 e−λ̂

(k)dqi−1 − dqie−λ̂
(k)dqi

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

+
1

λ̂(k)

and with the help of (95) one gets that

λ̂(k+1) = arg max
λ>0

{
Q
(
λ, λ̂(k)

)}
= arg max

λ>0

{
− λ

n∑
i=1

Ŷ
(k)
i + n log λ

}
=

1
1
n

∑
Ŷ

(k)
i

.

6.4 Some further examples of the usage of the EM algorithm

Example 45. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = w 1
σ1
ϕ
(x−µ1

σ1

)
+ (1− w) 1

σ2
ϕ
(x−µ2

σ2

)
,

where w ∈ [0, 1], µ1, µ2 ∈ R, σ2
1, σ

2
2 ∈ (0,∞) are unknown parameters and

ϕ(x) = 1√
2π

exp{−x2/2}

is the density of the standard normal distribution. Describe the EM algorithm to find the

maximum likelihood estimates of the unknown parameters.

Literature: McLachlan and Krishnan (2008) Chapters 1.4.3, 1.5.1, 1.5.3, 2.4, 2.7, 3.2, 3.4.4,

3.5.3, 3.9 and 5.9
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7 Missing data

For i = 1, . . . , I let Y i = (Yi1, . . . , Yini)
T represent the data of the i-th subject that could be

ideally observed. Let Ri = (Ri1, . . . , Rini)
T, where

Rij =

{
1, if Yij is observed ,

0, otherwise.

Let Yobs represent Yij such that Rij = 1 and Ymis represent Yij such that Rij = 0. Thus the

observed data are given by

(Yobs,R1, . . . ,RI) = (Yobs,R),

where R = (R1, . . . ,RI). Note that the complete data can be represented as

(Y 1, . . . ,Y I ,R) = (Yobs,YmisR) =: (Y,R).

Suppose that the distribution of Y depends on a parameter θ and the conditional distribu-

tion of R given Y depends on ψ. Then the joint density of the complete data can be written

as

f(y, r;θ,ψ) = f(r|y;ψ) f(y;θ).

Now integrating the above density with respect to ymis yields the density of the observed

data

f(yobs, r;θ,ψ) =

∫
f(yobs,ymis;θ) f(r|yobs,ymis;ψ) dµ(ymis). (96)

In what follows we will say that the parameters θ and ψ are separable if θ ∈ Ω1, ψ ∈ Ω2

and (θ,ψ)T ∈ Ω1 × Ω2.

7.1 Basic concepts for the mechanism of missing

Depending on what can be assumed about the conditional distribution of R given Y we

distinguish three situations.

Missing completely at random (MCAR). Suppose that R is independent of Y, thus one can

write f(r|y;ψ) = f(r;ψ) and with the help of (96) one gets

f(yobs, r;θ,ψ) = f(yobs;θ)f(r;ψ),

which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R;ψ).

Note that if the parameters θ and ψ are separable then the second term on the right-hand

side of the above equation does not depend on θ and can be ignored when one is interested

only in θ.
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Example 46. Let Y1, . . . , Yn be a random sample from the exponential distribution Exp(λ).

Let R1, . . . , Rn be a random sample independent with Y1, . . . , Yn and Ri follows a Bernoulli

distribution with a parameter pi (e.g. pi = 1
i ).

Missing at random (MAR). Suppose that the conditional distribution ofR given Y is the same

as the conditional distribution of R given Yobs. Thus one can write f(r|y;ψ) = fψ(r|yobs;ψ)

and with the help of (96)

f(yobs, r;θ,ψ) = f(yobs;θ)f(r|yobs;ψ),

which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R|Yobs;ψ).

Note that although MAR is not so strict in assumptions as MCAR, also here the second term

on the right-hand side of the above equation does not depend on θ provided θ and ψ are

separable.

Example 47. Let (XT
1 , Y1, R1)T, . . . , (XT

n , Yn, Rn)T be independent and identically distributed

random vectors, where the covariates X1, . . . ,Xn are always completely observed. Let Ri

stands for the indicator of missing of Yi and

P(Ri = 1 |Xi, Yi) = f(Xi),

where f(x) is a given (but possibly unknown) function.

Missing not at random (MNAR). In this concept neither the distribution of R is not inde-

pendent of Y nor the conditional distribution of R given Yobs is independent of Ymis. Thus

the density of the observed data is generally given by (96). To proceed one has to make some

other assumptions about the conditional distribution of R given Y.

Example 48. Maximum likelihood estimator for the right-censored data from an exponential

distribution.

The general problem of all the concepts is that if missing is not a part of the

design of the study then any assumptions about the relationship of Ymis and R

cannot be verified as we do not observe Ymis.
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7.2 Methods for dealing with missing data

Complete case analysis (CCA)

In the analysis we use only the subjects with the full record, i.e. only subjects for which no

information is missing.

Advantages and disadvantages:

+ simplicity;

− the inference about θ is ‘biased’ (i.e. the parameter θ is generally not identified), if

MCAR does not hold;

− even if MCAR holds, then this method may not provide an effective use of data.

Example 49. Suppose that we have five observations on each subject. Each observation is

missing with probability 0.1 and the observations are missing independently on each other.

Thus on average only 0.95 .
= 0.59 per cent of the records will be complete.

Available case analysis (ACA)

In each of the analysis one uses all the data that are available for this particular analysis.

Example 50. Let X1, . . . ,Xn be a random sample from N((µ1, µ2, µ3)T,Σ3×3). Then the

covariance σij = cov(X1i, X1j) is estimated from all the vectors X1, . . . ,Xn for which both

the i-th and the j-th coordinate is observed.

Advantages and disadvantages:

+ simplicity;

+ more data can be used than with CCA;

− the inference about θ is biased, if MCAR does not hold;

− it can result in estimates with strange feauters (e.g. there is no guarantee that the

estimate of the variance matrix Σ̂ in Example 50 is positive semidefinite).

Direct (ignorable) observed likelihood

The inference is based on `obs(θ) = log f(Yobs;θ), that is the distribution of R is ‘ignored’.

Advantages and disadvantages:

+ If the parameters θ and ψ are separable then this method is not biased and does not

loose any information provided MAR holds;

− The observed log-likelihood `obs(θ) might be difficult to calculate.
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Imputation

In this method the missing observations are estimated (‘imputed’) and then one works with

the data as if there were no missing values.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimates of

the unknown parameters.

+ One can use the completed dataset also for other analyses.

− The standard estimates of the (asymptotic) variances of the estimates of the parameters

computed from the completed dataset are too optimistic (too low). The reason is that an

appropriate estimate of variance should reflect that part of the data has been imputed.

Example 51. Suppose that X1, . . . , Xn is a random sample. Further suppose that we observe

only X1, . . . , Xn0 for some n0 < n and the remaining observations Xn0+1, . . . , Xn are missing.

For i = n0, . . . , n let the missing observations be estimated as X̂i = 1
n0

∑n0
j=1Xj . Then the

standard estimate of µ = EX1 is given by

µ̂n =
1

n

(
n0∑
i=1

Xi +
n∑

i=n0+1

X̂i

)
=

1

n0

n0∑
j=1

Xj

and seems to be reasonable.

But the standard estimate of the variance of µ̂n computed from the completed dataset

̂var(µ̂n) =
S2
n

n
, where S2

n =
1

n− 1

n∑
i=1

(Xi − µ̂n)2

is too low. The first reason is that S2
n as the estimate of var(X1) is too low as

S2
n =

1

n− 1

n0∑
i=1

(Xi − µ̂n)2 =
n0 − 1

n− 1
S2
n0
< S2

n0
.

The second reason is that the factor 1
n assumes that there are n independent observations,

but in fact there are only n0 observations.

Multiple imputation

In this method the missing observations are imputed several times. Formally, for j = 1, . . . ,M

let Ŷ(j)
mis be the imputed values in the j-th round. Further let θ̂1, . . . , θ̂M be the estimates

of the parameter θ from the completed data
(
Yobs, Ŷ

(j)
mis

)
. Then the final estimate of the

parameter θ is given by

θ̂MI =
1

M

M∑
j=1

θ̂j .

82



The advantage of this method is that one can also estimate the (asymptotic) variance of this

estimator by
̂

var(θ̂MI) = VM +
(
1 + 1

M

)
BM , (97)

where

VM =
1

M

M∑
j=1

V̂j and BM =
1

M − 1

M∑
j=1

(
θ̂j − θ̂MI

) (
θ̂j − θ̂MI

)T
,

with V̂j being a standard estimate of the asymptotic variance calculated from the completed

data (Yobs, Ŷ
(j)
mis).

The rational of the formula (97) is as follows. Note that one can think of the imputed

values Ŷmis as a random vector and write

var
(
θ̂MI

)
= E

(
var(θ̂MI | Ŷmis)

)
+ var

(
E (θ̂MI | Ŷmis)

)
.

Now the first term on right-hand side of the above equation is estimated by VM and the

second term is estimated by BM .

Example 52. In Example 51 one can for instance impute the values Xn0+1, . . . , Xn by a ran-

dom sample from N(µ̂, σ̂2), where µ̂ = Xn0 and σ̂2 = S2
n0

are the sample mean and variance

calculated from the observed data. Put V̂j = S
2(j)
n
n , where S

2(j)
n is the sample variance calcu-

lated from the j-th completed sample. Then one can show that

lim
M→∞

VM =
S2
n0

n
a.s., (98)

Further let θ̂j = Y
(j)
n be the sample mean calculated from the j-th completed sample. Then

it can be shown that

lim
M→∞

BM =
S2
n0

(n− n0)

n2
a.s. (99)

Now combining (98) and (99) yields that

lim
M→∞

VM +BM = S2
n0

(
2
n −

n0
n2

)
a.s.

Further it is straightforward to prove that for n0 < n

S2
n0

(
2
n −

n0
n2

)
<
S2
n0

n0
,

where the right-hand side of the above inequality represents the standard estimate of the

variance of Xn0 (that assumes MCAR). This indicates that when doing multiple imputation,

one needs to take into consideration also the variability that comes from the fact that one

uses the estimates µ̂, σ̂2 instead of the true values of µ and σ. This can be done very naturally

within the framework of Bayesian statistics.
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Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimate of

the unknown parameter as well of the variance of this estimate.

− Requires the knowledge of Bayesian approach to statistics to be done properly.

Re-weighting

Roughly speaking in this method each observation is given a weight (wi) that is proportional

to the inverse probability of being observed (πi), i.e.

wi =
1
πi∑

j:Rj=1
1
πj

, i ∈ {j : Rj = 1}.

All the procedures are now weighted with respect to these weights, e.g. the M -estimator of

a parameter θ is given by

θ̂n = arg min
θ∈Θ

∑
i:Ri=1

wi ρ(Xi;θ).

Example 53. Suppose we have a study where for a large number of patients some basic

and cheap measurements have been done resulting in Z1, . . . ,ZN . Now a subsample S of

size n from these patients has been done for some more expensive measurements resulting in

{Xi : i ∈ S}, where S = {j : Rj = 1}.

This method can be also used where one has some auxiliary variables Z1, . . . ,Zn that can

be used to estimate the probabilities πi wit the help of for instance a logistic regression.

Literature: Little and Rubin (2014) Chapters 1.6, 3, 5.3

8 Kernel density estimation

Suppose we have independent identically distributed random variables X1, . . . , Xn drawn from

a distribution with the density f(x) with respect to a Lebesgue measure and we are interested

in estimating this density nonparametrically.

As

f(x) = lim
h→0+

F (x+ h)− F (x− h)

2h
,

a naive estimator of f(x) would be

f̃n(x) =
Fn(x+ hn)− Fn(x− hn)

2hn
=

1

n

n∑
i=1

I{Xi ∈ (x− hn, x+ hn]}
2hn

, (100)
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where Fn(x) = 1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function and (the bandwidth)

hn is a sequence of positive constants going to zero.

It is straightforward to show

E f̃n(x) −−−→
n→∞

f(x) and var
(
f̃n(x)

)
−−−→
n→∞

0,

provided that hn → 0 and at the same time (nhn)→∞.

Note that the estimator (100) can be rewritten as

f̃n(x) =
1

2nhn

n∑
i=1

I
{
− 1 ≤ x−Xi

hn
< +1

}
=

1

nhn

n∑
i=1

w
(
x−Xi
hn

)
, (101)

where w(y) = 1
2 I{y ∈ [−1, 1)} can be viewed as the density of the uniform distribution on

[−1, 1). Generalising (101) we define the kernel estimator of a density as

f̂n(x) =
1

nhn

n∑
i=1

K
(
x−Xi
hn

)
, (102)

where the function K is called a kernel function. Usually the function K is taken as a sym-

metric density of a probability distribution. The common choices of K are summarised in

Table 1.

Epanechnikov kernel: K(x) = 3
4(1− x2) I{|x| ≤ 1}

Triangular kernel: K(x) = (1− |x|) I{|x| ≤ 1}
Uniform kernel: K(x) = 1

2 I{|x| ≤ 1}
Biweight kernel: K(x) = 15

16(1− x2)2 I{|x| ≤ 1}
Tricube kernel: K(x) = 70

81(1− |x|3)3 I{|x| ≤ 1}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 1: Commonly used kernel functions.

Remark 18. Note that:

(i) When compared to a histogram both estimators f̃n(x) and f̂n(x) do not require to

specify the starting point to calculate the intervals.

(ii) As we usually assume that the density f is continuous, the estimator f̂n(x) with a con-

tinuous function K is preferred.

(iii) If K is a density of a probability distribution, then
∫
f̂n(x) dx = 1.
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8.1 Consistency and asymptotic normality

Theorem 19 (Bochner’s theorem). Let the function K satisfy

(B1)

∫ +∞

−∞
|K(y)| dy <∞, (B2) lim

|y|→∞
|y K(y)| = 0. (103)

Further let the function g satisfy
∫ +∞
−∞ |g(y)| dy <∞. Put

gn(x) =
1

hn

∫ +∞

−∞
g(z)K

(
x−z
hn

)
dz,

where hn ↘ 0 as n→∞. Then in each point x of the continuity of g it holds that

lim
n→∞

gn(x) = g(x)

∫ +∞

−∞
K(y) dy. (104)

Proof. Let x be the point of continuity g. We need to show that

lim
n→∞

∣∣∣∣gn(x)− g(x)

∫
K(y) dy

∣∣∣∣→ 0.

Using the substitutions y = x− z and z = y
hn

one can write

gn(x)− g(x)

∫
K(z) dz =

1

hn

∫
g(x− y)K

( y
hn

)
dy − g(x)

hn

∫
K
( y
hn

)
dy

=
1

hn

∫
[g(x− y)− g(x)]K

( y
hn

)
dy.

Before we proceed note that for each fixed δ > 0:

δ

hn
→∞ and

1

δ
sup

t:|t|≥ δ
hn

∣∣tK(t)
∣∣→ 0, as n→∞.

Thus there exists a sequence of positive constants {δn} such that

δn → 0,
δn
hn
→∞ and

1

δn
sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣→ 0, as n→∞. (105)

Taking δn satisfying (105) one can bound∣∣∣∣gn(x)− g(x)

∫
K(y) dy

∣∣∣∣ ≤ 1

hn

∫ δn

−δn

∣∣g(x− y)− g(x)
∣∣ ∣∣K( yhn )∣∣ dy︸ ︷︷ ︸

=:An

+
1

hn

∫
y:|y|≥δn

∣∣g(x− y)− g(x)
∣∣ ∣∣K( yhn )∣∣ dy︸ ︷︷ ︸

=:Bn

. (106)
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Dealing with An. As g is continuous in the point x

An ≤ sup
y:|y|≤δn

∣∣g(x− y)− g(x)
∣∣ ∫ δn

−δn

1
hn

∣∣K( yhn )∣∣ dy = o(1)

∫
R
|K(t)| dt︸ ︷︷ ︸
<∞; (B1)

= o(1), (107)

as n→∞.

Dealing with Bn. Further one can bound Bn with

Bn ≤
1

hn

∫
y:|y|≥δn

∣∣g(x− y)
∣∣∣∣K( yhn )∣∣dy︸ ︷︷ ︸

=:B1n

+
1

hn

∫
y:|y|≥δn

∣∣g(x)
∣∣∣∣K( yhn )∣∣dy︸ ︷︷ ︸

=:B2n

. (108)

Using the substitution t = y
hn

and (105) one gets

B2n =
∣∣g(x)

∣∣ ∫
y:|y|≥δn

1
hn

∣∣K( yhn )∣∣ dy =
∣∣g(x)

∣∣ ∫
t:|t|≥ δn

hn

|K(t)|dt −−−→
n→∞

0. (109)

Finally using (105)

B1n =

∫
y:|y|≥δn

|y|
hn

∣∣K( yhn )∣∣︸ ︷︷ ︸
≤sup

t:|t|≥ δn
hn

|tK(t)|

∣∣g(x− y)
∣∣

|y|
dy ≤ sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣ ∫

y:|y|≥δn

∣∣g(x−y)
∣∣

|y| dy

≤ sup
t:|t|≥ δn

hn

∣∣tK(t)
∣∣ 1

δn

∫ ∣∣g(x− y)
∣∣ dy︸ ︷︷ ︸

=
∫
|g(y)| dy<∞

−−−→
n→∞

0. (110)

Now combining (106), (107), (108), (109) and (110) yields the statement of the theorem.

Remark 19. Note that:

(i) If K is density, then
∫
|K(y)|dy = 1 and assumption (B1) holds.

(ii) Assumption (B2) holds true if K has a bounded support. Further from the last part

of the proof of Theorem 19 (dealing with B1n) it follows that for K with a bounded

support one can drop assumption
∫ +∞
−∞ |g(y)| dy <∞ from Theorem 19.

(iii) If K is a density but with an unbounded support, then assumption (B2) is satisfied for

instance when
∫
|y|K(y) dy <∞, that is there exists the first moment of the distribution

given by the density K.

(iv) If g is uniformly continuous then one can show that also the convergence in (104) is

uniform.
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Theorem 20 (Variance and consistency of f̂n(x)). Let the estimator f̂n(x) be given by (102)

and the function K satisfies (B1) and (B2) introduced in (103). Further, let
∫
K(y) dy = 1,

supy∈R |K(y)| < ∞, hn ↘ 0 as n → ∞ and (nhn) → ∞ as n → ∞. Then at each point of

continuity of f

(i) limn→∞ nhn var
(
f̂n(x)

)
= f(x)

∫
K2(y) dy;

(ii) f̂n(x)
P−−−→

n→∞
f(x).

Proof. Let x be the point of continuity of f .

Showing (i). Let us calculate

var
(
f̂n(x)

)
= var

[
1

nhn

n∑
i=1

K
(
x−Xi
hn

)]
=

1

nh2
n

var
[
K
(
x−X1
hn

)]
=

1

nh2
n

[
EK2

(
x−X1
hn

)
−
(
EK

(
x−X1
hn

))2
]
. (111)

Now using Theorem 19

1

hn
EK

(
x−X1
hn

)
=

∫
1

hn
K
(x−y
hn

)
f(y) dy −−−→

n→∞
(x)

∫
K(y) dy = f(x). (112)

Analogously

1

hn
EK2

(
x−X1
hn

)
=

1

hn

∫
K2
(x−y
hn

)
f(y) dy −−−→

n→∞
(x)

∫
K2(y) dy. (113)

where we have used again Theorem 19 with K replaced by K2. Note that assumptions (B1)

and (B2) are satisfied as

ad (B1) :

∫
|K2(y)|dy ≤ sup

y∈R
|K(y)|︸ ︷︷ ︸
<∞

∫
|K(y)|dy︸ ︷︷ ︸
<∞

<∞

and

ad (B2) : lim
|y|→∞

|yK2(y)| ≤ sup
y∈R
|K(y)|︸ ︷︷ ︸
<∞

lim
|y|→∞

|yK(y)|︸ ︷︷ ︸
=0

= 0.

Now combining (111), (112) and (113) yields

nhn var
(
f̂n(x)

)
=

1

hn
EK2

(
x−X1
hn

)
︸ ︷︷ ︸
→f(x)

∫
K2(y) dy

−
[

1

hn
EK

(
x−X1
hn

)]2

︸ ︷︷ ︸
→f(x)

hn −−−→
n→∞

f(x)

∫
K2(y) dy.

Showing (ii). Note that with the help of (112)

E f̂n(x) =
1

hn
EK

(
x−X1
hn

)
−−−→
n→∞

f(x). (114)
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Now with the help of (i) and (114)

E
[
f̂n(x)− f(x)

]2
= var

[
f̂n(x)

]
+
[
E f̂n(x)− f(x)

]2
−−−→
n→∞

0,

which implies the consistency of f̂n(x).

Remark 20. Note that Theorem 20 implies only pointwise consistency. It would be much

more difficult to show that supx∈R
∣∣f̂n(x)− f(x)

∣∣ P−−−→
n→∞

0.

Theorem 21 (Asymptotic normality of f̂n(x)). Let the assumptions of Theorem 20 be satis-

fied and further that f(x) > 0. Then

f̂n(x)− E f̂n(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1).

Proof. From Theorem 20 we know that

var
(
f̂n(x)

)
f(x)R(K)
nhn

−−−→
n→∞

1, (115)

where R(K) =
∫
K2(y) dy. Thus thanks to CS (Theorem 2) it is sufficient to consider

f̂n(x)− E f̂n(x)√
f(x)R(K)
nhn

=

1√
nhn

∑n
i=1

[
K
(
x−Xi
hn

)
− EK

(
x−Xi
hn

)]√
f(x)R(K)

=

n∑
i=1

Xn,i,

where

Xn,i =
1√
nhn

K
(
x−Xi
hn

)
− EK

(
x−Xi
hn

)√
f(x)R(K)

, i = 1, . . . , n,

are independent identically random variables (with the distribution depending on n). Thus

the statement would follow from the Lindeberg-Feller central limit theorem (see e.g. Proposi-

tion 2.27 in van der Vaart, 2000), provided its assumptions are satisfied. It is straightforward

to verify the assumptions as

EXn,1 = · · · = EXn,n = 0 and

n∑
i=1

var(Xn,i) −−−→
n→∞

1.

Further for each ε > 0 for all sufficiently large n it holds that uniformly in i = 1, . . . , n:

I
{
|Xn,i| ≥ ε

}
= I
{

1√
nhn

∣∣∣∣∣K
(
x−Xi
hn

)
− EK

(
x−Xi
hn

)√
f(x)R(K)

∣∣∣∣∣ ≥ ε
}

≤ I
{

1√
nhn

2 supy |K(y)|√
f(x)R(K)

≥ ε
}

= 0,
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which implies that the ‘Feller-Lindeberg condition’

lim
n→∞

n∑
i=1

E
[
X2
n,i I
{
|Xn,i| ≥ ε

}]
= 0

is satisfied.

Remark 21. Note that Theorem 21 implies

f̂n(x)− f(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1), (116)

only if

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
bias(f̂n(x))√
var
(
f̂n(x)

) −−−→n→∞
0,

which depends on the rate of hn. As we will see later, typically we have

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
O(h2

n)√
O
(

1
nhn

) = O
(√

nh5
n

)

and thus limn→∞ nh
5
n = 0 is needed to show (116). But this would require that hn = o

(
n−1/5

)
which would exclude the optimal bandwidth choice, see the next section.

8.2 Bandwidth choice

Basically we distinguish two situations:

(i) hn depends on x (on the point where we estimate the density f), then we speak about

the local bandwidth;

(ii) the same hn is used for all x, then we speak about the global bandwidth.

The standard methods of choosing the bandwidth are based on the mean squared error

MSE(f̂n(x)) = var
(
f̂n(x)

)
+
[
bias

(
f̂n(x)

)]2
.

Note that by Theorem 20

var
(
f̂n(x)

)
=
f(x)R(K)

nhn
+ o
(

1
nhn

)
, (117)

where R(K) =
∫
K2(y) dy.

To approximate the bias suppose that f is twice differentiable in x that is an interior

point of the support of f . Further let the kernel K be a bounded symmetric function with
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a bounded support such that
∫
K(t) dt = 1,

∫
tK(t) dt = 0 and

∫
|t2K(t)|dt < ∞. Then for

all sufficiently large n

E f̂n(x) = 1
hn

EK
(
x−X1
hn

)
=

∫
1

hn
K
(x−y
hn

)
f(y) dy

=

∫
K(t)f(x− thn) dt =

∫
K(t)

[
f(x)− thnf ′(x) + 1

2 t
2 h2

n f
′′(x) + o(h2

n)
]

dt

= f(x) + 1
2 h

2
n f
′′(x)µ2K + o(h2

n),

where µ2K =
∫
y2K(y) dy. Thus one gets

bias
(
f̂n(x)

)
= E f̂n(x)− f(x) = 1

2 h
2
n f
′′(x)µ2K + o(h2

n),

which together with (117) implies

MSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f ′′(x)]2µ2

2K + o
(

1
nhn

)
+ o
(
h4
n

)
. (118)

Ignoring the remainder o(·) terms in (118), AMSE (asymptotic mean squared error) of

f̂n(x) is given by

AMSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f ′′(x)]2µ2

2K (119)

Minimising (119) one gets asymptotically optimal local bandwidth (i.e. bandwidth that min-

imises the AMSE)

h(opt)
n (x) = n−1/5

[
f(x)R(K)

[f ′′(x)]2 µ2
2K

]1/5

. (120)

To get a global bandwidth it is useful to define (A)MISE - (asymptotic) mean inte-

grated squared error. Introduce

MISE
(
f̂n
)

=

∫
MSE

(
f̂n(x)

)
dx =

∫
E
[
f̂n(x)− f(x)

]2
dx,

and its asymptotic approximation

AMISE
(
f̂n
)

=

∫
AMSE

(
f̂n(x)

)
dx =

∫
1

nhn
f(x)R(K) +

[f ′′(x)]2µ22K
4 h4

n dx.

=
R(K)

nhn
+ h4

n

R(f ′′)µ2
2K

4
, (121)

where R(f ′′) =
∫ [
f ′′(x)

]2
dx.

Minimising (121) one gets asymptotically optimal global bandwidth (i.e. bandwidth that

minimises the AMISE)

h(opt)
n = n−1/5

[
R(K)

R(f ′′)µ2
2K

]1/5

. (122)
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Remark 22. Note that after substitution of the optimal bandwidth (122) into (121) one gets

that the optimal AMISE is given by

5
[
R(f ′′)

]1/5
4n4/5

[
R(K)

]4/5
µ

2/5
2K .

It can be shown that if we consider kernels that are densities of probability distributions

then
[
R(K)

]4/5
µ

2/5
2K is minimised for K being an Epanechnikov kernel. Further note that for

K̃(x) =
√
µ2K K

(√
µ2K x

)
one has

µ
2K̃

= 1 and
[
R(K̃)

]4/5
=
[
R(K)

]4/5
µ

2/5
2K

and the optimal AMISE is the same for K̃ and K. That is why some authors prefer to use

the kernels in a standardised form so that µ2K = 1. Some of the most common kernels having

this property are summarised in Table 2.

Epanechnikov kernel: K(x) = 3
4
√

5

(
1− x2

5

)
I
{
|x| ≤

√
5
}

Triangular kernel: K(x) = 1√
6
(1− |x|) I

{
|x| ≤

√
6
}

Uniform kernel: K(x) = 1
2
√

3
I
{
|x| ≤

√
3
}

Biweight kernel: K(x) = 15
16
√

7
(1− x2)2 I

{
|x| ≤

√
7
}

Tricube kernel: K(x) = 70
√

243
81
√

35
(1− |x|3)3 I

{
|x| ≤

√
35
243

}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 2: Some kernel functions standardised so that µ2K = 1.

8.2.1 Normal reference rule

The problem of asymptotically optimal bandwidths given in (120) and (122) is that the

quantities f(x), f ′′(x) and R(f ′′) are unknown. Normal reference rule assumes that f(x) =
1
σ ϕ(x−µσ ), where ϕ(x) is density of a standard normal distribution.

Then

f ′(x) = 1
σ2ϕ

′(x−µ
σ

)
, f ′′(x) = 1

σ3ϕ
′′(x−µ

σ

)
,

where

ϕ′(x) = 1√
2π

e−
x2

2 (−x) = −x√
2π

e−
x2

2 ,

ϕ′′(x) = −1√
2π

e−
x2

2 + x2√
2π

e−
x2

2 = (x2 − 1)ϕ(x).

Thus with the help of (120) one gets

ĥn(x) = n−
1
5 σ̂

[
R(K)

µ2
2K

1[ (x−µ̂)2

σ̂2 − 1
]2
ϕ
(x−µ̂

σ̂

)]
1
5

,
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where µ̂ a σ̂2 are some estimates of the unknown parameters µ and σ2, for instance µ̂ =

Xn, σ̂
2 = 1

n−1

∑n
i=1(Xi −Xn)2.

For the global bandwidth choice we need to calculate

R(f ′′) =

∫ [
f ′′(x)

]2
dx =

∫ {
1

σ3

[(x−µ
σ

)2 − 1
]
ϕ
(x−µ

σ

)}2

dx

=
1

σ6

∫ [(x−µ
σ

)2 − 1
]2
ϕ2
(x−µ

σ

)
dx

=

∣∣∣∣∣ t = x−µ
σ

dt = dx
σ

∣∣∣∣∣ =
1

σ5

∫
(t2 − 1)2ϕ2(t) dt

=
1

σ5

∫
(t4 − 2t2 + 1)

1

2π
e−t

2
dt =

1

σ52
√
π

∫
(t4 − 2t2 + 1)

1√
π

e−t
2

︸ ︷︷ ︸
∼N(0, 1

2)

dt

=
1

2σ5
√
π
E (Y 4 − 2Y 2 + 1) =

1

2σ5
√
π

[
3 ·
(

1
2

)2 − 2 · 1
2 + 1

]
=

3

8σ5
√
π
,

where Y ∼ N
(
0, 1

2

)
. Thus the asymptotically optimal global bandwidth would be

h(opt)
n = σ n−1/5

[
8
√
π R(K)

3µ2
2K

]1/5

.

Further if one uses a Gaussian kernel K(y) = 1√
2π

e−
y2

2 , one gets

µ2K =

∫
y2K(y) dy = 1,

R(K) =

∫
K2(y) dy = 1

2
√
π

∫
1√
π

e−y
2

dy = 1
2
√
π
,

which results in

h(opt)
n = σ n−1/5

[
4

3

]1/5
.
= 1.06σ n−1/5

The standard normal reference rule is now given by

hn = 1.06n−1/5 min
{
Sn, ĨQRn

}
, (123)

where

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄n)2, and ĨQRn =
F−1
n (0.75)− F−1

n (0.25)

1.34
.

It was found out that the bandwidth selector (123) works well if the true distribution is ‘very

close’ to the normal distribution. But at the same time the bandwidth is usually too large

for distributions ‘moderately’ deviating from normal distribution. That is why some authors

prefer to use

hn = 0.9n−1/5 min
{
Sn, ĨQRn

}
. (124)

For a more detailed argumentation see Silverman (1986), page 48.
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8.2.2 Least-squares cross-validation

By this method we choose the bandwith as

hLSCVn = arg min
hn>0

L(hn),

where

L(hn) =

∫ [
f̂n(x)

]2
dx− 2

n

n∑
i=1

f̂−i(Xi),

with f̂−i(x) = 1
(n−1)hn

∑n
j=1,j 6=iK

(x−Xj
hn

)
being the kernel density estimator based on a sample

that leaves out the i-th observation.

The rational behind the above method is as follows. Suppose we are interested in minimizing

MISE
(
f̂n
)
. Note that MISE

(
f̂n
)

can be rewritten as

MISE
(
f̂n
)

=

∫
E
(
f̂n(x)− f(x)

)2
dx

Fub.
= E

∫
f̂2
n(x)− 2f̂n(x)f(x)− f2(x) dx

= E

∫
f̂2
n(x) dx− 2E

∫
f̂n(x)f(x) dx+

∫
f2(x) dx.

An unbiased estimator for E
∫
f̂2
n(x) dx is simply given by

∫
f̂2
n(x) dx. Further the term∫

f2(x) dx does not depen on hn. Thus it remains to estimate
∫
f̂n(x)f(x) dx. Let us consider

the following estimate

Ân =
1

n

n∑
i=1

f̂−i(Xi),

where

f̂−i(x) =
1

(n− 1)hn

n∑
j=1,j 6=i

K
(x−Xj

hn

)
is the estimate of f(x) that is based the sample without the i-th observation Xi. In what

follows it is shown that Ân is an unbiased estimator of
∫
f̂n(x)f(x) dx. Note that

E Ân =
1

n

n∑
i=1

E f̂−i(Xi).

Now with the help of (112) and (114)

E f̂−i(Xi) = E

[
1

(n− 1)hn

n∑
j=1,j 6=i

K
(Xi−Xj

hn

)]
=

1

hn
EK

(
X1−X2
hn

)
=

1

hn

∫ ∫
K
(x−y
hn

)
f(x)f(y) dx dy

=

∫ [∫
1

hn
K
(x−y
hn

)
f(y) dy

]
︸ ︷︷ ︸

=E f̂n(x)

f(x) dx =

∫
E f̂n(x)f(x) dx

Fub
= E

∫
f̂n(x)f(x) dx.
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Thus Ân is an unbiased estimator of E
∫
f̂n(x)f(x) dx and L(hn) is an unbiased estimator of

E
∫
f̂2
n(x) dx− 2E

∫
f̂n(x)f(x) dx.

Remark 23. Stone (1984) has proved that

ISE
(
h

(LSCV )
n

)
minhn ISE(hn)

alm. surely−−−−−−−→
n→∞

1,

where ISE(hn) =
∫

(f̂n(x)−f(x))2 dx. But the simulations show that the variance of h
(LSCV )
n

(for not too big sample sizes) is rather large. Thus this method cannot be used blindly.

8.2.3 Biased-cross validation

This method aims at minimizing the AMISE given by (121). Note that to estimate AMISE

it is sufficient to estimate R(f ′′). It was found that the straightforward estimator R
(
f̂ ′′n
)

is

(positively) biased. To correct for the main term in the bias expansion it is recommended to

use R
(
f̂ ′′n
)
− R(K′′)

nh5n
instead. That is why in this method the bandwidth is chosen as

h(BCV )
n = arg min

hn>0
B(hn),

where

B(hn) =
R(K)

nhn
+ 1

4 h
4
n µ

2
2K

[
R
(
f̂ ′′n
)
− R(K ′′)

nh5
n

]
.

Remark 24. It can be proved that ĥ
(BCV )
n

h
(opt)
n

P−−−→
n→∞

1, where h
(opt)
n is given by (120).

8.3 Higher order kernels

By a formal calculation (for sufficiently large n, sufficiently smooth f and x an interior point

of the support) one gets

E f̂n(x) =

∫
K(t)f(x− thn) dt

= f(x)

∫
K(t) dt− f ′(x)hn

∫
tK(t) dt

+
f ′′(x)

2
h2
n

∫
t2K(t) dt− f ′′′(x)

3!
h3
n

∫
t3K(t) dt+ . . . .

The kernel of order p is such that
∫
K(t) dt = 1 and∫

tjK(t) dt = 0, j = 1, . . . , p− 1, and

∫
tpK(t) dt 6= 0.

But note that if the above equations holds for p > 2, then (among others)
∫
t2K(t) dt =

0, which implies that K cannot be non-negative. As a consequence it might happen that

f̂n(x) < 0.
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One of possible modifications of a Gaussian kernel to get a kernel of order 4 is given by

K(y) = 1
2 (3− y2) 1√

2π
e−y

2/2.

8.4 Mirror-reflection

The standard kernel density estimator (102) is usually not consistent in the points, where the

density f is not continuous. These might be the boundary points of the support. Even if the

density is continuous at these points, the bias at these points is usually only of order O(hn)

and not O(h2
n). There are several ways how to improve the performance of f̂n(x) close to the

boundary points. The most straightforward is the mirror-reflection method.

To illustrate this method suppose we know that the support of the distribution with the

density f is [0,∞). The modified kernel density estimator that uses mirror-reflection is given

by

f̂ (MR)
n (x) =

{
1

nhn

∑n
i=1K

(
x−Xi
hn

)
+ 1

nhn

∑n
i=1K

(
x+Xi
hn

)
, x ≥ 0,

0, x < 0.
(125)

Note that the first term on the right-hand side of (125) (for x ≥ 0) is the standard kernel

density estimator f̂n(x). The second term on the right-hand side of (125) is in fact also

a standard kernel density estimator f̂n(x), but based on the ‘mirror reflected’ observations

−X1, . . . ,−Xn. This second term is introduced in order to compensate for the mass of the

standard kernel density estimator f̂n(x) that falls outside the support [0,∞).

Literature: Wand and Jones (1995) Chapters 2.5, 3.2, 3.3

9 Kernel regression

Suppose that one observes independent and identically distributed bivariate random vectors

(X1, Y1)T, . . . , (Xn, Yn)T. Our primary interest in this section is to estimate the conditional

mean function of Y1 given X1 = x, i.e.

m(x) = E [Y1 |X1 = x]

without assuming any parametric form of m(x).

In what follows it will be also useful to denote the conditional variance function as

σ2(x) = var[Y1 |X1 = x].
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9.1 Local polynomial regression

Suppose that the function m is a p-times differentiable function at the point x then for Xi

‘close’ to x one can approximate

m(Xi)
.
= m(x) +m′(x) (Xi − x) + . . .+ m(p)(x)

p! (Xi − x)p. (126)

Thus ‘locally’ one can view and estimate the function m(x) as a polynomial. This motivates

defininition of the local polynomial estimator as

β̂(x) =
(
β̂0(x), . . . , β̂p(x)

)T
= arg min

b0,...,bp

n∑
i=1

[
Yi − b0 − b1(Xi − x)− . . .− bp(Xi − x)p

]2
K
(
Xi−x
hn

)
, (127)

where K is a given kernel function and hn is a smoothing parameter (bandwidth) going to

zero as n→∞.

Comparing (126) and (127) one gets that β̂j(x) estimates m(j)(x)
j! . Often we are interested

only in m(x) which is estimated by β̂0(x).

Put

Y =


Y1

Y2

. . .

Yn

 , Xp(x) =


1 (X1 − x) . . . (X1 − x)p

1 (X2 − x) . . . (X2 − x)p

. . . . . . . . . . . .

1 (Xn − x) . . . (Xn − x)p


and W(x) for the diagonal matrix with the i-th element of the diagonal given by K

(
Xi−x
hn

)
.

Note that the optimisation problem in (127) can be written as the weighted least squares

problem

β̂(x) = arg min
b∈Rp+1

{(
Y− Xp(x) b

)TW(x)
(
Y− Xp(x) b

)}
, (128)

where b = (b0, b1, . . . , bp)
T. The solution of (128) can be explicitly written as

β̂(x) =
(
XT
p (x)W(x)Xp(x)

)−1
XT
p (x)W(x)Y,

provided that the matrix
(
XT
p (x)W(x)Xp

)
is regular.

The following technical lemma will be useful in deriving the properties of the local polyno-

mial estimator.

Lemma 7. Let the kernel K be bounded, symmetric around zero, positive, with a support

(−1, 1) and such that
∫
K(x) dx = 1. For l ∈ N ∪ {0} put

Sn,l(x) =
1

n

n∑
i=1

1
hn
K
(
Xi−x
hn

) (
Xi−x
hn

)l
.
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Suppose further that hn → 0 and (nhn) → ∞ and that the density fX of X1 is positive and

twice differentiable in x. Then

Sn,l(x) =

 fX(x)
∫
K(t) tl dt+ h2n

2 f ′′X(x)
∫
K(t) tl+2 dt+ o(h2

n) +OP
(

1√
nhn

)
, l even,

hn f
′(x)

∫
K(t) tl+1 dt+ o(h2

n) +OP
(

1√
nhn

)
, l odd.

Proof. Analogously as in the proof of asymptotic normality of f̂n(x) (Theorem 21) one can

show that√
nhn

(
Sn,l(x)− ESn,l(x)

) d−−−→
n→∞

N
(
0, σ2(x)

)
, where σ2(x) = fX(x)

∫
t2lK2(t) dt.

Thus

Sn,l(x) = ESn,l(x) +OP
(

1√
nhn

)
and it remains to calculate ESn,l(x). Using the substitution t = y−x

hn
and the Taylor expansion

of the function fX(x+ t hn) around the point x one gets

ESn,l(x) = E 1
hn
K
(
X1−x
hn

)(
X1−x
hn

)l
=

∫
1
hn
K
(y−x
hn

)(y−x
hn

)l
fX(y) dy

=

∫
K(t) tl fX(x+ thn) dt

= fX(x)

∫
K(t)tl dt+ hnf

′
X(x)

∫
K(t)tl+1 dt+ h2n

2 f
′′
X(x)

∫
K(t)tl+2 dt+ o(h2

n).

As K is symmetric, then one gets that
∫
K(t)tl+1 dt = 0 for l even and

∫
K(t)tl+2 dt = 0 for

l odd.

Remark 25. Note that Lemma 7 implies that

Sn,0(x) = fX(x) + h2n
2 f ′′X(x)µ2K + o(h2

n) +OP
(

1√
nhn

)
= fX(x) + oP (1), (129)

Sn,1(x) = hn f
′(x)µ2K + o(h2

n) +OP
(

1√
nhn

)
= oP (1), (130)

Sn,2(x) = f(x)µ2K + oP (1), (131)

Sn,3(x) = hn f
′(x)

∫
t4K(t) dt+ o(h2

n) +OP
(

1√
nhn

)
= oP (1). (132)

9.2 Nadaraya-Watson estimator

For p = 0 the local polynomial estimator given by (127) simplifies to

β̂0(x) = arg min
b0∈R

n∑
i=1

[
Yi − b0

]2
K
(
Xi−x
hn

)
,

and solving this optimisation task one gets

β̂0(x) =

n∑
i=1

wni(x)Yi,
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where

wni(x) =
K
(
Xi−x
hn

)∑n
j=1K

(Xj−x
hn

) =
1

nhn
K
(
Xi−x
hn

)
Sn,0(x)

.

This estimator is in the context of the local polynomial regression also called a locally constant

estimator.

Put X = (X1, . . . , Xn) and let bias
(
m̂NW (x)|X

)
and var

(
m̂NW (x)|X

)
stand for the condi-

tional bias and variance of the estimator m̂NW (x) given X.

Theorem 22. Suppose that the assumptions of Lemma 7 are satisfied and further that

(nh3
n) −−−→

n→∞
∞, the density is fX(x) is continuously differentiable and positive at x, the

function m(·) is twice differentiable at the point x and the function σ2(·) is continuous at the

point x. Then

bias
(
m̂NW (x)|X

)
= h2

n µ2K

(
m′(x) f ′X(x)

fX(x) + m′′(x)
2

)
+ oP (h2

n), (133)

var
(
m̂NW (x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (134)

where

R(K) =

∫
K2(x) dx and µ2K =

∫
x2K(x) dx. (135)

Proof. Showing (133). Let us calculate

E [m̂NW (x)|X] =
n∑
i=1

wni(x)E [Yi|X] =
n∑
i=1

wni(x)E [Yi|Xi] =
n∑
i=1

wni(x)m(Xi)

=
n∑
i=1

wni(x)
[
m(x) + (Xi − x)m′(x) + (Xi−x)2

2 m′′(x) + (Xi − x)2 R̃(Xi)
]

= m(x)
n∑
i=1

wni(x) +m′(x)
n∑
i=1

wni(x)(Xi − x) +
m′′(x)

2

n∑
i=1

wni(x)(Xi − x)2

+
n∑
i=1

wni(x)(Xi − x)2R̃(Xi),

= m(x) +m′(x)An +
m′′(x)

2
Bn + Cn, (136)

where R̃(z)→ 0 as z → x and

An =
n∑
i=1

wni(x)(Xi − x), Bn =
n∑
i=1

wni(x)(Xi − x)2, Cn =
n∑
i=1

wni(x)(Xi − x)2R̃(Xi). (137)
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Now with the help of (129) and (130)

An =

n∑
i=1

wni(x)(Xi − x) =
hn
∑n

i=1K
(
Xi−x
hn

)
(Xi − x) 1

h2n∑n
j=1K

(Xj−x
hn

)
1
hn

=
hnSn,1(x)

Sn,0(x)

=
hn

[
hnf

′
X(x)µ2K + o(h2

n) +OP

(
1√
nhn

)]
fX(x) + oP (1)

=
h2
nf
′
X(x)µ2K + o(h3

n) +OP

(
hn√
nhn

)
fX(x) + oP (1)

=
h2
nf
′
X(x)µ2K

fX(x)
+ oP (h2

n) +OP

(
h2n√
nh3n

)
=
h2
nf
′
X(x)µ2K

fX(x)
+ oP (h2

n), (138)

as (nh3
n)→∞. Further with the help of (129) and (131)

Bn =
n∑
i=1

wni(Xi − x)2 = . . . =
h2
nSn,2(x)

Sn,0(x)

=
h2
n [fX(x)µ2K + oP (1)]

fX(x) + oP (1)
= h2

nµ2K + oP (h2
n). (139)

Concerning Cn thanks to (139) and the fact that the support of K is (−1, 1) one can bound

|Cn| ≤

∣∣∣∣∣
n∑
i=1

wni(x)(Xi − x)2R̃(Xi)

∣∣∣∣∣ ≤ sup
z:|z−x|≤hn

|R̃(z)|
n∑
i=1

wni(x)(Xi − x)2

= o(1)OP (h2
n) = oP (h2

n). (140)

Now combining (138), (139) and (140) one gets

E [m̂NW (x)|X] = m(x) +m′(x)h2
n

f ′X(x)

fX(x)
µ2K +

m′′(x)

2
h2
nµ2K + oP (h2

n),

which implies (133).

Showing (134). Let us calculate

var[m̂NW (x)|X] =
n∑
i=1

w2
ni(x) var[Yi|Xi] =

n∑
i=1

w2
ni(x)σ2(Xi)

=

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi)[∑n

j=1K
(Xj−x

hn

)]2 =
1

nhn

Vn
[Sn,0(x)]2

,

where Vn = 1
nhn

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi).

Now completely analogously as in Theorem 20 it is proved that f̂n(x)
P−−−→

n→∞
f(x) we will

show that

Vn
P−−−→

n→∞
fX(x)σ2(x)R(K), (141)

which combined with (129) implies (134).
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Showing (141). First with the help of Bochner’s theorem (Theorem 19)

EVn =
1

hn
E
[
K2
(
X1−x
hn

)
σ2(X1)

]
(142)

=

∫
1

hn
K2
(
z−x
hn

)
σ2(z)fX(z) dz −−−→

n→∞
σ2(x)fX(x)

∫
K2(t) dt. (143)

Now it remains to show that var(Vn) −−−→
n→∞

0. Using again Bochner’s theorem (Theorem 19)

var(Vn) =
1

nh2
n

[
EK4

(
X1−x
hn

)
σ4(X1)−

(
EK2

(
X1−x
hn

)
σ2(X1)

)2
]

=
1

nhn

[
1

hn
EK4

(
X1−x
hn

)
σ4(X1)

]
− 1

n

[
1

hn
EK2

(
X1−x
hn

)
σ2(X1)

]2

=
1

nhn

[
σ4(x)fX(x)

∫
K4(t) dt+ o(1)

]
− 1

n

[
σ2(x)fX(x)

∫
K2(t) dt+ o(1)

]2

−−−→
n→∞

0.

9.3 Local linear estimator

For p = 1 the local polynomial estimator given by (127) simplifies to

(
β̂0(x), β̂1(x)

)
= arg min

b0,b1

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
.

By solving the above optimisation task one gets

m̂LL(x) =
n∑
i=1

wni(x)Yi, (144)

where the weights can be written in the form

wni(x, hn) =
1

nhn
K
(
Xi−x
hn

)(
Sn,2(x)− Xi−x

hn
Sn,1(x)

)
Sn,0(x)Sn,2(x)− S2

n,1(x)
, i = 1, . . . , n. (145)

Theorem 23. Suppose that the assumptions of Theorem 22 hold. Then

bias
(
m̂LL(x)|X

)
= h2

n µ2K
m′′(x)

2 + oP (h2
n), (146)

var
(
m̂LL(x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (147)

where R(K) and µ2K are given in (135).
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Proof. Showing (146) Completely analogously as in the proof of Theorem 22 one can arrive

at (136) wit the only difference that now the weights wni(x) are given by (145). Now calculate

An =

∑n
i=1

1
nhn

K
(
Xi−x
hn

)
(Xi − x)Sn,2(x)− 1

nh2n

∑n
i=1K

(
Xi−x
hn

)
(Xi − x)2

Sn,0(x)Sn,2(x)− S2
n,1(x)

=
Sn,1(x)Sn,2(x)− Sn,2(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= 0. (148)

Further using (129), (130), (131) and (132)

Bn =
n∑
i=1

wni(x) (Xi−x)2

h2n
h2
n = h2

n

S2
n,2(x)− Sn,3(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= h2
n

[
fX(x)

∫
t2K(t) dt+ oP (1)

]2 − oP (1)oP (1)

(fX(x) + oP (1))
[
fX(x)

∫
t2K(t) dt+ oP (1)

]
− (oP (1))2

= h2
n µ2K + oP (h2

n). (149)

Thus it remains to show that Cn = oP (h2
n). Put Dn = Sn,0(x)Sn,2(x)−S2

n,1(x) and note that

with the help of (129)–(131) one gets

Dn = f2
X(x)µ2

2K + oP (1). (150)

Now with the help (150) and Lemma 7 one can bound

|Cn| ≤ sup
z:|z−x|≤hn

|R̃(z)|h2
n

n∑
i=1

|wni(x)| (Xi−x)2

h2n

≤ h2
n o(1)

S2
n,2(x) + |Sn,1(x)|

∑n
i=1

1
hn
K
(
Xi−x
hn

)∣∣Xi−x
nhn

∣∣3
|Dn(x)|

= o(h2
n)
f2
X(x)µ2

2K + oP (1) + oP (1)
[ ∫

K(t) |t|3 dt+ oP (1)
]

f2
X(x)µ2K + oP (1)

= oP (h2
n),

which together with (137), (148) and (149) yields (146).

Showing (147). With the help of (130), (131), (141) and (150) one can calculate

var[m̂LL(x)|X] =

n∑
i=1

w2
ni(x)σ2(Xi)

=
1

D2
n(x)

[
1

n2h2
n

n∑
i=1

K2
(
Xi−x
hn

) (
Sn,2(x)− Xi−x

hn
Sn,1(x)

)2
σ2(Xi)

]

=
1

nhn

1

D2
n(x)

[
S2
n,2(x) + oP (1)

] 1

nhn

n∑
i=1

K2
(
Xi−x
hn

)
σ2(Xi)

=
1

nhn

1

f4
X(x)µ2

2K + oP (1)

[
f2
X(x)µ2

2K + oP (1)
] [
fX(x)σ2(x)R(K) + oP (1)

]
,

which implies (147).
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9.4 Locally polynomial regression (p > 1)

Analogously as for p ∈ {0, 1} one gets the estimator of m(x) in the form

m̂p(x) =
n∑
i=1

wni(x)Yi,

where the weights wni(x) are given by the first row of the matrix(
XT
p (x)W(x)Xp(x)

)−1
XT
p (x)W(x)

and satisfy that
∑n

i=1wni(x) = 1 and

n∑
i=1

wni(x)(Xi − x)` = 0, ` = 1, . . . , p− 1.

Thus analogously as in the proofs of Theorems 22 and 23 one can show that if p is even then

the (conditional) variances of m̂p(x) and m̂p+1(x) are asymptotically of the order OP
(

1
nhn

)
and it even holds that

var
(
m̂p(x)|X

)
= var

(
m̂p+1(x)|X

)
+ oP

(
1

nhn

)
.

Further at the same time the biases of m̂p(x) and m̂p+1(x) are of the same order (OP (hp+2
n )),

but the bias of m̂p+1(x) has a simpler structure than the bias of m̂p(x). That is why in

practice usually odd choices of p are preferred.

Literature: Fan and Gijbels (1996) Chapters 3.1 and 3.2.1

9.5 Bandwidth selection

In what follows we will consider p = 1.

9.5.1 Asymptotically optimal bandwidths

With the help of Theorem 23 one can approximate the conditional MSE (mean squared error)

of m̂LL(x) as

MSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m′′(x)]2µ2

2K + oP
(

1
nhn

)
+ oP

(
h4
n

)
, (151)

Ignoring the remainder oP (.) terms in (151), we get that AMSE (asymptotic mean squared

error) of m̂LL(x) is given by

AMSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m′′(x)]2µ2

2K (152)
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Minimising (152) one gets asymptotically optimal local bandwidth (i.e. bandwidth that

minimises the AMSE).

h(opt)
n (x) = n−1/5

[
σ2(x)R(K)

fX(x) [m′′(x)]2 µ2
2K

]1/5

. (153)

The integrated mean squared error (MISE) is usually defined as

MISE
(
m̂LL |X

)
=

∫
MSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx (154)

where w0(x) is a given weight function which is introduced in order to guarantee that the

integral is finite.

Now with the help of (152) and (154) the asymptotic integrated mean squared error

(AMISE) is defined as

AMISE
(
m̂LL |X

)
=

∫
AMSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx

=
R(K)

nhn

∫
σ2(x)w0(x) dx+ 1

4 h
4
n µ

2
2K

∫
[m′′(x)]2w0(x) fX(x) dx (155)

Minimising (155) one gets asymptotically optimal global bandwidth (i.e. the bandwidth

that minimises the AMISE)

h(opt)
n = n−1/5

[
R(K)

∫
σ2(x)w0(x) dx

µ2
2K

∫
[m′′(x)]2w0(x) fX(x) dx

]1/5

. (156)

9.5.2 Rule of thumb for bandwidth selection

Suppose that σ(x) is constant. Then the asymptotically optimal global bandwidth (156) is

given by

h(opt)
n = n−1/5

[
R(K)σ2

∫
w0(x) dx

µ2
2K

∫
[m′′(x)]2w0(x) fX(x) dx

]1/5

. (157)

Now let m̃(x) be an estimated mean function fitted by the (global) polynomial regression of

order 4 through the standard least squares method.

Now in (156) one replaces the unknown quantity σ2 by σ̃2 = 1
n−5

∑n
i=1

[
Yi − m̃(Xi)

]2
and

m′′(x) by m̃′′(x). Finally the integral
∫

[m′′(x)]2w0(x) fX(x) dx is estimated by

1

n

n∑
i=1

[m̃′′(Xi)]
2w0(Xi),

which results in the bandwidth selector

h(ROT )
n = n−1/5

[
R(K) σ̃2

∫
w0(x) dx

µ2
2K

1
n

∑n
i=1[m̃′′(Xi)]2w0(Xi)

]1/5

. (158)
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9.5.3 Cross-validation

h(CV )
n = arg min

hn>0
CV(hn),

where

CV(hn) =
1

n

n∑
i=1

[
Yi − m̂−i(Xi)

]2
w0(Xi)

with m̂−i(x) being the estimator based on a sample that leaves out the i-th observation.

The rational of the above procedure is that one aims at minimising the estimated integrated

squared error, i.e.

ISE
(
m̂LL(x)

)
=

∫ (
m̂LL(x)−m(x)

)2
fX(x)w0(x) dx. (159)

Now put εi = Yi −m(Xi) and calculate

CV (hn) =
1

n

n∑
i=1

[
εi +m(Xi)− m̂(−i)

LL (Xi)
]2
w0(Xi)

=
1

n

n∑
i=1

ε2
i w0(Xi) +

2

n

n∑
i=1

εi

[
m(Xi)− m̂(−i)

LL (Xi)
]
w0(Xi)

+
1

n

n∑
i=1

[
m(Xi)− m̂(−i)

LL (Xi)
]2
w0(Xi).

Now 1
n

∑n
i=1 ε

2
i w0(Xi) does not depend on hn and thus it is not interesting.

Further 1
n

∑n
i=1

[
m(Xi) − m̂(−i)

LL (Xi)
]2
w0(Xi) can be considered as a reasonable estimate

of (159).

Finally 2
n

∑n
i=1 εi

[
m(Xi)− m̂(−i)

LL (Xi)
]
w0(Xi) does not ‘bias’ the estimate of (159), as

E
[
εi
[
m(Xi)− m̂(−i)

LL (Xi)
]
w0(Xi)

]
= E

{
E
[
εi
[
m(Xi)− m̂(−i)

LL (Xi)
]
w0(Xi) |X

]}
= E

{
E [εi|Xi]E

[[
m(Xi)− m̂(−i)

LL (Xi)
]
w0(Xi) |X

]}
= 0,

where we have used that E [εi|Xi] = 0 and that εi and
[
m(Xi) − m̂

(−i)
LL (Xi)

]
w0(Xi) are

independent conditionally on X.

9.5.4 Nearest-neighbour bandwidth choice

Suppose that the support of the kernel function K is the interval (−1, 1). Note that then

wni(x) = 0 if |Xi − x| > hn. The aim of the nearest-neighbour bandwidth choice is to choose

such hn so that for at least k observations |Xi− x| ≤ hn. This can be technically achieved as

follows.

Put

d1(x) =
∣∣X1 − x

∣∣, . . . , dn(x) =
∣∣Xn − x

∣∣
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for the distances of the observations X1, . . . , Xn from the point of interest x. Let d(1)(x) ≤
. . . ≤ d(n)(x) be the ordered sample of d1(x), . . . , dn(x). Then choose hn as

h(NN)
n (x) = d(k)(x). (160)

Note that (160) presents a local bandwidth choice.

To get an insight into the bandwidth choice (160) let us approximate

1

n

n∑
i=1

I{|Xi − x| ≤ h}
.
= Fn(x+ h)− Fn(x− h)

.
= FX(x+ h)− FX(x− h)

.
= fX(x)2h. (161)

By plugging h = d(k)(x) = hn(x) into (161) one gets k
n
.
= fX(x)2hn(x) which further implies

that

h(NN)
n (x)

.
=

k

2nfX(x)
.

Remark 26. To derive asymptotic properties of m̂LL when bandwidth hn is chosen as (160)

one needs to consider kn →∞ and kn
n → 0 as n→∞.

In some textbooks one can also find the following rule for the bandwidth choice

hn(x) =
X(l+k) −X(l−k)

2
,

where X(1) ≤ · · · ≤ X(n) and X(l) is the closest observation to x.

9.6 Robust locally weighted regression (LOWESS)

LOWESS is an algorithm for ‘LOcally WEighted Scatterplot Smoothing’. It is used among

others in regression diagnostics. It runs as follows.

In the first step the local linear fit m̂LL(x) with the tricube kernel function, K(t) = 70
81

(
1−

|t|3
)3 I{|t| ≤ 1}, is calculated. The bandwidth is chosen by the nearest-neighbour method

with k = bn fc, where the default choice of f is 2
3 . Then for a given number of iterations the

fit is recalculated as follows.

Let

ri = Yi − m̂(Xi), i = 1, . . . , n

be the residuals of the current fit. Calculate the ‘measures of outlyingness’

δi = B
(

ri

6med
(
|r1|,...,|rn|

)), i = 1, . . . , n,

where B(t) = (1 − t2)2 I{|t| ≤ 1}. With the help of δi the outlying observations are down-

weighted and the local linear fit is recalculated as m̂(x) = β̂0(x), where(
β̂0(x), β̂1(x)

)
= arg min

b0,b1

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
δi.

By default there are 3 iterations.
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9.7 Conditional variance estimation

Note that σ2(x) = E
[
Y 2

1 |X1 = x
]
−m2(x), thus the most straightforward estimate is given

by

σ̂2
n(x) =

n∑
i=1

wni(x)Y 2
i − m̂2

n(x), (162)

where m̂n(x) =
∑n

i=1wni(x)Yi. This estimator is usually preferred in theoretical papers as its

properties can be derived completely analogously as for m̂n(x). But in practice it is usually

recommended to use the following estimator

σ̃2
n(x) =

n∑
i=1

wni(x)
(
Yi − m̂n(Xi)

)2
. (163)

Note that if the weights wni(x) are not non-negative, then there is generally no guaranty that

either of the estimators (162) or (163) is positive.

Literature: Fan and Gijbels (1996) Chapters 2.4.1, 3.2.3, 4.2, 4.10.1, 4.10.2

Appendix

The following theorem can be found for instance in Section 2.1.4 of Serfling (1980) as Theo-

rem A.

Theorem A1. (Glivenko-Cantelli theorem) Suppose we observe independent and identi-

cally distributed random vectors X1, . . . ,Xn (in Rk) from a distribution with the cumulative

distribution function F . Let

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}.

be the cumulative empirical distribution function. Then

sup
x∈Rk

∣∣Fn(x)− F (x)
∣∣ alm. surely−−−−−−−→

n→∞
0.
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